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It is shown that the dominant-level approximation is a generally useful method for inter-
preting temperature-induced changes in Ohmic activation energy. Particular emphasis is
placed on the situation where a change occurs due to a reversal of the inequality between the
contributed and nonextrinsic carrier concentrations. All the prime causes for a temperature-
induced change in activation energy are considered and the temperature at which a change oc-
curs is used to establish additional relationships between the dominant-state densities. A
graphical means of computing the Fermi energy and locating localized-state densities is also
described. The analysis is applied to recent experimental results on gallium arsenide, sili-
con, and phthalocyanine and old results on germanium. The results show that impurity levels
previously located via interpretation of activation energies for electric conduction are often
incorrect and should be relocated, using the rules and procedures presented in this paper.

I. INTRODUCTION

In a recent paper, hereafter referred to as I, Rob-
erts and Schmidlin' solved the statistical problem for
a semiconductor in sufficient generality to delineate
all possible interpretations of a "simple activation
energy" (i.e., a constant slope in a plot of log, o cur-
rent versus reciprocal temperature). In physical
terms one of the requirements for a simple activation
energy to be manifest in electrical conduction is that
specific energy levels must contribute overwhelm-
ingly to partition functions of the electrons and
holes. At each temperature there must be only one
such dominant level for each carrier. However,
very often a log, o J vs I/T plot can be broken into
a number of distinctly separate straight-line seg-
ments. If we assume that any weak temperature
dependence contributed by mobility or state-density
variations is negligible or removable by multiplying
J by T to the appropriate power, then well-defined
activation energies can be identified in different
temperature regions. Of course, each temperature
interval in which a simple activation energy is ob-
servable can be analyzed using the scheme pre-
sented in I. However, the transition temperature
itself, defined by the intersection of neighboring
extrapolated linear segments in the activation en-
ergy plot, is an additional bit of information which
can be useful to establish additional relations be-
tween dominant-state densities. It is the establish-
ment of these relations, together with guidelines
or rules for interpreting the changes in Ohmic acti-
vation energy directly, which is the purpose of this
paper. We show that under certain favorable cir-
cumstances all dominant-state densities can be de-
termined. We also point out additional qualitative

signals which warn against some possible interpre-
tations attributed ordinarily to activation energies.
For example, it is shown that the activation energy
prior to a decrease of activation energy as the tem-
perature increases is never an ionization energy.
This has not been fully appreciated in the past and

has led to incorrect locations for localized levels
in a large number of materials including germani-
um, silicon, and gallium arsenide.

II. SUMMARY OF PAPER I

In general, both Ohmic and space-charge-lim-
ited (SCL) currents are thermally activated, their
respective activation energies being contained in
the quantities n, and 8„ in the following equations:

~n=nxpo(I'/I ).
J„=8 8„ego(V /L ).

In these equations V is the voltage across a sample
thickness L; p, o is the microscopic mobility; e is
the electronic charge; n, is the density of free
carriers; a is the permittivity; and 8„ is the frac-
tion of total carriers (all electrons above the Fermi
level) which are free

It is shown in I that a requirement to observe a
simple activation energy is either

(N~ —N, )2» 4Q,Q~ (extrinsic situation)

or

(N~ N, ) «4Q, Q» (none—xtrinsic situation),

where N~ is the concentration of donors above the
Fermi energy, N, is the concentration of acceptors
below the Fermi energy, and
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Q, = N-, e "+r+Z'N(e "~r,

Q =N e 'us'r+Q N. e '//~r
J'

(4)

are the partition functions for electrons and holes,
respectively. As indicated in Fig. 1, the energies
in Eq. (4) are measured relative to a reference ((t()

which may be taken anywhere. Visualization of the
relative sizes of the terms in the partition function
is facilitated, however, by choosing it at or near
the anticipated Fermi energy. A graphical solution
in which Q is taken at the Fermi energy is described
later. A second condition which must be satisfied
in order to observe a simple activation energy is
that single terms in Q, and Q~ must dominate the
statistics. As in I these dominant levels are la-
beled with subscripts m and q, respectively.

If we exclude the special case when the Fermi
level happens to fall within a few kT of a relatively
concentrated level, then Maxwell-Boltzmann sta-
tistics are a good approximation for the distribu-
tion of carriers and we may write

(N~ N, ) =XQ, ——(Qr /X), (5)

where X=e" ~' " as in I. Any level close enough

to the Fermi energy to invalidate the Boltzmann
approximation to the Fermi function must be ex-
cluded from Eq. (5) and dealt with explicitly. For
example, suppose a level E~, of density N* is
dubiously close to the Fermi energy. In this case,
(t& can be conveniently placed at E* and Eq. (5}be-
comes

N * + N~ —N; XQ~+ N—*/(1 +X ) —Qp/X, (6)

where X=e'~ ~ . Note that the dubious level
has been sorted out of Q, and Q~ and expressed ex-
plicitly in terms of the Fermi function. The num-
ber of electrons which it can contribute has also
been made explicit on the left-hand side of Eq. (6).
This implies N~ -N defined in I as the "contrib-
uted electron concentration, " must be counted as
if the Fermi energy lies above the questionable
level. Accordingly, N~ —N, automatically increases
by N* as the Fermi energy drops below E*. Thus,

2(E +E,)+ 2kTln(N, /N ) (6)

for the nonextrinsic case. These expressions show
that the Fermi energy always moves linearly with
temperature as long as any pair of levels dominate
the statistics. The uniqueness of this result ap-
pears not to have been fully appreciated in the past.

The population of the transport band, n, (or P„),
and the dominant levels, n and p„ lead to the fol-
lowing expressions for the mobile carrier concen-
tration and 8 factors, for the only cases in which
a simple activation energy can be observed.

