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The electronic structure of the layer compound PbI, is calculated within the framework of the
empirical pseudopotential method. Spin-orbit interactions were necessarily included to explain
experimental reflectivity measurements. Using the pseudo-eave-functions, electronic charge densities were
computed. They are discussed in terms of the nature of the chemical bonding for PbI, .

I. INTRODUCTION

Lead iodide is an anisotropic semiconductor
which crystallizes in the CdI~ type of layer struc-
ture. ' Its optical properties have been studied in
a number of experiments. ' Early optical mea-
surements revealed the existence of a hydrogenic
exciton series associated with the absorption edge. ~

The exciton lines could reasonably be fitted to a
Rydberg series E„=E, —R/n2 with E, =2. 552 eV
and R = 0. 127 eV except for the n =1 line, which
mas shifted to higher energies by about 0.07 eV. '
Several explanations of this anomaly have since
been given. ~' More recent results'o suggest that
both the electron and hole functions which form the
exciton wave function mainly originate from Pb or-
bitals ("cationic exciton"). The anomaly of the
yg = 1 exciton line could then be explained in terms
of a repulsive central-cell correction due to orthog-
onality requirements. ' In addition, absorption
and ref lectivity measurements have been performed
above the fundamental absorption edge; these show
a complex structure up to 10 eV and give evidence
of several metastable exciton states. '

Because until recently no band-structure calcu-
lations were available, several models for the band
structure were proposed. ' The first quantitative
band-structure calculation was carried out in the
semiempirical tight-binding scheme. " Though
these calculations gave some insight into the elec-
tronic structure of PbI~, they mere not able to ex-
plain all optical experiments. Tight-binding cal-
culations are known to give inaccurate descriptions
of conduction bands, so that the discrepancy be-
tween these calculations and experiment is not
surprising.

The aim of this paper is to present a more re-
liable band-structure calculation for PbI~ which
gives many of the answers to the puzzling experi-
mental results. To do so, we have chosen the
empirical pseudopotential method (EPM), which
in the past has been successfully used for band
calculations of layered compounds. ' ' The basic

concept is first to associate a pseudopotential with
each ion core independent of its chemical state and
then to vary slightly the different form factors to
fit the optical data of the actual compound.

In Sec. II we discuss the crystal structure of
PbI, and give some important group-theoretical
results. The method of calculations of the band
structure and of the charge densities, as well as
the calculations of optical spectra, are described
in Sec. ID. In Sec. IV the results of the calcula-
tions are compared to experiment. The calculated
optical structure is discussed in terms of interband
transitions. The influence of spin-orbit interac-
tion on the band structure and on the transition ma-
trix elements is outlined. The electronic charge
densities are calculated for all valence bands and
the first three conduction bands; they are dis-
cussed in terms of chemical bonding in PbIz.

II. CRYSTAL STRUCTURE AND GROUP THEORY

The 2H polytype of lead iodide belongs to the
CdI2 type of structure. Its hexagonal unit cell,
which is defined by the three basis vectors

.&2ws) o 0)
—a/2, t~= a, t~= 0

with the lattice constants a=4. 56 A, and c=6.98 A,
contains a single molecule. The atoms are in the
following positions of D~„(C3m): Pb: (0, 0, 0);
I: (—,', -'„u); (-„—'„—u), with u=0. 265. The struc-
ture is characterized by an octahedral coordination
of the cations and by anion-anion contacts along
certain directions, which allows the structure to
be viewed as layerlike. A perspective view of the
atomic arrangement is given in Fig. 1. %'ith

u = 0. 265 and c/a = l. 53 the iodine atoms are lo-
cated in almost perfect hexagonal close packing
(u =0. 25, c/a= l. 63). The lead-to-iodine distance

0
is 3.22 A and the interlayer iodine-iodine separa-
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TABLE I. Allowed dipole transitions between states
belonging to the single group and to the double group of
point A of PbI2. The extra representations A5 and A5
are degenerate by time-reversal symmetry with Ae and

As, respectively.

