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We have completed a study of the temperature dependence of the ideal electrical resistivity of simple
fcc metals, with emphasis on the role of the deviations of the solution of the Boltzmann equation from
the simple cos@ form employed frequently in such investigations. We consider a model for which the
Fermi surface has spherical shape, but is located near the zone boundaries of an fcc crystal. The
temperature dependence of the electrical resistivity has been studied with the use of the variational
principle, and a solution constructed from a linear combination of up to nine cubic harmonics. This
number is sufficient for the variational calculation to converge over a wide range of temperatures,
except at low temperatures ( $10°K) where the umklapp processes freeze out rapidly. We examine the
nature of the solution to the linearized Boltzmann equation and the temperature dependence of the
electrical resistivity for three cases: (i) the Fermi surface lies entirely within the first Brillouin zone,
with radius appropriate to the belly region of the copper Fermi surface; (ii) the Fermi surface just
touches the zone boundary; and (iii) the Fermi surface lies outside the first zone, with radius equal to
that of the free-electron sphere appropriate to aluminum.

I. INTRODUCTION

In simple metals of high purity, the tempera-
ture -dependent portion of the electrical resistivity
p arises from the scattering of the conduction elec-
trons from phonons. The temperature dependence
of p for simple metals has been studied extensively
by both theorists and experimentalists for many
years. Even though the classic work of Bloch and
Griineisen produced a simple formula for p which
exhibits the principal qualitative features observed
in many simple metals, many questions may be
raised about the assumptions necessary to obtain
this result. In fact, a number of issues remain to
be completely resolved before a complete theo-
retical description of the electrical resistance is
obtained. The purpose of this paper is to focus at-
tention on one issue which has been addressed by
other authors, ! but which we feel requires further
attention.

The calculation of the electron-phonon contribu-
tion to p is complicated by two distinct classes of
difficulty. First, one must have an accurate de-
scription of the Fermi surface of the metal, its
phonon spectrum, and the matrix element which
controls the electron-phonon scattering. This last
quantity requires knowledge of the wave functions
of the Bloch electrons near the Fermi surface, and
is particularly difficult to compute reliably or to
extract from independent data. Furthermore, p is
particularly sensitive to this quantity in the region
of large wave-vector transfer.

The problems described in the preceding para-
graph are all associated with obtaining a realistic
quantitative description of the properties of a real
metal. Once these difficulties have been overcome
in any particular case, one is then faced with the
task of extracting the form of the nonequilibrium

portion 0f; of the electron distribution function from
the linearized Boltzmann equation. It appears quite
impossible, or at least extremely difficult, to

make any progress in solving the linearized Boltz-
mann equation without resorting to approximations,
and the most commonly employed scheme appears
hard to justify without further examination. In this
approximation the electric field is presumed to
displace the Fermi surface rigidly in k space, to
produce an electrical current parallel to the field.
If the Fermi surface is spherical, then in this
scheme, 0fg is proportional to cosfg where 6;is
the angle between K and the electric field. One
then computes the electrical resistivity by insert-
ing this form of 6f; into the variational expression
for p constructed from the linearized Boltzmann
equation. 2

It is well known that it is difficult to justify this
form for 8f; in temperature regions where p is
dominated by the electron-phonon contribution,
since even for the simplest metals, the rate of
scattering out of a given state Kk on the Fermi sur-
face increases markedly as the distance between k
and the zone boundary decreases. One then ex-
pects 0fg to develop “dimples” centered about those
points on the Fermi surface which lie closest to
the zone boundary. If one obtains accurate expres-
sions for p through the use of the variational prin-
ciple and the cosé; form for 6f;, the reason pre-
sumably lies in the variational character of the ex-
pression for p, which will allow good values for p
to be obtained even for variational expressions for
dfz which are poor approximations to the true solu-
tions to the linearized Boltzmann equation.

In this paper we present the results of a study of
the nature of the solution to the linearized Boltz-
mann equation for a model of simple fcc metal es-
sentially identical to that employed by Dynes and
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Carbotte® in aluminum, and more recently by
Srivastava! in the noble metals.

Our aim is to obtain results for 6f; that are
sufficiently accurate for the principal features of
the solution to be obtained. We then compute the
value and temperature dependence of the electrical
resistivity with this solution and compare the re-
sults we obtain with those obtained from the cosép
ansatz. Thus, for the model, the work serves to
outline the regime where the cos6; form of 0f;
gives reasonable results for p (although we shall
see that this form is often a poor approximation
to 6f7).

As we remarked earlier, a number of other
authors have also examined this question. Most
of this work has confined its attention to the alkali
metals (which have the bce crystal structure) in
which the Fermi surface lies farther from the first
Brillouin zone than in the fcc structure treated
here. As a result, only a small number of varia-
tional parameters have been needed to determine
the resistivity.?!

Much of the earlier work also has had as its
aim obtaining accurate and realistic results for the
resistivity. Our interest is directed also toward
the goal of obtaining realistic values of p for real
metals, and in addition toward the nature of the
form of 6f; that emerges as the solution of the
linearized Boltzmann equation, and the variations
in this form as the radius of the Fermi surface is
changed. Thus, we feel our study is more com-
plete than earlier studies, and the emphasis is also
a bit different. We should also mention that some
recent calculations® employ an analytic approxima-
tion scheme to incorporate a boundary condition
discussed many years ago by Peierls® into the cal-
culation of the low-temperature electrical resis-
tivity of noble metals, where the Fermi surface
touches the zone boundary.

The model we employ is the following. We con-
sider a simple metal of the fcc crystal structure.
We suppose the Fermi surface is spherical, but
both normal and umklapp scattering processes are
included in the kernal of the Boltzmann equation.
We consider three cases. In case (i), we choose
the Fermi surface to lie entirely within the first
Brillouin zone, with radius chosen equal to the
free electron value appropriate to copper. In
case (ii), the Fermi surface is presumed to just
touch the zone boundary and in case (iii) the
Fermi surface lies outside the first zone with radi-
us equal to that of the free electron sphere appro-
priate to aluminum.

We construct 8f¢ by expanding its angular depen-
dence as a linear combination of cubic harmonics.
The appropriate linear combination is determined
through the use of the variational principle. We
have used up to nine cubic harmonics in this expan-
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sion, although we find that the first seven serve to
provide rather reasonable forms for 8f; and addi-
tion of the last two change the form of 6f¢ very lit-
tle. [One may obtain rather stable and accurate
values of p with far fewer variational functions in
case (i), as we shall see. ]

The outline of this paper is as follows. In Sec.
II, we discuss the technical aspects of the calcula-
tion common to the three cases. In Sec. III, with-
in three subsections, we present the results for
each of the three cases described above. In Sec.
IV, we place our results alongside experimental
data and other theoretical calculations. When we
place our results alongside the data, we must of
course keep in mind the oversimplified description
of the Fermi surface we use. However, on the
basis of our calculations, we do seem able to ac-
count for a number of features of the existing data.
In Sec. IV, we offer some suggestions why this is
so. Finally, in Sec. V we present some concluding
remarks.

1. GENERAL REMARKS

We follow the standard notation, > amd write the
nonequilibrium part of the eleetron disiribution
function df; in the form

9f L® -
ofe= - L o(R), (2.1)
9E;¢
where f :,0) is the equilibrium Fermi-Dirac distri-
bution function ang E; the energy of an electron
with wave vector k. The electrical resistivity p

may be expressed in terms of d)(i;) in the following

manner?;
p=P/J%, (2.2)

where for a spherical Fermi surface, and contri-
bution to p from electron-phonon scattering pro-
cesses we may write P and J in the form

mzkzﬁg R o ,
P = S n Me,T Ifdﬂ(n)dn(n )o@ - @)

X |W(q")|z? |3+ 6@ | ngy(1+7mg) (2. 3a)
and
J=4i",kz§- f AQ(R)G- 2)o(7). (2. 3b)

In the above expressions, M is iorie mass, Q,
is the volume per ion, m is the band-strueture ef-
fective mass of the conduction electron (we use the
free-electron mass in calculations unless other-
wise indicated), q=k# -#') is the wave~¥eetor
transfer suffered by the electron in an elactron-
phonon collision, and |W(J) |? is the square of the
pseudopotential form factor which, followiag earlier
authors, ! we presume depends only on the magni-
tude of the wave-vector transfer, Also 2(§)) is the
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polarization vector of the phonon responsible for
the scattering, and ng the Bose-Einstein occupation
number of the phonon. InEq. (2. 3a), the contribution
from both N processes and U processes is included.
The wave vector q is the change in wave vector
suffered by the electron in the electron-phonon col-
lision. If q lies within the first Brillouin zone, it
is equal to the wave vector Q of the phonon which
produces the scattering, and it is equal to 6+6 if
it lies outside, where G is a reciprocal-lattice
vector. The periodic character in momentum
space of the dynamical matrix which generates the
phonon frequencies and eigenvectors insures that
the eigenvectgrs_’and frequencies evaluated at the
wave vector Q +G are identical to those at Q. We
ignore phonon drag effects here, so the phonons
remain in thermal equilibrium. In Eq. (2.3b), 2
is a unit vector in the direction of the applied elec-
tric field, presumed to be parallel to the Z axis.
Following the standard procedure to derive these
results, d)(l?) along with other quantities that vary
slowly with Ik| have been evaluated on the Fermi
surface, so K=k.#, where # is a unit vector.

The resull in Eq. (2. 2) forms a variational ex-
pression for the electrical resistivity.? Therefore,
our procedure will be to expand ¢(#) in terms of
an orthogonal set of functions {¢;(7)},

¢(ﬁ)=§m¢,~(ﬁ) (2.4)

and we shall determine the coefficients 1; by mini-

mizing the resistivity functional in Eq. (2.2). Then
for P we have the form
P=2nm, Py, (2.52)
ij
and for J, we have
J=221m;d;. (2.5b)
i

Then if P;} denotes the ijth element of the NXN
matrix, thatis, theinverse of P;;, for 7;, we have?

TiFZ P3jJ;E,,
J
where E; is the electric field strength.