(i} Extrinsic case.

a) e (E~E~&/ar

g (N /N ) e(s~-sc&/ r (10)

(ii) Nonextrinsic case

a localized level always behaves as if it were a
donor as it ionizes regardless of its inherent charge
state. It may be seen that this is a consequence of
how the contributed electron concentration (N~ N-, )
is defined. It should be noted that such a definition
is self-consistent and represents the only property
of donors and acceptors manifest in statistical
mechanics. The nonextrinsic carrier concentra-
tion is defined as n =-(Q Qr)'/2=p, . It can be shown

from Eq. (6) that the terms involving N* can be

dropped whenever either N*«N~-N, or N*
«(Q,Qr)' '. Physically this means the number of
carriers involved with changes in the population of
N* would be small compared to the contributed or
nonextrinsic concentration already present.

With the terms involving N* omitted, Eq. (6)
was solved in I for all cases in which a simple
activation energy can be observed; namely, when

expression (3) holds and single terms in the parti-
tion functions, corresponding to our dominant levels
E and E„are much larger than the rest. The
resulting expressions for the Fermi energy are

p, =E +kTln[(N~ —N,)/N ]

for the extrinsic case, and

n, =N —' exp

F,
i. j

8 -(N /N ) e(sm-sc&/» (12)

EJ

FIG. 1. Schematic energy-level diagram for a ma-
terial showing the arbitrary reference level P and lo-
calized levels E& and E;.

The most interesting result in this group is to
be found in Eq. (11). We see that, for an n-type
material, if the excess donor concentration is
small in comparison with the concentration of elec-
trons excited from the dominant hole level to the
dominant electron level, then the Fermi energy is
located between the two dominant levels in such a
way as to make the concentration of electrons in
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A simple method of solving the statistics prob-
lem graphically is described in this section. It is
shown to be a valuable means by which to locate the
position of the Fermi energy, to identify dominant-
state densities and follow their changes with tem-
perature.

The energy levels in Eq. (4) are measured rela-
tive to an arbitrary reference level P. If Q is
chosen to be the Fermi energy then the number of
electrons in a state with density X» may be written

n» =N» e~»+

Therefore

log, on, = log»N, —0. 434(e;/kT) .
Similarly,

log, oP; = log, o N, —0. 434e,./kT .

(13a)

(13b)

Plotted in the schematic diagram in Fig. 2 is

the dominant electron level equal to the concentra-
tion of holes in the dominant hole level. This is
what is termed the nonextrinsic situation. It is
very similar to the familiar intrinsic situation and
reduces to the latter when both dominant levels are
the transport bands.

Equations (9)-(12) lead to the following theorem:
The existence of different (ox identical) actioation
energies for Ohmic and SCL conduction is both a
necessary and a sufficient condition for Ohmic con
duction to be nonextrinsic (ox extrinsic) R.oberts
and Schmidlin' exemplify this theorem by data ob-
tained on several inorganic signal-crystal semi-
conductors. Their data on GaP and HgS in particu-
lar showed the first experimental characterization
of the bounding sides of the Lampert triangle in a
single material. The theorem has also been used
recently to interpret results on CdTe' and stil-
bene. ' Further examples are described in Sec. V
of this paper.

Now it is clear that a change in the activation
energy for Ohmic conduction can occur whenever a
new term in the electron- and hole-partition func-
tions becomes dominant as the temperature
changes. It is also clear that a similar change can
occur if the Fermi energy crosses a sufficiently
dense level to change the relationship between the
contributed and nonextrinsic carrier concentra-
tions. Whenever changes in the activation energy
with temperature can be observed, the change in
the activation energy and the temperaure at which
it occurs provides valuable additional information
on the energy and state density of the localized
levels in a material. The purpose of this paper is
to delineate the kinds of temperature-induced tran-
sitions which can occur and the nature of the infor-
mation they provide.

III. GRAPHICAL SOLUTION

—LOGeNc

NONEXTRINSIC

nm=pq

LOGlp Ny -~-

LOGeN~ ... LOGtp Pq'

Nd'

Loge ntn

Ec fq
Ey

FIG. 2. Schematic energy-level diagram for a ma-
terial showing log&0 N; and the function 0. 434«/kT. The
extension of any state above the V gives the population
of that state. The V is located assuming a nonextrinsic
semiconductor.

loggpN» for some arbitrary set of discrete localized
levels, together with the effective band densities
N, and X„. Continuous distributions of localized
levels can be similarly replaced by equivalent dis-
crete densities. N~ and N, are assumed to be shal-
low donors and acceptors, while the other levels
are assumed to be deep traps. When the latter fall
below the Fermi energy they are sometimes called
deep donors. Also in Fig. 2 a "V" is constructed
with sides having a slope of +0. 434/kT and with an

apex that lies somewhere on the abscissa (energy
axis). The objective is to slide this V along the
energy axis until it falls at the Fermi energy.
When the apex of the V is at the Fermi energy, the
vertical extension of the states densities above the
left-hand side of the V becomes the population of
those states with electrons, while the vertical ex-
tension of the state densities above the right-hand
side of the V becomes the population of those states
with holes. Thus, one knows that the apex is prop-
erly located at the Fermi energy when either of two
conditions is satisfied: (i) the total number of elec-
trons equals the total number of holes, which is the
nonextrinsic condition; (ii) the total number of
electrons (or holes) equals (N~ N, ) (or N, N~),--
which is the extrinsic condition. In general, it is
always possible to slide the "V" so that the nonex-
trinsic condition is satisfied, and the solution for
this case is unique. To be convinced of the unique-
ness of this solution and to appreciate the ease with
which it can be found, we suggest constructing your
own slide rule by making the V (for the tempera-
ture of interest) on a transparent overlay and slid-
ing the apex along the energy axis until the total
number of states above the left-hand side of the V
equals the total number of states above the right-
hand side of the V. Since the states are plotted on
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FIG. 3, Graphical analysis of the population of states
in an extrinsic semiconductor.

a logjo scale, it is generally enough to focus on the
two states which have the longest extensions above
the V. These are our dominant levels. The sum
total of all the other occupied states (f 10"'~o"', not
the sum of the logarithms) is often small compared
to occupation of the dominant levels. Indeed, this
is a condition which must also be satisfied to ob-
serve a simple activation energy. Consequently,
when a simple activation energy is measured at a
particular temperature, it becomes a very simple
procedure for finding the location of the Fermi
energy by the procedure described above.