A A',

A A2 1
A'

3

A A A A A3 3 i% 2t 3

4

A 4

A4, A5, A',

5 6

A A6 5

A A4 4

H„=4 3 a [v V(r)xp]
4m c (4)

cell with volume 00; their positions are given by
the vectors u&. The potential V&((G() is the Four-
ier transform of the pseudopotential V'„((rl) which
is assumed to be spherical about each atom j.
Note that the different form fa,ctors are normalized
to the same average atomic volume QJL. Because
of the anisotropy of the reciprocal lattice there is
a large number of V, (( G ( ) which have to be taken
into account. The different discrete values mere
therefore computed from analytic functions of the
form

V, (q) = a„(q'—a»)/(e '»" '~4'+ l),
where the a&& are parameters defining the atomic
pseudopotentials. The pseudo-Hamiltonian was
then diagonalized in basis of plane waves. The
band structure along symmetry lines was obtained
by use of symmetrized plane waves rather than
simple plane waves. This procedure has two ad-
vantages: Firstly, it considerably cuts down the
computing time during the phase of adjusting the
pseudopotentials; secondly, it allows a direct iden-
tification of the symmetries of the various energy
bands without implicitly inspecting their wave func-
tions. The method to construct symmetrized plane
waves is described in detail in Ref. 12 and 18.
The basis set of plane waves has been truncated in
the following way: Plane waves with Ik+GI = Eg
are included exactly and plane waves with E&
& I k+G I = E2 are incorporated by second-order
perturbation theory. '

A correct description of the band structure of
PbI2 near the band edge which can afford an ex-
planation of the optical experiments, necessitates
the inclusion of relativistic bffects. We thus brief-
ly describe a way of incorporating the spin-orbit
interaction into a pseudopotential secular equation
as it was first proposed by Weiszm' for white tin.
Only the spin-orbit interaction is explicitly added
to the pseudo-Hamiltonian since it breaks its sym-
metry. Other relativistic terms like the mass-
velocity term and the Darwin term have the full
crystal symmetry and are here thought of as being
part of the empirical pseudopotential. The spin-
orbit Hamiltonian is

where V(r) is the real crystal potential, p is the
momentum operator, and 0 is the Pauli spin opera-
tor. Since spin-orbit interaction energies are es-
sentially determined by the potential in the core
region, inclusion of Eq. (4) has to be done in the
original orthogonalized-plane-wave (OPW) formu-
lation of the pseudopotential concept. Weisz
has shown that the final matrix elements appearing
in the pseudopotential Hamiltonian are of the form

H„~... t, =Qo ... I A" + A" + A" + A"] S& (k —k ),
(5)

where S~(k-k ) are the structure factors as de-
fined in (2) and &7z.z = (s i(71s) are matrix elements
in spin space between the electron-spin eigenfunc-
tions s and s. The four terms in the brackets de-
note the different contributions to the spin-orbit
energy in the pseudopotential scheme. The super-
scripts p and c stand for plane waves and core
functions, respectively. Weisz has shown that the
core-core term A" is several orders of magnitude
larger than the 3 terms containing plane waves,
A", A" and A". In PbI~ the ion cores consist of
s-, p-, and d-like electrons. The s electrons do
not contribute to the spin-orbit interaction. The
valence states for which the formalism is developed
are expected to be mostly s and p like; their pro-
jection onto d core states will therefore be small
and changes on them due to core d-d spin-orbit
interaction ca,n be neglected. We are thus left with
the contribution arising from p core electrons only.
Equation (5) becomes in this particular case

H -. ~
" = - fo...' (k xk) Z Sx(k —k ) ~, (l k I, Ik'I)

(5)
where X~(l kl, (k () is a slowly varying function of

I k I and I k I and determines the strength of the
spin-orbit coupling. Instead of calculating this
function by use of atomic core states we take in
this paper AJ((k(, (k ()—= X~ independent of (k(,
Ik I and consider it as atomic spin-orbit coupling
parameter. Since s, s' are two-component vec-
tors each original Hamiltonian matrix element
Hg, „-isnow replaced by a complex two-by-two ma-
trix:

Hf. .. „;=k5P~-5g, +5 Sq(k —k ) [Vq(Ik —k, ) 5...
—io, ,; (k xk) x,.].

This means that the Hamiltonian matrix including
spin-orbit interaction has twice the size of the
spin-free matrix and is complex. Since inversion
is among the crystal-space-group operations each
eigenvalue of the spin-orbit Hamiltonian will be at
least two fold degenerate. No general formalism
has been found to factorize the Ha, miltonian matrix
and to remove this degeneracy.