We have chosen the functions ¢;(#) to be the first
nine cubic harmonics that are odd under reflection
in the xy plane, normal to the 2 axis, and which
have the azimuthal symmetry appropriate to the
fourfold rotation symmetry of the fcc Brillouin
zone about the Z axis. These functions are listed
in Table I.

The quantities P;; were evaluated by direct nu-
merical computation of the fourfold integration of
the expression deduced from Eq. (2.3a). The pro-
gram constructed for this purpose employed Simp-
son’s rule, and a CDC 7600 was used for the cal-
culations. For our purposes, we found direct

BLACK AND D. L. MILLS 9

evaluation of the four-dimensional integrals more
convenient than schemes which reduce the four-
dimensional integral to a three-dimensional one,
such as that discussed by Ekin and Bringer. !}

The integrations were performed using the vari-
ables p(=cosf) and ¢, where 6 and ¢ are the usual
spherical coordinates. In this scheme an element
of solid angle becomes

dQ=-dude, (2.6)

and equal solid angle elements may be used by
making equal increments in u and ¢. The finest
meshes employed are shown in Table II. For
meshes A and B the scattering was taken from ini-
tial states on fsth of the Fermi surface to final
states which range over the whole Fermi surface,
and thus the mesh only partly exploits the cubic
symmetry. In meshes C and D the cubic symmetry
was exploited fully by using only #th of the Fermi
surface for initial states, and computing [¢ (%)

- ¢(#")]? for the three scattering events which are
equally probable due to the cubic symmetry. Mesh
E proved useful in the evaluation of the normal
part of the resistivity at low temperatures, where
the final states lie close in angle on the Fermi sur-
face to the initial states because only small scatter-
ing vectors contribute to the resistivity.

1Il. DISCUSSION OF RESULTS

In this section, we describe the results of the
resistivity calculations carried out by the methods
described in Sec. II. As we mentioned in Sec. I,
we have examined three distinct cases. In the
first, the Fermi surface lies entirely within the
first Brillouin zone; in the second, it just touches
the zone boundary; and in the third, it lies entirely
outside the first Brillouin zone. We discuss the
results for each case in separate subsections.

TABLE 1. Tabulation of the nine cubic harmonics em-
ployed in the calculation of the electrical resistivity in
the present work.

(u=cos8)
A ()]

-

u

S wi—3

£ (63u>—70p% +15p)

945,(1 —u)?cosdo

L (42007 — 693u° + 3154° - 35p)

¥ (1 - u)?(13u® - 3p) cosd e

ég (12 155u°% — 2574007 +18 018u° — 46203 + 3154)
16891.875 (1 — u?)?(17u® — 10u® + ) cosd¢
34459425 (1 - p?)* pcos8¢

W 0 NN U AW N




9_ THEORETICAL STUDY OF THE IDEAL ELECTRICAL... 1461
TABLE IO. Various meshes used in the numerical integration routines.
—— — —
Mesh
size 0 (deg) ¢ (deg) 6! (deg) ¢! [deg)
No. No. No. No.
of of of of
Initial Final steps Initial Final steps Initial Final steps Initial Final steps
A 0 90 9 0 45 5 0 180 17 0 360 25
B 0 90 9 0 45 7 0 180 17 0 360 49
C 0 54,73 9 02 45 7 0 180 17 0 360 49
D 0 54.73 9 02 45 7 0 35 5 0 360 25
35 75 9 0 360 49
75 105 5 0 360 25
105 145 9 0 360 49
145 180 5 0 360 25
E 0 90 21 0 45 3 0 14 11 0 360 25
14 30 11 0 360 25

3For 6 >45° the limits on the initial value of ¢ vary to give exactly 41—8th of the first Brillouin zone.

(i) Case where the Fermi surface lies entirely within the first
Brillouin zone

While our simple model cannot be presumed-to
provide a complete description of the electrical re-
sistivity of the noble metals because of its over-
simplified treatment of the Fermi surface, none-
theless we shall use data appropriate to copper in
this first study. In the calculations, we have em-
ployed the pseudopotential form factor of Moriar-
ty.” We shall also take the radius of the Fermi
surface to be that of a monovalent fcc metal. In
units of 2m/a, then kp=0.7816. In the [111] direc-
tion, the distance from the origin of K space to the
face of the Brillouin zone is 0. 8660, in these same
units. This is the direction where the Fermi sur-
face comes closest to the zone boundary.

Force constants of Nicklow et al.® were used in
a Born-Von Karmon calculation to determine the
phonon eigenvectors and eigenfrequencies as de-
scribed by Dynes and Carbotte.® Separate sets of
force constants were determined by these authors
for T=49°K, and T=298 °K. The former set has
been employed in our (constant volume) resistivity
calculations from 0 to 175 °K, and the latter set
from 175 to 1360 °K, the melting temperature of
copper. We note in passing that Svenson et al.®
have also determined a set of force constants at
296 °K for copper. At 298 °K, these force con-
stants give for p a value of the resistivity (calcu-
lated with only one term in ¢(#)) only 1. 6% higher
than the value calculated by a similar method from
the force constants of Nicklow et al.

The results of a series of resistivity calcula-
tions that employ from one to nine terms in the ex-

pansion displayed in Eq. (2.4) are presented in
Table III. We note that with the possible exception
of the 10 °K case, all the calculated resistivities
have converged to three significant figures by the
time nine terms have been included in the calcula-
tion. Even at 10 °K, the result has very nearly
converged.

There are some striking features in these re-
sults. If we presume that our calculation has con-
verged to the exact resistivity of our model metal
throughout the range of temperatures displayed in
Table III, then for all temperatures greater than
80 °K, we obtain the correct value of p to within 5%
if only the first term (the “cosé” term) is retained
in the calculation. However, the number of terms
required increases significantly as the tempera-
ture is lowered below this value. By the time T
=49 °K, four terms are required, and at least six
by the time T'=10°K. We also note that inclusion
of the second, fourth, and sixth terms influence
the resistivity dramatically.

We should remark that while the sequence of re-
sistivity values tabulated in Table III for a given
value of the temperature converges to three figure
accuracy, as described in the preceding paragraph,
one must realize that the mesh utilized in each
calculation may not have been sufficiently fine to
insure that each integral had in fact been computed
to the full three-figure accuracy. Thus, the num-
bers in Table III associated with a given tempera-
ture provide a comparison between successive
values of the resistivity computed for the particu-
lar mesh indicated in the far-right column, as the
number of cubic harmonics in the expansion of
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TABLE II.
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Electrical resistivity (uQ cm) as a function of temperature, and of the number of terms included in

the expansion of ¢ (%) for the case where the Fermi surface lies within the first Brillouin zone.

Multiply

Temp. table Number of terms in the expansion of ¢ (7) Mesh

K) value by 1 2 3 4 5 6 7 8 9 size
1365 10! 1.88 1.88 1.88 1.86 1.86 1.85 1.85 1.85 1.85 A
900 10! 1.24 1.23 1.23 1.22 1.22 1.21 1.21 1.21 1.21 A
600 10° 8.20 8.13 8.13 8.06 8.06 8.00 8.00 8.00 8.00 A
400 10° 5.38 5.35 5.35 5.29 5.29 5.26 5.26 5,26 5.26 A
298 10° 3.91 3.89 3.89 3.85 3.85 3.83 3.83 3.83 3.83 B
175 10° 2.09 2.07 2,07 2,05 2.05 2.04 2,04 2,04 2,04 B
175% 10° 1.85 1.84 1.84 1.82 1.81 1.81 1.81 1.81 1.81 B
80 10" 5.26 5.18 5.18 5.05 5.05 4.96 4,96 4,96 4,96 B
49 10+t 1.55 1.49 1.48 1.38 1.38 1.33 1.33 1.33 1.33 B
30 1072 2.68 2,37 2.35 1.91 1.90 1.74 1.72 1.69 1.68 C
20 1073 3.69 2.44 2.34 1.63 1.61 1.42 1.42 1.38 1.36 C
10 108 46.2 8.02 6.82 4.86 4,78 4.49 4.49 4.36 4,34 D

2Force constants obtained at 49°K used for this and lower temperatures. Force constants obtained at 298°K used

above this entry.

¢(#) is increased. We feel that the numbers in
Table III have converged to within 1% of the actual
value of the resistivity of the model for tempera-
tures above 175 °K, and this deteriorates to about
5% at 10 °K. We did not extend the calculations
below 10 °K because we felt that even with our fin-
est mesh (mesh D), the convergence became poor
rapidly below 10 °K, to the point where the calcu-
lations could not be regarded as reliable. We did
not have the resources to pursue the behavior of
the resistivity in the low-temperature region.

We now turn to the second phase of this study in
which we wish to study the form of ¢(#), as a func-
tion of temperature. As we see from Table III, by
the time six terms have been included in the expan-
sion of ¢(#), the resistivity has converged to within

5% of its final value even at the lowest tempera-
tures. This fact, when combined with considera-
tions of the mesh size we have employed, suggests
that we restrict our study of ¢(#) to results obtained
with six terms in the expansion.!® The coefficients
of the six terms, normalized so the coefficient of
the first term is unity, are presented in Table IV.
[Of course, when p is computed from Eq. (3.2),

¢ (%) may be multiplied by an arbitrary value with-
out affecting the value of p. ]

In studies of the effects of mesh size we find
that the second, fourth, and sixth coefficients have
converged to ®15% of their final value. The third
and fifth coefficients are considerably worse, but
this originates because they contribute relatively
little to the resistivity, as can be seen from

TABLE IV. Coefficients {ni} which appear in the expansion of ¢ () for the case where

the Fermi surface lies within the first Brillouin zone.

so that 1, is unity.

The coefficients are normalized

Temp. Index of the coefficient Mesh
°K) 1 2 3 4 5 6 size
Multiplying 10° 10-? 10~ 104 102 10
factor
1365 1.00 7.95 1.69 4.33 -1.33 8.45 A
900 1.00 7.99 1.70 4.35 -1.33 8.49 A
600 1.00 8.04 1.71 4,37 —-1.33 8.55 A
400 1.00 8.17 1.72 4.45 -1.32 8.71 A
298 1.00 8.33 1.68 4,51 -1.29 8.81 B
175 1.00 9.12 1.79 4.96 -1.27 9.77 B
175 1.00 8.63 1.38 4.77 -1.15 9.60 B
80 1.00 12.5 1.63 7.17 —0.996 15.4 B
49 1.00 17.7 0.732 11.1 —0.353 25.9 B
30 1.00 15.0 —-14.4 16.5 -2.90 41.3 C
20 1.00 17.6 -13.8 18.1 -8.82 41.7 C
10 1.00 65.9 31.7 11.1 -8.96 13.5 D
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Table III.

