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In a previous paper the effective-mass Hamiltonian for shallow acceptor states was separated into a
spherical term and a cubic contribution. Neglecting the latter term, a spherical model was formulated
which explained the main features of the experimental acceptor spectra. Here the effects of the cubic
term are studied using perturbation theory, and all the details of the observed spectra are reproduced.
As in the case of the spherical model, the eigenvalue problem is reduced to simple radial Hamiltonians
which are explicitly given for the most important acceptor states. These Hamiltonians are solved
numerically and the resulting eigenvalues are tabulated as functions of the relevant parameters. The
predicted spectra are in good agreement with available experimental data for acceptors in Ge, InSb, and
GaAs, but not for acceptors in Si, where the unusual strength of the cubic term makes the present

analysis unsatisfactory.

I. INTRODUCTION

Recently we have formulated a new approach1'3
to the problem of shallow acceptor states in semi-
conductors. In this formulation the acceptor
Hamiltonian is separated into terms which have
strict cubic symmetry and terms which, besides
having cubic symmetry, are also spherically in-
variant. Since the former terms generally con-
tribute to binding less than the latter, the cubic
contribution can be neglected in first approxima-
tion and a spherical model of the acceptor system
is obtained. In this model, the acceptor center is
strongly similar to an atomic system with spin-
orbit coupling, where different valence bands in
the impurity case correspond to different spin
states in the atomic counterpart. This approach
has several advantages over previous investiga-
tions by other authors*™® Among these are the
simple formulation, which makes possible a clear
insight of the acceptor problem, and the strong
similarity to atomic systems, which allows the
use of theorems and techniques of angular-mo-
mentum theory.

Although the spherical model, as it is, is satis-
factory in explaining the general features of the
experimental acceptor spectra, a more realistic
model, which includes the cubic term in the
Hamiltonian, is necessary to explain the details of
the experimental data. In fact, the observed ac-
ceptor spectra exhibit a number of lines larger
than that predicted by the spherical model. The
cubic term, when added to the spherical model,
produces shifts of the acceptor energy levels and,
owing to its lower symmetry, introduces splittings
of some degenerate states. The resulting the-
oretical spectrum has now all the features shown

9

in the experimental data.

In the effective-mass acceptor Hamiltonian, the
cubic contribution is generally small relative to
the spherical term, and therefore can be treated
in a perturbative scheme. The radial Hamiltonians
describing the most important acceptor states in
the spherical model are modified in order to in-
clude the effect of the additional cubic term using
first-order perturbation theory in the limits of
strong and weak spin-orbit coupling. These Ham-
iltonians are solved numerically using the varia-
tional method. The energy shifts and splittings
thus obtained are expected to be accurate, except
when the cubic contribution is strong. This means
that the present treatment is generally valid for
the investigation of acceptor states in diamond
and zinc blende semiconductors, except for very
few cases, like Si, where the cubic term is un-
usually large.

In Sec. II we outline the main aspects of the
spherical model and analyze the modifications pro-
duced by the additional cubic terms in the limits
of strong and weak spin-orbit coupling. In Sec.

III we explicitly give the radial Hamiltonians de-
scribing the most important acceptor states and
including the lowest-order couplings produced by
the cubic term. In Sec. IV we solve numerically
the various acceptor Hamiltonians and we tabulate
the energy levels as functions of the relevant
parameters. The theoretical acceptor spectrum
is given for several diamond and zinc blende
semiconductors and compared with available ex-
perimental data. In Sec. V we summarize the
present work and discuss possible extensions.
For convenience, we give in the Appendix the
theorems on angular momentum which are used
in the present paper.
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1. CUBIC MODIFICATIONS TO SPHERICAL MODEL

In the effective-mass approximation, the ac-
ceptor Hamiltonian is!®

H= (71 + % ')’a) (f’z/zmo) - (72/7770) (P$J§+[)3J§+Pi Ji)
= v/ mo) Qb p)HI T} +{pypet {7, T
+ {pz px} {Jz Jr}) -

where {ab}=3(ab + ba); €, and m, are the crystal
dielectric constant and the free-electron mass,
respectively; ¥, %, and y; are the Luttinger
parameters which describe the hole dispersion re-
lation near the center of the Brillouin zone; P is
the hole linear-momentum operator, and J is the
angular-momentum operator corresponding to
spin 3. Hamiltonian (1) is valid for diamond crys-
tals in the limit of strong spin-orbit coupling in
the valence bands, assuming that the acceptor cen-
ter is described by a Coulomb potential screened
by the static dielectric constant.

Following the same procedure used in our pre-
vious paper, ® we introduce the second-rank Car-
‘tesian tensor operators

Pik=3ﬁtpk"5ikpz (2a)
and

Jik:%(Ji°]h+JkJi)_6ikJ2 (2b)

(¥ 7), (1)

and the corresponding irreducible components P;z’
and J& (g=-2, -1, 0, 1, 2). Using the effective
rydberg

Ro=e'my/212 & v, (3a)
and the effective Bohr radius
ag= 1 €g11/ &y (3b)

as units of energy and length, respectively; Hamil-
tonian (1) can be written as

H=()"p* - = —(9ﬂ)' w(p® . @)
+(or)! 5([p<a> xJ DY L VTO[PE xTPYP

+[PPxJ®]P), (4)

where, instead of the Luttinger valence-band pa-
rameters ¥;, %, and y; we use the spherical
coupling parameter

= (6'}’3 +472)/571 ’ (5)

which describes the strength of the spherical
“spin-orbit” interaction, and the cubic coupling
parameter

o= (73 - 72)/71 ’ (6)

which measures the strength of the cubic contri-
butions.
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The spherical model® consists in neglecting the
term in § in Hamiltonian (4). With this assump-
tion the acceptor Hamiltonian reduces to that of
an hydrogen atom [the first two terms in (4)] mod-
ified by a spherical “spin-orbit” term whose
strength is given by the parameter 4. The total
angular momentum F=L+J is a constant of mo-
tion in this model, and the eigenstates can be
classified according to the well-known L-S cou-
pling scheme. For practical purposes, the most
important acceptor levels are, neglecting the
“spin-orbit” coupling, the hydrogenic S and P
states. Including “spin-orbit” and using the L-S
coupling scheme, the S states give rise only to
S3/. states, whereas the P states split into P, ,,
P,,,, and P5,,. The energies of these levels can
be obtained using the spherical-model Hamiltonians
as described in our previous work. 3

The cubic term in Hamiltonian (4) lowers the
symmetry of the problem to that of the point group
Oy, ! and therefore the acceptor states must be
classified according to the irreducible represen-
tations of this point group. The S;,, states trans-
form like I'y, and therefore they shift in energy
but do not split in the presence of the cubic term.
The same occurs for P,,, and Pg,, states, which
transform like I'y and I', respectively. The Ps,,
states, instead, split into a twofold I'; and a four-
fold I'g state.