The analysis of the optical properties of PbI~
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can be done by computing the imaginary part of
the frequency-dependent dielectric function ea(~).
The calculation of ea(m) requires the knowledge of
the band structure throughout the Brillouin zone
since it has the form

eh' 1
& (~) = —Z dk6(E, (k) —E„(k)—k&)3FW QP c u

x/&u„„-/ V elu, „-)l', (8)

where u„k-and u, k are the Bloch factors of the va-
lence- and conduction-band wave functions and

E„(k)and E,(k) are the energies of these states
e is the polarization vector of the incident light
and we distinguish in PbI~ between two polariza-
tions, whether the light is polarized parallel (az)
to c or perpendicular (&a') to c. The integration
over k space in Eq. (8) may be written

2 "~ ta(~)
cy((d) = 1 + z a dQ) ~

(d 2

This equation means that &, (w) can be obtained if
the e2(w) spectrum is known explicitly over the en-
tire wavelength range. An analytic tail replaces
the calculated g2(&g) for higher energies. This is
done to account for the high-energy transitions
which are not represented in our e2(&u) calculation
considering a finite number of bands only. The
tail functi. on2 used i.s

P~/(~'+ ~')',

(8)

where S is a surface of constant interband energy
h(d = E, —E„.Besides matrix element effects the
structure in ea(m) originates from van Hove sin-
gularities, a' at critical points where Vf(~) =O.
These critical points can be classified according
to symmetry as minima Mo, saddle points M1,
and Mz, and maxima M3. The interband energies
E, —E„,the dipole matrix elements (u„flV. e lu, f),
and the energy gradients Vf~(k) were obtained
from eigenvalues and eigenvectors of the pseudo-
Hamiltonian at a number of mesh points in gpof the
Brillouin zone. The error arising from calculating
the dipole matrix elements by use of pseudo-wave-
functions rather than crystal wave functions has
been estimated to be of the order of 10-20 j&.

The integration was performed using-the Gilat-
Raubenheimer scheme. In order to compare our
results directly to ref lectivity measurements we
had to derive R(~) from the c2(&u) spectrum. This
was done by first performing a Kramers-Kronig
integration over &2(~) resulting in the real part
e, (&u) of the frequency-dependent dielectric con-
stant:

where y is an average energy and P is determined
by continuity with ga(~) at some cutoff energy E,.
e, (~) together with &2(u) allow the calculation of
the ref lectivity R(&u) for normal incidence by use
of the formulas

eg((u) = n((u)' —k((u)',

e, ((u) = 2n((u) k((u),

[n((u) —1]'+k((u)'

[n(&u) + 1]'+k((u)'

(12)

In order to understand the nature of bonding in
PbI~ we use the pseudo-wave-functions to calculate
electronic charge distributions. For this purpose
we define a "band*' charge density

p„(r)= e X'
I g.(» k)

l

=e ~ p.(r "),
k k

with k running over all k states in the Brillouin
zone. The total charge density is then given by
summing over all valence bands:

(13)

p(r) =Z p„(r)= eZ p(r, k) .
n k

(14)

p(r, k) =p, (r) +5~ p (r)e'" ' I,
m=1

where R are lattice vectors in real space. From
p(r, k) we construct a function,

(16)

which has the complete symmetry of the Bravais
lattice. {TI represents the set of M point-group
operations of the Bravais lattice. We can now ex-
press p(r, k) in the form

p(r, k) =p, (r) + Z p (r) A (k),
m=1

In some cases it is convenient to inspect the charge
distribution for some isolated k regions only; the
sum in (13) has to be modified then accordingly.
Since we evaluate the wave functions g„(r,k) for
k points within the irreducible part of the Brillouin
zone only ($& of the zone), we have to symme-
trize p(r, k) according to the full crystal symmetry.
This symmetrization procedure is completely
analogous to the one necessary to obtain symme-
trized basis functions of the Hamiltonian. It re-
mains to carry out the k summation in (13) over
the irreducible part of the Brillouin zone. This
can either be done by sampling the k space in the
usual way or, since this is very time consuming,
by a very elegant method, first developed by
Balderesehi' and Chadi and Cohen' which we will
briefly describe here. Since p(r, k) is a periodic
function in k space it can be expanded in a Fourier
series,
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or

p(r) = p(r, k) P p (r)A (k) .
m=1

In other words, the integrated charge density is
equal to the (lattice-symmetric) charge density
of one k point plus corrective terms. The object
is now to make as many of these corrective terms
A (k) equal to zero as possible by an appropriate
choice of the point k. The method can be improved
by use of more than one k point. Those N k points
k, and their weighing factors z; are then deter-
mined by

