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Temperature-dependent electrical properties of Hgse

S. L. Lehoczky, J. G. Broerman, Donald A. Nelson, and Charles R. Whitsett

McDonnell Douglas Research Laboratories, McDonnell Douglas Corporation, St. Louis, Missouri 63166
(Received 3 October 1973)

The electrical conductivity and Hall coefficient between 4.2 and 300 K were measured for
single-crystalline samples of the zero-gap semiconductor mercury selenide. The samples had extrinsic electron
concentrations ranging from 3,6 )& 10' to 4 )& 10" cm '. The temperature dependences of the band
parameters were obtained by fitting to the Hall-coefficient data a band model based upon the full Kane
theory with higher-band corrections. The least-squares fit was obtained for a I'6 I'8 energy gap which

decreased from 0.22 eV at 4.2 K to 0.061 eV at 300 K, an interband-momentum-matrix element which
increased slightly from 7.2 X 10 ' eV cm at 4.2 K to 7.6 X 10 ' eV cm at 300 K, an effective hole mass

of 0.78mo, and a valence-band overlap of the conduction band by 5.0 meV. A variational calculation of
the electron mobility between 4.2 and 300 K was performed for each HgSe crystal. The limiting
scattering mechanisms were taken to be inter- and intraband longitudinal-optical-phonon scattering,
electron-hole scattering, acoustic-phonon scattering, and scattering by charged and neutral defects. The
calculations included the properly mixed s and p wave functions, the efFects of higher bands on the
density of states, the temperature dependence of the band parameters, and the anomalous dielectric
function associated with the symmetry-induced zero-gap band structure. The results of the calculations
for both the temperature and concentration dependences of the electron mobility are in good agreement
with experiment for values of the Szigeti efFective charge e, » (0.76) and the transverse-optic
temperature eT (173 K) which were deduced from optical and acoustical data. &t temperatures below
about 50 K the electron scattering mainly is by ionized donors and neutral defects. At higher
temperatures the electron mobility is limited primarily by longitudinal-optical-phonon scattering.
Acoustic-phonon scattering is negligible at all temperatures. An anomalous minimum in the electron
mobility near 110 K was observed in mercury selenide that was allowed to sit for a few months at
room temperature after havin been annealed in vacuum.

I. INTRODUCTION

Mercury selenide (HgSe), along with n-Sn, '

HgTe, ~ P-HgS, and Cd3As~, belongs to a class of
materials which have identically zero direct ener-
gy gaps and are therefore perfect semimetals.
Even though there was never any experimental evi-
dence to support the view, it was widely main-
tained until past 1960 that HgSe is an intermediate
band-gap semiconductor. This was in accord with

the prevailing ideas on the trends of band gaps in

the progression from the group-IV elements
through the III-V to the II-VI compounds, and often
quoted for HgSe was an energy gap value of 0.7 eV
predicted in 1954 by Goodman' in his note on semi-
conducting compounds and the scale of electro-
negativities. Thus, many of the early analyses
assumed that high impurity concentrations masked
the intrinsic electrical properties of HgSe, and
various donor levels and impurity-band schemes
were postulated.

The first major step towards an understanding
of the band structure of HgSe was taken by Har-
man and Strauss, who fitted 77- and 300-K Hall-
coefficient data for a large number of HgSe sam-
ples with the Kane two-band model for InSb. ' They
concluded that Kane's small-k approximation
worked well for HgSe, but that there must be a
second valence band which overlapped the conduc-

tion band (by 0.07 ev they estimated). However,
the bending up of a valence band sufficiently to
overlap the conduction band was considered so
unreasonable that the semimetal model for HgSe
was not generally accepted. The hurdling of the
objections to the semimetal model was made pos-
sible by the work of Groves and Paul' who pro-
posed the symmetry-induced zero-gap structure
for ~-Sn, and it was at once realized by them
and by Harman et al."that the Hg chalcogenides
most probably have similar band structures. A

schematic representation of this unusual band
structure, usually called the inverted band struc-
ture, is shown in Fig. 1.

In the inverted band structure, the s" -like 1,
level, which is the conduction band in InSb, has
moved to an energy lower than the ps' -like I'8

level, which in a normal semiconductor forms the
zone-center-degenerate light- and heavy-hole
valence bands. The light-hole part of I'8, since it
is k ~ p coupled to I'6, inverts to form a small-
effective-mass conduction band, while the heavy-
hole part of I", remains a valence band. The re-
sulting degeneracy of the valence-band maximum
and the conduction-band minimum can be removed
only by reducing the crystal symmetry, and the
materials are thus called perft. ct semimetals or
symmetry-induced zero-gap semiconductors. '

The compatibility of the inverted band structure

1598



TEMPERATURE-DEPENDENT ELECTRICAL PROPERTIES OF. . . 1599

Fermi en

Eg

FIG. 1. Simplified model of the band structure near
the zone center for a pure symmetry-induced zero-gap
semiconductor at absolute zero.

with low-temperature experimental data for HgSe
has been well demonstrated, notably for the
ionized-impurity-limited electron mobility' and
for the anisotropy of the beating in the Shubnikov-
de Haas oscillations. ' The low-temperature
(4. 2 K) band parameters for HgSe are well estab-
lished by the effective-mass variation with elec-
tron concentration. ' ' "

There have been many previous studies of the
temperature-dependent electrical properties of
HgSe. In 1951 Blum and Regel' reported that
HgSe is a high-electron-mobility semimetallic
compound in which the mobility p, decreases nearly
as T ' . They also reported that HgSe, upon
melting, has an abrupt increase of electrical re-
sistivity and that the temperature coefficient of
resistivity becomes negative. This unusual transi-
tion at the melting temperature has not subse-
quently been investigated. Tsidil' kovskii'7 studied
the magnetic field dependence of the Nernst effect
in HgSe, and from the relation p.H= 1 at the mag-
netic field for the maximum Nernst effect, de-
duced that p. ~ T " from 12.0 to 270 K and p.

~ T 3 from 300 to 430 K. For a HgSe crystal with

&~
= 3. 5&&10" cm, Rodot and Rodot" reported that

T . Gobrecht ef n/. found that p. ~ T ' for
jl —5 & 10" cm and concluded that the dominant
electron scattering mechanism depends upon the
electron conc entration.

Analyses of the mobility in HgSe have hitherto
been based upon the assumption that the electron
relaxation time 7 is proportional to some power
of the electron energy, ~ = f, F.", where v= ——,

' for
acoustic-phonon scattering and r= —,

' for optical-
phonon scattering. Early analyses by Rodot and
Rodot' and Harman' assumed that the conduction
band in HgSe is parabolic and implied that scatter-

ing by acoustic phonons is dominant. Later, the
Kane two-band model for InSb was utilized for
the analysis of HgSe and led to the different con-
clusion that optical-phonon scattering dominates.
Indeed, this latter result is compatible with the
small value for the deformation potential (-0.7 eV)
deduced from analyses of the thermal conductivity
of HgSe2' and the rather high ionieity (0.7-0.8) im-
plied by elastic-constant data. Theoretical in-
vestigations of the low-temperature ionized-im-
purity-limited mobility~ ~ and the temperature-
dependent dielectric constant in symmetry-in-
duced zero-gap materials strongly suggest, how-
ever, that a true characterization of the tempera-
ture dependence of the electron mobility in HgSe
is possible only in terms of a microscopic theory
of electrical conduction.

In this paper, we report a systematic experi-
mental and theoretical investigation of the tempera-
ture and concentration dependences of the Hall
coefficient and electron mobility of HgSe between
4. 2 and 300 K. Until now, the lack of experimental
data for the temperature dependence of the con-
duction-electron concentration for HgSe samples
with low donor densities (& 10" cm ) has pre-
cluded a reliable description of the behavior of
band parameters at higher temperatures. Here
we report Hall-coefficient and mobility data for
HgSe for the temperature range from 4. 2 to 300 K
and for samples with net donor densities that
range from 4&10' to 3.6&&10' cm, almost a.n

order of magnitude lower than obtained in pre-
vious investigations. The Hall-coefficient data,
when analyzed in terms of the full Kane theory,
provide a description of the temperature depen-
dence of the band parameters up to 300 K. To in-
terpret the experimental mobility data, a varia-
tional calculation is made based upon a micro-
scopic theory of electrical conduction appropriate
for a symmetry-induced zero-gap material. The
limiting electron scattering mechanisms are taken
to be inter- and intraband polar-optical-phonon
scattering, neutral- and charged-defect scattering,
electron-hole scattering, and acoustic-phonon
scattering. The calculations include the properly
mixed s and p wave functions, the effects of higher
bands on the density of states, the temperature de-
pendence of the band parameters as determined by
the Hall-coefficient data, and the temperature
and momentum-transfer dependences of the dielec-
tric function. In Sec. II the preparation of samples
and the methods of measuring the Hall coefficient
and electron mobility are described. A mathe-
matical model describing the band structure as
accurately as possible is developed in Sec. III,
and in Sec. IV the fitting of the Hall-coefficient
data to determine the temperature variation of
the band parameters is described. The screening
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of the interactions responsible for scattering is
discussed in Sec. V, and in Sec. VI the scattering
mechanisms and their contributions to the Boltz-
mann equation are derived. In Sec. VII, t.he elec-
tron mobility is calculated by means of a varia-
tional solution to the Boltzmann equation and com-
pared with experiment. In comparing the calcu-
lated mobility with experiment, every effort was
made to minimize the number of adjustable pa-
rameters. Aside from the inevitable uncertain-
ties regarding the kinds and densities of defects
in a given sample, the only important parameter
for which there is no experimental measurement
is the transverse-optical-phonon frequency, and
this can be estimated to within 20~j& from other
measurements.