The only possible failure with the above solution
for the nonextrinsic condition is that the n„(or P,)
so found turns out to be smaller than N~ —N, (or
N, N~), -in which case the material is really ex-
trinsic. Of course, this is easily checked if N~ and

N, are known. The reader may readily verify that
log»(Ng —N, ) =' log»N, is less than log, on„ for the
case shown in Fig. 2.

To find the Fermi energy in the extrinsic case,
one must slide the V until the longest extension of
some state density on the left- (right-) hand side
of the V equals N, N, (or N,-N~). Thi-s case is
illustrated in Fig. 3. Note that this solution is
also unique once N~ -N, is known.

To locate the Fermi energy unambiguously, it
is clearly very important to know N„-N„or know

whether the extrinsic or nonextrinsic condition ap-
plies. Such is the importance of knowing the acti-
vation energies in both the Ohmic and the space-
charge-limited domains. Alternatively, it is
enough to know the activation energy for Ohmic
conduction if it is available over an extended tem-
perature range and certain changes in the activa-
tion energy with temperature are observed. The
procedure for interpreting changes in activation
energy for Ohmic conduction with temperature is
the central purpose of this paper. The graphical
procedure for locating the Fermi energy at a par-
ticular temperature prepares the way for visualiz-

ing the theoretical developments in the next section.
The objective of Sec. IV is to develop rules

whereby the Fermi energy can be followed and

state densities can be deduced from measurements
of the activation energy as a function of tempera-
ture.

Examples of this reverse procedure for finding
densities and locations of the dominant levels from
experimental conductivity data are described in
Sec. V.

IV. THEORETICAL ANALYSIS

Barring any chemical or physical changes which
create new electronic quantum states in a material,
the principal cause for any temperature-induced
change in activation energy is a repopulation of
states, with an attendant displacement of Fermi
energy. Therefore, the problem of interpreting
changes in activation energy with temperature is
tantamount to following the motion of the Fermi
energy with temperature. At temperatures inter-
mediate between the simple activation-energy re-
gions, the motion of the Fermi energy becomes
more complex and requires numerical analysis.
Our immediate objective is to establish connections
between "neighboring " simple activation-energy
regions from which one can deduce how the Fermi
energy must have moved during the intermediate
temperature changes. By "neighboring" we mean
simple activation-energy regions which are not
separated by extended temperature intervals in
which the dominant-level approximation obviously
does not apply. A criterion for "neighboring" is a
reasonably abrupt change of activation energy
whose specific shape is consistent with the deduced
cause for the change. For example, if a particular
transition is evidently due to the Fermi energy
crossing a dominant level, then it should be possi-
ble to account for the detailed shape of the transi-
tion by redoing the statistics with the Fermi func-
tion used for the population of this one level. We
focus attention on neighboring simple activation-
energy regions because they represent the only
situation for which a transition can be attributed to
a single prime cause, such as transfer of domi-
nance between one level and another or change in
the relative sizes of the contributed and nonextrin-
sic carrier concentrations. Only then is it possi-
ble to arrive at a well-defined relationship for the
connection between the two regions. More complex
transitions then can be analyzed in terms of multi-
ple prime causes occurring simultaneously or in
rapid sequence. We show how to analyze these
more complex cases by examples later.

In this section we now formulate the relationships
that hold when a transition between simple activa-
tion energies is due to various prime causes and
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then we discuss the kind of experimental evidence
which can distinguish which relationship is appli-
cable.

A. Prime causes for temperature-induced changes in activation
energies
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FIG. 4. Graphical analysis of the population of states
in a semiconductor which undergoes a nonextrinsic to
nonextrinsic transition. In order to simplify the diagram
all donor or acceptor states have been excluded and the
conduction band is treated as the dominant and only elec-
tron level.

There are three causes for a transition.
(i) A transition occurs when the two largest

terms in a partition function become equal. An

example of this type of transition is illustrated in
Fig. 4. Note that as the temperature increases
above T, the "V"becomes flatter and the apex
(Fermi energy) moves toward the smaller dominant
state density N, , Note also that the hole popula-
tion of a shallower but more dense level at E@ in-
creases as T increases, and at some temperature
T» the population of E& becomes equal to the popu-
lation of E,, At still higher temperatures, the
population of E,2 forever remains greater than the
population of E„. We say that E,, has transferred
its dominant role in the statistics to E& at the
transition temperature T». Since dominance was
transferred from one level to a shallower one of
the same polarity, we call this a nonextrinsic to
nonextrinsic transition. An interesting and impor-
tant property of the case illustrated in Fig. 4 is
that a very low state density (& 107) is capable of
dominating the statistics. However, it is always
necessary that the number of such states must ex-
ceed the number of mobile majority carriers. This
fact is the basis of a useful rule stated later [Rule
(vi)j. We obtain a relationship between the concen-
trations of the two levels by equating the two domi-
nant terms in the partition function at the transition
temperature T,2 (defined by the intersection of
extrapolated linear segments in a log, o J-vs-1/T

l2
z

0
g 8

Ec Em2Eml Eq2 Ev

FIG. 5. Graphical analysis of the population of states
in a semiconductor which undergoes a nonextrinsic to
nonextrinsic transition when the two largest levels in the
electron partition function becomes equal, followed by a
sequence in which the conduction transforms from non-
extrinsic to extrinsic to nonextrinsic again.

