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Resistivity of nearly magnetic metals at high temperatures: Application to neptunium and
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It is shown that, in nearly magnetic metals, taking into account the temperature depndence of the
Stoner susceptibility makes the electron-paramagnon electrical resistivity depart from the usual

low-temperature T' and T power laws at temperatures higher than the spin-fluctuation one. A
high-temperature plateau is expected and a maximum may arise at lower temperatures depending on
two parameters: the Stoner exchange-enhancement factor and the relative values of the Fermi
wavelengths of the conduction and the interacting electrons, Possible fits are presented for the
resistivities of palladium, neptunium, and plutonium and the case of strongly exchange-enhanced actinide
compounds is also discussed.

I. INTRODUCTION

It is well known that the spin-fluctuation resis-
tivity in nearly magnetic metals and alloys exhibits
an enhanced T law at very low temperature. It
has also been shown that this behavior is followed
at higher temperatures by a linear T law. These
T and T laws are effectively encountered at low
temperatures in nearly magnetic alloys(Pi-Ni') as
well as in strongly enhanced pure metals (Pd, 'Np,
Pu ). However, it is c1.ear experimentally that, in
the spin-fluctuation systems, either in alloys such
as AhFe, I~Fe, I'gFe, Pdco, and &dV, or in
pure metals, the resistivity departs from a T law
at higher temperatures with a negative curvature
and thus bends over towards the T axis. This
high-temperature behavior cannot be accounted for
by the above theories' as they stand, since they
do not take into account the temperature variation
of the spin-correlation function which can no long-
er be forgotten at high temperature. Kaiser and
Doniach have tried to take care of that point using
a low-temperature expansion of the susceptibility;
this was a first improvement, but it is not suffi-
cient to account for the whole temperature varia-
tion of the resistivity so that they were obliged to
choose huge exchange-enhancement factors in or-
der to fit the experimental data on dilute alloys.
In the case of local enhancement, Rivier and
Zlatic have recently proposed to treat the high-
ternperature resistivity the same way they treated
the Kondo problem, so that they infer that the
resistivity should reach its unitary limit at high
temperatures.

%'e study here the case of pure metals with a
uniform enhancement; we show that taking into
account the full temperature dependence of the
paramagnon susceptibility can account for the be-
havior of the resistivity on the whole temperature
range: i.e. , we explain the observed negative

curvature at high temperature and the same for-
mula reduces at low temperature to the usual
results. ' A preliminary account of that work has
been already given elsewhere. The resistivities
of the well-known exchange-enhanced metals pal-
ladium and platinium begin to depart from the
linear law roughly at room temperature. The
resistivity of the nearly magnetic &-phase of ce-
rium seems also to depart from a linear law above
70 K, but the resistivity data on &-cerium are
presently controversial. " ' The most striking
effects are in fact observed on the high-tempera-
ture resistivities of neptunium and plutonium.
The resistivity of neptunium presents a large T
term at low temperatures, departs from a T law
at roughly 80 K, then saturates and remains al-
most constant between 300 and 500 K. The re-
sistivity of plutonium behaves as T and T at low

temperatures, departs from a linear law at
roughly 40 K to reach a maximum or order 160
ItL cm at roughly 100 K and then decreases slowly
up to 600 K'; the resistivity decrease arises in
all phases of plutonium, ' ' as well as in many
plutonium-based alloys. ' Several explanations
for the temperature variation of the Pu resistivity
have been proposed previously, but most of them
have been ruled out by eXperiments (see the re-
view article by Arko et al. ). Presently the spin-
fluctuation model seems the best one to account for
the different properties of Pu '; within that
framework Arko et al. and Doniach, in order to
explain the high-temperature resistivity behavior
of Pu, have proposed that the 5f bands, hybridized
at low temperatures, becomes narrower and de-
hybridized" at high temperatures, which would
lead to a high-temperature saturation. %'e will
show that the high-temperature plateau for the re-
sistivity can be found without invoking that dehy-
bridization effect, which may well be present,
though.
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II. TEMPERATURE DEPENDENCE OF PARAMAGNON
PROPAGATOR f(ef„T)= 1+exp

c~ —ar,.(T)