II. SAMPLE PREPARATION AND EXPERIMENTAL
MEASUREMENTS

The samples for this study were cut from single-
crystalline HgSe ingots grown by the horizontal
traveling molten-zone technique. ~ Spectrographic
analyses of representative crystals showed the
major metallic impurities to be Cu (0.1-0.7 ppm),
Mg (0. 5-1.0 ppm), and Si (0-9 ppm). The elec-
tron concentration of the as-grown samples ranged
from 1.6&(10 to 3. 5&&10 cm 3. To obtain the
desired electron concentrations for a given sample,
it was subjected to various annealing treatments.
These included annealing the samples in the tem-
perature range from 50 to 280 'C in dynamic vacu-
um (=10 6 Torr) and in either selenium or mercury
vapor corresponding to the equilibrium vapor
pressure of the elements for this temperature
range. The annealing times varied from a few
hours to several days for the vacuum and mercury-
vapor annealings and up to several weeks for the
selenium-vapor annealings.

The net donor concentrations, deduced from
low-temperature (4. 2 K) Hall coefficients, and
the annealing histories of the specimens are shown
in Table I. Identical annealing conditions, espe-
cially in the case of vacuum annealings, did not
always result in the same net donor concentra-
tions. In some instances, even when the samples
were annealed simultaneously, the net donor con-
centration from sample to sample varied by as
much as a factor of 3. This was probably due to
wide variations in the concentration of native de-
fects in the ingots. When maintained at room
temperature in air, samples which had been
annealed to donor concentrations below about 6
&&10'~ cm showed marked increases with time
in their net donor concentrations. In some sam-
ples, this increase was by as much as a factor of
3 over a time period of several months. Samples
which were allowed to recover in this manner are
referred to in Table I as "passive annealed. "

Similar behavior has been observed for this com-
pound by previous investigators. ' In contrast
to the room-temperature behavior, samples
maintained at liquid-nitrogen temperature re-
tained their original donor concentrations indefi-
nitely. This behavior and also the variations in
the donor concentrations from sample to sample
for similar annealing treatments may be indica-
tive of the rather instable nature of the HgSe zinc-
blende lattice. For this compound, the ionicity of
the selenium-mercury chemical bond, estimated
from the elastic constants, ~~ is between 0.7 and
0.8. Such a high ionicity is at best only marginal-
ly compatible with the Phillips and Van Vechten
criterion ' for a stable zinc-blende lattice.

The Hall coefficient and the electrical conduc-
tivity of the samples were measured by using ac
potentiometric techniques with phase-sensitive
detection. The Hall and conductivity probes were
0.05-mm-diam platinum wires welded to the sam-
ples. The current leads were attached with silver
paint. The temperature of the samples was moni-
tored by a copper-constantan thermocouple which
was in good thermal contact with the samples.

For the low-electron-concentration samples, the
period of the Shubnikov-de Haas oscillations at
4. 2 K was measured as a function of magnetic field
up to 27 kOe. The electron concentrations de-
termined from these period measurements agreed
well with those computed from the Hall coefficients.
In most cases the difference was less than 2%,
which is considerably less than the estimated 4%
possible experimental error for the absolute values
of the Hall coefficients.

Figures 2 and 3 depict the temperature depen-
dence of the electron concentration for a number of
samples with net donor concentrations ranging
from 3.6 &&10' to 5. 7 &&10'7 cm . Sample AID,
which had a net donor concentration almost a factor
of 10 lower than had been previously observed in

HgSe, shows nearly an intrinsic behavior down to
20 K. As illustrated in the fi.gures, departure
from intrinsic behavior becomes pronoi~nced as
the net donor concentration approaches the middle
of the 10 -cm 3 range. For samples with donor
concentrations above 10" cm ', the electron con-
centrations were found to be practically indepen-
dent of temperature between 4. 2 and 300 K.

Figures 4 and 5 show the experimental results
for the electron mobility in samples AI and 52,
respectively, as a function of temperature and
donor concentration. Figure 6 summarizes the
results for samples 51 and 21JB. The 4. 2-K de-
fect-limited mobilities ranged from 1.46x 105 cm /
V sec for the lowest donor concentration (3. 6

x10 6 cm ~) to 2.7 x10 cm2/V sec for the highest
donor concentration (=4x10 cm 3). At 300 K the
mobilities varied from 2. 2x104 to 6. 8x103 cma/
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TABLE I. Annealing histories of HgSe single-crystalline samples. ws-grown
samples were cooled slowly from the 799'C melting temperature.

HgSe sample

AID

51A

51B

51C

51D

52C

52D

32B

21JA

21JB

21M

21KB

21EE

Annealing his tory

As-grown sample annealed in vacuum at
240'C for 3 h and at 230'C for 18 h.

HgSe AIA subsequently annealed in Se
vapor at 255'C for 12 h.

HgSe AIB subsequently annealed in vacuum
at 230'C for 48 h.

HgSe AIC subsequently annealed in Se at
200'C for 24 h, 160'C for 100 h, 130'C
for 100 h, 90'C for 150 h, 60'C for
250 h, and at 25'C for 300 h.

HgSe AID subsequently annealed in Hg
vapor at 150'C for 24 h.

As-grown.

HgSe 51A subsequently annealed in vacuum
at 240'C for 3 h, 230'C for 24 h.

HgSe 51B subsequently annealed in Se vapor
at 250 C for 12 h.

HgSe 51C subsequently annealed in Se vapor
at 200 C for 24 h, 160'C for 24 h.

As-grown

HgSe 52A subsequently annealed in vacuum
at 240 'C for 3 h, 230'C for 24 h.

HgSe 52B subsequently annealed in Se
vapor at 200'C for 24 h, 160'C for 24 h.

HgSe 52C subsequently annealed in Hg
vapor at 150'C for 24 h.

After growth, annealed in vacuum at
240'C for 22 h.

Previously vacuum annealed sample,
annealed in Se vapor at 250'C for 12 h.

HgSe 21' subsequently annealed in Hg
vapor at 50 C for 50 h.

Passive annealed.

Passive annealed.

Passive annealed.

Passive annealed.

Electron
concentration

at 4.2 K
(cm ~)

2. 10 xlO

3.78 x10"

1.89 x10»

3.60 x10i6

3.92 x 10"

1.78 x 10~8

5.44 x10»

5.70 x10»

4. 25 xl0 7

1.68 x10

l. 93x ]0»

1.65 x10»

3.82 x10

l. 52 xlO ~

5. 00 x10»

1.285 x10"

1.79 xlo"
3.65 x10'8

5.32 x10'8

5.64 x 10&s

V sec for the same range of donor concentrations.
The values of the low-temperature (4. 2 K) mo-

bilities showed variations from specimen to speci-
men. For example, the values of the 4. 2-K mo-
bilities in samples 52 and 51 for a given donor con-
centration were consistently about 5/~ and 25/p

higher, respectively, than those in sample AI.
This is due to variations either in the degree of
compensation or in the concentration of native de-

fects "frozen" in the specimens during growth. At
higher temperatures, the difference in mobility be-
tween the sample sequences is much less.

The temperature dependences of the mobility of
a number of "passive-annealed" samples are shown
in Fig. V. The most striking feature of these re-
sults is the anomalous positive temperature co-
efficient of the electron mobility in the tempera-
ture range 105-150 K.
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FIG. 4. Electron mobility data for HgSe sample AI
subjected to a sequence of annealings to achieve different
extrinsic electron concentrations. See Table I for an-
nealing history.

FIG. 2. Electron concentrations calculated from Hall-
coefficient data (ne= —&/RHe) for HgSe samples.

III. BAND STRUCTURE

The calculational model used for the band struc-
ture is the full Kane theory in which the k p in-
teraction with higher bands is treated by perturba-
tion theory. The conduction-band wave functions
are given by

lk, ~, I &
= e'"'lk, ~, I ), (1)

IiSP) 2 I(X-iY)/2) I ZP )

(2)

I I I I
I

\ I8

and

a= [$ ($ +1)(5$ +1)(-,'II) +1)]1/2/N, (4)

I =3 '/2(( +1)/N, (5)

~ = (-:)'"(&'+1)(-:~('+1)/N .
The conduction-band energy is given by

and the valence-band wave functions by

2 '"I(X+ir)~&
~ » i ) 2-1/2I (X 1/)P)

The quantities X, F, and Z are the basis set of I'»
referred to a coordinate system with the z axis
along k, and ~ and P are Pauli spin functions for
spin parallel (o) and antiparallel (P) to k. I S) is
the I', wave function.

The conduction-band eigenvectors are given by

~ ~ ~-
~ e ~

~ ~ 0
~ ~ 00 ~ ~ ae ~ oo0

0 0
000000 00000 00

pp0 0

Ns ~ ~ ~ ~ eo

Pl
I

CX1 0 O O O 0 OpV 4—

c0
222
2

0
V
c0
V

LLl

p
p

0 I
o

0 4 ~
0 go

0 g ~oo
QOOOOo

a&aaaa aai
~ 51B
o 51D
0 AIA

+ 52B
~ 52C

~ ~
NO ~ ~ ~

1
I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I

200
V

~ 100
80
60o
40

0

20

10
8
6
5

ma+~

~ ~

G3 0

e~ ~ ~

= 1.65 x 10 cm17

= 1.933 x 10 cm
17 —3

1.68 x 10 cm18 —3
= 3.82 x 10 cm

i 52C - ne(4
~ 52B - ne(4.2)
0 52A ne(4. 2
~ 52D- ne(4. 2)

kg ka
~ ~ ~ ~e ~a~ 4~ ~ ~ ~ ~ ~ ~ ~ ~~a

~ tg&000 00 oo
~ ~ ~

0 op~e 0~ ~

~ ~

Sg
4g

ig
00

0~ ~
~ ~

0
0

0
~ ~ 0

~ ~ ~ ~

I t & & I t I I & I I I & & I I I I I I I I I I I I I I I I

50 100 150 200 250 300
Temperature (K)

0 50 100 150 200 250 300
Temperature (K)

FIG. 3. Electron concentrations calculated from Hall-
coefficient data (ne=-1/RHe) for HgSe samples.