plot). Thus for holes

e(E q1 Eq2)/k Tj.2
q2 ql (14)

PonN„(E, —E ) (E, E„) (15)
p. „N kT»

Application of Eg. (15) is restricted to cases in
which conduction is nonextrinsic both before and

where E„and N, , describe the hole level farther
from the valence band. Continuing this process we

can link up the concentrations for a wide spectrum
of dominant levels restricted only by the tempera-
ture range over which measurements are feasible.
The equivalent relation between electron levels ob-
viously applies when the two largest levels in the
electron partition function become equal. An exam-
ple of this case is illustrated in Fig. 5 at T». For
electrons the sign in the exponential should be re-
versed if the convention is adopted of assigning the
lower index number to the dominant level further
from the relevant transport band, i.e. , the level
which dominates in the lower-temperature region.

(ii) A transition occurs when the "majority"
carrier shifts from electrons to holes or vice
versa. Here "majority" means the carrier for
which the concentration mobility product is the
larger, although strictly speaking, a majority car-
rier is the one having the higher concentration.
However, since we are now concerned with a shift
in the activation energy for Ohmic conduction, we
must include the microscopic mobilities in the re-
lationship which holds at the transition tempera-
ture. Adding subscripts n and p to distinguish the
microscopic mobilities, we obtain
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after a transition. In practice, this is almost al-
ways the case, although it is possible for the
majority carrier to change sign in a direct transi-
tion from an extrinsic to a nonextrinsic condition.
However, this would require the unusual circum-
stance in which p, 08, the drift mobility, is very
much greater for the minority ca.rrier (prior to the
transition) than for the majority carrier. Rather
than construct a special relationship for this un-
usual circumstance we simply draw attention to the
fact that is can occur.

(iii) Finally, a transition occurs when the in-
equality between the contributed and nonextrinsic
carrier concentrations reverses. In this case we

have

(N„1V ) i =(N„N,)-

(N~ N, ) =N, &. - (17)

This relation is especially useful because it enables
complete determination of all state densities when
it is combined with Eqs. (16), (1), (2), and (9)-(12).
Equation (17) follows from Eq. (6) and recognition
of the fact that the only time the contributed or non-
extrinsic carrier concentration can be altered sig-
nificantly by the Fermi energy crossing a level
[designated as N* in Eq. (6)] is when the level being
crossed is a dominant level at the moment of
crossing. This property of the dominant levels is
depicted in Figs. 4 and 5. In Fig. 4, N, ~ yielded
dominance to N+ before the Fermi energy crossed
it. Thus, it will never become significant again as
T increases. N, , in Fig. 5, on the other hand, is
crossed while it is dominant and thus accounts for
the appearance of the extrinsic condition.

x exp{[(E,—E„)—(E, —E„}]/2kT&2j .
(16}

Here we have assumed the extrinsic case is n-type
(more donors than acceptors) but the modification
required if the extrinsic case ip p type is straight-
forward. Equation (16) applies regardless of which
direction the transition goes while the temperature
increases. A case in which conduction transforms
from nonextrinsic to extrinsic to nonextrinsic
again is illustrated in Fig. 5. Note that it is im-
portant to distinguish whether the direction of the
transition is nonextrinsic to extrinsic or vice versa
because the minority level [E„in Eq. (16) must be
different in the two directions]. If, for example,
the dominant hole level is E,~ for some particular
nonextrinsic to extrinsic transition then the domi-
nant hole level for a subsequent transition back to
a nonextrinsic condition will be E,&&,» (with E,&„»
being closer to the valence band than E,~)

For the special case of a nonextrinsic to extrinsic
transition we have the additional relation

B. Empirical identification of prime causes for a transition

Here we discuss the problem of empirically
identifying which prime cause actually produces a
particular transition. In doing so we shall make
use of our theorem which states that a comparison
of the activation energies for Ohmic and SCL con-
duction uniquely determines whether Ohmic condi-
tions are extrinsic or nonextrinsic. Hence we as-
sume this test can actually be made both before and
after a transition in all that follows.

We first consider an example in which tempera-
ture is increased from T = 0 and conditions are non-
extrinsic to start with. The first transition may
go to another nonextrinsic condition or to an extrin-
sic condition. If the final condition is again non-
extrinsic then either Eq. (14) or Eq. (16) applies.
To select between these two it is necessary to first
note whether the activation energy for the Ohmic
region increased or decreased while going from
the lower- to higher-temperature region. If it de-
creased then Eq. (14) applies because a decrease
can only mean that the dominant level for the ma-
jority carrier has changed. If it increased, the
choice remains unclear for it could mean either
the majority carrier has changed sign [in which
case Eq. (15) applies] or the dominant level for the
minority carrier has changed [in which case Eq.
(14}again applies]. To help distinguish between
the latter two possibilities, the current voltage be-
havior at higher voltages again can be useful.
Specifically, if a V' (SCL) behavior can be observed
both before and after a transition, then it is clear
that the majority carrier has not changed sign.
But if SCL conduction cannot be achieved at volt-
ages where it would normally be expected after a
transition, then it is very likely that the majority
carrier has changed sign. Of course, the current
required may be prohibitive but this is only a prac-
tical difficulty —normally circumventable by pulse
measurements. In exceptional cases, the current
may actually break into a V'~ dependence instead
of a V dependence, then the contacts have definite-
ly switched to blocking' and it is clear that the
majority carrier has definitely switched sign. Un-
fortunately, this positive test for showing that the
majority carrier has changed sign is possible only
under very special circumstances. So, short of a
Hall measurement or some equivalent means, we
must generally rely on the above negative means
for establishing the occurrence of a sign change
for the majority carrier —the essential distinction
which must be made to determine whether Eq. (14)
or (15) is the applicable connecting formula. In
most cases the majority carrier will not have
changed. The task of selecting the applicable con-
necting formula if the final condition of the first
transition is extrinsic is much easier. In this case
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Eqs. (15) and (17) both apply and there is no other
selection to make.