JA/(~, „)' m„v
P0= 4 n, e TFc n„' (2)

A/(Er, ) = m, k&,/gVv is the total density of states
at the Fermi level for the two spin directions of
the conduction band assumed to be parabolic; m„
kF„and n, are, respectively, the effective mass,
the Fermi wave vector, and the number of elec-
trons per unit volume for the conduction band.
/f/&F, gkp /2m, is the F——ermi energy of conduc-
tion electrons. All these quantities for the conduc-
tion band are taken to be temperature independent,
due to the assumed very high value of TF,. v is
the number of atoms per unit volume and Z is the
coupling constant between the electrons of the two
bands. We use the units k& = I= 1.

The paramagnon propagator X(q, 0/, T), i.e. , the
dynamic correlation function of the interacting
electrons, is given in the random-phase approxi-
mation (RPA) by

x'(q, &u, T)
X(qy 0/y ) —

1 I 0( T) t

where I is the phenomenological interaction be-
tween the i electrons and X (q, ur, T) is the dynamic
susceptibility in absence of interaction, given as
usual by

f(ef, T) -f(~I,;, T)
x'(q, 0/, T)=z

~k (a7
(4)

5' is a positive infinitesimal and f(af, T) the Fermi-
Dirac distribution

A. Model and approximations

We use the classical paramagnon model: the
conduction electrons (labeled by the index c) of
one broad band are scattered by large spin fluctua-
tions formed by the strongly interacting electrons
(labeled by the index i) of a second very narrow
band. We assume that only the z electrons are
free and contribute to the resistivity and also that
the Fermi temperatures of the two bands are very
different: the Fermi temperature TF, of the con-
duction band is assumed to be much larger than all
the usual temperatures, but the Fermi tempera-
ture TF, of the interacting band can be within the
usual temperature range.

We follow the Kaiser-Doniach notation for the
formal expression of the electron-paramagnon re-
sistivity:

p 2JPFc q3dq
p= —'

4 2ImX(q, 0/, T)
0 Fc 0

Mdtro

( (a/T 1)(l ~/T)
with

X (q, &o, T) is defined for one spin direction, so that

X'(0, 0, o) = 0A/(~~; (0)), (6)

where N(a&; (0)) designs the total density of states
at the Fermi energy for T = 0 for the two spin di-
rections of the interacting band.

We recall the definition of the Stoner enhance-
ment factor.'

2Zf(&I, T) = n, /v,

where n& is the number of i electrons per unit vol-
ume.

The classical paramagnon theory, ' which is
restricted to a very-low-temperature study, does
not need to consider the temperature variation of
ImX(q, 0/, T) and takes its value ImX(q, 0/, 0) at T=0
in the calculation of the resistivity. The improve-
ment introduced here is to consider the total tem-
perature dependence of the paramagnon propagator
to derive the resistivity (1) in the whole tempera-
ture range. Assuming no thermal variation of I,
the temperature dependence of the resistivity is
formally given by Eqs. (1), (3), (4), and (8).

Before presenting the detailed calculations, let
us comment on the approximations of the model:

(a) We deal here with pure nearly magnetic met-
als with uniform paramagnons. The extension to
alloys with local paramagnons is not given here.

(b) We use the expression {3)and neglect the
paramagnon corrections to X, although at low tem-
peratures already the ST expansion of the Stoner
susceptibility is known to be too weak to account
for experiments on liquid He and paramagnon
corrections to X are necessary to get the correct
S T behavior observed experimentally. '

(c) We have assumed I to be temperature inde-
pendent, but I is certainly weaker at high temper-
atures. However, since I appears as a phenome-
nological interaction in the paramagnon theory, it
is difficult to infer its temperature dependence.