In the spherical model, the acceptor energy
spectrum shows a characteristic divergence in
the binding energy for p=1. This divergence was
shown to be due to the fact that, for this value of
the spherical coupling parameter u, the upper
valence band becomes flat. This peculiar behavior
occurs for different values of the parameter p
when we take into account in Hamiltonian (4) the
cubic term. In fact the valence-band energy dis-
persion is given by

E, == (FPy/2m) (K + (1 -2 6 k*+ ¥6(51-5)
<R+ R+ IR )]V, G

which represents two parabolic bands whose curva-
ture depends on the direction in % space. The
smallest curvature is in the (1, 1, 1) direction,
where the upper valence band has the following
dispersion relation:

E.=—(FPv/2mp) 1 —pu-26)1 . (8)

Therefore for pu+%5=1 the upper valence band be-
comes flat in the (1, 1, 1) and equivalent direc-
tions and the binding energy of all the acceptor
states associated with this band will diverge.

We now study the acceptor problem in the op-
posite limiting case, i.e., the case of vanishing
spin-orbit coupling in the valence bands. In this
limit the acceptor Hamiltonian corresponding to
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(4) is given by?®
H/ — (71—2)-11]\2_ % - (3}‘{2)'1 (P(Z) . 1(2))

+(3h-2)-1 6([P(2) X[(a)]‘(;) +.é_ m[Pm XI(Z) ](()4)
+ [P(a) XI(Z)]_(:’ , (9)

where I is the angular-momentum operator cor-
responding to spin 1. Hamiltonian (9) is very sim-
ilar to (4) except for the integer spin operator.

In the spherical model (6 =0) we again use the

L-S coupling scheme for the classification of the
acceptor states. The hydrogenic S states give rise
only to S, states, while the hydrogenic P states
split into P, P,, and P, states. Including the cubic
term, the symmetry of (3) lowers to that of the
point group O,. The states S, transform like the
irreducible representations I';5 and therefore they
do not split. The same happens for P, and P,
states, which transform like I'; and I';5, respec-
tively. The P, states, instead, split into I‘;z and
I';s. As in the strong spin-orbit case, the cubic
term affects the values of the valence-band pa-
rameters for which a divergence occurs in the en-
ergy spectrum. In this case, the smallest curva-
ture in the valence bands occurs in the (1, 1, 0)
direction, where the upper valence band has the
dispersion relation

E =(-Pv/2m)1 - pu-26) 1 , (10)

and therefore the divergence will now occur when
(n+£6)=1. This result shows that, for given u
and 5, the effect of the cubic term is stronger in
the weak spin-orbit limit.

IIl. ANALYSIS OF CUBIC TERMS

A detailed study of the spherical-model Hamil-
tonian has been given in our previous work? in the
limits of strong and weak spin-orbit coupling. In
this model it was shown that the eigenvalue prob-
lem reduces to a simple radial Hamiltonian for
each possible symmetry of the acceptor states.
This was possible because in the spherical model
the total angular momentum F is a good quantum
number and the spherical “spin-orbit” term
couples at most two different orbital angular mo-
menta L. As a consequence, the radial Hamil-
tonians for the various acceptor states were at
most 2 X2 radial-operator matrices.

In the presence of the cubic “spin-orbit” term,
the total angular momentum F is no longer a good
quantum number, and all orbital angular momenta
L of a given parity are coupled together. There-
fore the order of the exact radial-operator ma-
trices is infinite and their solution is practically
impossible. In order to find solutions of the ac-
ceptor problem, it is necessary to reduce the
above radial-operator matrices to a finite size,
To this end we consider the values of the valence-
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band parameters for various diamond and zinc
blende semiconductors, which are given in Table
I. The cubic-coupling parameter ¢ is generally
rather small compared to the spherical-coupling
parameter u. This fact is better shown in Fig. 1,
which represents the valence-band energy disper-
sion relation of Ge and GaAs. In these materials
the acceptor binding energy is of order 0.01~0.03
eV, and we see that up to this energy the actual
valence-band dispersion (i.e., including the cubic
term) does not differ appreciably from the spher-
ical model dispersion, which is obtained neglecting
the cubic term. For diamond and zinc blende
materials, therefore, it seems possible to treat
the cubic term in Hamiltonians (4) and (9) as a
perturbation on the spherical-model Hamiltonian.
Among the substances listed in Table I, Si is the
only material for which the above considerations
do not apply, since 6/u=0.5. The valence-band
dispersion of Si near the center of the Brillouin
zone is shown in Fig. 2 together with that of GaP
for reference. Inthe case of Si the strength of
the cubic term is anomalously large, and the
spherical-model dispersion is a poor representa-
tion of the actual band structure. Therefore we
see that, with the only exception of Si, we can
s tudy the effects of the cubic term in the acceptor
problem using first-order perturbation theory.
With this approximation, the radial-operator ma-
trices will be reduced to finite size and a solution
of the acceptor problem will be possible. Since
the effects produced by the cubic term are differ-
ent for states with integer and semi-integer spin,
we consider separately the cases of strong and
weak spin-orbit coupling in the valence band.
A. Strong spin-orbit coupling

As in our previous work® we consider only the
acceptor states S;,,. Py, Pj;3 and Ps,,. Only
the P;,, states are affected by first-order cubic
coupling. In the spherical model these states have
the following wave function®:

®(Ps,p) =f3(r)|L=1, J=3, F=3, F,)
+g(n|L=3, J=3, F=5, F,), (1)

and the cubic term couples states that have AF,

=0, +4. The coupling radial operators can be ob-
tained using the “reduced-matrix-element” tech-
nique, 2 which in our particular case can be written
as