Subsequent to an extrinsic transition, the next
transition should be back to a nonextrinsic condition
with the majority carrier remaining the same sign
(barring the exception mentioned earlier). This
time, Eq. (16) alone applies with the dominant hole
level now being closer to the valence band than the
hole level which was dominant prior to the nonex-
trinsic to extrinsic transition. In other words, an
extrinsic condition can be regarded as an inter-
mediate condition which interrupts a normal non-
extrinsic to nonextrinsic transition in which the
dominant level for the minority carrier transfers
from E,z to E,&z„,. Thus, a nonextrinsic-extrinsic-
nonextrinsic sequence forms a kind of closed
"cycle. " Since this is really the only deviant from
any direct nonextrinsic to nonextrinsic transitions
that can arise, any subsequent transition must be
one of the types already considered. Of course,
it is possible that an extrinsic condition can be the
first condition observed at T = 0, providing the
doping is appropriate. In this case, the first tran-
sition mill normally be to a nonextrinsic condition.
Subsequent transitions at higher temperatures will
then become of the same variety as above.

The above example shorn how to identify the ini-
tial and final conditions of a transition and thereby
select the applicable relationship from Eqs. (14)-
(17). The key relationship among these equations
which enables complete determination of all state
densities is Eq. (17). It applies for nonextrinsic
to extrinsic transitions only. Another particularly
useful relation, however, is Eq. (15), i. e. , the
one which applies when the majority carrier
changes sign. Such a transition is of exceptional
value when it can be identified because it is the
only one which enables unambiguous determination
of a band gap from conductivity measurements.

C. Rules for interpreting temperature-induced changes in

Ohmic activation energies

When the activation energies alone are of inter-
est, we can summarize the foregoing results in the
form of rules for interpreting changes in the acti-
vation energy for Ohmic conduction: In each case
we refer specifically to the change in slope of a
log~0 J-vs-I/T plot as the temperature increases
All these rules follow directly from inspection of
Eqs. (6)-(12). They may also be deduced from in-
spection of Figs. 4 and 5.

(i) An increase of slope is —,(E„—E,), or half the
energy separation between dominant levels for the
majority and minority carriers, if the initial con-
dition is extrinsic.

(ii) An increase of slope is —,(E„—E,2), or half
the energy separation between two successive
dominant minority-carrier levels, if the initial

condition is nonextrinsic and the majority carrier
has not changed sign.

(iii) An increase of slope is (E, E-„)—(E, E-)
or the difference between the depths of the dominant
electron and hole levels, if the initial condition is
nonextrinsic and the majority carrier has changed
sign (electron to hole in the quantitative example).

(iv) A decrease of slope is ~(E —E,), or half
the energy separation between the dominat levels
if the final condition is extrinsic. (E, in this rule
must be farther from the valence band than the E,
in Rule i. Also, it can never be the valence band
E„.)

(v) A decrease of slope is ~(E~ —E,), or half
the energy separation between successive dominant
levels for the majority carrier, if the final condi-
tion is nonextrinsic. This can only occur if the
initial condition is also nonextrinsic.

(vi) A decrease in slope implies the initial con-
dition is nonextrinsic.

The first of these rules may be recognized as a
generalization of the traditional one from the early
treatment of narrow-band-gap semiconductors,
i.e. , the higher activation energy corresponds to
half the band gap because conduction is intrinsic in
that region. Our rule is consistent with this but
more general because it points up the fact that the
final condition is nonextrinsic and that additional
conditions must be satisfied to identify the final
condition as intrinsic. The remaining rules are
fairly self-evident but it is of interest to note that
a final intrinsic condition at sufficiently high tem-
peratures can be finally arrived at by a decrease
in activation energy as well as an increase. In
other words, the activation energy at various inter-
mediate points can be greater than half the band
gap as well as less than half the band gap. Rule
(vi) is especially useful because it rules out the
possibility that the higher activation energy in the
lower temperature region is an ionization energy.
This rule is exemplified in the next section where
it is used to show that deep levels produced by
various metals in a number of semiconductors
have been incorrectly located.

V. ANALYSIS OF EXPERIMENTAL DATA

The efficacy of the interpretable scheme dis-
cussed in Secs. III and IV is now illustrated by ap-
plication to other authors' data on various semi-
conductors.

An inverse graphical procedure for finding lo-
calized levels from resistivity versus reciprocal
temperature curves is illustrated by reinterpreting
early data obtained by Tyler, Newman, and Wood-
bury on single-crystal germanium doped with iron, 6

cobalt, nickel, and manganese. The deep levels
associated with these impurities are still cited in
review articles, ' '" but were located incorrectly.
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The above error was found as the result of an

effort to find examples of our rules in Sec. IV.
The data on germanium proved exceptional in this
respect. More recent data on silicon' and gallium
arsenide provide additional examples of Rules
(iv), (v), and (vi). Data on metal-free phthalocya-
nine and copper phthalocyanine provide additional
examples of Rules (i) and (iii).