We note that above 175 °K, the set of coefficients
{ni} change little with temperature. This is ex-
pected when one is well above the Debye tempera-
ture, since then the Bose-Einstein functions in the
expression for p may be replaced by their high-
temperature limiting form, and the temperature
drops out of the integrals.

It is not easy to jump from the table of coeffi-
cients to a physical picture of the effects on ¢ (i)
of adding additional terms. To gain insight into
what is involved, we have plotted on a stereographic

projection a function we have called R(#%). The
function R(#) is defined by
R(#) = ¢(72)/n, cosb . (3.1)

The function R(#) is equal to unity for all values

of 7, if ¢(%) is well approximated by the cos@ form
of the solution. We can expect R(#) to fall below
unity on those portions of the Fermi surface where
the electrons are scattered most strongly by the
phonons. This should occur on those portions of

the Fermi surface which lie closest to the Brillouin-
zone boundary, since at these points, the umklapp
processes are strong throughout the temperature
range explored here.

We should say a few more words about the physi-
cal significance of R(#). Since the functions ¢;(i#)
included in the expansion of ¢(#) [Eq. (2.4)] are
mutually orthogonal, and the function cosé is among
the set, the quantity J2 which appears in Eq. (2. 3b)
is simply a constant multiplied by n%. As a conse-
quence, we can rewrite the expression for p in a
form with only the numerator P present, but with

110 1.00 TN , \\ o)

o] 10 20 30 40 50 60 70 80 90

8 (Degrees) —

FIG. 1. Stereographic projection of the function R (%)
defined in Eq. (3.1) for T=298°K, where ¢ (%) is given
by the six-term approximation. The electric field is ap-
plied along the Z axis (§=0), and the point of closest ap-
proach of the Fermi surface to the zone boundary occurs
when §=cos™!(1/V3)=54.7° and ¢ =45°. The Fermi sur-
face is inside the first Brillouin zone.
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FIG. 2. Stereographic projection constructed as in
Fig. 1 for T=49°K.

[¢(7) —= (") replaced by the combination [¢(#)/n,
- ¢(#")/n 2. If only one term is present in the ex-
pansion, this reduces to (cosf —cos8’)?, but in the
general case it becomes [R(#) cosé — R(#') cos6’ 2.
Thus, the function R(#) provides one with a con-
venient measure of the manner in which departures
from the cosé form of ¢(#) affect the resistivity.

For a sequence of four temperatures, we present
the stereographic projections in Figs. 1-4. In
these figures, the electric field is applied along
the direction 8 =0, parallel to the [001] axis of the
crystal. The point of closest approach of the
Fermi surface to the zone boundary is along the
[111] direction, and this point is located along the
line ¢ =45°, at 8=cos™}(1/v3)=55°. The point
¢ =45° and =90 is the [110] direction, and ¢ =0°,
6=90° is the [100] direction.

From Fig. 1, one can see that while there are
well defined and clear deviations of ¢(#) from the
cosf form of the solution, these deviations are not
dramatic in character. There is a dip in ¢ (#) cen-
tered about the point ¢ =45°, 6 =cos™!(1/V3), where
the scattering rate is particularly large because
of the umklapp processes. The function ¢(#) has a
broad maximum along the line ¢ =0°, which sweeps
from the [001] to the [100] direction as 6 sweeps
from 0° to 90°.

By the time the temperature drops to 49 °K (Fig.
2), we see that the angular variation of ¢(#) be-
comes very pronounced. The dip centered around
the [111] direction is now a very strong one, and
at the minimum, which is quite broad in its angular
range, ¢(#) assumes a value only 20% of that ex-
pected if the cosf form is used. At the same time,
the maximum along the direction ¢ =6° is much
more prominent than it was at the higher tempera-
tures. Even though we see from Fig. 2 that ¢(#)
is poorly approximated by the cosé form at T
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FIG. 3. Stereographic projection constructed as in
Fig. 1 for T=30°K.

=49 °K, the resistivity computed from the cosé
form differs from the best value computed from
the full form of ¢(#) by only about 15%, as one can
see from Table OI. This is presumably because
of the variational character of the expression for
the resistivity in Eq. (2. 2).

From Fig. 3 and Fig. 4, one can see that the
mipimum at 10 and 30 °K becomes extremely pro-
nounced. Indeed, our calculation produces nega-
tive values for ¢(#) in these regions. We feel that
these negative values are unphysical, and result
from the fact that we retain only a finite number of
terms in our expression for ¢(#). When the dip in
¢(#) becomes very sharp and extends only over a
relatively small angular range, quite clearly many
terms in the cubic harmonic expansion must be
included before an accurate description of ¢(#%) may
be obtained. A proper and accurate description of
¢(#) in the small angular region near the bottom of
the dip may also require the use of a finer mesh
so the coefficients 7; may be evaluated more accu-
rately. We feel that the values of p we compute are
not affected greatly by the behavior of our approxi-
mate form for ¢(#) in the immediate region of the
dip, since ¢(#) is negative only over a small angu-
lar range, and its absolute value is very small
compared to its value elsewhere.

We have seen from the above analysis that ¢(#)
has a strong minimum in the z direction where the
Fermi surface comes closest to the zone boundary,
particularly at low temperatures. This is, of
course, where the umklapp scattering rate is
largest. Thus, if one decomposes the resistivity
into a portion py that arises from only N process-
es, and a portion p, which comes only from U pro-
cesses, one expects p, to be strongly affected by
the dip in ¢(#), while py should be less sensitive
to this feature. We have explored this point by re-
calculating the resistivity assuming only N pro-
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cesses are operative (and U processes are inop-
erative). We find that py is quite insensitive to the
number of terms included in ¢(#), except at the
very lowest temperatures. At 1°K there was a
nine per cent reduction in the value of p computed
when six terms are included, and the result is
compared with that obtained with the cosé form of

(7).
(ii) Case where the Fermi surface touches the zone boundary

In these calculations, we have used the same in-
tegration procedures and model parameters as in
case (i), where the Fermi surface was assumed to
lie entirely within the zone boundary. The only
difference here is that we allow the radius of the
Fermi surface to expand until the Fermi surface
just touches the (111) face of the Brillouin zone.
Of course, the Fermi sphere just touches all the
Brillouin-zone faces in the [111] direction, and
since these faces lie closest to the origin of k
space, in the [100] direction where the distance
from the origin to the zone face is 27/a, the Fermi
surface lies within the first zone.

The results for the temperature dependence and
magnitude of the electrical resistivity are given in
Table V. Once again, the calculations have em-
ployed up to nine terms in the expansion of ¢(#).
We note that convergence to three figures has oc-
curred by the time nine terms are included for
temperatures down to 49 °K, but below this tem-
perature a significant lowering of the resistivity
occurs as we go from eight to nine terms. In the
temperature range from 175 to 1356 °K, inclusion
of only four terms in ¢(#) brings the resistivity to
within 5% of the final value computed with nine
terms; by the time 80 °K is reached five terms
are required, and six by the time the temperature
drops to 49 °K. Below this temperature eight or
more terms are needed, and we cannot be certain
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FIG. 4. Stereographic projection constructed as in
Fig. 1 for T=10°K.
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TABLE V. Resistivity (in pQ cm) for the case where the Fermi surface just touches the Brillouin-zone boundary, as

a function of the numher of terms in ¢ (7).

Multiply

Temp. table Number of terms in expansion of ¢ (7) Mesh

°K) value by 1 2 3 4 5 6 7 8 9 size
1356 10! 3.42 3.09 3.08 2.58 2.52 2.44 2.44 2,44 2.44 A
900 10! 2.27 2.04 2.04 1.70 1.67 1.62 1.62 1.61 1.61 A
600 10! 1.51 1.35 1.35 1.13 1.10 1.07 1.07 1.07 1.07 A
298 100 7.19 6.49 6.49 5.46 5.32 5.15 5.15 5.15 5.15 A
175 10° 4.10 3.60 3.60 2,94 2,87 2,78 2.78 2.77 2.77 A
175 10° 3.47 3.12 3.12 2,61 2.54 2.46 2.46 2,46 2.45 B
80 10° 1.25 1.03 1.03 0.794 0.769 0.735 0.735 0.735 0.730 B
49 10-! 5.15 3.92 3.92 2.64 2,51 2,35 2,35 2,31 2.30 C
30 10-! 2.08 1.04 1.04 0.571 0.526 0.481 0,472 0,431 0.417 C
20 102 9.71 2,27 2,24 1.23 1.12 1.06 0.925 0.699 0.649 C
10 104 279. 8.16 4,01 3.46 2,73 2.73 2,58 1.58 1.32 D

our calculation has converged without including
more than nine terms.

In case (i) we saw that use of the cosf form pro-
duced rather accurate values of the resistivity at
high temperatures T >®, even though our study of
the form of ¢(#) indicated that ¢(#) showed signifi-
cant deviations from the cos® form. In contrast to
the former case, approximation of ¢(#%) by the cosé
form produces values of the resistivity higher than
the final values by roughly 30%.

We have tested the convergence of the numerical
calculations by comparing some values of the re-
sistivity listed in Table V with values computed
with different meshes. The results of this investi-
gation are discussed in Appendix A and may be
summarized as follows. For the case where only
one term is present in ¢(#) [ (%) has the cos6
form), use of a finer mesh shows the resistivity
values in Table V should be reduced by perhaps
8% in the temperature region from 80 to 1356 °K.

These results have been obtained by repeating the
calculations with mesh C instead of mesh A. The
relatively poor convergence found when the cosé
form of ¢(#) is used with mesh A presumably has
its origin in the singularity present in the integral
along the [111] direction where the Fermi surface
touches the zone boundary, and very small wave
vector phonons lead to umklapp scattering. With
two or more terms present in ¢(#), the meshes
employed to generate the numbers in Table V give
results accurate to roughly 1% for 7= 298 °K, and
to roughly 5% by 49 °K.