(L', J, F, F|[PPxJ®|P | L, J, F, F,)
e F 4 F
:3><—1”Fz2F1( ’ )
( ) ( +1) -F, m F,
SJ J 2
X

L'L 22 I)(L PP L), (12)
3F F 4
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TABLE I. Values of the static dielectric constant €, and of the valence-band
parameters ¥y, Y,, and Y3 used in the present calculation. The valence-band
parameters 4 and § introduced in connection with the spherical model are also
given together with the energy and length units Ry and a,, respectively.
Ry
€ Y2 Yy ? v3? n 5 (MeV) ao(A)
Si 11.40° 4,22 0.39 1.44 0.483 0. 249 24.8 25.5
Ge 15.36° 13.35 4,25 5.69 0.766 0.108 4.3 108.5
AlSh 12.0° 4,15 1.01 1.75 0.701  0.178 22,8 26.4
GaP 10.75%  4.20 0.98 1.66 0.661 0,162 28.0 23.9
GaAs 12. 56¢ 7.65 2.41 3.28 0.767 0.114 11.3 50.8
GaSb 15.7¢ 11.80 4.03 5.26 0.808 0.104 4.7 98.0
InP 12, 4f 6.28 2,08 2,76 0.792 0.108 14.1 41,2
InAs 14, 68 19. 67 8. 37 9.29 0.907 0. 047 3.2 152.0
InSh 17.9¢ 35.08 15.64 16.91 0.935 0. 036 1.2 332.3
ZnS 8. 1p 2.54 0.75 1.09 0.751 0.134 81.6 10.9
ZnSe 9.1k 3.77 1.24 1.67 0.795 0.114 43.6 18.2
ZnTe 10,1 3.74 1.07 1.64 0.755 0,152 35.7 20.0
CdTe 9.7 5.29 1.89 2,46 0.844 0.108 27.3 27.2
2For valence-band parameters see P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
PR. A. Faulkner, Phys. Rev. 184, 713 (1969).
‘M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
91,. Patrick and P. J. Dean, Phys. Rev. 188, 1254 (1969).
€G. E. Stillman, D. M. Larsen, C. M. Wolfe, and R. C. Brandt, Solid State
Commun, 9, 2245 (1971).
fC. Hilsum, S. Fray, and C. Smith, Solid State Commun. 7, 1057 (1969).
80. G. Lorimor and W. G. Spitzer, J. Appl. Phys. 36, 1841 (1965).
"D, Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).
where the reduced matrix elements (J || J? ||J) and
€2) s . . _ .
and (' |IP: [l L) are explicitly given in our pre- ®(Ps,5 T3)=fs (| L=1, J=3, F=3, T;)
vious work®; the values of the 6-j symbol can be ,s s 5 -
found in Rotemberg et al., ! and the values of the +g3'(n |L=3, J=3, F=3,T3), (13b)
9-j symbol needed in the present work are ex- where the symbols I'; and I'y, which appear on the
plicitly given in the Appendix. right-hand side, indicate the appropriate linear
As a result of the cubic coupling between the combination of states with different component F,
spherical-model states (11) with different F, the of the total angular momentum which transform ac-
P, states split into a I'; and I'; state whose wave cording to the given irreducible representation of
functions can be represented as the point group O,. Adding the cubic contributions
- - 12) to the Ps,, spherical-model Hamiltonian, we
®(P5,p T)=f3(#)|L=1, J=3, F=3, T ( 5/2 ’
(P52 T7)=f3(7) | ’ ® 5 ) obtain the following radial Hamiltonian for the
’ -
+g3(r) | L=3, J=3, F=3, T;) (13a) P; (T ) states:
]
1 24)(,12 2 d 2) 2 waG( 1)<d2 7d a) ,
- — — +t = — = - - - — - = +— — 4 — (r
(1+5“+256 a2 Trar AT r E 5 \M" 5N\ v TR fs(n)
. = O,
Ne( 1) £ 34 3) ( 1 68)(d3 2 d 12) 2 :
2= - -= —+ l-—-pu-— - —=-—)+—-FE v
5 \X 56 ar " rar # 51 1755 at T rar T 7 v gs(r)
. . . - (14a)
and the following Hamiltonian for the Pj,,(I';) states
1 12\(d 2 4 2\ 2 Js( 1)((12 7d 8) '
—pu=-=0)\=—=+— — - - - -—2u+=b)|— +— —+ > ¥
(“5“ 255>(d¢2 Yy ar F)*r E 5 G E\GZ trar T AR I
/6 1 )(dz 3 d 3) ( 1 34 )(dz 2 d 12> 2 o
- - - — 4+ -= — = — =) +=-FE
5(2‘”5(5 aF " radr P -5k NaF Yy oy T A Ty £ ()
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FIG. 1. Energy-disper-
40 sion relation for the valence
3 bands of Ge and GaAs along
g the main symmetry direc-
> 50 tions. The deviations be-
E tween the real valence bands
Z 60 and those predicted by the
spherical model (also
20 shown) are produced by the
. cubic term.
Ge Ga As
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(a)

For §=0 the above Hamiltonians reduce to the
spherical-model Hamiltonian for Pj,, states given
in our previous work.

A more accurate treatment of the cubic terms
in the acceptor Hamiltonian requires the inclu-
sion of couplings of order higher than the first.
Even in second order, however, the problem be-
comes very complicated because of the infinite
number of possible couplings. In order to have an
idea of the contributions from higher-order ef-
fects, we consider the particularly important
coupling between the P;,,(I';) and Py,,(T';) states,
which are generally rather close in energy since
they originate from the same unperturbed hydro-
genic states. The cubic coupling between these
two states can be obtained using the “reduced-

1
o (£, 20 _2)
25 ar rar ~ A
X=
_gﬁa(dz 34 3
175 \a?# rdr 7

Hamiltonians (14a), (14b), and (15) cannot be
solved exactly and their approximate solutions will
be given in Sec. IV.

B. Weak spin-orbit coupling

Among the acceptor states S;, Py, P;, and P,,

)

matrix-element” technique, which in this case
gives an expression for the matrix elements which
is slightly different from (12), since the coupled
states have different total angular momentum F.
Using this more general expression, which is
given in the Appendix, we obtain for the coupled
P;5,, (T'3) and Py ,,(T) states the radial Hamiltonian

H3) V6 X

B=\ vx me |

c

(15)

where H(3, I';) is the Hamiltonian for Ps,,(I';)
states given by (14b); H(3) is the Hamiltonian for
P,,, states given by expression (27¢) of our pre-
vious works; and the coupling matrix X is

_1_85(d2 +11+_8_)
175 °\a’? "y ar T4
(16)
—22—5(—42—3— d__g)
525 "\d»* r» dr

I
only P, states are affected by first-order cubic
coupling. In the spherical model, the wave func-
tion for the P, states is®
&(P,)=Fy(ry|L=1, I=1, F=2, F,)

+Gy(n)|L=3, I=1, F=2, F,),

1
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FIG. 2. Same as Fig. 1
but for the valence bands