FIG. 5. Electron-mobility data for HgSe sample 52
subjected to a sequence of annealings to achieve different
extrinsic electron concentrations. See Table I for an-
nealing history.
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where [E„]is the sequence given by the expression
E„=E —F(E„|)with Eo= E. In practice, conver-
gence is obtained in a few iterations.

With this in mind, we now solve the secular
Eq. (9) for k in terms of the dimensionless func-
tion s(f ) as follows:

k = (2p, moE, /5 )" s($'),

where

I I I I I I

Q 50 100 150 200
Temperature (K)

250 3QO

I i s g t I I i i I s i I

and p,, is the zone-center effective-mass ratio
without free-electron or higher-band corrections:

FIG. 6. Electron-mobility data for HgSe sample 51
subjected to a sequence of annealings and for sample
21JB. See Table I for annealing histories.

p, =
4 O'E, /m, P' . (13)

The true zone-center effective-mass ratio p,, is
given by

p, = p,'[1+-,' p,,'(3+2L'+ M5)]
' . (14)

Er, , = E= E + F(E ),
where

kF(E ) = [1+a A + b'M + c ~L + 0.1(b~ —2c )2vl 0

&&(L —M —N )],
and E is the largest root of the secular equation

(6)

E (E +E~)(E +4) —k P (E + —', 4) =0. (9)

In these equations m0 is the free-electron mass,
$ = E /E, , 5 = E, /d, E, is the I'S-I', energy gap,
4 is the l » spin-orbit splitting, N is the square
root of the sum of the squares of the numerators
of Eqs. (4)-(6), and P is the s-p momentum ma-
trix element defined by Kane. The quantities A,
L, M and N are matrix elements of couplings to
higher-lying l » and 1',8 bands. The expression
for F(E ), from Seiler, Galazka, and Becker, "
is a spherical average over the small directional
dependence of the conduction-band energy. Small
terms which produce asymmetry splitting have
been dropped. Seiler, Galazka, and Becker also
determined the numerical values of P, E„b,, L,
A, M, and N at 4. 2 K for HgSe. The quantity A
is found experimentally to be approximately zero
and is not included in the calculations that follow.

In the following we will require expressions for
the crystal momentum and conduction-band density
of states in terms of the conduction-band energy
E. These quantities are most naturally expressed
as functions of E . Although one can develop ap-
proximate expressions for E as a function of E,
the least troublesome way to evaluate it numerical-
ly is as the limit of a sequence, i.e. ,

Similarly, the conduction-band density of states
per unit volume (neglecting spin) is given by

(15)

where the dimensionless function X($ ) is defined
as

(16)

The exact structure of the valence band of the
zinc-blende zero-gap materials is complex. Small
antisymmetric spin-orbit couplings to higher bands
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FIG. 7. Electron mobility data for HgSe samples which
show arl anomalous relative minimum in mobility near
110 K.
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split the I'8 valence band for & 10 so that its maxi-
mum is shifted slightly from the zone center to
points along the [111]directions. A small overlap
with the conduction band is also produced. One
can estimate the magnitude of the overlap energy
E,&

to be 10 -10 ' eV, a value too small to have a
significant effect upon scattering in the samples of
this study although it should have an observable
effect upon the low-temperature Hall coefficient of
the lowest concentration samples. The geometrical
complications introduced by the I', valence-band
splitting make any serious attempt to treat analyti-
cally the resulting microstructure nearly impos-
sible. We therefore approximate the valence band

by a spherical parabolic band of mass ratio p,„
overlapping the conduction band by an amount E &.

E„-„=E„—(k'k'/21 „nz, ) . (17)

The values obtained for E, and p,„must therefore
be interpreted with caution.

The parameters L, M, N, p,„, and E„may be
expected to have only very small temperature de-
pendences because they are determined by bands
which lie far above or below I'8. The same should
also be true of b, the I'» spin-orbit splitting,
since it is mainly an atomic property. The I'6-18
energy gap E„on the other hand, can be expected
to have a large relative temperature dependence
since 1, lies very near 1 „while the temperature
dependence of the s-p momentum matrix element
P should be small.

IV. LEAST-SQUARES FIT OF HALL DATA

The conduction-electron concentration as a
function of temperature is completely calculable
from the band-structure parameters and the con-
centrations of ionized defects. To the extent that
the Hall coefficient is inversely proportional to the
electron concentration, it too is determinable. In
principle, one could deduce the band-structure
parameters from the Hall-coefficient data of a
number of samples with different electron concen-
trations, but in practice this is not feasible be-
cause of the large number of parameters and the
limitations on the precision with which the absolute
magnitude of the Hall coefficient ca,n be measured.
However, if one takes as fixed the values for E,
(4. 2 K), P (4. 2 K), 6, L, M, and L M N, then--
by fitting the calculated Hall coefficients to the
experimental data, one may determine unambigu-
ously the values for E, and P at different tempera-
tures as well as the values for E,&

and p.„. We
have performed such a fit to the Hall-coefficient
data, of nine HgSe single crystals (AIA, AIB, AIC,
AID, 51B, 51D, 21', 52B, and 52C) at 23 dif-
ferent temperatures between 4. 2 and 300 K.

The electron concentration was calculated at
each temperature and for each sample by solving

simultaneously the following set of equations:
po

n, = —
z k fp(y, z)dk,

0

1 2 p.~vlokp T
nh 2 2 kz +z/Z(Egl/kB T z)

(18)

and

n, —n„=ND —N„. (20)

fp(y, z) = /(e' '+1), (21)

where y = E/kzz T, z = Ez /kp T, and E~ is the Fermi
energy. The conduction-band energy E was cal-
culated exactly from Eqs. (7)-(9). The experi-
mental values of the electron concentrations n„,
were calculated from the Hall coefficients at tem-
peratures T, (j=1, . . . , 23) for samples labeled by
the index i (i = 1, . . . , 10). (The indices 9 and 10
both refer to sample AID which was given double
weight. ) Thus, 230 values of electron concentra-
tion n„, were treated as data to be least-squares
fit. The parameters b, L, M, and L -M-N
were regarded as fixed, and the values determined
by Seiler, Becker, and Galazka' were used. The
hole mass ratio p,, and valence-band overlap E,,
were treated as parameters which were the same
for all samples at all temperatures, but which
could be varied to obtain the best fit. The I',-I',
energy gap E, and the interband-momentum-ma-
trix element P were treated as parameters which
were the same for all samples, but which could
vary with temperature as required to obtain a fit;
the values of E, and P at 4. 2 K were fixed at the
values determined by Seiler, Becker, and Galazka.
The net donor concentration, ND - N„, was con-
sidered to be a constant for each sample and equal
to the 4. 2-K electron concentration. If n„(T,. ) is
the value of electron-concentration calculated at
temperature T, for the ith sa. mple from Eqs. (18)-
(20), then the values of the parameters p.„, E„,
(E ),, and P, (j =2, . . . , 23) we. re found which
minimized the expression:

4 = Z [logzp(n„( T;)) —logzpzz ] (22)

The calculational procedure was begun by assum-
ing a set of initial values for zz„, E z, (E ), , and P,
and computing C. The method of Marquardt~ then
was used to calculate increments of the parame-
ters which would reduce 4, and this procedure was
repeated until a minimum C was found. The best
fit was obtained with p,„=0.783, E, =0.00504 eV,
and with the values for (E ),. and P, given in Table.

In Eqs. (18)-(20), &z, is the electron concentration,
n„ is the hole concentration, N~ is the donor con-
centration, N„ is the acceptor concentration, and
Fj/p is the Fermi function of order —,'. The function

fp is the Fermi-Dirac distribution function,



TEMPERATURE-DEPENDENT ELECTRICAL PROPERTIES OF. . . 1605

TABLE II. Values at various temperatures for 16-I'8
energy gap E~ and interband momentum matrix element
P which give least-squares fit to Hall-coefficient data for
HgSe.

Temperature
(K)

4. 2
10
20
30
40
50
60
70
77.3
90

100
120
140
160
180
200
220
240
260
270
280
290
300

E~
(ev)

0.220
0.216
0.208
0.206
0.206
0.204
0.203
0.199
0.197
0. 187
0.188
0.177
0.159
0.147
0.136
0. 128
0.116
0.106
0.091
0. 084
0. 076
0. 068
0.061

108 P
(eV cm}

7.20
7.21
7.24
7.25
7.25
7.26
7.27
7.30
7.32
7.31
7.38
7.40
7.35
7.39
7.46
7.54
7.61
7.69
7.70
7.69
7.67
7.66
7.64

II. In Fig. 8 E and P are plotted as functions of
temperature. The electron concentrations as
functions of temperature calculated from the least-
squares-fit parameters are shown for four of the
samples in Fig. 9; the agreement with the data
shown in Fig. 9 is representative of all the sam-
ples.