(d) We have assumed implicitely the same form
for the free energy at high and low temperatures,
le@ding to the same diagrammatic expansion of the
RPA series {3)with (4). This is not obviously

x{0,0, 0) 1 1

x (0, 0, 0) I -Ix'(0, 0, 0) 1 I'-
The susceptibility X (q, 0/, T) given by (4) depends

on the temperature directly and through the tem-
perature-dependent chemical potential cr;(T) of
the interacting i electrons. The thermal variation
of the chemical potential e~,.(T) is implicitly given
here by the conservation of the number of i elec-
trons; i.e. ,
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true; in particular, particle-particle interactions
negligible at low temperatures may be as impor-
tant as particle-hole interactions at high temper-
atures. Furthermore the temperature dependence
of the chemical potential of the i band obtained
here in the usual way is not obviously the correct
one: in particular, it is not obvious that it should
remain insensitive to I. To take all of those fea-
tures into account rigorously would be a difficult
problem in itself and its effect on the resistivity
behavior is not trivial.

(e) We have neglected the temperature depen-
dence of the conduction-electron Fermi energy,
which is assumed to be much larger that T~, and
all usual temperatures. So, this model is espe-
cially valid for a good metal with a broad conduc-
tion band and a very narrow interacting band; it
would have to be modified to apply to the case of
semimetals such as Yb or V&03 which have
very-small-T&, values.

(f) We have also neglected band-structure effects
and calculated X (q, &u, T) for a parabolic i band.
Moreover, in the case of actinides, we consider an
sd conduction band and a localized f band and ne-
glect the d-f hybridization, which is a huge approx-
imation for actinides, but again a rigorous treat-
ment would have been much too intricate and no
clear conclusion could have been drawn.

Performing the integration over z gives

I x'tq, , rl=
4

' f4~q l m;~d /q~/&l

x[f(e, T) -f(f +»d, T)]kdk . (14)

The imaginary part of X (q, »d, T) is obtained ana-
lytically after the integration over the energy.
The imaginary part of the reduced susceptibility
)( (q, »d, T) = X'(q, &d, T)/X (0, 0, 0) is finally given by

Im)»,"'(q, »d, T) =—
2 VFtq

e(q, ~ T)= ' + -eF (T) .m, co q
2mt q 2

(16)

The thermal dependence of the Fermi energy eF;(T)
for the i band, which is defined by (8), can be
written, in the present case of a parabolic band, as

»»C» ~' "d
1+exp([e —eF; (T)]/T].

= —:[",(o)]'", (17)

exp(»d/T)+ exp[a(q, +, T)/T]
1+exp[f(q, »d, T)/T]

(15)
where vF» = kF»/m; is the Fermi velocity of the i
electrons at T=0 and e(q, »d, T) is an energy de-
fined by

ef = k'/2m, , (9)

where m; is the effective mass of the i band. So,
with (9), the expression (6) becomes

X (0, 0, 0) = z&(&F;(0))=m;kF'/2»» V

where

kF; = (8»»'n;)'"

(10)

is the Fermi wave vector of the i band at 1'=0.
The imaginary part of X (q, »d, T) is computed

directly from (4), if we remember that

1
lim Im
+p EP

= »»5(ei„-—eg- (u) . (12)

Then, by transforming the sum over k of (4) into
an integral over the modulus k of k and over
z= cose=k ~ q/kq, we obtain

cO

ImX (q, &d, T)= dz k dk7' g p

B. Calculation of y(q, m, T)

We compute here the susceptibility in the case of
a parabolic i band; the energy Eg is given by

with &F, (0) = TF, ——k F,./2m, .
Equation (17) gives a unique curve of eF, (T)/

eF»(0) vs T/TF», this curve, obtained exactly by a
numerical computation, is plotted on Fig. 1. Some
expansions are valid for T tending to 0 or for T
much larger than T+, , but to derive the variation
of eF,.(T) for T close to TF, , we need the exact
numerical computation shown on Fig. 1.

The variation of eF;(T) is put in (15) and (16) to
give the temperature dependence of ImX (q, »d, T).
The real part of X (q, »d, T) is given by the Kra-
mers -Kronig relation.