E of GaP and Si. Note the
E dramatic effect produced
» by the cubic term in the
@ case of Si.
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and the cubic term couples states which have trix-element formula (12) and the unperturbed
AF,=0, +4 and splits P, states into a twofold I, spherical-model Hamiltonian, we obtain the fol-
and a threefold T',; state. Using the reduced-ma- lowing radial Hamiltonian for the P,(T';,) states:
J
1 36\ & 2d 2\ 2 3~f6( 2>(d27d 8) ,
g -_—— —_— —— oy —_ - — + — —_— —_—
<1+5“ 256>((717_+rd1' 72)+1’ E 5 \V 356 ar T rar 7 Filr) -0
ﬂg(+la)<£__§i+3> (1_,_2 _&5)(‘12 +gg__lg) g E G'()
5 \""35°)\a” "y ar T A 5 525 NaA T ar T )Ty 3t
(18a)
and the following Hamiltonian for the P,(I',5) states:
1 24)((12 2 d 2) 2 Js( 4)(d2 7 d 8)
1+ = == 2 2 = = - - - - = ,?
(+5‘“’255 F rar Ay E 5 CHo35)\aF Trar T A F'r)
=0.
\fs( 4)((12 3 d 3) ( 4 16 )(dz 2 d 12) 2
vo 3 _3 _s a A 1 a 49 ¢ & _ e = ’
5 VETBNGE Trar T Y5Et s \aF Trar  A) Ty E G“(r)l
(18b)
The above Hamiltonians will be numerically solved in Sec. IV.
r
IV. METHOD OF SOLUTION AND RESULTS (18a), and (18b), which describe the above accep-
In Sec. ITII we have seen that the inclusion of the tor states in the presence of the cubic perturba-
cubic term in the acceptor Hamiltonian affects, in tion, cannot be solved exactly, and to find their
the limit of first-order of perturbation theory, the eigenvalues and eigenfunctions we have used the
state Pj,, for strong spin-orbit coupling and the variational technique along the same lines used in
state P, for weak spin-orbit coupling. The re- our previous work. 3 We have assumed as trial

sulting radial Hamiltonians (14a), (14b), (15), wave functions, superpositions of Gaussian func-
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tions times the lowest possible polynomials which
behave correctly at the origin. For the state
Pg,,(T;) for example, which is described by
Hamiltonian (14a), we have used as trial functions

21
falr)=r2o A e (19a)
i=1
and
’ 2 2
g3 =r* 2L Bye (19b)
i=1

where the linear parameters A; and B; were
treated as variational parameters in order to min-
imize the energy, and throughout the calculations
we used the same constant set of values for the 21
parameters ¢;. The latter parameters have been
chosen in geometrical progression (@;,; =ga;, with
g independent of {) and their range of values is
wide enough to cover all actual situations met in
studying the acceptor spectrum, the smallest value
being a;=1%x10"% and the largest a, =5%10°.

The radial Hamiltonians (14b), (15), (18a), and
(18b), which describe the remaining acceptor
states studied in the present work, have been
solved using trial functions of the form (19a) and
(19b) with the same constant set of values for the
21 parameters a;.

The energies of the lowest acceptor states of
interest which are affected in first order of per-
turbation theory are tabulated as functions of the
coupling parameters u and § in Tables II, III, and
IV for the case of strong spin-orbit interaction.

TABLE II. Energy of the 2P;,(I';) acceptor state as
function of the coupling parameters p and 6. The energy
unit is the effective rydberg R,.

5
© 0.0 0.05

0.10 0.15 0.20 0.25
0.00 0.250 0,239 0.228 0.219 0.210 0.202
0.05 0.248 0.237 0.226 0.217 0.208 0.200
0.10 0.248 0.236 0.226 0.216 0.207 0.199
0.15 0.248 0.237 0.226 0.216 0.207 0.199
0.20 0.251 0.239 0.228 0,218 0.209 0.200
0.25 0.256 0.243 0.231 0.221 0.211 0.203
0.30 0.262 0.248 0.236 0.225 0,215 0.206
0.35 0.270 0.256 0.243 0.232 0,221 0.212
0.40 0.281 0.266 0.252 0.240 0.229 0.219
0.45 0.295 0.278 0.264 0.251 0.239  0.228
0.50 0.322 0.295 0.279 0.264 0.252  0.240
0.55 0.336 0.315 0.298 0.282 0.268  0.255
0.60 0.366 0.342 0.322 0.304 0.289 0.275
0.65 0.406 0.378 0.354 0.333 0.315 0.299
0.70 0.461 0.426  0.397 0.372 0.351 0.332
0.75 0.539 0.494 0.456 0.425 0.398 0.376
0.80 0.657 0.594 0.543 0.501 0.466  0.436
0.85 0.857 0.756 0.678 0.616 0.567 0.526
0.90 1.259 1.059 0.917 0.812 0.732 0.668
0.95 2,470 1.821 1.488 1.215 1.050 0.930
1.00 % 7.199  3.667 2.493 1.909 1.561

TABLE III. Energy of the 2P;,,(I'5) acceptor state as
function of the coupling parameters 4 and 6. The energy
unit is the effective rydberg R,.

&
I 0.0

0.05 0.10 0.15 0.20 0.25
0.00 0.250 0.260 0.271 0.283 0.296 0.310
0.05 0.261 0.265 0.274 0.286 0.298 0,313
0.10 0.273 0.275 0.282 0.292 0.304 0.318
0.15 0.287 0.288 0.293 0.302 0.313 0.326
0.20 0.302 0.304 0.308 0.315 0.325 0,388
0.25 0.320 0.321 0.325 0.331 0.341 0.354
0.30 0.341 0.342 0.345 0.351 0.361 0.373
0.35 0.365 0.366 0.369 0.375 0.384 0.397
0.40 0.394 0.395 0.398 0.404 0.413 0.426
0.45 0.428 0.428 0.432 0.438 0.448 0,462
0.50 0.468 0.469 0.473 0.480 0.490 0.506
0.55 0.518 0.519 0.523 0,531 0.543 0.561
0.6 0.580 0.581 0.3586 0.596 0.610 0.632
0.65 0.660 0.662 0.668 0.680 0.699 0.727
0.70 0.767 0,770 0.778 0.794 0.820 0.859
0.75 0.917 0.921 0,933 0.957 0.997 1.058
0.80 1.142 1.148 1.168 1.210 1.282 1,396
0.85 1,518 1.529 1.571 1.663 1.832 2.115
0,90 2.268 2,301 2,436 2,768 3.454 4,919
0.95 4,521 4.774 6.242 12,324 755,358 0
1.00 o 0 00 o S} ]