The values of E and P at 4. 2 K were fixed, and
at this temperature only E,, and p,„could vary dur-
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FIG. 8. Values at discrete temperatures of the I'6-I
8

energy-band gap E~ and the interband-momentum-matrix
element P that were determined by a simultaneous least-
squares fit to the Hall-coefficient data for nine HgSe crys-
tals.
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FIG. 9. Least-squares fit to Hall-coefficient data for
representative samples. The curves are calculated from
the temperature-dependent values for E~ and P shown in
Fig. 8. Also shown is the calculated intrinsic curve for
HgSe having equal electron and hole concentrations.

ing the fitting. Since the same E,j and p„values
were used for all temperatures, the values fixed
for E (4. 2 K) and P (4. 2 K) had an indirect effect
upon the values found for E, and P at all tempera-
tures. The initial rapid decrease of E, for tem-
peratures rising from 4. 2 to 30 K is mostly a
consequence of having fixed the value for E, (4. 2 K)
slightly higher than that which would have given
the best over-all least-squares fit. A value at
4. 2 K of 0.21 eV rather than 0.22 eV would have
been better for fitting the Hall-coefficient data
and would have resulted in slightly larger values
for p„and E,,

The Hall-coefficient data could have been fitted
by keeping P the same at all temperatures, and
this would have had no significant effect upon the
confidence limits for the parameters. Keeping P
constant with temperature would have made E,
decrease more rapidly as the temperature
increased. On the basis of a statistical analysis
of the least-squares fitting, this alternative model
with constant P cannot be eliminated. However,
the increase of P by about 6/~ as the temperature
increases from 4. 2 to 300 K gives a smaller 4
and is not inconsistent with the supposition that P
is nearly temperature-independent.

Gelmont and Dyakonov33 have predicted the
existence of quasistationary acceptorlike levels
lying a few meV into the conduction-band continu-
um of the symmetry-induced zero-gap materials.
Such acceptor levels would have an influence on
the temperature variation of the conduction-elec-
tron density similar to that of an overlapping
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valence band. Because the present study includes
only one sample (AID) with a low-temperature
Fermi energy (=15 meV) of the same order of
magnitude as the energy (= 5 meV) of these ac-
ceptor levels, the analysis of the Hall-coefficient
data cannot discriminate between these acceptor
states and an overlap of the valence band by the
conduction band. A larger number of very-low-
concentration samples, preferably with Fermi
energies lying below the energy of the quasista-
tionary levels, would be required for such an
analysis. In fitting the Hall-coefficient data, the
overlap E,&

has low statistical correlation with
the other parameters, and the use of a model
which includes the quasistationary states would
not significantly change the temperature depen-
dence of the band parameters.

The temperature-dependent values of E and P
may be used to calculate the cyclotron effective
ma, ss, m* = k ak(dE/dk) ', at various temperatures.
The effective mass of electrons having the Fermi
energy was calculated as a function of electron
concentration at 4. 2, 100, 200, and 300 K. The
ratio of the calculated effective mass to the free
electron mass is shown as a function of electron
concentration in Fig. 10 for 4. 2, 100, and 200 K;
the effective-mass ratio at 300 K is shown in Fig.
11. The effective-mass ratios at 4. 2 K deter-
mined by Whitsett' from Shubnikov-de Haas data
are shown in Fig. 10, as well as the effective-
mass ratios at 100 and 200 K determined by
Shalyt and Aliev3 and by Aliev, Korenblut, and
Shalyts~ from thermoelectric -power data. In Fig.
11 are shown the effective-mass ratios at 300 K
determined by Aliev, Korenblut, and Shalyt~ and

those determined by Wright, Strauss, and Har-
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FIG. 11. Curve shown is the calculated cyclotron ef-
fective-mass ratio as a function of electron concentra-
tion at 300 K for conduction electrons having the Fermi
energy. The 300-K data shown for comparison are from
Befs. 39 (a) and 35(O).

man29 from room-temperature ref lectivity spectra.
The agreement between the calculated and experi-
mental effective-mass ratios at 100 and 200 K is
striking. The calculated effective masses at 300 K
are slightly higher than those deduced by Aliev,
Korenblut, and Shalyt and significantly lower than
those determined by Wright, Strauss, and Harman.
The effective mass values were determined by
Wright, Strauss, and Harman from the minima of
the ref lectivity spectra for samples with a range
of electron concentrations, and the values they
obtained were sensitive to the value used for the
optical dielectric constant. The points shown in

Fig. 11 from the work of Aliev, Korenblut, and
Shalyt were determined from the magnetic field
dependence of the thermoelectric power. The
reliability of their method is not as great at 300 K
as at lower temperatures because of a number of
factors (approximate treatment of degeneracy,
approximate treatment of band structure, and
relatively lower electron mobilities), and deviations
of their data from the curve shown in Fig. 11
should be expected.

A similar decrease in the magnitude of E with
increasing temperature has been observed by
Pidgeon and Grovess in HgTe. They observed a
temperature coefficient of the band gap almost
exactly the same as the average temperature co-
efficient determined here for HgSe. A decreasing
magnitude of the band gap is in contradiction to the
prediction of the Brooks-Yu theory, 3~ in which the
s-like I'6 level moves down with respect to the a-
like I'8 level as the temperature increases. The
reason for this discrepancy is not presently under-
stood.

FIG. 10. Curves shown are the calculated cyclotron
effective-mass ratios for electrons having the Fermi en-
ergy as functions of the conduction-electron concentra-
tions at 4.2, 100, and 200 K. In comparison are shown
the data at 4.2 K (Q, 100 K (0), and 200 K (0) from
Refs. 15, 34, and 35, respectively.

V. SCREENING

Before discussing the mobility-limiting scatter-
ing mechanisms, it is necessary to treat the screen-
ing functions and their approximations used in the
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e(q, cu) =e, (q, (u)+ez(q, (u),

where

4)ze* /.Uz),
z z

(d p (d

(23)

(24)

and e*, 3r1, &~„and ~ are, respectively, the ef-
fective charge, reduced mass, unit-cell volume,
and transverse-optical frequency of the lattice.
The quantities e* and &~ should be nearly inde-
pendent of temperature and carrier concentration
(as has been observed for HgTe by Grynberg,
LeToullec, and Balkanski"). We make the usual
separation of g, into inter- and intraband parts,

numerical calculations. We ignore any possible
nonadiabatic effects arising from the lattice modes
lying within the electron-hole excitation continuum
because for the samples of this study the Fermi
energies (at temperatures where optical-phonon
couplings are important) lie above the lattice
modes. The dielectric function is then written as
a sum of an electronic part &,(q, ~) and a lattice
pa.rt ez(q, (,)),

e, (q, (u) = e,'"'"(q, (d) + e,'""'(q, (u), (26)

and further separate q,'"'~ into a background part
q„which is the contribution from all interband
excitations other than I'8-I'8 excitations, and
spin™which is the contribution from I', -I', excita-~8
tions:

(q, (d) = e, (T)+trf '
(q, (()) . (26)

] eb(300)[1+ zr(300 —T)], T& 100 K

] eb(300)[1+200n], T&100 K
(27)

where z = 2. 22 x10 K '.
The evaluation of &'""' and &r",'~ is in general

difficult. They a,re given by

Because of the large interband energies involved,

&, is independent of q and at the small frequen-
cies and momentum transfers of interest in a
scattering calculation. We assume that q, has the
sa,me temperature dependence observed by Gryn-
berg, LeToullec, and Balkanski in HgTe, name-
ly,

and

2

CbV 17+q, n k, n

f () )= ———& ')') ' ' (f8'. .) f(E'.)( ( = )), -e' 1,- 1(k, z)le ""Ik+q, c&I'
18 g 2 k+q, C b

(28)

(29)

where 0' denotes the Cauchy principal value of the
integral in Eq. (29). The summation over the band
index zz in E(l. (28) includes only the I', conduction
and valence bands. Thus, six double integrations
are required for every set of values (ND —X„, T, q)
in order to calculate exactly both the static and
dynamic screening functions which enter the mo-
bility calculation. Clearly, some approximations
are necessary in order to make the scattering cal-
culations tractable. A number of approximate cal-
culations are available, in either the degenerate
or zero-momentum-transfer limits, which can be
used w ithout introduc ing serious errors for most
of the electron concentrations and temperatures
in this study.

We first consider the static screening. The
interband part of &, ha, s been calculated by Liu and
Tosatti for the degenerate case (see Ref. 24 for
an estimate of the accuracy of the parabolic ap-
proximation used in this calculation). They find

8e pb ( T)zzzo=
b +

~@zk (T)

x 1,' ~, 30)

I

where a = ~2. The second term is the contribution
from the I', —I, excitations. We approximate the
dielectric function at all temperatures by this ex-
pression, in which kz(T) is the Fermi momentum
of the electron gas evaluated at temperature T.
Trial calculations indicate that the approximation
is nearly exact for the high-impurity-concentra-
tion samples of this study at all temperatures. It
underestimates the high-momentum-transfer I 8-I 8

screening of the low-concentration samples by as
much as 10~(~ at high temperatures, which is of no
consequence since &„«&, at high temperatures.