0.)A k) =0, m=1 2 3. . .

where m runs over as many "stars" as possible.
Since the expansion coefficients P (r) drop rapidly
in magnitude with increasing m we should have to a
good approximation,

p(r)= Zi a, p(r, k, ). (20)

In general the solutions of (19) are not unique; a
procedure to solve (19) and to find the special k
points in the irreducible part of the Brillouin zone
has been developed by Chadi and Cohen. '6 We only
report here parts of their results for the hexagonal
lattice. For M=1 one either has k= (—,', 0, —,') or
k = (0. 1904, 0.1904, —,') which both satisfy (19) for
the first (R }"star" along z and for the first "star"
in the plane z = 0. In the present calculation we
choose N= 3 and the following three points:

ki=(9~ a& s), kz=(9, 9, 4), kg=(9, 9, 4),

with the weighting factor —,
' for each point. These

threepoints satisfy Eqs. (19) for thefirsteightstars
in PbI& except for the two stars withno x-ydepen-
dence and even z coordinates (R4} ={~~z}and

(R,4}= {0~044}. The choice of these k points for Pblz
has the further advantage, that all three points lie
on symmetry planes. We therefore need only to
consider these three points within z$ of the Bril-
louin zone in spite of the fact that in PbI~ the re-
duced part extends over» of the Brillouin zone.

with

A.(k) = Ee*""-
(r)

This equation associates each A (r) with a par-
ticular "star" of lattice vectors R . We can carry
out the sum over the Brillouin zone in (13) formal-
ly and obtain

p(r) = po(r) (Ig)

IV. RESULTS AND DISCUSSION

TABLE II. Empirical parameters defining the pseudo-
potentials of Pb and I. The values enter Eq. (3) together
with q in reciprocal Bohr radii in order to give V(q) in

rydbergs.

Pb
I

a&

0. 58
6, 5

2. 1
1.7

0. 5
0. 46

a4

—2. 0
—6. 5

Among the enormous number of pseudopotential
data available, at present there is only little in-
formation about lead form factors'2 and —at least
to our knowledge —none at all about iodine form
factors. Earlier EPM calculations on the semi-
conducting compound PbTea' successfully used
form factors for Pb which did not considerably
differ from the model potential values of Anirnalu
and Heine. ~6 We therefore scaled their model po-
tential form factors by an appropriate volume fac-
tor and used it in our calculations. The Animalu-
Heine model potentials are screened by a free-
electron-type screening function. Replacing this
screening function by a Penn-type screening func-
tion, which is the more appropriate type of screen-
ing for semiconductors did not give rise to drastic
changes in the band structure. In particular, the
order of the first three conduction bands on the
energy scale which is an important feature of the
band structure, as we shall see later, did not
change with the two different screening functions.
The definition of a first-guess pseudopotential for
iodine proved to be a far more difficult task. We
finally used some of the systematic trends of
pseudopotentials throughout the periodic system;
i.e. , we used as starting potential iodine form
factors obtained by extrapolating the renormalized
Animalu-Heine form factors of In, Sn, Sb, and Te.
These form factors have then been varied ernpiri-
cally to reproduce the numerical value of the gap
E' = 2. 5 eV and to give the right order of the con-
duction bands. The final pseudopotentials ne-
glecting spin-orbit interaction are defined by the
values of the parameters a;& given in Table II
which enter Eq. (3) together with q in reciprocal
Bohr radii in order to give V, (q) in rydbergs.

The convergence of the energy eigenvalues and
the wave functions was tested and found to be satis-
factory if one sets E, = 3 Ry and E~ = 6 Ry which
corresponds to about 75 planes included exactly
into the Hamiltonian matrix and to about some 150
more waves included by second-order perturba-
tion theory. The band structure of PbI~ calculated
in this way is shown in Fig. 3. The labeling of
the symmetry points and lines corresponds to that
in Fig. 2. There are 18 valence electrons which
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FIG. 3. Band Structure of PbI2 along high-symmetry lines in the hexagonal Brillouin zone.