The energies given in Table III and IV for the
states 2Pg,,(T'y) and 2P;,,(T';) are the eigenvalues
of the more general Hamiltonian (15), which takes
into account the higher-order coupling between
these two states. Neglecting such coupling, the
above states are described by Hamiltonian (27c¢)
of our previous work® and Hamiltonian (14b),
respectively. The energies calculated with and
without the above coupling are given in Table V
for a few typical values of parameters u and §.
The acceptor states 1S;,,, 2S3,5, and 2P, ,, are
not affected in first order by the cubic term, and
their energies calculated in the limit of the spher-
ical model remain valid. For convenience we give
the energies of these states in Table VI as func-
tions of the coupling parameter u, which is the
only relevant parameter in this case. The ac-
ceptor energy spectrum as function of p and for
the typical value 6 =0.15 is given in Figs. 3 and 4
in the cases of strong and weak spin-orbit cou-
pling in the valence band, respectively. These
figures show the peculiar effect of the cubic term
on the acceptor spectrum, i.e., the cubic-term-
induced splitting of the P5,, and P, states. The
effect of the cubic term on the acceptor wave
functions cannot be tabulated in simple form as
function of the coupling parameters p and §. To
give an idea of this effect, we compare in Figs.
5-7 the acceptor wave functions for § =0 to those
for 6 =0.15 for the strong spin-orbit states
2P;,,(T'3), 2P;5,,(T3), and 2P5,,(I'7), and for the
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TABLE IV, Energy of the 2P;,,(I'3) acceptor state as

‘function of the coupling parameters 4 and 6. The energy
unit is the effective rydberg Ry.

S
;X 0.0 0.05 0.10 0.15 0.20 0.25
0.00 0.250 0.246 0.243 0.240 0.237 0.234
0.05 0,248 0.251 0.249 0,246 0.243 0.241
0.10 0.248 0.252 0,253 0.252 0.250 0.248
0.15 0.249 0.254 0.257 0.258 0.257 0.255
0.20 0.251 0.257 0.261 0.263 0.264 0.263
0.25 0.256 0.262 0.267 0.270 0.272 0.272
0.30 0.262 0.268 0.274 0.278 0.281 0.283
0.35 0.270 0.277 0,283 0.289 0.292 0.295
0.40 0.281 0.288 0.296 0.302 0.307 0.310
0.45 0.295 0,303 0,311 0.318 0.324 0,328
0.50 0.322 0.322 0,331 0.339 0.346 0.352
0.55 0.336 0.346 0.357 0.366 0.375 0,381
0.60 0.366 0.378 0.391 0,402 0.412 0,420
0.65 0.406 0.421 0,436 0.450 0.462 0.472
0.70 0.461 0.479 0.498 0.516 0.531 0,544
0.75 0.539 0.564 0.589 0,612 0.633 0.650
0.80 0.657 0.694 0.730 0.764 0.792 0.815
0.85 0.857 0.917 0.977 1.031 1.074 1.120
0.90 1,259 1.385 1.508 1,609 1.758 2,397
0.95 2,470 2,943 3.361 6. 051 255,730 o
1.00 o 0 o o0 o0 oo

values p=0.4 and p=0.8. Finally we give in
Table VII the theoretically predicted acceptor en-
ergy levels for various diamond and zinc blende
semiconductors. These values have been obtained
using the valence-band parameters given in Table
I and interpolating linearly on the energy Tables
II-IV and VI. It should be noted that the above
energy tables allow a straightforward calculation
of the most important acceptor energy levels once
the valence-band parameters of any given sub-
stance are known.

The theoretical energy levels obtained in the
present work will now be compared with available
experimental results. The most studied acceptor
spectra are those in germanium and silicon, where
several experimental works'*~!® have provided
the transition energies from the ground state to
various excited states. The acceptor ionization
energies are known!” for most of the IlI-V and
II-VI compounds, but detailed excitation spectra
are known only for acceptors in InSb'® and in
GaAs.?®

The experimental excitation spectra for various
acceptors and double acceptors in Ge are repro-
duced in Fig. 8, which clearly shows that all
these spectra are very similar to each other ex-
cept for the ground-state binding energy, which,
owing to chemical effects, is different for differ-
ent impurities. Since our theory does not take
into account chemical shifts, we are not able to
compare the absolute values of the excitation en-

O. LIPARI 9
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FIG. 3. Effect of the cubic term on the acceptor en-
ergy spectrum in the strong spin-orbit coupling limit,
The typical value §=0. 15 has been assumed for the cubic
coupling parameter. The energies are in units of the
effective rydberg R,.

ergies, and we will limit our considerations to
line spacings. We expect the excitation spectrum
to be dominated by optical transitions from the
ground state to the hydrogenic 2P excited states,
and we will show that this is indeed the case if we
take into account the complicated structure of the
valence bands, including also the cubic term. Be-
cause of the four-fold valence band (which can be
thought of as a spin-3 particle), we have seen in the
spherical-model that each one of the hydrogenic P
states splits into three levels: P,,,, P;;,, and

P;,,. Furthermore, owing to the presence of the
10 | A B E— T T T 1
9 1 -Is, —
. ®@ -2P,(Iy)
@ -2p S=0.15
T @ - 2P, (T28) —
® -2pr,
6l— -]
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FIG. 4. Same as Fig. 3 but in the weak spin-orbit
coupling limit.
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cubic term, the P;,, states are split into the
doublet P ,,(I7) and P; ,,(T%).

The energies given in Table VII give us the or-
der of the above levels and we can predict the fol-
lowing excitation spectrum for acceptors in Ge.
The lowest energy transition is from the ground
state to the 2P;,, state, which theory predicts at
an energy of 5.4 meV. This excitation peak should
be followed by transitions to the 2P;,, doublet,
which should occur at 1.6 and 2.3 meV on the
high-energy side of the 2P;,, peak. The 2P;,, (I';)
peak should occur at lower energy and the doublet
splitting should be 0.7 meV. Transitions to the
2P,,, states should occur at much higher energy,
close to the series limit. Possibly transitions to
the hydrogenic 3P states will occur (with the ex-
ception of 3P;,,) between the 2P;,, doublet and
2P,,,. These qualitative features of the acceptor
spectrum can indeed by seen in Fig. 8, where,
together with the experimental results, we give by
vertical broken lines the theoretical predictions.
The experimental data show a prominent doublet,
which both for the line spacing of 0.7 meV and
the absolute energy position, is easily identified as
the 2P;,, doublet. We take the low-energy line of
the doublet as the reference line. It is labeled
line 3 in Fig. 8, and corresponds to transitions
from the ground state to the 2P;,, (I';) state. The
partner line of the doublet, line 4, corresponds to
excitations to the 2P;,,(I'7) state. The weaker line
1 on the low-energy side of the spectra is inter-
preted as being due to transitions to the 2P;,,
state, whereas the transitions to the highly ex-
cited 2P, ,, state, which should occur at the energy
given by line 5, are not easily found in the exper-
imental data, which, in this energy range, show a
complicated and poorly resolved structure.