In Table VI we present the coefficients obtained
for the case where six terms are included in ¢(#).
Note that once again, in the region 72175 °K, the
coefficients change little with temperature. The
most accurate set of coefficients are those com-
puted with mesh C at 298 °K; one may presume
¢(#) is accurately represented by these values in
the high temperature region. The coefficient 7,4

TABLE VI. Coefficients {"i} in the expansion of ¢ (%), for the case where the Fermi
surface just touches the zone boundary in the [111] direction.

Temp. Index of the coefficient Mesh
CK) 1 2 3 4 5 6 size
Multiplying
factor 10° 10! 102 10-3 10t 10+
1356 1.00 1.58 -1.28 1.18 -2.27 2,12 A
900 1.00 1.58 -1,31 1.18 -2.28 2,13 A
600 1.00 1.58 -1.39 1.18 -2.28 2.13 A
298 1.00 1.65 -1.44 1.20 -2.40 2.20 B
298 1.00 1.28 -5.40 1.22 -2.65 2,04 C
175 1.00 1.58 -2.87 1.23 -2,34 2.25 A
175 1.00 1.62 —-2.62 1.23 -2.41 2.29 B
80 1.00 1.56 - 8.88 1.40 -2.60 2.77 B
49 1.00 0.744 -25.6 1.67 -3.28 3.41 C
30 1.00 0.550 —-36.7 1.80 -3.25 3.80 C
20 1.00 1.57 -22.0 1.73 -2.81 3.01 C
10 1.00 1.30 +105.0 0.554 4,26 0.025 D
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FIG. 5. Stereographic projection of the function R (%)
for T=298°K, where ¢#) is givenby the six-term approx-
imation and the Fermi surface just touches the first Bril-
louin zone in the [111] direction.

varies in a somewhat erratic manner. We find
this term in the expansion of ¢(#) contributes little
to the eleetrical resistivity, except at the low end
of the temperature range. For T<49 °K we believe
the second, fourth, fifth, and sixth coefficients are
accurate to within ~10%. In Appendix A we have
illustrated and discussed the convergence.

In Figs. 5-8, we present again the stereographic
projections of the function R(#) defined in Eq. (3.1).
Several remarks are in order about these results.

First, it is apparent that we always find a very
sharp dip in ¢(#) in the [111] direction for this
case, even at elevated temperatures, as illustrated
in Fig. 5. Recall that in case (i), at elevated tem-
peratures, while ¢(n) dipped quite noticeably in the
[111] direction (see Fig. 1), ¢(#) did not deviate
from the cosé value by more than 30%. The solu-
tion displayed in Fig. 5 shows that at its minimum
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FIG. 6. Stereographic projection constructed as in
Fig. 5 for T=49°K.
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value, R(#) dips to roughly 0.05, which means that
in the [111] direction ¢ () assumes the value of
0.03, compared to the value of =0. 6 expected for
the coséf form of the solution.

We have here a direct test of the accuracy of our
scheme for generating values of ¢(#). The reason
is that one may argue quite generally that at points
where the Fermi surface touches the zone bound-
ary, one must have ¢(#) identically equal to zero.
This follows because, to phrase the argument in
language appropriate to the present geometry, if
we consider any one particular point #, on the zone
boundary, there is one other point #, on the zone
boundary in the opposite [111] direction removed
from #, by precisely a reciprocal lattice vector of
the crystal. Thus #, and 7, refer to exactly the
same electron state, and we must have ¢(#,) = ¢(7,)
as a consequence. But the inhomogeneous driving
term in the linearized Boltzmann equation is an odd
function of cosf; from this it follows that ¢(#)
must be an odd function of cosf. Thus, we conclude
¢ (#,) = - (7). The only way to satisfy these two
conditions simultaneously is to have ¢(#,) = ¢ (#,)
=0, and one concludes that ¢(#) must vanish identi-
cally at each of the points in the [111] direction
where the Fermi surface of our model touches the
zone boundary. This argument was discussed in
detail many years ago by Peierls, ® and it has also
formed the basis in the recent literature for analyt-
ic schemes® that may be used to study the behavior
of the electrical resistivity at very low tempera-
tures, when the Fermi surface touches the zone
boundary.

Thus, if our scheme produced the exact values
of ¢(#), we should find for this case that ¢(#) as-
sumes its minimum value precisely in the [111]
direction, and that the minimum value of ¢(#) is
identically zero. If one examines the data in Figs.
5-8, one sees that ¢(#) assumes a value quite close
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FIG. 7. Stereographic projection constructed as in
Fig. 5 for T=30°K.
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FIG. 8. Stereographic projection constructed as in

Fig. 5 for T=10°K.

to zero, but not identically equal to zero, in the
[111] direction. At 298 °K (Fig. 5), we find a
minimum value of =0. 03 removed from the [111]
direction by a few degrees. At 7=49°K, and
T=30°K, ¢(#) again has a zero very near the [111]
direction, although the negative values of ¢(#) in
the small angular region near 6 =60° and 40° < ¢

< 45° may have their origin in the fact that we are
approximating a function which contains a rather
sharp dip in it by a finite number of terms. At
T=10°K, these negative values extend over a
wider range of 6, and the comparatively slow con-
vergence of the values of p suggests that more
terms in the expansion of ¢(#) will be required to
give an accurate result for both p, and for ¢(#).

In summary, we feel that the approximate form
we obtain for ¢(#) reproduces the expected behavior
with good accuracy over a wide range of tempera-
ture. Even at high temperatures, we see ¢(#) dip
sharply to near zero in the [111] direction, as the
Peierls boundary condition requires; this behavior
was absent in case (i). Our results appear quite
reasonable except at the lowest temperatures. The
dip evidently becomes sharper and more pronounced
as the temperature is lowered (one expects this
because the umklapp processes begin to freeze out
most rapidly for points removed from the [111] di-
rection), and there is a point where our expansion
in no more than nine cubic harmonics becomes in-
adequate. By the time T=30°K, our form for
¢(#) exhibits a “ringing ” behavior over a small
solid angle region and overshoots the zero. By the
time T=10°K, the values produced for ¢(#) raise
some question in our minds, and this is reinforced
by the very slow convergence of p as additional terms
are added to ¢(#).

It should also be noticed that in the [001] direc-
tion (parallel to the external field), the Fermi
surface lies quite close to the zone boundary. The
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umklapp scattering processes are quite strong here
also, and one should expect ¢(#) to exhibit a mini-
mum here also. One sees this minimum as a very
well defined feature in Figs. 5-7. It becomes
particularly sharp at 7=49 °K, and 7T=30°K. At
these temperatures, the umklapp scattering rate

is large at the (0, 0, 1) point on the Fermi surface,
but “freezes out” rather rapidly as one moves down
the Fermi surface by increasing the azimuthal
angle 6. One then obtains the pronounced minimum
in ¢(7) displayed in Figs. 6 and 7. At 10 °K these
processes appear to have frozen out of the resis-
tivity, and the dip feature in ¢(#) has been replaced
with a rise.

(iii) Case where the Fermi surface lies outside the first Brillouin
zone

In this subsection we apply the methods used in
the two preceding subsections to the analysis of
the behavior of the electrical resistivity and the
distribution function ¢(#) for the case where the
Fermi surface lies outside the first Brillouin zone.
Just as we chose the input parameters for the
model to mimic the properties of copper as closely
as possible, for the present case we choose the
parameters to be characteristic of aluminum.
Since aluminum is a trivalent metal, the radius of
the free electron Fermi surface appropriate to
alunimum is 1.1272, in units of 27/a. This should
be compared with the distance from the origin of k
space and the point farthest from the origin on the
surface of the first Brillouin zone. This point lies
at the intersection of a (100) plane and the line be-
tween two touching (111) planes; the distance of
this point from the zone center is 1. 1180 units.

To carry out the electrical resistivity calcula-
tions, we have used the Heine -Abarenkov form
factors as tabulated by Harrison, !! and the phonon
force constants of Gilat and Nicklow'? obtained at
80 °K.

The results of the resistivity calculations are
presented in Table VII. We note that down to
40 °K, the use of seven terms in ¢(#) produces
convergence to three figures, but below this, and
in particular at 10 °K, there is a clear need for
additional terms in the expansion. Note that if we
presume the resistivity for the model is accurately
given by the nine-term form for ¢(#), then conver-
gence to within 5% of the correct value has occurred
with four terms for 7= 195 °K, five terms for
T=80°K, seven terms for 7=40°K, and eight
terms for T =25 °K.

The accuracy associated with the meshes em-
ployed in the resistivity calculation is as follows.
For the cosf form of ¢(#) (only one term in the ex-
pansion), the results are accurate to 5% for T
=195 °K. The accuracy deteriorates as the tem-
perature is lowered until, for 7=30°K, the result
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Resistivity (in uQ cm) for the case where the Fermi surface lies just outside the Brillouin-zone bound-

Multiply
Temp. table Number of terms in expansion of ¢ (#) Mesh
CK) value by 1 2 3 4 5 6 7 8 9 size
934 10° 6.58 6.37 6.37 6.37 6.25 6.21 6.06 6.06 6.06 C
660 10° 4,61 4,48 4,48 4,48 4,37 4.37 4,25 4,25 4,25 C
390 10° 2,66 2.58 2.58 2,58 2,51 2.51 2.44 2,44 2.44 C
195 10° 1.20 1.15 1.15 1.15 1.11 1.11 1.08 1.08 1.08 C
80 10! 2.99 2,68 2,67 2.65 2,44 2,44 2,33 2,33 2,33 C
40 1072 5.24 3.65 3.65 3.37 2,86 2,78 2,57 2,55 2,54 D
25 10-3 15.7 7.25 7.04 4,85 3.40 3.26 3.05 2,65 2,57 D
10 104 14.9 3.99 3.30 1.35 0.748 0.738 0.798 0.388 0,317 D

for the cosé solution may be off by 30%, and by

10 °K as much as a factor of 3. As additional
terms are added to ¢(#), the numerical integration
scheme becomes more accurate so that for the
seven-term solution, our tests show the numerical
results accurate to 1% for T=195°K, 5% for T
=40°K, and 10% for T=10°K.