8
The intraband part has been calculated for degen-
erate conditions by Broerman, Liu and Pathak
and is given by

&,""'(q, 0) = (k,r/q') [1 —a "(q/k )'

+ (z "'(q/k~)'], (31)

where g =0.47, a =0.075, and 0» is the Fermi-
Thomas momentum. The result for a degenerate
hole band is identical to this expression, since
one can show that, in the parabolic approximation,

I(" cl e "'lk+q c&l'



1608 LEHOC ZKY, BROE RMAN, NE LSON, AND WHITSE TT

=1&k vie "'"lk+q v&
I (32)

k,', = (kp, )'+ (k»)',
where

(kpT)'= (2p' m/k')"'282

(33)

and

& (k() T) — Xfh dydz 0
(34)

We approximate the screening at all temperatures
by Eq. (31) with k» given by

2/
fntral x (dyh 4+nhe / py~O

(dg COI„

(38)

+(kvr)h/q2[1 —a (q/k~) +a (q/ke)4]

where , „ is the hole-plasma frequency. These
approximations ignore the antiscreening effects
considered by Ehrenreich 3 for the electrons at
small momentum transfer and treat the holes as
always antiscreening. Because of the large va-
lence-band effective mass, the hole antiscreening
is small. The complete high-frequency electronic-
dielectric -function is then approximated by

8 2

e(q ()v~) = eh(T) + ",' ' [1 —a '(q/k~)']

2 / 2—ph/ &di. ~ (39)

().' p) F „~ —*) .1/2 E
B

F 1)2 is the Fermi function of order ——,
'

~ This ex-
pression is exact at zero momentum transfer and
overestimates the screening at high momentum
transfer. 4' Since at high momentum transfer
e('"'(q) is relatively small with respect to the total
static screening function, the errors introduced by
the approximate expressions, Eqs. (31)-(35),
should be small.

Next consider the high-frequency dielectric-
function appropriate to screening of the electron-
optical-phonon interaction. Since the Fermi ener-
gy is greater than the longitudinal-optical-phonon
energy for temperatures at which optical-phonon
scattering is important, except at low tempera-
tures in the lowest electron-concentration sample
of the study, the approximation

As mentioned in the discussion of the static screen-
ing, the approximation of Eq. (31) for the electron
screening, which was derived in the parabolic ap-
proximation with pure ps/2 wave functions, tends
to overestimate the high-momentum transfer
screening. This error becomes serious as EF be-
comes much larger than E . Because of the rela-
tively small value of zb and the rapid decrease of
E with increasing temperature, the theory is not
expected to be quantitatively valid at temperatures
approaching 300 K for samples with impurity-
carrier concentrations above 10' cm

The LO-phonon frequency is determined by the
condition e(q, (v) =0. Since e is q dependent, there
will be some dispersion in the values of (v~(q).
The dispersion is less than 10% in all samples for
the most important range of q (ke & q & 2k+) and will
be ignored. The LO-phonon frequency is then
given by

e,'a™(q,(vt, ) =h("' (q, 0)

is adequate. The intraband part is more complex.
Lindhard42 has treated two extreme cases depending
on the magnitude of the momentum transfer:

„1/2
T 0+ ph+ [((()TeO+ ())ph) — Ceo(dph(dr]
2 0 2 2 C 2 2 C 2 2 1/2

2E'

The quantities &~0 and &„' are defined as
(4o)

e(""'(q, (d) =e('"'(q, 0) (v()q» (d)

and

(37a)

and

h„' = e'„+8e'i(,,m, /((h'ke (41)

e('"'(q, (u) = e('"'(0, (v) (v() q «(d), (37b)
e() = e()+ 8e'v.,m, /vh'k~, (42)

where v0 is the Fermi velocity for a degenerate
distribution or the "average velocity" for a Boltz-
mann distribution. Because of their small effec-
tive mass, the electrons always satisfy the condi-
tion of Eq. (37a) for q& kz and (v = h)~. Thus we
use Eq. (31) with kvT = (kpr)h for the screening by
the electrons. The holes, on the other hand, satis-
fy the condition of Eq. (37b) for most temperatures
and concentrations, with 2vhke /(d~ approaching
unity only at room temperature in the lowest-con-
centration sample of this study. We therefore
make the approximation for the holes

where &b = gb and

4vep /Mv.
&O= ~b+ 2

COz
(43)

(dr. =(vr (eo/s ) (44)

The validity of Eq. (40) depends upon the Fermi
energy being sufficiently large at the temperatures
for which LO-phonon scattering is important that

has approximately its static value. For n-type
HgSe below 300 K, ((v,h/(v~)' «1, so that a good
approximation to Eq. (40) is
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The quantity e~o(300) [which for a high concentra-
tion sample is approximately the same as e~o(300)]
has been measured by Kiriashkina et al. to be
25. 6. Volkov, Volkov, and Kiriev ~ find e„'(300)
to be 9 s 1. From this value for e'„(300) and the
results of Broerman, 2~ we estimate the value of
a.,(300) to be 6.25+1. The ratio I e*/wr I is then
determined by the relation

(
2

[e (300) —e„(300)]
T

(45)

Polar-optical-phonon scattering, acoustical-
phonon scattering, ionized-impurity scattering,
and electron-hole scattering will be considered.
All other couplings, such as the nonpolar electron-
optical-phonon coupling, should be much weaker
than these. We ignore multiple scattering effects,
such as those considered by Moore, which should

We are thus left with ~~ as the only undetermined
quantity. Szigeti has derived an expression for
&~ in terms of the compressibility P and the high-
and low-frequency dielectric constants. His ex-
pression does not include anharmonic higher-tem-
perature effects, and its derivation is based upon
a deformable-ion model which includes central-
force nearest-neighbor interactions only. We
therefore believe that the dielectric constants which
should enter the Szigeti relation are the low-tem-
perature large-momentum-transfer dielectric func-
tions and should not include the contribution from
the I'8 —I'8 excitations. In our notation, this rela-
tion is then given by

3v. [e"„(0)+2] 1

Mr, [e',(0)+2] P
'

where r0 is the nearest-neighbor distance. The
low-temperature compressibility P for HgSe is
1.753&:10 '~ cm/dyn. a The relation of Eq. (46)
ordinarily overestimates ~. The experimental
value of (d~ for HgTe is 15$() lower than that given
by Eq. (46), and because of the general similarity
of the compounds we assume that the same is true
for HgSe. Thus, to obtain ~~ for HgSe, we multi-
ply the result of Eq. (46) by the empirical factor
0.85.

In the calculation of electron mobility, the only
dielectric parameter that is allowed to vary is
&'„(300), and that only within the range of experi-
mental uncertainty (9 + 1). The remaining dielec-
tric parameters &„e*, and ~~ are then determined
by the choice of e'„(300). For e„'(300)=9, values
are obtained of 3.92 for e~/e and 166 K for 8r
= h&r /ka. For comparison, e*/e has the values
2.g6 for HgTe and 2. 35 for CdTe (for a compilation
of e~/e values see Burstein, Pinczuk, and Wal-
lis").

VI. SCATTERING MECHANISMS AND MOBILITY

be relatively small for the zero-gap band struc-
ture.

The field term of the Boltzmann equation for a
system driven by a static electric field 8 is given
by

(
sf(k) Se, dE
et F e 'du (47)

where 8 is the angle between k and 8, f(k) is the
perturbed distribution function, and f o =dfo/dE.
We make the usual ansatz for the form of the per-
turbed distribution function in the conduction band:

f(k) =f, —kc (E)f, cos8 (E & 0) . (46)

The very heavy holes are assumed to be nearly
unperturbed by the small driving field, so that
f(k) =fo(E) for E & 0. This is a very good approxi-
mation, since p„/g, & 30 at all temperatures.

A. Polar-optical-phonon sca t terin3,

The matrix element for the scattering of an
electron from a state characterized by wave
vector k, band n, and magnetic substate p, to the
state Ik+q, n, n ) by a LO phonon of frequency
+~ is given by

1/2

(k, n~ iJ I Iflk+q~~ n ~ 4 ) +
2MG3

st = 1/(e'z" —1) (50)

Both inter- and intraband processes are possible
for the zero-gap band-structure, but otherwise the
derivation of the contribution of the LO-phonon-
scattering mechanism to the Boltzmann equation is
straightforward. The expression for &""'of Eq.
(31) is an approximation not valid for q & 2k+ and
will give unphysically large values for the screen-
ing if extended beyond this momentum transfer.
Since &'"'"'«&, for q&2AF, we set &""'=0for q
& 2kF. The matrix elements required for the scat-
tering calculation have been derived by Broerman2
and Broerman, Liu, and Pathak. " They are given
by

~
&k, c, p~ e "'"~k+q„c, g') ~'

and

k. (k+q. )
"

rr=0 +q~
(51)

q,z,&q, L, i &X+1

(4g)
The upper and lower quantities refer to phonon ab-
sorption and emission, respectively, and X is the
number of phonons of energy 8'~~ = k~Q~~ at the tem-
perature T; i. e. ,
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—~
I «, c, p I

e '"'Ik+q„v, p )
I

'
PpV

(b + &2 c )z k x q,
4 u)%+q, l

where

( )2 ~1(bb }z bb
(bc, + Cb+) (bee+ Cb+)

0 4 4

( )
1 (E&k(dz)
0 (E & h(uz ) . (58)

The quantity ecc', the Callen (or interaction) effec-
tive charge, is given by

ec= e'/e'„(T}.

p', =2(aa, )(bb, +cc,),
and

—g(bc~+ cb~) + (cc~)

(52)

(54)

(55)

The other functions are defined as follows:
2

R, = ~~,(s/s, )Z p„'(V„'(x)+ V„"(x)),
n=0

2

S, = ~~,Z p„'(U„'(x)+ V„"(x)),
n=0

(60)

(61)

The ~ subscripts refer to the evaluation of the
quantity at E+~L„»d a, 5, and c are defined
by Eqs. (4)-(6).