Since the acceptor P states are not expected to
be affected by chemical effects—which occur only
very close to the impurity site, where P functions

TABLE V. Energy of the acceptor states 2P;,,(I's) and
2P;;5(T'5) for a few representative values of the coupling
parameters i and 5. The energies obtained by neglecting
the second-order coupling produced by the cubic term
between these states are compared with the more-ac-
curate results that include such coupling. The energies
are in units of the effective rydberg R,.

Without coupling With coupling
2Py (T5) 2P;5/y(T§) 2P;,(T5) 2P;,(T)

©=0.5; 6=0.1 0.468 0.333 0.473 0.331
K=0.5; 6=0.2 0,468 0.357 0.490 0. 346
K=0.7; 6=0,1 0,767 0. 502 0.778 0.498
©=0.7, §=0.2 0.767 0. 552 0.820 0,531
#=0.9; 6=0.1 2,268 1.564 2.436 1.508
©=0.9; 6=0.2 2,268 2,079 3.454 1.758

TABLE VI, Energies of the lowest acceptor states
which are not affected in first order by the cubic term.
The energies are in units of the effective rydberg R,.

[z 1S3, 283 2Py
0.00 1.000 0.250 0.250
0.05 1.002 0.251 0.238
0.10 1.009 0.254 0.227
0.15 1.021 0.258 0.217
0.20 1,037 0.264 0.208
0.25 1.060 0.273 0.200
0.30 1.089 0.284 0.192
0.35 1.125 0.297 0.185
0.40 1.171 0.313 0.179
0.45 1,228 0.333 0.172
0. 50 1.299 0.358 0.167
0.55 1.388 0. 388 0.161
0.60 1.503 0.426 0.156
0.65 1.653 0.476 0.152
0.70 1.857 0, 542 0. 147
0.75 2.145 0.635 0.143
0.80 2,580 0.773 0.139
0.85 3.309 1.003 0.135
0.90 4,768 1.460 0.132
0.95 9.145 2,820 0,128
1.00 © o 0.125

have very small amplitude—the line spacings
among the various excited P states should not be
affected by chemical shifts, and therefore they
should be well predicted by our theory. This is
indeed the case, as can be seen from Fig. 8, or
even better from Table VIII, which compares the
theoretically predicted line spacings with the ex-
perimental data for various acceptors and double
acceptors in Ge. On the high-energy side of the
2P;,, doublet the experimental data in general
show three more peaks which, in the literature,
are labeled B, A’, and A’’. The peaks A’ and
A" are very close in energy and strongly resemble
a doublet. The energy spacings among those ex-
tra peaks do not show chemical effects and there-
fore suggest transitions to excited P states.

We can tentatively interpret the low-energy peak
B as transitions to the 3P, state, and the A'-A"’
doublet as transitions to the 3P;,, states split into
3P;,,(I'7) and 3P;,,(T'y) by the cubic term. The
3P,,, peak should occur at much higher energy
and, like the 2P, ,, peak, is not easily resolved.
Theoretical predictions for the 3P acceptor levels
are not available at present, and the above in-
terpretation is based on the strong similarity be-
tween the high-energy structure (attributed to 3P
states) and the low-energy structure (attributed to
2P states). Before going on to the interpretation
of acceptor spectra in other substances, we want
to comment on the weak structure which is ex-
hibited by the experimental spectra at an energy
between that of line 1 and line 3. The theoretical
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predictions show that the only acceptor level in
this energy range is that due to the 25;,, state,
whose energy is given by line 2. The weak ex-
perimental structure always occurs at a slightly
lower energy than line 2, and its energy position
seems to depend on chemical effects. These
facts confirm the interpretation that this structure
is due to transitions from the ground state to the
28;,, excited state. In our effective-mass model
both the initial and the final states of this transi-
tion belong to the I'j irreducible representation of
the group O,, and an optical transition between
them is strictly forbidden because the two states
have the same parity.

The reason why this transition is experimentally
observed may be found in our model potential
for the acceptor center. We have assumed a

screened Coulomb potential to describe the im-
purity, and since this potential has complete ro-

tational symmetry, and is invariant under inver-
sion through the origin, we have classified the
acceptor states according to the irreducible rep-
resentations of the group O,. The actual sym-
metry around the impurity site is lower than O,,
and is given by the symmetry group 7,, ° which
does not contain the operation of inversion. The
actual impurity potential in fact is not spherically
symmetric, as we assume in our model, but be-
longs to the completely symmetric irreducible
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FIG. 5. Radial wave functions f(r) and g(r) for the ac-

ceptor state 2P;,,(I'g) and for different values of u and 6.
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FIG. 6. Same as Fig. 5 but for the acceptor state
2P;,y(T'3). The coupling with the acceptor states Py, (I'g)
is also shown.

representation of the group 7,. This contradic-
tion is the result of the fact that we have neglected
central-cell effects. In fact, while at large dis-
tances from the impurity site the acceptor is well
represented by a spherically symmetric potential,
at small distances the impurity potential will have
T, symmetry because of crystal-field effects
which are one of the reasons of the so-called cen-
tral-cell corrections.

The above argument proves why a weak optical
transition from the ground state to the 2S;,, state
is experimentally observed. The energy position
of the peak corresponding to this transition de-
pends on the chemical species of the impurity.
This is so because S wave functions have large
amplitude near the origin, where the central-cell
potential is particularly strong. We expect, how-
ever, a smaller chemical shift for the 2S;,, state
than for the 1S;,, state, because in the latter
state the impurity hole has a higher probability
of being in the central cell, The experimental
data provide the chemical shifts of the above
states, and these are compared in Fig. 9. The
straight line, which is a linear interpolation be-
tween the values for B and T1 impurities, shows
that on the average the chemical shift of the 2S;,,
state is 7.1 times smaller than the shift of the
1S;,, state. This value is in good agreement with
the theoretical prediction given in our previous
work®: that, for p=0.766 (the parameter value
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of Ge), the probability of being at the origin is
7.6 times smaller for 2S;,, than for 1S;,,. The
above ratios are not too different from the value
of 8, which is expected for a simple hydrogenic
model. This means that despite the complexity
of the valence bands and the various splittings due
to “spin-orbit” or cubic effects, the acceptor
center still strongly resembles the simple hydro-
genic model.

The excitation spectrum of acceptors and double
acceptors in InSb has been studied experimentally
by Kaplan. 18 Figure 10 shows the good agreement
between the experimental data and our theoretical
predictions . The striking feature of the exper:-
mental data is the strong similarity between the
excitation spectra in InSb and those in Ge. Again
the spectrum starts at low energy, with the weak
peak due to transitions to the 2P,,, state, and is
dominated by the strong 2P;,, doublet. Again the
experimental data show the transition from the
ground state to the 2S;,, state, and clearly show
that this transition is due to central-cell effects.
In fact, the above transition is stronger in the
case of silver impurities which have larger chem-
ical shifts, as can be seen from the energy
spacings of the lines.