In Table VIII, we have presented the coefficients
obtained for the seven-term expansion of ¢ (7).
Note that the third and the sixth terms contribute
little to changes in the resistivity until we reach
10 °K, at which point these coefficients change
dramatically. An investigation of the convergence
of these coefficients as far as the mesh size is
concerned shows that all coefficients have converged
to within 25% of their correct value, and many
have converged far more accurately than that.

The function R(#) is plotted in Figs. 9-11. The
dashed lines on the figures indicate the locus of
closest approach of the Fermi surface and the
Brillouin zone. (These are lines of intersection
of the Brillouin-zone boundary faces.) Particularly
at the two lowest temperatures, one can see a pro-
nounced depression of ¢(#) near these lines. Pre-
sumably it is the large depressed areas then that

give rise to the reduction in resistivity as we go
from one to seven terms in the expansion of ¢(#).

IV. COMPARISON BETWEEN THEORY AND EXPERIMENT

The purpose of this section is to compare the re-
sults of the calculations described in Sec. III with
some experimental data on systems that may be
approximately described by our models.

While the calculations described above were
carried out with the use of realistic phonon spectra
and pseudopotential form factors which are believed
qualitatively and very likely quantitatively accu-
rate, we have made one major approximation by
replacing the true Fermi surface by the free-elec-
tron spheres appropriate to the cases examined in
Sec. III. We begin this section by presenting the
results of some calculations which suggest that
this approximation does not lead to serious quanti-
tative errors.

Consider case (i), where the Fermi sphere lies
entirely within the first Brillouin zone, but comes
quite close to its boundaries in the [111] direction.
It is well known that in copper, the Fermi surface
develops necks which extend out to and touch the
zone boundaries in the [111] direction. Quite

TABLE VIII. Coefficients {n{} in the expansion of ¢ (%), for the case where the Fermi surface

lies just outside the zone boundary.

Temp. Coefficient index Mesh
CK) 1 2 3 4 5 6 7 size
Multiplying
factor 10° 10° 10 10-3 10" 104 10°
934 1.00 —-0.246 -0.594 -0,145 0.204 -0.528 0.367 C
660 1.00 - 0,248 - 0.597 - 0,147 0.205 -0,.530 0.366 C
390 1.00 -0.257 -0.617 -0.156 0,212 -~ 0.543 0,372 C
195 1.00 —0.290 - 0,700 -0.195 0,242 —-0.600 0.394 C
80 1.00 -0.478 -1,11 -0.499 0.434 -0.963 0,514 C
40 1.00 -~ 0.694 -1.91 -1.61 0,765 -2.20 0.656 D
25 1.00 —-0.881 -1.40 -2.62 1.02 -2,08 0.493 D
10 1.00 -0.834 +1.74 -3.20 1.13 +0.526 0.318 D
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FIG. 9. Stereographic projection of the function R (%)
for T=390°K, where ¢ (%) is given by the seven term ap-
proximation, and the Fermi surface lies entirely outside
the first Brillouin zone.

clearly, these necks have been left entirely out of
our calculations.

To test the sensitivity of our results to modifi-
cation of the kernel in the linearized Boltzmann
equation near the [111] direction, we have per-
formed the following calculation., We have repeated
the calculation of p by removing entirely the con-
tribution which comes from a cap with angular
width equal to 14° centered about each [111] direc-
tion. The results of this study are presented in
Table IX, where we compare values of p with and
without the cap removed, for various number of
terms in the expansion of ¢(#). If one compares
the calculations carried out for the two cases when
the full nine term expansion of ¢(#) has been used,
one sees that there is little difference between the
values of p calculated with and without the cap re-
moved, at all temperatures. However, if the cos#é

O 10 20 30 40 50 60 70 80 90
8 (Degrees) —=

FIG. 10. Stereographic projection constructed as in
Fig. 9 for T=40°K.

is employed, then at low temperatures the calcu-
lated resistivity is quite sensitive to the presence
of the electron-phonon scatterings which involve
states near the (111) face of the Brillouin zone.

The insensitivity of the calculated resistivity to
the presence or absence of the 14° caps when the
full nine-term expansion of ¢(#) is used suggests
that the ideal electrical resistivity of the metal
[i.e., the electrical resistivity in the absence of
impurity scattering, where ¢(#) is determined only
by electron-phonon processes] is not greatly af-
fected by modifications of the kernel of the Boltz-
mann equation near the zone faces. In effect, in
the presence of the highly anisotropic umklapp
scattering rate present at low temperatures, the
reduction of ¢(#) near the [111] direction, because
of the strong umklapp scattering present there,
makes these regions of the Fermi surface con-
tribute little to the resistivity, so modifications of
the description of these regions has a rather small
effect on p. We feel this result is reasonable from
a physical point of view, and we use this result to
justify the application of our calculations to the
analysis of experimental data.

When ¢(7) is approximated by the cosf form,
and the resistivity is calculated through the use of
the variational expression in Eq. (2. 2), then the
regions of the Fermi surface which receive the
most emphasis in the numerical calculation are
those where the scattering rate is strongest; at
low temperatures one does not allow the strong
umklapp scattering present near the [111] direc-
tions to react back on ¢(#), reduce ¢(#) in these
regions, and therefore reduce the contribution of
these parts of the Fermi surface to p. Thus, when
the sensitivity test is made with the cosf form of
¢(#) at low temperatures, as one can see from the
figures in the first column of Table IX, one finds p
quite sensitive to the details of those portions of
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FIG. 11. Stereographic projection constructed as in
Fig. 9 for T=10°K.
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TABLE IX. Effect of 14° caps on the value of the resistivity (uQ2 cm), for the case where the Fermi surface lies in-

side the zone boundary.

Multiply
Temp. table Caps Number of terms Mesh
CK) value by removed 1 2 3 4 5 6 7 8 9 size
298 10° Yes 3.77 3.76 3.76 3.75 3.75 3.73 3.73 3.73 3.73 B
10° No 3.90 3.89 3.89 3.85 3.85 3.83 3.83 3.83 3.83 B
49 10t Yes 1.36 1.35 1.35 1.30 1.30 1.26 1.26 1.26 1.26 B
10! No 1.55 1.49 1.48 1.38 1.38 1.33 1.33 1.33 1.33 B
10 106 Yes 13.5 3.69 2,97 2,44 2.35 2,31 2,27 2.26 2,26 B
10 No 44,2 5.69 3.36 2.85 2.65 2,60 2.54 2,54 2,53 B

the Fermi surface which are close to the zone
boundaries.

It must be emphasized that our conclusion that
the details of the scattering kernel near the [111]
direction are relatively unimportant rests strongly
on the fact that ¢(#) is determined solely or pre-
dominantly by the electron-phonon scattering rate.
If the contribution to p from impurity scattering is
greater than, or perhaps comparable to, that from
electron-phonon scattering, then ¢(#) will be more
closely approximated by the cosf form, and the
resistivity at low temperatures will be sensitive
to the manner in which the Fermi surface and elec-
tron-phonon matrix element are described in the
neck region of the Fermi surface.

Next we turn to a comparison of our results for
case (i) with the experimental data for copper.
Consider first the region 7= 175 °K, where the
resistivity throughout this range is computed with
phonon force constants determined at 298 °’K. We
find that p increases linearly with temperature;
between 400 and 135 °K, our results are fit by a
straight line to better than 1%, and the same line
lies 8% above the value of p at 175 °K. These re-
sults are not surprising in view of the fact that
the Debye temperature ©, of copper is 320 °K.

At 295 °K, our calculated resistivity is larger
by a factor of 2.2 than the value given for copper
in Ref. 13. At 1356 °K, our calculated resistivity,
after correcting it to atmospheric pressure, is
2.1 times the value quoted by Cussak!* for this
temperature. In this temperature range, recall
that there is little difference between the values of
p computed from the one term or the nine term
expression for ¢(#).

Srivastava® has carried out resistivity calcula-
tions for copper in the temperature range 15 °K
<T<300°K. He used only the cosf form in the ex-
pansion of ¢(#), along with the form factors of
Moriarty, ” as we have done. At 300 °K, his re-
sults are in good accord with ours, but they differ
considerably as the temperature is lowered, and
by 20 °K his results are larger than those we obtain
when we use the cos8 form of ¢(#) by a factor of

20. While we cannot pin down the precise reasons
for this discrepancy, as we have tried to emphasize
in the discussions in Sec. III, one must exercise
considerable care in the low-temperature regime
to insure that the numerical integrations are ac-
curate. We are led to question his use of the
spherical six term integration procedure due to
Houston.'® Also, he has described the phonon
spectrum through the use of a simple phonon spec-
trum developed by Krebs, !® and this may lead to
further quantitative discrepancies between his re-
sults and ours.

In Fig. 12, we have plotted the results of our
calculations of the resistivity for the one-, two-,
and six-term expansion of ¢(#2). The quantity is
plotted in the ratio p/7°. Note the growth of pro-
nounced differences between the results computed
with different numbers of terms in ¢(#) as the tem-
perature is lowered. The dashed lines in the fig-
ure are sketched in to indicate the approximate be-
havior of p/T° below 10°K, a region we did not ex-
plore in detail. At 1°K, where the umklapp pro-
cesses have frozen out to a very good approxima-
tion, we did perform a calculation of the normal
resistivity which employed mesh E. The results
of this calculation are represented by a single
point, since there is little difference between the
results obtained with the different forms of ¢(#).

We should remark that Ekin and Bringer! have
explored the effect of modifying the cosé form of
¢(#) on the electrical resistivity of potassium.
They obtained the largest departures from the cosé
solution when they included terms equivalent to
our first three terms in the expansion of ¢(#).
They found that a maximum change of 12% in the
computed values of p resulted when their result
was compared to that obtained from the cosé form
of ¢(#). This occurred at T=5°K. Primarily be-
cause of the increased proximity of the Fermi sur-
face to the zone boundary in the fcc structure, the
effects of using more than one term in the expan-
sion of ¢(#2) are more dramatic in our model of
copper.