A. Germanium

Cle
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With Rule (vi) in mind, inspection of the resistiv-
ity vs 1/T plots of Tyler et al. , an example of
which is reproduced in our Fig. 6, immediately
shows that the low-temperature (high-resistance)
region must be nonextrinsic because it is imme-
diately followed by a lower activation-energy re-
gion as the temperature increases. Therefore, the

activation energy associated with the lower-tem-
perature region cannot be an ionization energy as
previously assumed. Consequently, all the data
on germanium must be reinterpreted. This is done

here, first using the graphical approach and then

a computer in order to make second-order adjust-
ments to get a good fit between theory and experi-
ment.

The band gap E~ of germanium is approximately
0. 66 eV at 300'K. If E~=E —PT, it may be seen
that the effect of the band motion is to change the
effective density of states. That is,

Ip'
O. I 0.2 0.5 0.4 0.5 0.6 0.7

I ~q

0.29eV (eV)

N y~N,* =NP', e~+

It is consistent with the data of Tyler et al. to put
E (0)=0. "t4 eV and P=0. 08 eV/300'K. If
these "excess states" are shared equally between
the conduction and valence bands then, using the
values of N, and N„quoted in Ref. 11,

N,*=7X10 cm,' N„*=4.2~10' cm

FIG. 7. Graphical analysis of the population of states
on the iron-doped germanium sample labeled "112L"
whose resistivity is described in Fig. 6 of the paper by
Tyler et al. {Ref. 6).
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FIG. 6. Resistivity of iron-doped germanium sample
"112L"as measured by Tyler et al. {Ref. 6) vs recipro-
cal temperature {points). The solid line is the computer
fit obtained for parameters listed in the text.

These effective state densities separated by E~(0)
provide an initial framework for plotting state den-
sities as shown in Fig. 7. To locate within this
framework the two dominant levels associated with
the low -temperature nonextrinsic region identified
in Fig. 6, we use the following procedure: From
the microscopic mobility data on the same sample
(as provided in Ref. 6, for example, 112L, n-type
Fe-doped Ge) and the magnitude of the resistivity,
we first compute the corresponding carrier con-
centration (n, for n-type) at selected temperatures
and construct the corresponding "V"'s. Three
such "V"'s are constructed in Fig. 7 corresponding
to 16'7, 214, and 283'K. At 167'K, the low-tem-
perature nonextrinsic condition is still undisturbed,
so we know that N and N, must extend equally
above this V by an amount which is larger than n, .
In other words, N and N, must still extend equally
above the same V after it is raised (by n, ) to pass
through N,*. This raised V is shown dashed in
Fig. 7. At 283 'K, the high-temperature intrinsic
condition appears fully established. This means
n, =P„at this temperature and both n and P, must
be less than n, . Thus, N and N, must fall below
the 283 'K "V" raised to pass through N,*. (Note
that this raised V must also pass through N~. )
The two raised V's together determine a closed
region inside of which both N and N, must fall. It
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is apparent the two temperatures should be picked
as close to the transition region as possible. It is
now possible to pinpoint the location of N and N,
more closely. At 214'K, it appears that the first
transition away from the low-temperature nonex-
trinsic condition has at least started. If we take
this as an estimate of a first transition tempera-
ture, then we can locate the dominant level more
accurately. There are two cases to consider, de-
pending on whether the next condition is nonextrin-

sic or intrinsic. If the next condition is nonextrin-
sic, with N shifting dominance to the next shallow-
er level, probably N then N must fall very near-
ly on the left-hand side of the 214 'K V after it too
is raised to pass through cV, . At the same time E,
must fall to the right of the apex of this "V." This
restricts E, to the fairly narrow energy interval
between the Fermi energies at 214 and 283 'K.
(From the information used so far E, could be to
the right of the intrinsic Fermi energy; but this is
ruled out by the fact that an extrinsic condition
does clearly develop for more highly Fe-doped
samples. ) With E, confined between the Fermi
energies at 214 and 283 'K and the requirement
that E, and E must be placed symmetrically about
the nonextrinsic activation energy of 0. 29 eV, we

establish that N must fall within the small rectan-
gular box shown in Fig. 7. If the next condition
approached is extrinsic instead of nonextrinsic,
then we can make use of Eq. (17), or N~ N, =n-
=N„and N, must fall at the apex of the 214 'K V

raised this time to pass through the top of N .
After combining this with the earlier requirement
that N and N, must fall equally above the 167 'K V,
both N„and N, can be very closely estimated. (It
should be noted that either of the two possible loca-
tions so found are not accurate only because the
transition temperature is not accurate. }

The foregoing alternative locations of N and N,
are nearly the same and neither can be logically
ruled out. As realized later from the computer
solution, this is because both transitions actually
occur in rapid sequence in this sample with neither
intermediate condition fully developing. The se-
quence which best describes the actual situation is
nonextrinsic to nonextrinsic to extrinsic to intrin-
sic, all occurring between the 167 and 283 'K and

involving the same two dominant levels. It is un-
fortunate that we accidentally selected this complex
case to explain our inverse graphical approach. In
less complex cases where the transitions are dis-
tinct (widely separated) the graphical solution pin-
points the dominant levels quite accurately. On the
other hand, illustration of the procedure with this
complex case demonstrates its effectiveness in
blocking out bounds on allowed solutions. This
proves to be an extremely helpful guide in finding
a more accurate computer solution.

To locate N and N, more accurately, we have
used a computer to select parameters which pro-
vide the best fit to entire resistivity versus recip-
rocal temperature curve. The solid line shown in
Fig. 6 is our computed curve for the following pa-
rameters:

E, —E„=0.74 eV,

N*„=4.2x10" cm ',
E, —E =0. 217 eV,

N*=7x10" cm ',

N =2. 5x10" cm ',
E, —E, = 0. 363 eV, N, = 1.0 x 10" cm ' .