One then obtains for the contribution to the
Boltzmann equation from LO-phonon scattering the
follow ing:

and

1 [I s, —s & 2s(z)]
x= [s +s, —4s (z)]/2ss, [ls, —sl&2s(z) & s, +sl]-1 [I s, + s

I
& 2s(z) ]

(62)
The functions U', and V' are given by

8 t „o O'tv, idz ksE,

where

(56)

and

&'(x) = s [(s, +s ) W;(x) —2ss, W'„,(x)] (68)

L (c )=E,((f, /f )(et+1)(c,R, —c S,)

+ (f /fo)et[h(E)(c R —c S ) —(1 —h(E))c Z]].
(57)

V'(x) = s'[(s', + s') W;.q(x) —2ss, W'„,(x)], (64)

where

1 2A, +B, 2A x+B,
4AC -B A+B+C A~x +Bx+C„ (65)

4A, C, —B, A x +B x+C, A, +B,+C,
—B,W, (x)

(67)

Ws(x) = — ln 'z ' ' —
2

'
W~(x) —C, wg(x) —B,wz(x)

1 1 A +B+C~ B,
A, ,2A, A, x2+ B,x+ C, 2A,

(68}

and

w, (x) =

1 1 x
(A +B +C) (A x +Bx+C~)

(1 —S,)(x —q, )
(B'-4A, C,)'" " (1-q,)(x-p, )

(B', & 4A, C,)

I (4A C —Bz)&iz (4A c B )~ (4A c Bz)

(68)

(70)

The functions A„B, , C„P„and Q, are given by

4s'e g'„a
A, =

~( ),"(
)

—(1 —ei, /e. )a (71)
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2(s', + s') g'„, ,' g'„
B,= —2ss, F'(

) +(")a —(1 —e()/e )a +1 — 2(")a (72)

2 2 2 2 2

S +S~ S (2')

and

P, = [-B,+(B, —4A, C,) ]/2A, , (74)

where

Q, = [-B, —(B,—4A, C, ) ]/2A„ (75)

The functions V,.' and U, ' are given by

g„=I (aF~) /2p moE e (76)

2 2 2 2 ]

+)+( )
s

1
s +8+

1
s +8+ -288+x

2s, 2ss, (s + s, )
(77)

1 (s +s, —2ss, x) —(s+s,), 2 z, (s +s,) s +s, —2ss,x
2s~ 8ss, 4SSq (s+ s,)

(78)

V,
' (*)=,, (-,'((,', ', —2„.)'-(. ..)') —-', (,' !)((',', —2....,)' —(. ..)'I

2 2()S 8+8 —288X
2s, (s+ s,)' (80)

and

V,
'

(x) = V,
'

(x),

U,
'

(x) = V,
'

(x) .

(81)

(82)

The interband part Z in Eq. (57) is given by

Z = Xo[()(x)+()'(x)]/y, (83)

where

o=y '"[P(O /T y)]-
Here y is the ratio p,, /p„, and P= ks T/E, . The functions (C) and ()) are given by

(()(x) = ,'(f)+)) 2c) s ((8 +-o )[W (x) —W (x)]+2so[W (x) —W (x)]j
and

(84)

(85)

2o (2os)' (o+ s)'
1

(2os)'
((7 +s —2osx) (a+s) ~ (

2

(86)

where x and the W,.(x) are calculated by everywhere
replacing s, by o in Eqs. (62) and (65)-(75).

B. Acoustic-phonon scattering

Zawadzki and Szymfnska have recently investi-
gated the interaction of acoustic phonons with elec-
trons which have wave functions containing p-like
components. Their results indicate that the inter-

action of such electrons with acoustic phonons dif-
fers from that of s-like electrons in two major
respects. First, the symmetry of the wave func-
tion allows a nonvanishing coupling to the trans-
verse modes which can be comparable in strength
to the coupling to the longitudinal mode. Second,
instead of the single deformation potential of the
free-electron theory, five independent irreducible



1612 LEHOC ZKY, BROE RMAN, NE LSON, AND WHITSE TT

matrix elements are necessary to characterize the
couplings. In the following we present the results
of Zawadzki and Szymlnska, modified to our case
of I'8 symmetry of the conduction-band minimum.

The Boltzmann equation in the elastic approxi-
mation is given by

The simplifying approximations,

and

(lo3)

c
a f(k) 2k, TE',

, (p, m, ) E,Xs
Bt „mh dv,

&& [F, +(zz, /p, ) F,]f,cose c (E), (87)

Eo= — (VS) d r.
3PRp Vg Vff

(88)

The longitudinal and transverse scattering func-
tions, I', and F„are given by

F, = A, + —', (AzA2+A4)+ —,(2AzA3+ Ap —A4)

and

4 2+ ~ A2A3+ 3 A~ (89)

F, = (E z /E 0) (B,+ —', B~ + ,' Bs+ —;B4+—,—Bs+ B~) i

(9o)

where d is the mass density of the material, and

v, and v, are the longitudinal and transverse ve-
locities of sound, respectively. The quantity Ep
is the ordinary longitudinal coupling of phonons to
the component of the wave function belonging to the
s-like I'6 band with zone-center wave function I S):

d r=E2,
Vg

(lo4)

The scattering of electrons on ionized impuri-
ties screened by the random-phase-approximation
(RPA) dielectric function of Eqs. (30) and (31)
has been treated by Broerman2 and Broerman,
Liu and Pathak. ~ We will adopt their results in-
tact with one additional approximation. The q-
dependent terms in the static dielectric function
produce only small effects in the mobility of
samples in the electron-concentration range of
this study because they are masked by the large
value of &~. We ignore the q-dependent terms and
thereby obtain for the contribution to the Boltz-
mann equation from the ith type of ionized defect

have been made in the derivation of these results.
Zawadzki and Szymanska point out that in the hy-
drogenic approximation Ez/Eo- z'0 and Ez/Eo 20,
while in the empty-lattice approximation E, /E, = 1
and E2/ED= 0. The correct values lie somewhere
between these sets.

C. ionized-impurity scat tering

where

A, = 2+ (E, /E, )(-,' b')+ (E,/E, )(P+-,'b'),

A, = —(E, /E, )(c'+ ', b )+(E-/E )(5c'+ ', b ), —

A, = 4(E, /E, )(c' —,'b'), —

A4= (Ez/Eo) b c,
4B&= —, b,

(91)

(»)
(93)

(94)

(95)

(
8f(k) zzN, Z, e X

i zi2 s@focosec (E),
@8'pt E ~

(105)

2

4 =Z sy„,
n=0

where

(106)

where N; is the density of defects of charge Z,.e.
The scattering function C is given by

(97)

(98)

(99)

Bz= —b [sb( +be 2 c)+ ,'b —(b+ c/v 2) —], (96)

B,= ba [(b + v 2 c)'+ b(b + v 2 c) —2(b+ c/v 2 )(b + W2c)

—(b+ c/v 2)'],

B4=2bz(b+ c/&2)(b+ V2 c),

B5 ———b (b+ & 2 c),

P, = ln[( g', + 4s')/g '] —4s'/(g', + 4s'),

go+ s'
1 g o+4s' 4(go+3s')

g~ 4(go+s ) (g, +2s )(3g, +2s )
2 2S2 g2 '

2S2g2

(lo7)

(lo8)

and

B,= —,
' [b'c'+ —.'(c' ——,'b')'] . (100)

go+ 4s 2(go+ 2s)
go go(go+ 4s )

(109)

and

V

The matrix elements E, and E, are defined by

(101)

(102)
and

s, = a'+ —,
' b' —v 2 b'c+ 2b'c',

m, =2a (b +c)

m2= 4 b +&2b C+C

g', = b '[(k'rT)'+ (kFT)s] /2', 'moE, e'0 .

(110)

(112)

(113)
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These results are equivalent to setting a =a =a
=0 in the expressions for the dielectric function in
Eqs. (30) and (31).

D. Electron-hole scattering

In the usual treatment of electron-hole scatter-
ing, the hole is regarded as a fixed charge of mag-

I

nitude +e, and N, Z; in Eq. (105) (for ionized-de-
fect scattering) is replaced by n„, the density of
holes. In reality, the hole is not a localized
charge, and the situation is much more compli-
cated. The probability of an electron in state

I k„c) being scattered by the ensemble of electrons
in the valence band to state Ik, +q, c) is given~' in
the first Born approximation by

1&k&, cl e "" lk&+q, c&l'fr: .&1 fr.,".-)~
I &k2 vie"' lk, -q v&I'f&", .(1-fr, -,".)

&(q, 0)q k2

1(k„cle "'& k, +q, c& 'f„;,(l-f„-„-,)N„(q), (114)

where

(116)fg „=f„-;„=(N —n„)/N,

where N is the number of states per unit volume
in the Brillouin zone. Since q is small,

N~(q) =~
I

&k2 vl e"'"lk2 —q v& I' f&;, &1 -ff,-.-,.)

(115)
and f„- „ is the probability that there is an electron
in the state I L, v). The valence-band mass is
here assumed to be much larger than the conduc-
tion band mass, so that the process is elastic.
This expression is formally identical to that for
theprobability of scattering by a random ensemble
of ionized defects with N;Z2=N„(q). However,

N„(q) depends upon the statistics (availability of
initial and final states) and symmetry properties
of the valence band. An evaluation of N„(q) for a
realistic distribution is extremely cumbersome
and in any case cannot be included exactly in a
scattering calculation; however, it is useful to
examine two extreme cases to establish its limits.