An excitation spectrum completely similar to
those in Ge and InSb has recently been observed
by Stradling'® for acceptors in GaAs. The agree-
ment between theory and experiment is also ex-
cellent in this case. For example, the experi-
mentally observed splitting of the 2P;,, state is
2.0 meV, whereas our theoretical prediction is
1.9 meV, as can be obtained from Table VII.

Up to now we have considered only substances
for which the cubic contribution is small, so that
our perturbation treatment is valid. We have
seen, that among the various diamond and zinc
blende semiconductors considered in the present
paper, only Si has such a large cubic term that
perturbation theory is expected not to be valid.

TABLE VII. Theoretical energy spectrum of acceptor
impurities in various semiconductors with the diamond
and zinc blende structure. The parameters used in the

calculation are given in Table I. The energy unit is meV.

1S32(TP  2S3,(Th)  2P;p(T5)  2Py(T5) 2P;p(T5) 2Py,(IY)
Si 31.56 8.65 4.18 12,13 8.51 5.8%6
Ge 9.73 2.89 0.61 4.30 2,71 2,04
AlSb 42,45 12,40 3.385 18.46 12,00 8,22
GaP 47,40 13.69 4,21 19.77 13. 04 9. 42
GaAs 25.67 7.63 1.60 11,338 7.20 5.33
Gasb 12.55 3.77 0.650 5.74 3.09 2,61
InP 35,20 10. 53 1.97 15.89 9.98 7,32
InAs 16. 31 5.00 0.420 7.91 4.76 3.63
InSh 8.55 2,63 0.155 4,24 2,54 1.91
ZnS 175.6 51,98 11.65 77.62 49, 56 35,57
ZnSe 110.2 32,958 6.07 50, 04 31.47 22,63
ZnTe 77.84 23,07 5.09 34,92 22,32 15.36
CdTe 87.26 26,42 3.70 41,43 25.85 17.68
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FIG. 7. Same as Fig. 6 but for the acceptor state
2P;,(I7). The wave functions for ©=0.4 and p=0. 8 for
6=0 are the same as those for 2P;,,(T3).

The differences introduced in the excitation spec-
trum by a large cubic term are immediately ev-
ident from a comparison of the spectra in Ge
shown in Fig. 8 with those for the group-III accep-
tors in Si'® given in Fig. 11. In the case of Si
it has been impossible to obtain good agreement
between the experimental data and the theoretical
predictions. Nevertheless it is possible to give a
tentative interpretation of the acceptor spectra in
Si by using the experience gained from the inter-
pretation of the spectra in Ge, InSb, and GaAs,
and by using the theoretical energy spectrum in
Si obtained with perturbation theory. As in the
previous cases, the spectra start on the low-en-
ergy side, with the weak peak due to transitions
to the 2Py, state (line 1 in Fig. 11). The 2P;,
doublet is apparently missing from the spectra in
Si. This is because the 2P;,, state is split by the
cubic term, which is particularly large in Si, and
therefore the two partner lines of the doublet will
be well separated in energy. Since we know that
the doublet is the dominating feature in the exci-
tation spectrum, we are tempted to interpret lines
2 and 4 as the partner lines of the doublet.

The interpretation of line 2 as being due to
transitions to the 2P;,,(I';) state is confirmed by
the theoretical prediction that this peak should be
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3.6 meV at higher energy than the 2P;,, peak or
line 1 in Fig. 11. The assignment of line 4 as
being due to transitions from the ground state
to the 2P;,,(I';) state is less confirmed by theory,
which predicts a 2P;,, splitting of 3.6 meV com-
pared to the experimental value of 5 meV. This
discrepancy, however, is far from critical, since
the above splitting is due to the cubic term, which
has been considered in perturbation theory. Fur-
thermore we notice that line 4 has a complicated
structure. This seems to be in agreement with
the previous assignment of the 2P;,,(I';) state
and the fact that theory predicts a near degen-
eracy between 2P; ,(I;) and 2P, ;,(I';). This is
consistent with measurements under stress!®!
for B impurities in Si, which suggest the partici-
pation of a I'y component in the complex line 4.
The position of the 2P,,, peak is another dif-
ference between the acceptor spectra in Si and
those in Ge, InSb, and GaAs, where the 2P, ,
state lies at very high energy, close to the series
limit. A consequence of a large cubic term is
that the hydrogenic 2P states have large splittings,
and since they cover a wide energy range, they
are expected to mix with the hydrogenic 3P
states. An example of this is probably line 3,
which measurements under stress!®?! have
shown to be due to transitions from the ground
state to an excited state of symmetry I';. Since
the states with this symmetry and originating
from the hydrogenic 2P state have been shown to
be at lower energy, we tentatively interpret line
3 as due to transitions to the 3P,,, state. A last
remarkable feature in the excitation spectra of
group-III acceptors in Si is their species depen-
dence. We notice, for example, the absence of
line 2 in the gallium spectrum and of line 3 in the
aluminum spectrum. Both lines should occur at
about 63 meV, and since this energy is close to
that of the optical phonons in Si, it has been pro-
posed? to explain their absence as being due to
interaction with optical phonons. Furthermore,
the acceptor spectra in Si show chemically de-
pendent line spacings, in contrast to the case of
Ge, and InSb, where the spacings are nearly con-
stant. This high sensitivity to chemical shifts of
the acceptor energy levels in Si is explained by
the fact that, as shown in Table I, the acceptor
Bohr radius in Si is 4 and 13 times smaller than
those in Ge and in InSb, respectively. Since these
crystals have nearly the same nearest-neighbor
distance, this explains the larger sensitivity to
chemical shifts that is found in Si.