At no point does the computed curve differ from
the experimental data (shown as points on Fig. 6)
by more than 2%. The corresponding estimated
accuracy in the determination of the parameters is
+0.005 eV in energy and approximately 20% in
concentration.

Similar analysis of data in Ref. 6 on other Fe-
doped samples resulted in almost identical values
for the energies but greatly different concentra-
tions as expected.

Careful analysis of the data for crystals of ger-
manium doped with nickel, cobalt, and iron, both
n-type and p-type, showed that in all cases a com-
plicated set of transitions similar tothose described
above were responsible for the activation energy
curves reported for these materials. Our computer
results for the newly located energy levels intro-
duced by Ni, Co, and Fe in germanium are sum-
marized in Fig. 8.

Germanium crystals doped with manganese give
rise to conductivity data which are quite different
from those described previously for samples doped
with other transition elements of the fourth row of
the periodic table. For example, Fig. 9 of this
paper shows the experimental data (points) for the
n-type sample described in Fig. 3 of Ref. 9. We
have obtained an excellent computer fit to these
data (solid line) with the following parameters:

E, —E„=0.74 eV, N,*=7x10 cm ',

N~=4. 2x1Q' cm ',

E, -E =0 21 eV, N =1 8x1Q' cm

E, -E,=0. 575 eV, N, =1.8x10' cm

Woodbury and Tyler interpreted the activation en-
ergies involved as ionization energies. However,
we see that the kink in the activation energy curve
arises due to a nonextrinsic to nonextrinsic transi-
tion identical to the one described later for GaAs.

Unfortunately, mobility data were not reported
for this sample. Hence, mobility data on similarly
doped samples were used to obtain the above fit.
However, more accurate mobility data would not
significantly alter the locations of E, and E but it



STUDY OF LOCALIZED LEVELS. II. THE MEANING ~ ~ ~ 1587

0 I- ———
Fe

02-

0.5

0.4- «hX» ——
~0 ~ ~ 0 000 ~

0.5

06-

07—

NDUCT
SAND

Co Ni

~ QO~

NCK BA

~000000000

~ 0)( ~ ~

~ 0 ~ ~ 0 ~ 000

Q. I

0.2

Q.4

~0~ 0 ~ »0 ~ ~

~ ~00 ~0

0.5

——07

———05

could slightly change the corresponding densities.
The data for P-type germanium doped with man-

ganese reported in Fig. 1 of Ref. 9 (partially re-
produced in our Fig. 10) provides a simple case
which can be readily solved graphically. Two dis-
tinct nonextrinsic to extrinsic transitions are evi-
dent at approximately 85 and 215 'K, respectively,
with the valence band dominant in both cases (zero
activation energy in the extrinsic condition). Con-
struction of the "V"'s for these two temperatures
places their apexes (Fermi energies) at 0.087 and
0. 20 eV from the valence band at 85 and 215 'K,
respectively. Since both are transitions to the ex-
trinsic condition, with the valence band dominant,
we know that p„='N„at 83 'K and P„~N,2+N„at
215 'K. Thus, N„=2. 7&10 cm and N,2-'3~10
cm '. A more careful computer fit, shown by the
solid curve in Fig. 10, provides the following pa-
rameters:

FIG. 8. Impurity levels introduced into germanium by
various elements of the fourth row of the Periodic Table.
The data were obtained by computer fitting experimental
results reported by Tyler, Newman, and Woodbury (Refs.
6-9). The dots indicate levels calculated for p-type sam-
ples while the straight lines indicate levels calculated
from n-type samples. The incorrect levels previously
assigned to these impurities are shown crossed (x).

E, —F.„=0.74 eV, N+=7x10' cm ',
N~ =4. 2x10 cm

E« —E„=0.08 eV, N &=2.4~10 cm

E,&-E„=0.19 eV, N,&=3~10' cm '.
The excellent fit over the extended temperature
region shows that no other localized levels that
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FIG. 9. Resistivity of manganese-doped n-type ger-
manium as measured by Woodbury and Tyler (Ref. 9)
vs reciprocal temperature (points). The full line is the
computer fit obtained for parameters listed in the text.

FIG. 10. Carrier density of manganese-doped p-type
ger~anium as measured by Woodbury and Tyler (Ref. 9)
vs reciprocal temperature (points). The solid line is the
computer fit obtained for parameters listed in the text.
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may be present in this sample can be statistically
significant.

IO'5

B. Silicon

Chua and Rose' have recently reported conduc-
tivity data for single crystals of high resistivity
nickel-doped silicon. For the majority of samples,
both n-type and p-type, the activation energies they
observed decreased as the temperature increased.
The two activation energies they obtained in each
case were interpreted as acceptor-level ionization
energies. We have analyzed carefully curve N6 in
Fig. 2 of their paper. Our results are shown in
Fig. 11 of this paper. The points are the experi-
mental data of Chua and Rose while the solid line
is the computer curve obtained for the following
parameters:

E, —E„=1.10 eV, N, =N„=4&10' cm

E, -E =028 eV, N =3&10"cm ',

E, -E =0.44 eV, N =2&10' cm '.
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The transitions in this case are identical to those
described earlier to explain the conductivity curves
obtained for iron doped germanium. That is, non-
extrinsic (N„, N, ) at low temperatures, converting
to extrinsic and finally, at high temperatures to
intrinsic.

FIG. 12. Electron density obtained from Hall-effect
measurements on a sample of n-type GaAs by Brehm and
Pearson (Ref. 13) as a function of reciprocal tempera-
ture (points). The solid line is the computer fit obtained
for parameters listed in text.
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C. Gallium arsenide
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FIG. 11. Electron density obtained from Hall-effect
measurements on a sample of n-type Si by Chua and
Rose (Ref. 12) as a function of reciprocal temperature
(points). The solid line is the computer fit obtained for
parameters listed in the text.