We first consider the perfectly flat band case
and restrict the momentum transfer to be small
with respect to the dimensions of the Brillouin
zone. For this case, all states are equally popu-
lated, and

0 (k2& k„)
(k, &k„) . (118)

One can show for a p
' valence band that

(k~, vl e"'2 k2 —q, v&

1 k, (k, -q)
1 + 3 (119)

N„(q) is then given by

N„(q) = n„F(q/k„),

where

(120)

(k„v e""21k,—q, v&1' =1

over most of the zone, and one can easily show that

N„(q) =n„[1 —(n„/N)] =n„.
This is the conventional result and depends upon
having the holes distributed uniformly over a vol-
ume of the Brillouin zone of dimension much larger
than the momentum transfer.

The other extreme case is that for which all the
holes are localized in a pocket of radius k„at the
zone center:

and

F(v) = — dyy' dx 1+, = v — v'+, [ln(1+ v)+(1 —v )lnl 1 —vl ]
1+v 1 3(y —vx) 105 151 z 3 4

8
& (»2+u2-\»'a&~ v + 2yvx 128 256 2 v

32 32v3
+ 2,

"
[(4 v' —1)in(1+ v)+ (v' —1)lnl 1 —vl] — ", [ln(1+ v)]'+G(v)

(121)

G(v) =
":";.-"( —,'„) (v &1)

3'v' (lnv)' ~' " 1 „+— (v ~1) .
„&n' (1+v)" v"

(122)
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1.0

C

0.5

Z

I I I I
]

I I I I where

r = fz'&17(.(2 Iz,'))&,) "'(e,"e) '(dz /zz

and

77'i17v, cu XsE, 8 f(k)
4&z(ece)' Iz, &)z,f,cos8, e 7

8 k Bfk

(126)

(12V)

0
1.0

qtk„

2.0

This equation is then solved with the variational
method of Kohler' as modified by Howarth and
Sondheimer and Ehrenreich. The function c (E)
is expanded in a complete set 7((I);(E)):

FIG. 12. The ratio of XI,(q), the effective concentra-
tion of holes for scattering an electron through momentum
transfer q, to yI„ the actual hole concentration, as a func-
tion of qi/k& where k&= (37I nh)

c'(E) =2 cy,. ( E).
i=o

The conductivity is then given by

c =,tfv, (dz G/3&z 7) (e*, )

where

(128)

(129)

If the valence-band wave functions were free-elec-
tron- or g-like

(~(k„z. e*'" k, -q, )~'=1),

(0& /d i. p, D(i-1)D(i-1&/D((-1)D(i) (130)

The functions z,'. ' and d, , are defined by the re-
lations

F(v) would be given by

F(z!)= , z&
—

f(&
v—3 (123) and

cz,
' '=E ' f E s (7);(E)fodE (131)

The function N„(q)/&z„, or F(z&), for the various cases
is shown in Fig. 12. For the flat-band case F(z&)

is, of course, constant and equal to 1. For the
free-hole case F(v) increases from zero at q = 0 to
1 at q=27z„. For the 7&

' -hole case F(v) increases
from zero at q =0 to a value of about 0.5 at q = 2k„.
A uniform distribution of electrons in the hole
pocket considerably increases the va. lue of .V„(q)
near q= 0, but increases N„(q) much less near q
= 2k„.

This treatment, of course, ignores two other
important problems: the applicability of the RPA
dielectric function to screening of the electron-
hole interaction, ' and the accuracy of the Born
approximation for electron-hole scattering. How-

ever, within these approximations, the contribu-
tion to the Boltzmann equation should be given by
Eq. (105) with N, Z,. replaced by 7z.z„wh&ere 7& lies
between about 0.5 and 1.0.

D(i)
0fn

and

(n)Jio. . . Ai i 1 Qi

~00 ~ ~ &0, i-1

D(i)

~i-1, 0 ~ ~ ~ ~i-1, i-1

For the set ((I)„'7 we choose

y„=(E/7, T)" .

(7;, = f (7), L((I))-)foc7E,

and D"„' and D"' are the determinants

(n)
00 ~ ~ ~0, i-1 CEO

(132)

(133)

(134)

(135)

e k sfk (124)

E. Calculation of the mobility

We write the Boltzmann equation for the steady
state,

The infinite series in Eq. (130) is carried out to
second order. Random checks to tenth order in-
dicate that higher-order terms contribute less than
2 j(; to the total conductivity at all concentrations
and temperatures.

VII. COMPARISON OF THEORETICAL AND EXPERIMENTAL
MOBILITY

in the form of the finite difference equation

L(c') = rE 3)'s'eS, (125}
In this section the results of the variational cal-

culation for normally behaving samples will be
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FIG. 13. Experimental and calculated electron mobil-
ities in HgSe samples 52A and 52C for the case where
ionized acceptors as well as donors are the principal
scatterers at low temperature. The dashed curve for
sample 52C is calculated for electron-hole scattering in
the flat-band approximation and the solid curve for the
approximation of a p ~ -hole pocket.

presented. The deformation potential in HgSe is
quite small, and we use a value ' of 0.68 eV for E0
and values of 0.45 for E, /Eo and 0.15 for Ez/E,
given by the hydrogenic approximation. Deforma-
tion potential scattering is always masked by the
other scattering processes; for example, the use
of a value for Eo of 2.5 eV (which is more con-
sistent with the uniaxial-stress measurements of
Seiler and Hathcox") produces at most a change of
3/& in the calculated electron mobility.

All of the samples, except 21', have 4. 2 K
mobilities lower than those predicted by scattering
on singly ionized donors. Thus it is necessary to
add additional defect scattering to account for the
mobility deficit. The additional scattering may be
due to either charged or neutral defects, and we
will first consider the charged case.

Since the measured mobilities of some of the
samples are less than half the values calculated
from scattering on singly ionized donors, it is un-
likely that doubly ionized donors are responsible
for the deficit. %e thus choose a simple model in
which the samples contain singly ionized donors
and singly ionized acceptors, the densities of which
are adjusted to obtain agreement with the experi-
mental mobilities at 4.2 K under the condition N~
—N„=n, (4.2 K). The defect densities substantially
affect only the low-temperature results, the high-
temperature calculations being dominated by LO-
phonon scattering. The value of 9 for g'„(300) was
used, which gives values of 3.92 for e* and 168 K
for 8~. Theoretical curves calculated in this way
for four of the samples are shown in Figs. 13 and

2QQ I I I I
I

I I t I
I

I I I I
I

I I I I
I

I I 1 &

I
1 I I I

V

)
E

E
gjz

100—
80-

60 ~

40-

20-

10

ne(4. 2) = 3.78 x 10 cm17

I

50 100 150 200 250 300
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FIG. 14. Experimental and calculated electron mobil-
ities in HgSe samples AID and AIB for the case where
ionized acceptors as well as donors are the principal
scatterers at low temperature. The dashed curve for
sample AID is calculated for electron-hole scattering in
the flat-band approximation and the solid curve for the
approximation of a p ~ -hole pocket. The rapid decrease
in the mobility of sample AID between 30 and 50 K is due
to interband scattering.

14 along with the experimentally measured values.
The agreement is better than 10% in all samples
except the very low concentration sample AID,
for which the experimental values lie as much as
20 j& below the theory at medium temperatures
(Fig. 14). Sample AID, being nearly intrinsic, is
the only sample which has an appreciable hole con-
centration at medium temperatures, and the devia-
tion may be due to an overestimate of the hole
screening of the ionized defects. This sample is
especially interesting because it clearly shows the
rapid dropoff in mobility between 30 and 50 K
arising from interband (I'8—I'8) LO-phonon scat-
tering and the change in slope between 75 and 100
K where intraband LO-phonon scattering begins to
dominate. The generally good agreement between
theory and experiment is gratifying since no at-
tempt was made to adjust the parameters of the
electron-LO-phonon interaction.

However, one feature of the results gives rea-
son to doubt the validity of the ionized acceptor
model. In Table III are shown the donor and
acceptor concentrations for each sample required
to fit the low-temperature data. Within each
series of samples as the donor concentration was
changed by annealing, it was necessary to cor-
respondingly assume a change of the same magni-
tude in the value used for the acceptor concentra-
tion in order to fit the low-temperature data. We
cannot construct a model of the defect kinetics
which yields this result, that is, that the acceptor
concentra'. ion increases nearly linearly with the
donor concentration. However, a further analysis
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TABLE GI. Parameters for calculating the scattering
of electrons by defects. The concentrations listed of do-
nors ND and acceptors Nz are required for the compen-
sating-acceptor model. For the neutral-defect model a
donor concentration equal to the 4.2-K electron concen-
tration was assumed in addition to a mean-free-path Ao

associated with neutral scatterers.