0, T, 1 ' ImX (q, »d', T)d»d'Ref (q, ~, T~=—
7T ~00 —CO

2
" (u'ImX (q, »d', T)d»d'

p ((o')' —(u'

Then the imaginary part of the reduced suscepti-
bility X(q, &u, T)= X(q, w, T)/X (0, 0, 0) is immediately
obtained by (&); i. e. ,

ImX(q, »d, T)

lmX'(q ~, T)
[I-IReX (q, »d, T)J +T [ImX (q, »d, T)]

x[f(eg, T) -f(ei, ~ T)]

x ~ —(kqz+ zq ) —(o
1 1 2

mt
(13)

where I is defined by (7) and (10).
Equation (19), with Eqs. (15)-(l&), has been

used to derive numerically ImX(q, &, T).
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ii &F. (T)/&, , (&)

0.5

1. Static susceptibility x (q,O, T)

The reduced static susceptibility X (q, 0, T) which
is real is given by (18) with m = 0 and is described
by Figs. 2(a) and 2(b). Figure 2(a) shows the plot
of y (q, 0, T) vs q/kz; for different values of T/T~;.
At T = 0, we find back the classical curve"

. r 1+ 2k

q 2kF; 1 —q/2k~,

0

-0.5

FI
(20)

The Kohn anomaly, which occurs at q = 2A„;for
T =0, disappears when the temperature increases.

Figure 2(b) shows the plot of y(q, 0, T) vs T/T~;
for different q/k~; values. At very large temper-
atures, a Curie law is obtained for the susceptibil-
ity:

lx'(q, 0, 7)], (21)

—1.5
or, for the reduced susceptibility,

lX (q, 0, T)] -.= 'T;/T .- (22)

FIG. 1. Computed temperature variation of the chem-
ical potential &z;(T)/&z,. (0) vs T/Tz;.

C. Results for the susceptibility

The main results concerning the static suscepti-
bilities X (q, 0, T) and X(q, 0, T), the dynamic sus-
ceptibility X (q, &u, T), and the imaginary part of the
paramagnon susceptibility X(q, +, T) are summa-
rized below and described in the Figs. 2-5.

This limiting Curie law is plotted also in Fig.
2(b). The fact that the static susceptibility has to
reach a Curie law at high temperatures is a very
general result and is, in particular, independent
of the i-band shape; the shape of the i band modi-
fies only the way that the static susceptibility
reaches the high-temperature Curie law.

2. Static enhanced susceptibility X(q,O, T)

The temperature dependence of the static en-
hanced susceptibility can be obtained directly from

~,
X'(q,o,T)

0.5— 0.5

0
0

qlkF;
0

l

0.5

FIG. 2. Computed reduced static susceptibility X (q, 0, T): (a) versus q/kz; for different T/Tz; values, the curves
labeled 1, 2, 3, 4, 5 corresponding, respectively, to T/T~&=0, 0.2, 0.4, 1; 2; {b) versus T/Tz; for different q/p+, val-
ues, thecurves labeled 1, 2, 3, 4, 5 corresponding, respectively to q/A, z;=0, 1, 1.5, 2, 2.5. The asymptotic high-
temperature Curie law is given by the dashed line.
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in the case S = 10 for the same values of q/'~+& as
those reported in Fig. 2(b). For q = 0, the reduced
static susceptibility starts from T = 0 with a value
equal to S and decreases very much with temper-
ature in a temperature range around the spin-Quc-
tuation temperature, defined here simply by T~
= Tr, /S; then it reaches the same high-temperature
Curie law as X (q, 0, T) given by the formula (21).
The temperature decrease of y(q, 0, T) becomes
less important for large q values, due to the de-
crease of the product IX with q.

0
0 0.5

FIG. 3. Computed reduced enhanced static susceptibil-
ity X (q, 0, T) vs T/Tz& for different q/kz& values, the
curves labeled 1, 2, 3, 4, 5 corresponding, respective-
ly, to q/k+&=0, 1, 1.5, 2, 2.5.