Brehm and Pearson" have recently reported
conductivity data for single crystals of epitaxially
grown GaAs irradiated with electrons or x rays.
For the majority of samples, both n-type and P-
type, the activation energy decreases as the tem-
perature increases. For example, curve (d) in
Fig. 1 of their paper shows two clearly defined
straight line sections. The activation energies ob-
served above and below 108 K ( 0. 08 and -0. 13
eV, respectively) were interpreted as ionization
energies of energy levels introduced by the irradia-
tion. However, Rule (vi) in Sec. IV of this paper
states that a decrease in slope implies that the ini-
tial condition is nonextrinsic. By plotting the ap-
propriate "V" for a temperature in each of the two
regions it may easily be shown using our graphical
approach that a nonextrinsic-nonextrinsic transition
occurs in GaAs similar to that sketched in Fig. 4.
The points on the curve of electron density versus
reciprocal temperature shown in Fig. 12 are the
experimental data versus reciprocal temperature
shown in Fig. 12 are the experimental data obtained
by Brehm and Pearson" from Hall measurements
for an n-type sample of GaAs. The solid line is
our computed curve for the following parameters:
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E, —E„=1.52 eV, N, =N„=10' cm

=p. 1p eV, Ã =3&10"cm ',
E, —E, = 0. 15 eV, N, = 1.35 & 1Q" cm '.

It is clear from these values that the transition
at approximately 108 'K to a lower activation energy
as the temperature is increased results from the
conduction band taking over from N as the domi-
nant electron level. That is, below 108 'K, the
two levels controlling the position of the Fermi
level are situated 0. 10 and 0. 15 eV from the con-
duction band resulting in an activation energy of
0. 125 eV. Above 108'K the average energy depth
of the dominant electron and dominant hole levels
is reduced to 0. 075 eV.

300-425 K. In one of their samples the Hall mo-
bility changed sign from negative to positive for
temperatures above 100'C. This was approximate-
ly the same temperature at which the activation
energy for conductivity changed from 0. 83 to 1.0
eV. The observation of a change in sign of the
Hall constant together with the change in activation
energy indicates that two carrier effects are pres-
ent and that Rule (iii) has to be applied to the situ-
ation. Unfortunately, no SCL activation energies
were measured but if we assume the most probable
state of affairs, i. e. , a nonextrinsic sample both
before and after the transition, then we obtain

(E, —E„)—(E, —E ) = 0. 11 eV and a "band" gap,
E, -E„=1.83 eV.

VL CONCLUSIONS

D. Phthalocyanine

Barbe and Westgate' have carried out careful
conductivity measurements on P-form metal-free
phthalocyanine and have established the correct
thickness and voltage dependenees for both Ohmic
and SCL currents. The activation energy for the
Ohmic current through their samples changes from
0. 38 eV below 363 'K to 1.05 eV above this tem-
perature. By contrast the activation energy of the
SCL current is 0. 38 eV throughout the temperature
range studied. The temperature induced change in

the Ohmic activation energy must be interpreted
via Rule (i) and thus reveals that metal-free phtha-

locyanine undergoes an extrinsic- nonextrinsic
transition as the temperature increases through
363 K. Following the procedure adopted in I it is
possible to calculate the important state densities
and their location in the energy gap. If we choose
p. =5 cm volt 'sec ' and N, =10 cm, we find that
the densities of the dominant electron and hole
states are -4. 10' and -1.5&10 ' cm, respective-
ly. The latter value, which is approximately equal
to the molecular density of metal-free phthalocya-
nine suggests that the dominant hole level is the

appropriate transport band. This is consistent
with the Ohmic and SCL activation energies above
363 'K (1.05 and 0. 38 eV, respectively) which in-
dicate two dominant statistical levels at (2&&1.05
—0. 38) =1.72 eV, and 0. 38 eV, from the conduc-
tion band edge. The well-established value of the
band gap of this material is 1.72 eV. In contrast
to the phthalocyanine results, identical low- and

high-field activation energies have been reported
for polycrystalline stilbene films by Gritsenko and

Kurik which is indicative of extrinsic conduction
in this material.

Heilmeier and Harrison" have studied the con-
ductivity and Hall mobility in single crystals of
copper phthalocyanine in the temperature range

It is clear that a great deal can be learned about
characteristic energies and concentrations of lo-
calized levels by examining the dependence of both
Ohmic and SCL conduction on temperature over as
wide a range as is experimentally feasible. We
have shown in this paper that the dominant-level
approximation is also a generally useful method
for interpreting temperature induced changes in
Ohmic activation energy. All of the six rules for-
mulated in Sec. IV for interpreting transition tem-
peratures have been illustrated in the experimental
part of this paper.

An important aspect of the paper has involved a
method by which the statistics problem for a semi-
conductor may be solved graphically. We have
shown that, provided the experimental information
is sufficiently complete to enable one to calculate
the carrier concentrations in the solid, by con-
structing "V" at appropriate temperatures, one
can obtain a good estimate of the locations and con-
centrations of the dominant levels in the solid.

One of the conclusions was that a decrease in the
activation energy as the temperature is increased,
means the initial lower temperature activation en-
ergy is not an ionization energy. This fact has not
been fully appreciated in the past and has led to our
reinterpreting experimental data on the commer-
cially important semiconductors germanium, sili-
con, and gallium arsenide. Indeed there are nu-
merous instances in the literature where authors
have incorrectly interpreted their conductivity
data. Five recent examples in what is certainly
an incomplete list are to be found in published re-
sults on gallium sulfide, ' tin dioxide, ' silicon
arsenide, and gallium arsenide, ' and silicon.
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