In Fig. 12 we have superimposed several sets of
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experimental data, namely, the data of Schriempf,!’
White and Woods, *® and the very recent data of
Rumbo. *® Schriempf studied three samples, and
we have reproduced data from his purest sample.

White and Woods!® were able to fit their data in
the temperature range from 10 to 30 °K with a 7°!
law. We note that our calculations show that the
temperature is not yet sufficiently low for this to
be interpreted as the low-temperature limiting be-
havior of the resistivity expected on the basis of,
for example, the Bloch-Griineisen law. In the tem-
perature region between 10 and 30 °K, the plot of
p/T® shows this function to have a broad maximum.
At low temperatures, the umklapps freeze out
rapidly, so p varies more rapidly than T°% and at
higher temperatures, p varies more slowly than
T® simply because #T/9 is large enough for sig-
nificant deviations from the low-temperature be-
havior to occur.

In Fig. 12 the maximum in our calculated values
of p/T® with the six-term form of ¢(#) is consider-
ably sharper than the maximum observed by White
and Woods. It must be kept in mind that in the cal-
culations presented here, we have assumed that
only electron-phonon scattering is present. Actual-
ly, as the temperature is lowered, one passes
from a regime where the phonon scattering domi-
nates the impurity scattering, to the low-tempera-
ture regime where the converse is true. At tem-
peratures where impurity scattering is strong com-
pared to phonon scattering, one expects ¢(#) to be
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FIG. 12. Calculated resistivity divided by temperature
to the fifth power vs temperature. The Fermi surface
lies inside the first Brillouin zone, Experimental data
shown for copper are due to &, Rumbo (Ref. 18); O,
Schriempf (Ref. 16); and @, White and Woods (Ref. 17).
The quantity in brackets is the number of terms in the ex-
pansion of ¢ (7).

OF THE IDEAL ELECTRICAL... 1471
closely approximated by the cosf form, since it is
known that ¢(#) has precisely this form? in the
presence of only impurity scattering when the
Fermi surface is spherical. Thus, crudely speak-
ing, as the temperature is lowered, one expects
¢(#) to gradually shift over from the full form we
use to the cosf form. (The importance of this
effect was first pointed out by Kagan and Zhernov.})
Upon comparing the curve for p/7T° computed with
the six-term expression for ¢(#) with that com-
puted from the cos® form, one can see that the
transition from the phonon scattering dominated
regime to the impurity scattering dominated region
should broaden the maximum in p/T°, if this tran-
sition occurs near 30 °K in copper. From the

data of White and Woods, we estimate that at

40 °K, their sample is indeed in the regime where
electron-phonon scattering makes the dominant
contribution to p, while at T=15°K, the tempera-
ture dependent portion of p is a small fraction of
the total, so one is well into the regime where
impurity scattering dominates.

The data of Schriempf appears qualitatively con-
sistent with the results of our calculations, although
the resistivities measured by him appear consider-
ably larger than the results obtained by White and
Woods.

The recent low-temperature data of Rumbo are
particularly striking, since the measurements
were made on copper of high purity, and the data
show dramatic deviations of a qualitative kind from
the results we obtain. Rumbo points out that his
data are well fitted by an empirical relation which
presumes the resistivity to vary as T°. It seems
highly unlikely that we could reproduce these data
with any modification of the form factors, or other
ingredients of our model. Thus, the present work
is unable to shed light on the origin of this striking
behavior. We do note that a 7° variation of the
resistivity at low temperatures has been observed
in many metals, ?° and a simple empirical rule ap-
pears to account for its magnitude. Also, Ehrlich®
has discussed a means of producing a 7¢ term in p
at low temperatures in the presence of both impuri-
ty and electron-phonon scattering and necks on the
Fermi surface. Wilkins and Lawrence have also
discussed the possibility that a 72 term may occur
in p at low temperatures. We are not aware, how-
ever, of any theoretical mechanism which produces
a T° term.

In summary, in the temperature range from
15 °K up to the melting temperature, our calcula-
tions produce values of the electrical resistivity
for copper which lie between two and four times the
values measured experimentally. This sort of
error is quite respectable since we have not ad-
justed the form factors in any way to fit the data.
The accuracy we obtain is comparable to that ob-
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tained in recent studies of the alkali metals.

We next examine some of the results obtained
for case (ii), where the Fermi surface was pre-
sumed to just touch the boundary of the first Bril-
louin zone.

In the high-temperature region (7= 175 °K), we
find a linear dependence of the resistivity on tem-
perature. Now, however, unlike the situation in
case (i), the value of p is sensitive to the number
of terms in the expansion of ¢(#). Note also that
the value of p at a given temperature is consider-
ably larger for case (ii) than for case (i). Also,
we now require a number of terms in the expansion
of ¢(#) to obtain an accurate value of p, where as
remarked above, in the results presented for case
(i), the cos® form of ¢(#) gave accurate values of
p in the high-temperature region.

The effect on the resistivity of introducing 14°
caps is presented in Table X for the three tempera-
tures T=10, 49, and 298 °K. The results are
rather similar to those for case (i) in that by the
time the full nine-term expression for ¢(#) is used,
s0 ¢(#) is small near the (111) faces of the Brillouin
zone, the resistivity is rather insensitive to modi-
fications of the kernel of the Boltzmann equation in
this region of the Fermi surface. At high tempera-
tures (7' =298 °K), the resistivity changes by a con-
siderable amount, the order of 30%, when the caps
are removed. Recall from the discussion for case
(i) that at 298 °K we found only an 8% reduction in
resistivity when the cap scattering was removed.

There is no elemental material at high tempera-
tures with which we can compare these calculations.
However, we can apply the calculations to describe
the resistivity of those copper based substitutional
binary alloys which have an electron/atom ratio
larger than pure copper, if we presume that the
effect of alloying may be represented simply by in-
creasing the radius of the Fermi sphere so that the
Fermi surface contains the proper number of elec-
trons for the alloys. Within this model, as the
concentration of the dilute constituent is increased,
the radius of the Fermi surface increases until it
touches the Brillouin-zone boundary.
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If this model is a reasonable first approximation
to a description of the alloy, then one should expect
the value of the lattice resistivity observed in the
high-temperature region to depend only on the
electron/atom ratio. Upon comparing the value of
p at a given temperature we obtain for case (ii)
with that obtained in case (i), we also expect p at
a given temperature to increase monotonically as
electrons are added.

A complete set of data on the electrical resis-
tivity of alloys of copper with zinc, gallium, ger-
manium, and arsenic and its dependence on compo-
sition has been reported by Crisp, Henry, and
Schroeder.?* From their data, we have plotted the
lattice resistivity as a function of the radius of the
appropriate free-electron sphere, and while we do
find that there is some structure in the plot, par-
ticularly on the dilute end for those elements which
lie farthest from copper in the Periodic Table, all
the data indeed tend to cluster about the same
straight line. To compute the radius of the Fermi
sphere, we have assumed that addition of zinc adds
one electron/zinc atom to the conduction band,
addition of gallium adds two, and so on. Thus,
the data follow the trends we expect from our cal-
culations; namely, the lattice resistivity at a given
temperature increases monotonically as the radius
of the free-electron Fermi sphere increases, and
the rate of increase of p depends primarily on the
electron-to-atom ratio.

Unfortunately, the data do not involve alloys
sufficiently concentrated for the Fermi surface to
touch the zone boundary. Thus, for T=298 °K, we
have recalculated the resistivity for selected Fermi
radii inside the zone, for values of the Fermi wave
vector larger than that of copper. The results are
displayed in Table XI, along with data on the lattice
resistivity of the copper-zinc system at 7=290 °K
taken from the paper of Crisp et al.,® since the
lattice resistivity may be determined most accu-
rately from their data for this system. The cal-
culations surely reproduce the trends evident in
the data. To make the comparison explicit, from
the data one has

TABLE X. Effects of 14° caps on the value of the resistivity (uQ cm), for the case where the Fermi surface just

touches the zone boundary.

Multiply
Temp. table Caps Number of terms in expansion of ¢ (7) Mesh
°K) value by removed 1 2 3 4 5 6 7 8 9 size
298 10° Yes 5.26 5.24 5.21 5.00 4,95 4,85 4,85 4.85 4.85 B
10° No 7.19 6.49 6.49 5.46 5,32 5.15 5.15 5.15 5.15 B
49 10! Yes 3.51 3.29 3.27 2.46 2,33 2,15 2,14 2,14 2,13 C
10! No 5.15 3.92 3.92 2.64 2,51 2,35 2.35 2,31 2.30 C
10 10 Yes 8.16 4,46 3.36 2,30 2,27 2,27 2,06 1.34 1.01 C
10+ No 27.9 8.16 4.01 3.46 2,73 2.73 2,58 1.58 1.32 D
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TAI)BLE XI. Effects on resistivity (uQ cm) of varying the size of the Fermi radius. (Mesh C used in all
cases).
Radius of Measured Number of terms in the expansion of ¢ (%)
Fermi surface value? 1 2 3 4 5 6 7 8 9
27/a)
0.7816 1.64 3.92 3.91 3.91 3.86 3.86 3.85 3.79 3.78 3.78
0.8027 1.89 4.31 4,27 4,27 4,18 4.18 4,17 4.10 4,10 4.10
0.8238 2,15 4,78 4.74 4.74 4.57 4.55 4.50 4,44 4,44 4.44
0.8430 2,44 5.40 5.29 5.29 4.95 4.90 4,83 4,76 4.76 4,76
0.8660 6.85 6.41 6.41 5.49 5,38 5.24 5.18 5.18 5.18

30Obtained at 290°K using Cu-Zn.

p(0. 7816) _ a value remarkably close to the observed ratio
=0.675, (4.1a) .
p(0. 8430) |oxpe displayed in Eq. (4.1a). Thus, we suspect that if
. . we determined the form of ¢(#) by allowing the
1 tions N
while from the calculation form of ¢(#) to be influenced by the presence of
(0. 7816) the strong impurity scattering present in the con-
0(0. 8430) | g 0.79. (4. 1b) centrated alloy, our model could provide a rather

The calculations clearly produce the trends evi-
dent in the data, with good semiquantitative agree-
ment on the order of magnitude of the variation of
dp/dT.