Dynamic susceptibilitv X (q,~,T)

Figure 4 shows the plots of the real and the
imaginary part of X (q, &u, T) vs &u/v~, q for different
q/kz, and T/Tz; values. As it can be seen directly
from (15) with T«0, one finds for T = 0 the clas-
sical Lindhard function ':

the static susceptibility without interaction [Fig.
2(b)] by use of (3), for a given value of the Stoner
enhancement factor S. In Fig. 3, we have plotted
the reduced static susceptibility X(q, 0, T) vs T/Tz&

if & 1—(d q

~zsq 2k~]

m a~, (u q

&a&

and & 2
k~)

1f Imx
l.j

)i Rcxo
1.5

0.5 0.5

u)/vF. q

0.5

0
0

F,q

0.5

0 I I

0.5
4)/VF. q

FIG. 4. Computed variations of the imaginary part and the real part of the dynamic reduced susceptibility X~(q, ~, T)
vs +/vz&q for two q/kz; values: q/k+& = 0.1 (top of figure), q/kz& = 1 (bottom pf the figure); and for different T/Tz; values,
the curves labeled 1, 2, 3, 4, 5 corresponding, respectively, to T/T&; =0, 0.2, 0.4, 1, 2.
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other wi se,

C0
if 1— 1+

+F» VF»q 2kF;

(23)

2 7r'"T
(&~x'(a ",&H,. = —(-'

T

(rn;(u ) .„)2r,22 I/2
x 2 e

Tq
(25)

ReX (q, &u, 0)= —+—1 1 kF»
2 4 q

qx 1 — --+
VF» q 2kF»

1 +(0/vga q +q/2k' gxln
1 —(d/vr q —q/2kpq

1+a/v +&q —q/2. km&xln
1 —&/v„q+q/2kF,

(24)

When the temperature increases, there is a gen-
eral collapse of the X (q, ~, T) curves and a broad-
ening of the peaks, at very high temperatures, it
results a small and smoothly varying susceptibility.
The asymptotic form of these curves for T -~
corresponds to the susceptibility of a Boltzmann
gas, which is given by

[ReX (q, ~, T)jr „

2 TF~
1 — m;&u e 'dt

. (26)3 T (m) Tq 0 m /2T —t

4. Imaginary part of X(q,~,T)

The imaginary part of X(q, w, T) is computed by
the expression (19) as a function of ImX (q, w, T)
and ReX (q, a, T), for a given I or S value. Fig-
ure 5 shows the plot of ImX(q, u, T) vs v/vF; q for
different q/kz, and T/Tz, values in the case of a
large exchange-enhancement factor S = 10.

One finds again, for T = 0 and small q values, a
peak centered at roughly &u/vr;q = 1/S and with an
intensity increasing with S. The effect of temper-
ature is a general collapse of the ImX(q, &u, T)
curves and a broadening of the peak as a direct
consequence of what happens for X (q, &o, T). For
T of order TF;, there is no longer any peak: Imx
(q, &, T) is very small and flat. So, the effect
of temperature is essentially to destroy the peak
characteristic of paramagnons and thus one can no
longer speak of enhanced spin fluctuations in the
usual sense at high temperature. This is reason-
able since the concept of paramagnon is linked to
the one of quasiparticles in the Fermi-liquid theory
which applies only at low temperature, so that this
concept should become irrelevant at very high tem-
peratur e.

2

III. PARAMAGNON RESISTIVITY

A. Resistivity saturation at high temperatures

0.5 1.$ ~/v
I

Before presenting the calculation of the resistiv-
ity for th whole temperature range, let us first
derive its asymptotic form at high temperatures.

The expansion of the exponentials in (1) for T- ~
leads to

0 0.5 ~/v qFI

"F~ q'dq "
2ImX(q, (u, T)p~„„=poT d(d

0 ~Fg 0 CO

(27)
Using the Kramers-Kronig relation, we can write

"
2lmX(q, ~, T) d~ = wReX(qi 0~ T) = ~X(q~ 0~ T) ~

(28)
so that the asymptotic form of p becomes

FIG. 5. Computed variation of the imaginary part of
the reduced enhanced dynamic susceptibility X (q, &, T) vs
cu/vF»q with a Stoner enhancement factor S equal to 10 for
two q/kF» values: q/kF» =0.1 (top of the figure), q/kF, .
=1 (bottom of the figure); and for different T/TF, . values,
the curves laveled 1, 2, 3, 4, 5 corresponding, respec-
tively, to T/TF, =O, 0.2, 0.4, 1, 2.

pT- = ~poT
X, (q, O, T) q dq

1 —IX (q, O, T) k~,
(29)

We see immediately f"om (29) that if we do not
take into account the temperature dependence of
X (q, u, T), the asymptotic form of p is linear in
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Friedel spin-disorder problem. This point will
be discussed in more detaQs in Sec. HID.