HgSe
sample

AEB
AEC
AED

AEE
52A
52B
52c
52D
51A
51B
51C
51D
21JB

n (4.2 K)
(10' cm )

3.78
1.89
0.360

39.2

16.8
1.933
1.65

38.2
17.8
5.44
5.70
4.25

12.85

ND
(10'7 cm 3)

6.03
3.09
0.585

46.2

22. 3
3.08
2.25

45.2
21.3
5.89
6, 60
5.05

12.85

N~
(10'7 cm 3)

2.25
1,20
0.225
7.0
5.5
1.15
0.60
7.0
3.5
0.45
0.90
0.80
0

A0

(10 4 cm)

1.8
2. 0
2. 0
3.5
2.3
2.2
3.0
3.5
5.0

20. 0
6.0
6.0

af(k) f(k) -fo(E)
at „ ~(E)

(135)

and define the mean free time 7 in terms of a
mean free path Ao and the electron velocity v(E):

T(E) = Ao/v(E) .
We further write A0 as

(137)

A, = 1/IIP', , (138)

where N~ and d0 are, respectively, the density and

scattering length of the defects. This yields the
contribution to the Boltzmann equation:

c (E)focose .
~

~
af(k) 2E,s'

n 0
(139)

We now assume that d0 is independent of electron
energy and concentration, which is approximately
true for a strong potential of dimension small with

respect to k ', and that the scatterers are singly
ionized donors of density Nn= n, (4 2K) and ne. u-
trals of density N~= 1/A+~0. A slightly better fit
is obtained by using a value of 9.75 for s'„(300),
which gives values of 9 for e, (300), 3.95 for e~,
and 173 K for . Theoretical results, experi-
mental data, and the fitted values of Q for all the
samples with donor concentrations less than 2
@10' cm 3 are shown in Figs. 15-20. The fitted

of the scattering arising from the additional
charged-defect concentrations shows that the mean

free path associated with the extra defect scatter-
ing remains nearly constant within each series of
samples. This leads us to the alternative hypothe-
sis that the low-temperature mobility deficit is
caused by scattering on neutral defects.

We can with some generality write for elastic
scattering from neutral defects

200 r i i r+TW~Q T T + i T TTTQ T TV

100
80'

E
60

40

0
C

20

a AIB - Np= 3.78 x 10 cm
17 —3

Ao= 1.8 x 10 cm
—4

10 i i i i I i i i i I ( i i i I i i » I « i i I i i . t I

0 50 100 150 200 250 300
Temperature (K j

FIG. 15. Experimental and calculated mobilities in
HgSe samples AID and AIB for the case where neutral
defects and ionized donors are the principal scatterers
at low temperature. The dashed curve for sample AID is
calculated for electron-hole scattering in the flat-band
approximation and the solid curve for the approximation
of a p ~ -hole pocket. The rapid decrease in the mobil-
ity of sample AID between 30 and 50 K is due to interband
scattering.

values of A0, shown in Table HI, are nearly con-
stant within each series (the value for sample 51B
being an exception). If it is assumed that do= 5 A

( approximately the unit-cell dimension), the mean
free paths correspond to netural-defect densities
ranging from less than 10' to 2X10"cm . The
mean free paths are thus compatible with the
densities of neutral scatterers deduced from ther-
mal-conductivity data for HgSe. '

For samples with impurity carrier concentra-
tions below 2x10'8 cm ~ (including sample AID),
theory and experiment agree over the entire.

100 i i & i
I

i & i r
I

«& i
I

r i i i
I

r

80 ~
0' 60—

E
40-

o 20
E

X

Np 1.89 x 10 cm

Ao= 2.0 x 10 cm

10 i I I i I i i i ~ I i ~ i ~ I i i ~ I i ~ ~ i ~ ~ i I

0 50 100 150 200 25Q 3QQ

Temperature {K)

FIG. 16. Experimental and calculated electron mobil-
ity in HgSe sample AIC for the case where neutral defects
and ionized donors are the principal scatterers at low
temperature. The dashed curve is calculated for electron-
hole scattering in the flat-band approximation and the
solid curve for the approximation of a p -hole pocket.
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FIG. 17. Experimental and calculated mobilities in

HgSe samples 51A and 51B for the case where neutral

defects and ionized donors are the principal scatterers
at low temperature.

1p . . . ;. . . : I, I, I
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FIG. 19. Experimental and calculated mobilities in
HgSe samples 52A and 52C for the case where neutral
defects and ionized donors are the principal scatterers
at low temperature. The dashed curve is calculated for
electron-hole scattering in the flat-band approximation
and the solid curve for the approximation of a p -hole
pocket.

temperature range to within about 10%, with the
largest deviations occurring at high temperature.
Experimental and theoretical values of the mo-
bility for two high-concentration samples (ND
=4x10" cm ~} are shown in Figs. 21 and 22. As
T increases, theory and experiment systematically
diverge until at 290 K the data lie about 25/q below

the theoretical values. The beginning of a trend
toward this behavior is already evident at an im-
purity concentration of 5&&10 ~ em . As men-
tioned previously, the most probable reason for
this discrepancy is the overestimate of the intra-
band screening of the electron-LO-phonon inter-
action as E~ becomes much larger than E„as is
the case in the high-concentration samples at
290 K (E~/8, =5). Such an overestimate is in-
herent in our use of the pure p function and

parabolic band for the calculation of the q depen-
ence of &,""'.

VIII. ANOMALOUS MOBILITY

The mobilities of two of the passive-annealed
samples are shown in Fig. 23 along with the mo-
bilities of two normally behaving samples with

nearly the same electron concentrations. The
mobility of each passive-annealed sample has an
anomalous minimum at about 110 K. The anomaly
appears to consist mainly of an increase in the
mobility at about 110 K rather than a resonance-
like behavior in the region between 50 and 140 K.
No accompanying unusual behavior is observed in
the Hall coefficient. When the temperature is
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FIG. 18. Experimental and calculated mobilities in
HgSe samples 51D and 21JB for the case where neutral
defects and ionized donors are the principal scatterers
at low temperature.
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FIG. 20. Experimental and calculated electron mobil-
ity in HgSe sample 52B for the case where neutral defects
and ionized donors are the principal scatterers at low

temperature. The dashed curve is calculated for electron-
hole scattering in the flat-band approximation and the
solid curve for the approximation of a p -hole pocket.
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consequent overestimation of the screening of the LO-
phonon interaction gives a 25% too-large mobility value
at 300 K.
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FIG. 22. Solid-line curve is the calculated electron
mobility in HgSe sample 52D. For this high electron-
concentration sample the ratio EJ/E~ is large, and the
consequent overestimation of the screening of the LO-
phonon interaction gives a 25'$ too-Iarge mobility value
at 300 K.

cycled between 4. 2 and 300 K, the mobility anomaly
is exactly reproduced. The anomalous-mobility
samples are prepared by vacuum-annealing as-
grown samples to achieve low electron concentra-
tions, followed by passive annealing in air at room
temperature during which time the electron con-
centration increases to relatively high values. The
anomaly is never seen in samples with fewer than
10"electrons/cm~. Subsequent annealing in mer-
cury vapor restores the samples to normal mo-
bility behavior.

The increase in mobility at about 110 K cannot
result from an increase in the screening produced
by the Fermi level crossing the edge of either a
normal perfect-lattice band (as in n-Sn) or an im-
purity band for two reasons: first, the tempera-
ture at which the increase begins is nearly inde-
pendent of the Fermi level; and second, the Hall
coefficient does not exhibit the anomalous behavior

Temperature (K)

FIG. 23. Electron-mobility data shown are for two
HgSe samples, 21L and 21M, which exhibit the anomalous
mobility minimum, and for two normally behavingsamp~es
51A and 52D, which have nearly the same electron con-
centrations as the anomalous samples. In addition to
having an anomalous minimum, the mobility for samples
21L and 21M is larger at high temperature than for the
normal samples.

one would expect if another band were being popu-
lated. The possibility that a perfect-lattice band
is involved is additionally ruled out by the fact that
other samples with the same electron concentra-
tion do not exhibit the anomaly.

A decrease in the scattering beginning at 110 K
because of deionization of some of the charged de-
fects is also an untenable hypothesis because this
too would produce anomalous behavior in the Hall
coefficient. Although a change with temperature
in the scattering cross section of neutral defects
would produce no Hall anomaly, it also would not
significantly affect the mobility near room tem-
perature, where LO-phonon scattering is dominant.
One observes in Fig. 23 that normal and anomalous
mobility curves are nearly parallel at tempera-
tures above the mobility maximum, and thus an
explanation of the difference in mobility based upon
some change in the neutral defect scattering is not
satisfactory.

A remaining possibility is that the anomaly re-
sults from some defect-induced change in the tem-
perature dependence of either the band parameters
or the phonon frequencies. The possibility of an
incipient phase-transformation was considered,
but measurements in the mobility-anomaly tem-
perature range of the intensity ratios of x-ray
diffract1on lines for several hamples gave no
evidence for this.

IX. DISCUSSION

The temperature dependences of the band pa-
rameters of HgSe have been deduced from Hall-
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coefficient data. These band parameters, when

used (along with measured optical and acoustical
constants) in a microscopic theory of electrical
conduction in zero-gap semiconductors, yield
good agreement with the measured mobility data.
However, at temperatures and ionized-donor den-
sities such that EF /E, » 1, a systematic deviation
between theory and experiment exists. A more
accurate theoretical description of the mobility
for this case would require an exact calculation
of the intraband part of the electronic dielectric
function. Such a calculation would be extremely
useful, as would be a direct experimental deter-
mination of ~~ and the temperature dependence of

From the analysis of the low-temperature mobil-
ity data, we conclude that the HgSe samples con-
tain relatively large numbers of stable neutral
defects, in agreement with the results of thermal
conductivity experiments. The Szigeti effective
charge,

ef = 3e'/[e'„(0)+2],

has the high value 0.76 in HgSe as compared with
0.6 in HgTe. Thus it may be that the Phillips-
Van Vechten ionicity ' f, of HgSe is very near the
maximum limit of f, (0.785) for a stable zinc-
blende lattice. This might explain both the un-
stable nature of the ionized defects as well as the
large concentration of neutral defects frozen in
during crystal growth. It is tempting also to spec-
ulate that the anomalous behavior of the passive-
annealed samples is connected with the ionicity of
HgSe being near the maximum limit for stable
zinc-blende structures. Thus a further investi-
gation of the native defects of this material mould
be of great physical interest.
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