Some additional comments on the manner in which
the experimental numbers in Table XI were deter-
mined are in order. We have used the copper-
zinc?! data of Crisp et al., because it is the most
accurate in the region of interest. The numbers
in Table XI were obtained by interpolation between
the actual experimental points. In order to com-
pare experiment with theory, one must proceed
with some care. For pure copper, the value of p
of 3.78 uf cm is indeed the correct value for our
model, at 7=298 °’K. As the radius of the Fermi
sphere is increased by alloying, of course this is
done by increasing the zinc concentration, the
residual resistivity of the alloy necessarily in-
creases. By the time the Fermi wave vector &y
is 0. 8430 in our dimensionless units, the residual
resistivity and the lattice resistivity are close to
each other in magnitude. This means that when
kp=0.8430, it is misleading to use our nine term
form of ¢(#), with the coefficients determined from
only the electron-phonon scattering, to compute
the resistivity of the alloy. The presence of the
impurity scattering tends to “drive” the form of
¢ () toward the cos6 form since in our model this
is the form ¢(#) will assume if only impurity scat-
tering is present. If we make the extreme assump-
tion that ¢(#) is given by the cosé form when &y
= 0. 8430, but by the full nine-term form for pure
copper, the theoretical value of the ratio displayed
in Eq. (4. 1b) becomes

p(0.7816) _3.78 _ 0.170,

p(0.8430) 5.40 (4.1¢)

quantitative account of the alloy data. The result
displayed in Eq. (4.1c) is encouraging, and we are
pursuing this point further. [Of course, when the
form of ¢(#) is influenced by both impurity and
electron-phonon scattering, then it is no longer
possible to separate p into two additive terms, one
which represents only the impurity scattering, and
one which represents only the lattice contribution,
i.e., Mathiessen’s rule will then not be applicable.
However, when the impurity scattering is so strong
that ¢(#) = cos#6 at all temperatures of interest, this
separation is again possible, and this is what we-
assume for kp=0.8430 when the ratio in Eq. (4. 1c)
is formed. For this value of k2, Mathiessen’s rule
is still not applicable in the strict sense, of course,
since the lattice contribution to p assumes a value
significantly different from that in pure Cu. ]

A plot of the ratio p/T® for case (ii), where the
Fermi surface just touches the zone boundary, is
presented in Fig. 13. We have replotted for com-
parison purposes the results of the calculation for
case (i), where the cosé form of ¢(#) has been
used. The chief difference between the results for
case (i) and case (ii) are that in the latter case,
there is no onset of the “freezing out” phenomena
even by 10 °K, when the cosé form of ¢(#) is used
for case (ii). The value of p/T5 continues to rise
monotonically as T decreases, well below the tem-
perature of the turnover for p/T5 when the cosé
form of ¢(#) is used for case (i). However, by the
time nine terms are used in the expansion of ¢(#),
the plot of p/T® for case (ii) assumes a form rather
similar in its qualitative features to the curves for
case (i).

Ekin and Bringer! explored the effect of expand-
ing the Fermi surface of potassium on ¢(#) resis-
tivity. They found the greatest differences between
resistivities computed with one and more terms in
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¢(#) to occur when the Fermi surface touched the
zone boundary. At that Fermi radius they found
the largest effects at T=1 °K (their calculations do
not go below this temperature) where the one term
and many term resistivities differed by a factor of
about 2.

We have not attempted to compare the results of
our calculations with data at low temperatures.
This would require explicit inclusion of both im-
purity and electron-phonon scattering before a rea-
sonable comparison could be made. Also, since
our experiment to prove the sensitivity of p to
removal of the caps near the (1, 1, 1) point of the
Brillouin zone indicates that at low temperatures,
when the cos@ form of ¢(#) is used, the value ob-
tained for p becomes very sensitive to the manner
in which those regions of the Fermi surface which
lie close to the zone boundary are treated. Thus,
the problem of computing realistic values of p at
low temperatures for even a very simple model of
the alloy becomes quite a complex task which we
have not addressed.

Finally, in this section, we explore the results
obtained in Sec. III for case (iii), where the Fermi
surface lies entirely outside the first Brillouin
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FIG. 13. Calculated resistivity divided by temperature
to the fifth power vs temperature. The Fermi surface
just touches the zone boundary. The quantity in brackets
is the number of terms in the expansion of ¢ ).
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zone, with a radius equal to that of the free-elec-
tron Fermi sphere appropriate to aluminum.

Our results for the cosf form of ¢(#) may be
compared directly with the resistivities obtained
by Dynes and Carbotte® in the temperature range
from 40 to 100 °K. These authors used a model
identical to ours, and restricted themselves to the
use of the cosf form of ¢(#). Their calculation
differed from ours only in the technique used to
evaluate the integrals; Dynes and Carbotte con-
verted the integrals to three-dimensional form,
while we have directly evaluated the four-dimen-
sional integrals. At 40°K, the agreement between
the two calculations is within 5%, but at 80 °K, the
resistivity we obtain is larger than that obtained
by them by roughly 25%. There is evidence due to
Haymam22 that the procedure used by Dynes and
Carbotte to fit the form factors could lead to the
observed discrepancy between our result and theirs
at 80 °K.

It is not our intention to explore the high-tem-
perature resistivity in detail. There are force
constants available at 300 °K which would be more
appropriate than the 80 °K force constants used
here. Our one term value of 2. 00 ucm for the
resistivity at 7=300 °K is in good agreement with
the value of 1.86 ucm quoted by Dynes and Car-
botte for 300 °K, so we feel our results are satis-
factory at high temperatures. (Dynes and Carbotte
also quote a value of 2. 00 pfcm at 300 °K, but this
result was obtained with force constants determined
at 300 °K.) At 300°K, the experimental value of
the resistivity is 2.66 uQcm. For aluminum, we
find that for 7= 100 °K, the calculated resistivity
varies nearly linearly with temperature; the Debye
temperature of aluminum is 390 °K.

OQur primary aim is to focus on the more inter-
esting temperature range below 100 °K. This is
because Lawrence and Wilkins' have noted a con-
siderable discrepancy between their very thorough
calculations of the resistivity in this temperature
region, and experimental values measured on very

pure samples of aluminum. The discrepancy be-
tween their calculations and the data becomes less
pronounced as the purity of the aluminum is re-
duced. They suggest that the origin of the discrep-
ancy lies in the deviations of ¢(#%) from the cosé
form, and that their calculations, which employ the
cosf form, are appropriate for the dirty limit
where the form of ¢(#) is determined primarily by
impurity scattering. In Fig. 14, the dashed curve
represents the theoretical calculation of Lawrence
and Wilkins, and the experimental results for clean
and dirty samples as presented by Ekin and Bring-
er! are also displayed. The latter authors agreed,
on the basis of their study of the effect of devia-
tions of ¢(#) from the cosé form in potassium, that
in the clean limit the resistivity of Al should be
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FIG. 14. Calculated resistivity divided by temperature
to the third power vs temperature. The Fermi surface
lies outside the first Brillouin zone. O, experimental
data due to Ekin and Bringer (Ref. 1) for aluminum with
a resistivity ratio of 7050. A, experimental data due to
Ekin and Bringer (Ref. 1) for aluminum with a resistivity
ratio of 34.7. @, the theoretical calculation of Lawrence
and Wilkins (Ref. 1) for aluminum. The quantity in brack-
ets is the number of terms in the expansion of ¢ (7).

greatly reduced from the values obtained through
use of the cos6 form.

The results of our calculation for one, two, and
seven terms in ¢(#) are shown in Fig. 14 as the
solid lines. As we indicated in Sec. III, we experi-
enced difficulty obtaining convergence at the lower
temperatures, particularly when only a small num-
ber of terms were includedin the expansion of ¢(#),
so the value of ¢(#)was considerable in the regions of
the Fermi surface where the umklapp scattering is
strong. Theerror barsin the figure are our estimate
of the errorsinvolvedinthe numerical calculations.
The seven-term solution provides a remarkably
good fit to the data to roughly 20 °K, and we con-
firm with these calculations the suggestion of
Lawrence and Wilkins that deviations from the cosé@
form of ¢(#) are responsible for the discrepancy
between theory and experiment discussed earlier.
At 20°K, the lattice resistivity is roughly 8x10™*
uQcm, and the residual resistivity is 4x10™*
ufQecm. Thus, we expect the results of our calcu-
lation, - ~ ¢(#) is determined in the presence
of onl: . .cctron-phonor. scattering, to begin to
deviate from the experimental data at temperatures
in the vicinity of 20 °K.

Since Fig. 14 provides a clear description of the
data and the calculations, we do not present a plot
of p/T°. However, if this is done, even at tem-
peratures as low as 10 °K, we see no sign of the
onset of the freezing out of the umklapp processes
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which in both case (i) and case (ii) causes the max-
imum and subsequent decrease in the values of
p/T® as the temperature is lowered, although for
case (iii), we have reached a plateau in the plot of
p/T® by the time T =10 °K for the nine term expan-
sion of ¢(#). Note that the apparent 7° term seen
in the resistivity of aluminum (see the data in Fig.
14, where p/T3 becomes constant below about
10 °K) occurs in the data before the umklapp pro-
cesses are frozen out, so this term in aluminum
may possibly be explained by a calculation which
allows the form of ¢(#) to be affected by impurity
scattering through the temperature region where
the umklapp processes are freezing out. It is im-
portant in this regard to note that the 7° variation
of the resistivity reported in copper (see, for example,
the recent work of Rumbom) is seen very clearly
at temperatures well below the point where the
umklapp processes have frozen out, and where the
lattice resistivity is a small fraction of the total.
In the case of aluminum, it would be very inter-
esting to compute the temperature dependence of
the resistivity for a model which allows the form
of ¢(#) to be influenced by the presence of impurity
scattering. Quite clearly, this will increase the
lattice contribution to the resistivity, and the ques-
tion of whether this will raise the value of the lat-
tice resistivity sufficiently to account for the ob-
served behavior of the resistivity is an intriguing
one.