fill the first nine bands. Using the simple 8 —Ã
rule in its general form these nine bands should
essentially correspond to the iodine s and p states
and to the lead s states. This contrasts, e. g. ,
with CdI~ or SnSe2 which crystallize in the same
structure but whose cation s states are essentially
conduction states. ' The lowest conduction bands
in PbI~ should be p-like lead which is confirmed
by charge-density calculations as we shall see
later. The smallest gap appears at the surface
of the Brillouin zone at point A (which is group
theoretically equivalent to point I') between the
nondegenerate state A; and the twofold-degenerate
level A~. The third p-like level A, appears about
0. 6 eV higher in energy. Optical transitions from
A; to A, are allowed for light polarized perpendicu-
lar to the c axis (E~) only. This is in contrast to
experiment ' which shows an excitonic transition
at 2. 5 eV for both polarizations, though the transi-
tion is about four times stronger for E„.To ex-
plain these experimental facts we need to consider
spin-orbit interaction. In fact, group-theoretical
arguments show that in the double group, the band-

edge exeiton is visible for both polarizations: A',

goes into A4 and A3 splits into A4, and the two one-
dimensional states A, , A6 which are degenerate by
time-reversal symmetry; A~ goes into A4 too.
Transitions from A4 into A4 are aQowed for both
directions of polarization as seen from Table I.

In order to obtain quantitative results we carried
out pseudopotential calculations including spin-or-

bit interaction as described in Sec. III. The used
formalism allows to vary the strength of the spin-
orbit coupling for Pb and I separately. Figure 4
shows the band structure at point A as a function
of the two spin-orbit parameters X» a,nd A~ for a
constant spin-free pseudopotential. Since the
otherwise real Hamiltonian matrix here became
complex and doubled in size we used for this cal-
culation a lower stage of convergence, i.e. , E,
=2. 5 Ry and E2=5.0 Ry which corresponds to 110
and 320 plane waves, respectively. As expected,
the two lowest states have iodine s character and
are thus not influenced by spin-orbit interaction.
The next higher six bands mainly respond to X,
and not to A» thus indicating their predominant
iodine p character. The uppermost valence band
is thought to be s-like lead with some iodine p ad-
mixture and thus only slightly responds to X, . The
lowest three conduction states reveal their p-like
lead character as showing strong dependence on

Xp b A s predicted by group theory the lowest con-
duction level As splits into A4 and A5, A6. %e
assume from this analysis that the uppermost va-
lence band as well as the three lowest conduction
bands are essentially lead orbitals. This assump-
tion will later be confirmed by the charge density
calculations.

Transitions at the band edge in PbI~ are there-
fore "cationic" as suggested in Ref. 10. This
particular situation allows us to describe the in-
fluence of spin-orbit interaction on the band gap
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FIG. 4. Energy bands of PbI2 at point A as a function of the spin-orbit parameters Xp& and X&.

in an atomiclike semiempirical model. " In this
model we describe the PbI2 conduction bands by
atomiclike localized lead orbitals neglecting the
admixture of iodine orbitals and add crystal-field
and spin-orbit effects as perturbtaions. Let us
define the following basis functions ) I, m„m,) with

l=1, m, = —1, 0, 1, and m, =+-,'. The trigonal crys-
tal field H, splits the state m, =0 from the states
m, =~1 by ~E,:

&1, 0, m. l ff. I 1, 0, m, &
= ~E„

(» —E

0 —X-E v 2A.

W2x

1, 0, 2 , 1, 0, —
2

=0 (24)

(1, + 1, m, I H, l 1, + 1, m, ) = 0.
(21}

The three eigenvalues, each twofold degenerate,
are given by

Magnitude and sign of hE, are treated as empiri-
cal parameters. The spin-orbit interaction, which
can be written in the form

E~ —X,

Ea g
=

2 (b E, —X}+ (~ r»E, + +gX + g r»E, X) (25)

(P 1 dl'(r)-
H~= —— (L 'S),

2 r dr (22)

and describes the strength of the spin-orbit cou-
pling. Matrix elements of the (L S) operator are
only nonzero between states of the same l and the
same m~ = m, + m, . Moreover, they do not depend
on the sign of m~ and we will thus be left with the
following 3&&3 matrix equation determining the
energies:

where ~ is the fine-structure constant, gives rise
to the following matrix elements:

(l m»» a IH all m( &=mg&

&I, m, + I» a I &so I l, m, + 1, —
~&

= —(m, + 1) g

(l, m„~ I H» I l, m, + 1, —2) = [(I —m, )(l + m, + 1)]' 1,

(23)

where

(26)

For X- 0, l E2) becomes pure p, -like and IE~& be-
comes pure p„-p,-like. Let us now consider optical
transitions from the uppermost valence band into
the lowest conduction band )Es&. The strength of
these transitions will be proportional to

2A.