V. CONCLUSIONS

We have studied the problem of shallow ac-
ceptor states in semiconductors taking into full
account the band structure details for holes near

the center of the Brillouin zone. Starting from
the previously studied spherical model, we have
included the effects of the generally small cubic

ACCEPTORS IN Ge
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FIG. 8, Excitation spectra of various acceptors in
germanium, The positions of the lines are accurate,
but their intensities are only representative. The energy
scales are the same for all impurities and have been
shifted to bring into coincidence line 3. The vertical
broken lines give the theoretical predictions (1=2P;,;
2=28;/9; 3=2P;,(T5); 4=2P;,(I7); 5=2P,);; 6=series
limit). Experimental data for group-III acceptors from
Ref, 14; Zn from Ref. 21; Hg from R. A, Chapman and
W. G. Hutchinson, Solid State Commun. 3, 293 (1956);
Cu from P. Fisher and H. Y. Fan, Phys. Lett. 5, 195
(1960); Be from H. Shenker, E. M. Swiggard and W, J,
Moore, Trans. Metall. Soc. AIME 239, 347 (1967).
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broken line is a linear interpolation between the data for
B and Tl. The energies are in meV.

term that appears in the acceptor Hamiltonian.
Since this term has been studied by using pertur-
bation theory, the acceptor eigenvalues and eigen-
functions obtained in the present paper are valid
only when the cubic perturbation is sufficiently
small. We have shown that this condition is satis-
fied for most semiconductors with the diamond
and zinc blende structure. The acceptor spectra
in Ge, InSb, and GaAs have been interpreted both
qualitatively and quantitatively. The acceptor
spectra in other cubic semiconductors are ex-
pected to be very similar to those observed for
the above substances, and their interpretation
will not offer particular difficulties. The only
exception among the semiconductors considered
in the present paper is Si, which has completely
different acceptor excitation spectra. This has
been shown to be due to the anomalously large
value that the cubic coupling parameter has for
this crystal. Even in this extreme case, how-
ever, our perturbation treatment has allowed us
to give a tentative qualitative interpretation of the
experimental spectra. A quantitative interpreta-
tion of the spectra in Si has to wait for a treatment
of the cubic term, which is more accurate than the
present perturbation treatment, %

An important problem that is left unsolved in the

TABLE VIII.
values are also given and the energy unit is meV.
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FIG. 10, Excitation spectra of silver and cadmium
acceptors in InSb. See the caption to Fig. 8 for the ex-
planation of symbols. The experimental data are from
Ref. 18.

present study is that of the species-dependent fea-
tures which appear in the acceptor spectra in Ge,
InSb, GaAs, and Si. For the reasons explained in
Sec. IV, these effects are particularly important
in the case of Si, where all acceptor levels seem
to be species dependent. The solution of this
problem requires a detailed study of the acceptor
potential. In the present paper we have used a
screened Coulomb potential and we have neglected
short-range potentials which are due to the im-
purity core and which are responsible for the
chemical shifts. Studies of the short-range com-
ponent of the impurity potentials have been re-
cently done by Baldereschi and Hopfield®* in con-
nection with the problem of isoelectronic traps,
and by Pantelides and Sah?® in connection with the
problem of doror impurities in Si. Chemical
shifts of acceptor states can be studied by follow-
ing closely the above two works and by using the
results of the present investigation. The spher-
ically symmetric short-range potentials used up

Energy spacings of the excitation lines of various acceptor impurities in germanium. The theoretical

Theory B? AR Ga? In? Te? Zn® cd® Hg® CcuP BeP®
2P;,,(T5)-2P;,, —1.59 —1.70 —1.68 —1.70 ~1.69 -1.70  -1.83 —-1.68 —1.70 —1.72 —2.02
P Te)- 0.67 0.75 0.75 0.75 0.78 0.75 0.76 0.75 0.74 0.73 0.78
2P;/5(I'7)
2P;,y(T5-2S3, —0.18  —0,37 -0.42 (-0.66) —0.74 (-2.16)
aSee Ref. 14. bSee Ref. 15.
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ACCEPTORS IN  Si SJ' J 2‘?
X{L' L 2, (NP2 TP T . (A2)
(F' F 4,

In the simpler case F'=F, expression (A2) reduces
to formula (12), given in the text. For those inter-
ested in the derivation of (A2), we refer to the book
by Edmonds. 2

Expression (A2) reduces the evaluation of the
matrix elements of the cubic operator to the cal-
culation of 6-j symbols, 9-j symbols, and the re-
duced matrix elements (L't P? I L) and (J'1 J®11J).
The expressions for the reduced matrix elements
are explicitly given in the Appendix of our previous
works,3 since the same quantities were needed in
the derivation of the spherical model. The values
of the 6-j symbol have been tabulated by Rotemberg
et al.*® for low values of the angular momenta in-

ENERGY (meV) volved; all the values needed in the present work
can be found there. The values of the 9-j symbols
FIG. 11. Excitation spectra of group-III acceptors in of interest have been calculated by the authors ac-

silicon. The experimental data are from Ref. 16. The
vertical lines in this case are not the theoretical predic-
tion but an interpolation by hand on the experimental

cording to the expression given by Edmonds. 12
The values of the 9-j symbol used in the present

data. Line 1=2Py; 2=2P;/,(T); 3=3Py,; 4=2P;,(T;) work are the following:
and 2P, 5. (i) Cubic effect on Pg,, states; Hamiltonians
(14a) and (14b):
to now, however, do not explain all the observed S% 3 2‘1
features of the acceptor spec.tra., As ?11.ready 11 1 =I5
mentioned, the observed optical transitions from z g
the ground state to the excited 2S,,, state cannot 3 3 4)
be explained in Si and Ge with a spherically sym- 33 gy
metric central-cell potential. Probably crystal- ez (
field effects have also to be considered in the ac- 3 3 2 =2-9'—}g—0 V210 R
ceptor problem. 5 s s
: 2z 4
APPENDIX
3 3 3
. 2 3 2 3 2z 2
In this Appendix we give the formulas which have ( S (
been used to calculate the matrix elements of the 3 1 2,=11 3 2;=55Y15 ;
cubic operator 305 4 \ (% 5 4 S

Q= Ot([P‘a) XJ(Z’]2+§\/W[P(2)XJ(2)]‘3)
2) o 7t2) (8) (ii) Cubic coupling between Pj,,(I';) and Py, ,(I';)
X[PBxJ24y | (A1) states, Hamiltonian (15):

where « is a constant that assumes different values
in the cases of strong and weak spin-orbit cou-
pling, and the irreducible second-rank tensors 11
pm and J @ are derived from the Cartesian ten-
sors (2a) and (2b), given in the text. The matrix
elements of operator (Al) between states of given
orbital angular momentum L, spinJ and total an-
gular momentum F (where F =1 +J), can be cal-
culated by using the “reduced-matrix-element”
technique, according to which the matrix elements

'3 3
2 2

njw
njo

N
njw
SN N > N DN

[ ~— S~
i I njw W
njo w

are , _‘2‘ % 2

(L', J', F',Fl| [P? xJ®¥|L, J, F, F,) Z
’ . T e 13 2;=ag V30,
_ _1)F'-F} ’ 1/2
=3%X(-1) [2F+1)(2F"+1)] (—F; m F,) 3 s 45



9
%%22
31 2:=rV5 ;
355
z 2z 4

(iii) Cubic effect on P, states, Hamiltonians
(18a) and (18b):

11 2
11 2;=4 ,
2 2 4
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Sl 1 22
3 3 23=V14/3675 ,
Zz 2 45

81123112
W18 23=43 1 2/)=5 .
1.2241224
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