V. FINAL REMARKS

The calculations presented in Sec. III and IV
demonstrate the importance of utilizing the proper
form of ¢(#) in the computation of the electrical
resistivity, particularly as the temperature is low-
ered, and “hot spots” where umklapp scattering is
strong develop on the Fermi surface. In fact, for
case (ii), where the Fermi surface touches the
zone boundary, it is important to use the full form
of ¢(#) at all temperatures.

The use of the correct form of ¢(#) in the calcu-
lation of the electrical resistivity allows us to ob-
tain rather good agreement between our calculated
resistivities and experimental data, even though we
use an oversimplified description of the Fermi
surface. At high temperatures, one is perhaps
not surprised to see this, simply because the scat-
tering rate is not highly anisotropic, and large
deviations from free electron character [say in
case (i)] occur only over a relatively small fraction
of the total solid angle in the integrations. How-
ever, as the temperature is lowered, umklapp
scattering near those portions of the Fermi surface
which lie close to the zone boundary causes ihese
regions, where the use of a model with a spherical
Fermi surface is clearly a poor approximation, to
make a large contribution to the variational expres-
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sion for p, if the cosé form of ¢(#) is used in the
calculation. However, as we have seen, if one
uses a more accurate form for ¢(#) in the calcula-
tion, this function develops pronounced dimples
precisely where the umklapp scattering is strong.
This suppresses the contributions from these por-
tions of the Fermi surface to the resistivity, and
enhances contributions from those portions of the
Fermi surface which lie farther from the zone
boundary, and which are described by the spherical
Fermi surface model in a reasonable way. We
have demonstrated this point by the series of cal-
culations which compare, for case (i) and case (ii),
the resistivities calculated for the model with the
full spherical Fermi surface, and those calculated
with the 14° caps removed; one sees that the values
obtained for the resistivity are quite close for these
two cases, as long as the full seven- or nine-term
expression for ¢(#) is used.

In all the cases we have examined, the calcula-
tion of the ideal electrical resistivity breaks down
at low temperatures. To perform an accurate
calculation of the electrical resistivity at tempera-
tures below 10 °K in all cases would require more
terms in the expansion of ¢(#). At the same time,
considerably finer meshes would be required in the
integration schemes. Once the convergence be-
comes poor, it deteriorates very rapidly as the
temperature is lowered further, and it is a non-
trivial matter to perform reliable calculations well
below 10 °K. Physically, this problem occurs be-
cause as the temperature is lowered, the “hot
spots ” on the Fermi surface subtend a smaller and
smaller solid angle as the umklapps freeze out.
One needs a progressively finer mesh to compute
the integrations accurately. Also, the dimples in
¢ (#) presumably will sharpen up, so many more
terms in the cubic harmonics are required to de-
scribe them accurately. When one enters this tem-
perature regime, it would most likely be best not
to try to extend our approach in a brute force man-
ner, but rather to develop a scheme more suited
to dealing with the behavior expected in the low-
temperature limit, i.e., one might use for ¢(#)
not the cubic harmonic expansion but an analytic
form (with variational parameters) which mimics
the expected behavior.

We have not pursued this question of the accurate
computation of the electrical resistivity at low
temperatures for our model, primarily because
one encounters a new set of problems in addition
to those just described, if one wishes to make con-
tact with the existing data. When T'=10 °K, in the
samples studied experimentally, the lattice resis-
tivity and the contribution p, from impurity scat-
tering become comparable in magnitude. Then the
form of ¢(#) must be determined by a scheme which
simultaneously includes impurity and electron-
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phonon scattering. One expects the impurity scat-
tering to modify strongly the form of ¢(#) when p,
and the lattice resistivity are comparable. When
the Fermi surface in the model does not touch the
zone boundary, presumably ¢(#) will be driven
toward the cosé form. If we were to carry out
such a calculation for our model, it would be ques-
tionable if we could compare the results to experi-
mental data on real fcc metals. This is because
when ¢(#) has the cosé form, we know the lattice
contribution to the resistivity becomes quite sensi-
tive to the properties of the model Fermi surface
near the zone boundaries. This is clearly demon-
strated by our calculations of p with the 14° caps
removed, where we found p changed dramatically
when the caps were removed at low temperatures,
when the cosf form of ¢(#%) is used in the calcula-
tion.

To summarize briefly these rather lengthy com-
ments: in each case we have examined, we find our
calculation scheme breaks down by the time the
temperature reaches =10 °K, although the results
appear quite satisfactory to us at higher tempera-
tures. To improve the calculations below 10 °K
would likely involve extensive revisions of the com-
putation scheme and, if we wish to make contact
with data, will also require the use of a much more
realistic model. This latter conclusion is not a
new one, of course. It is clear from Ehrlich’s
work® and the more recent discussions in the paper
by Lawrence and Wilkins! that at low temperatures,
the temperature dependence of the lattice resistivi-
ty is quite sensitive to a proper description of the
Fermi surface. We refer the reader to the discus-
sion of the 7% term in the paper by Lawrence and
Willkins.

We do feel progress can be made by a more de-
tailed study of the temperature dependent portion
of the electrical resistivity of copper based alloys.
This is an area we are currently exploring.

APPENDIX A: CONVERGENCE OF CALCULATIONS

Throughout the entire study we encountered con-
siderable difficulty in obtaining convergence of the
results, particularly in case (ii). The purpose of
this appendix is to indicate the sort of convergence
we obtained for this case, in which the Fermi sur-
face touches the zone boundary.

In Table XII the effect of mesh on the resistivity
is presented. In the high-temperature region the
convergence is to better than 1% except for the one
term solution. The convergence difficulty is, in
fact, quite pronounced for the one term solution
down to 10 °K. The problem arises here from the
singularity in the integrals that exists for scattering
from the point where the surface touches the zone
boundary to points near the opposite pole. A more
refined mesh in the area would affect additional
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TABLE XII. Convergence of resistivity (uQ cm) for the case where the Fermi surface just touches the zone boundary.
Multiply
Temp. table Number of terms in the expansion of ¢ (%) Mesh
CK) value by 1 2 3 4 5 6 7 8 9 size
298 10° 7.35 6.53 6.53 5.43 5.32 5.15 5.15 5.13 5.13 A
10° 7.19 6.49 6.49 5.46 5.32 5.15 5.15 5.15 5.15 B
10° 6.84 6.41 6.41 5.49 5.38 5.23 5.18 5.18 5.18 C
49 10-! 5.61 3.76 3.76 2,57 2.46 2.29 2,28 2.28 2.28 B
10 5.15 3.92 3.92 2.64 2,51 2.35 2.35 2.31 2.30 C
20 10-? 11.7 1.48 1.34 0,943 0.909 0.877 0.758 0.662 0.625 B
102 9.71 2,27 2.24 1.23 1.12 1.06 0.925 0.699 0.649 C
10 107 363.0 5.71 2,01 1.88 0.537 0.535 0.493 0.448 0.435 B
10~ 258.0 8.06 4.05 3.46 2.82 2,82 2,62 1,57 1.25 c
107 279.0 8.16 4.01 3.46 2,73 2.73 2,58 1.58 1.32 D

changes <10% at 298 °K and $50% at 10°K. This
difficulty primarily arises when the cosé form of
¢(#) is used, and becomes much less severe as
¢(#) is allowed to decrease near the (1, 1, 1) point
of the zone. Since from general considerations we
know the full form of ¢(#) must vanish at the (1,1,1)
point for case (ii), we have not pursued the conver-
gence question further.

Convergence in the resistivity when the more
complete forms of ¢(#) are used has occurred to
within 5% for the C to D transition at 10 °K, which
suggests that our usage of the C mesh is appropri-
ate for 20 and 30 °K. When one goes from the B to
the C mesh at 49 °K, the resistivity changes by
only 5%, so that it seems appropriate to use the
B mesh above 49 °K. At 7=298 °K the A mesh
seems to be appropriate since it differs by ~1%
from the C mesh.

Next consider the results for the expansion coef-
ficients presented in Table XIII. For the moment
ignore the 10 °K data. Note that there is consider-
able variation in the third coefficient. Consulting

TABLE XIII.
surface just touches the zone boundary.

Table V in the main text we see this is a plausible
variation because the addition of the third term has
little effect on the resistivity, and presumably also
on ¢(#).

Upon considering the remaining coefficients
above 10 °K, we see changes <25% at 298 °K give
some measure of their accuracy at that tempera-
ture. By 49 °K the B mesh seems more effective
for getting at the fourth and sixth coefficients, but
the second coefficient is off by *50% if it is used
in the calculation.

For T =49 °K we expect the C mesh has given the
second, third, and fifth coefficients to < 5% based
on the C to D changes in the 10 °K results. There
is some uncertainty as to how closely the sixth
term has converged.

Finally, consider the results at 10 °K. Here we
see that the sixth term has reached a value which
is not changing but oscillates quite markedly in
going there. Note also that the third coefficient
has altered quite drastically from its values at
higher temperatures, perhaps reflecting the fact

Convergence of the normalized expansion coefficients when the Fermi

Temp. Index of the coefficient Mesh
CK) 1 2 3 4 5 6 size
Multiplying
factor 10° 10! 102 102 10! 10
298 1.00 1.65 -1.44 1.20 -2.40 2.20 B
1.00 1.26 -5,40 1.22 -2,65 2,04 C
49 1.00 1.35 ~19.2 1.58 -2.71 3.31 B
1.00 0.744 —-25.6 1.67 -3.28 3.41 C
30 1.00 1.66 -24.3 1.63 -2.74 3.34 B
1.00 0.550 -36.7 1.80 -3.25 3.80 C
20 1.00 4,34 +9.65 1.38 -1.45 2.11 B
1.00 1.57 -20.0 1.73 -2,81 3.01 C
10 1.00 1.64 133.0 0.189 6.85 —-19.4 B
1.00 1.26 103.0 0.592 4.07 0.051 C
1.00 1.30 105.0 0.554 4,26 0.025 D
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that at 10 °K it does alter the resistivity of Table
V, but seems to have converged.

Considerations such as the above have led us to
the accuracies quoted for p and 7; in the text. In
addition, the comparison of our results for alumi-

J. BLACK AND D.
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num with those of Dynes and Carbotte® and a variety
of tests not cited here involving cruder meshes,

and also with the z axis of the Fermi sphere ro-
tated off parallelism with the field, all support the
results we have presented.
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