(~+E )'+2~'

and to

(X+E,)'
(). E)2 „a (27}

For X- 0 we correctly find the single-group selec-

Voile the eigenfunctions of E& are pure p, -p, -like
and transform like A„A~. The eigenfunctions of
E~, E3 are mixtures of p, and p„,p, transforming
like A4. We find, in particular,

IE, ) = [(x+E)'+2m'] '" [v 2x IP„,P, )+(x+E) IP, &],
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visible in both polarizations correspond to transi-
tions from the highest valence band into the three
conduction bands at generally k points within the
Brillouin zone where the strong selection rules are
relaxed. The fine structure' ' ' of the 2. 5-eV
band-edge exciton which is indicative for the pres-
ence of polariton effects and electron-hole exchange
will be discussed in a separate paper. '

We showed in the last paragraph that the inclusion
of spin-orbit interaction is necessary to quantita-
tively explain the excitonic structure of PbI~. How-
ever, it is neverthele'ss of interest to compare the
measured ref lectivity over a wide energy range
with the ref lectivity derived from a band-structure
calculation neglecting spin-orbit interaction. This
ref lectivity was computed as described in Sec. III
from about 200 k points within the irreducible part
of the Brillouin zone. About 25 bands up to an
energy of 12 eV were included; above 10 eV the
calculated dielectric function was continued by an
analytic tail function [Eq. (11)]with y= 4. 5 eV.
The result of this calculation together with the ex-
perimental ref lectivity for E„is displayed in Fig.
'7. One readily recognizes two distinct regions:
structures between 2. 5 and 4. 5 eV originate from
transitions from the isolated uppermost valence
band into the lowest three conduction bands. Be-
cause of the nature of the involved bands we classi-

fy these transitions as "cationic. " The structures
between 4. 5 and 7 eV are associated with transi-
tions from the next deeper valence bands which are
essentially iodine p-like into the p-like lead con-
duction bands. These anion-cation transitions al-
low to define an "ionic gap" c = 5-6 eV for PbI~.
The matrix elements involved in the transitions
are of about equal magnitude for both regions. The
experimental curve is about 0. 5 eV more spread
out in region 1. We believe that this difference is
mainly due to spin-orbit splitting which increases
the widths of the p-like lead conduction bands from
1.5 to 2.0 eV. Prominent structures in the ex-
perimental ref lectivity curve can well be recog-
nized in the calculated curve at somewhat shifted
energies. The strong excitonic resonances, of
course, are not reproduced by our band calcula-
tion.

In this final section we present charge-density
calculations for various groups of bands in PbI~.
The purpose of doing these calculations is two-
fold: Firstly, we want to confirm the speculations
on the cationic nature of the states near the small-
est gap and, secondly, we want to obtain some in-
formation about the relative strength of ionicity
and covalent bonding in PbI2. The charge densi-
ties were calculated as described in Sec. III.
Three representative k points within the irreduc-

0.7

0.6

0.5

——Experiment

Theory

(wAout spin-Orbit}

0.4

0.3

0.2

0.1'

0
0 3 4

Energy (eY)

FIG. 7. Calculated ref lectivity of PbI2 for polarization E~ together with experimental data from Ref. 8.
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Pb Pb Pb Pb

Pbt Pb

FIG. 8. Charge-density distribution of the lowest two
bands in PbI2.

FIG. 9. Charge-density distribution of the third band
in PbI2.

ible part of the Brillouin zone were used to repre-
sent the band densities. According to earlier cal-
culations' this represents the "exact"pseudocharge
densities to within a few percent error. The main
deviations from real charge distributions, of
course, are due to the fact that our calculations
are based on pseudo-wave-functions, which are
not orthogonal to the core wave functions. Thus
in the vicinity of the ion cores the calculated
charge densities are not representative. The
charge densities are displayed as contour plots
in a (110) plane, depicted as the shaded area in

Fig. 1. They were evaluated at 2500 points within

this plane and are all normalized to two electrons
per band and per unit cell volume 0= -,'g cv 3. The
charge of the lowest two bands, as shown in Fig.
8 is concentrated in the anion s states. This re-
sult, of course, is not surprising and has been
found for other layer compounds' too. The ener-
getic position and therefore the degree of hybridi-
zation of the anion s states depend strongly on the
used iodine pseudopotential. Unfortunately there
are no experimental data available at present to
check these quantities. The next higher band con-
tains already some s-like charge on the cations
(see Fig. 9). This situation has also been met in

GaSe, ' where because of the existence of two

nearest-neighbor Ga atoms the one band is re-
placed by a bonding-antibonding pair of bands.
The electrons in the next group of five bands (Fig.
10) occupy mostly anion p-states. The bonding

charges between Pb and I can clearly be recog-
nized. The threefold coordination of the iodine
atoms within one layer is responsible for the sec-
ond charge maximum on the inside of the layers.

Pb Pb

Pb

FIG. 10. Charge-density distribution of bands 4 to 8
in PbI2.

The third maximum displayed in the (110)plane
points towards the neighboring layer and might
result from the repulsive interaction between the
anion p states of nearest layers. Figure 11 in

which the charge density of the uppermost valence
band is mapped does reveal strong s-like charge
around the lead atoms. There is some charge on
the iodine atoms which contains p, -like functions
as well as p„-p,-like orbitals. A detailed analysis
shows that this band mixes with iodine p, near A
and I' and with iodine p„p,near M, I., K, and H.
This different mixing is, of course, compatible
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Pb Pb Pb

- - Pb Pb Pb

FIG. 11. Charge-density distribution of t6e upper-
most valence band in PbI2.

FIG. 12. Charge-density distribution of all valence
bands in PbI2.

with group-theoretical findings. It shows, how-

ever, that even a very flat band can have consider-
ably different wave functions in different regions
of k space due to interband mixing. The integrated
charge of all valence electrons is shown in Fig.
12. The charge pile up at the anion and cation sites
is 40 and 31, respectively. The charge between
the atoms of one layer rises up to 58 and has its
maximum clearly deplaced towards the more elec-
tronegative anion. %e therefore conclude that
there is some ionicity in the Pb-I bond. The charge
distribution forms almost a closed shell for one
layer. There is only little covalent binding charge
recognizable between neighboring layers, indicat-
ing thus the weakness of the interlayer coupling.
This result is derived for the total valence charge;
at singular k point, however, some bands can re-
veal considerable interaction between neighboring
layers, as it is, e.g. , the case for the third and

eighth valence bands along I'-A. These states
then have clearly three-dimensional character as
seen from the dispersion of Z(k), but they have
only little effect on the total valence charge and

on the mechanical anisotropy of the crystal. In

Fig. 13 the band charge of the first three conduc-
tion bands is displayed. Though there is mixing
with higher bands the three bands are clearly sepa-
rate on the energy scale. As expected their charge
shows the pronounced lead p-like behavior. The
actual asymmetry that the p, -like charge is slight-
ly higher than the p„-p„-likecharge, is possible be-
cause of the trigonal crystal field. The charge on
the anion sites might partially originate from iodine
d levels. Similar to what has been found in other
compounds, ' ' the arrangement of charge indi-

Pb Pb

Pb

FIG. 13. Charge-density distribution of the first three
conduction bands in PbI2.

cates the antibonding character of the conduction
bands. It follows from this discussion that optical
transitions from the uppermost valence band into
the lowest three conduction bands which take place
in the energy range between 2. 5 and 4. 5 eV are
mainly associated with the excitation of cationic
s states into cationic p states. The large negative
pressure coefficient of the band-gap exciton' is in
agreement with these findings since s-like states
are known to rise in energy much faster under
pressure than do p-like states.
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V. SUMMARY AND CONCLUSIONS

We have studied the electronic system of PbI, by
means of the EPM. The form factors of lead were
taken over from earlier calculations of PbTe,
those of iodine were based on an extrapolation of
the form factors of In, Sn, Sb, and Te. Spin-or-
bit interactions had to be considered to obtain a
conduction-band structure which affords an ex-
planation of the ref lectivity measurements. In
particular, the polarization dependence of the re-
flectivity peaks at 2. 5, 3.3, and 3.9 eV can be
understood in this way. Charge density calcula-
tions confirm earlier assumptions that both valence

and conduction band originate essentially from lead
orbitals.
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