C. High temperature behavior: Existence of a

maximum

RrrtmXfd, rd, T)drd) .1

0
(35)

The first term can be transformed into X(q, 0, T)
using (28) and (29), but if we would like to have the
corrective term to p„,we have to expand Xo(q, 0, T)
in )((q, 0, T) up to the second term in 1/T, i.e.

X frl, O, T) —
0, T t-)RT)'0 n~1 q (36)

The following term appearing in (36) comes from
the first correction to the Boltzmann distribution
and is in T '~ . The first term of (35) can be writ-
ten as

21my(q, (o, T)

0 (0

= —~ 1+ I d-~ — (37)
~n (-k' ' 1
2v ( 3 12 T

The second term of (35), which is of order T ',
can be computed by taking for Im)((q, &d, T) the as-
ymptotic form of im)(0(q, to, T) given by (25), or
more simply by the f-sum rule

r rm Rdt trX, d) rTdrrdR )md rtd, dr, T)drr
0 0

%Ãg 2
2v~ '

So, after performing the integration over q, the
resistivity is given, up to the first order in T, by

p= p.ll+ R& -~st'»r(/T] (39)

[Note that there was a misprint in Ref. 11, for-
mula (6), which is obviously identical to our Eq.
(39).]

R results that a criterion for the existence of a
maximum in the resistivity curve is

J &g(2 (40)

This criterion is verified by the results of Fig. 6;
in parhcular, since we always have I «1, there is
no maximum, regardless of S; for ( larger than
&xf 30 as it can be shown in Fig. 6 for the two cases
)=1 and (=2.

If the resistivity saturation is independent of S,
the way p reaches this limit is, on the contrary,
strongly dependent on S and $, as shown in Fig. 6.
For T- ~, we can expand the exponentials of (1)
in power of 0d/T and write

'Rrd q'dq 2imX(q, (o, T)
P —Po 4

2~ 3

c

~
j j d(0

0 4'c 0 ('d

p tr, r= r. a I S(S+I) ~

m gk0 1 mG'2

e gdGF m 4n ~ j (41)

G is the s-f coupling per atom identical to Z/v in
our case, k0 is the Fermi momentum of the con-
duction electrons identical to our k~„)d(-.F is the
number of conduction electrons per magnetic ion,
so that, in our notations, when each f electron of

spin & replaces each magnetic ion of spin 8, one
has the identification

G =-Z/v, ko—= kr„(sRr n,/nt=—,

Then one writes in our notations

(42)

3 n~ m„J
p~ dGF 16 2g3 2 kgc (43)

Then using k/7'rd = K krd/2m, and N(cr, )= m pr, /
R) I v, we have

p. ~r= 8 f~&(~rd)] a
nce 7'Ec nc

' (44)

which is identically our formula (31).
Now, the critical temperature of de Gennes and

Friedel' is given by their formula (5. 3):

T, ~r —RJdorvS(S+1) (45)

v is the number of nearest neighbors of a given
ion,' Zd(:F is the interaction between two ions and
has to be identified with the interaction I between
the i electrons here. Identifying v with n, /v, we
get

Td fROr = R IRRt/V x

which may be rewritten as

T ~F —3I TP]

(46)

(47)

Furthermore the formula (5.8) of de Gennes and
Friedel can be written at high temperature:

3d 1+ ~T ~~ k& . 48

The corrective 'T ' term appearing in (39) de-
pends on all the approximations of the model.
Certainly it would be different for realistic band

shapes (not parabolic), for a temperature depen-
dent I interaction and with including paramagnon
corrections.

But, since a similar T ' correction from the
asymptotic p limit appears here as in the de
Gennes and Friedel spin-disorder resistivity,
we want to show now the details of the comparison
between our Eqs. (39) and (31) with the spin-dis-
order resistivity Of de Gennes and Friedel.

D. Comparison with spin-disorder resistivity

The high-temperature spin-disorder resistivity
is given by the formulas (3.6), (3.8) and (3.4) of
the de Gennes and Friedel paper
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If one supposes the distance d between the scat-
terers (the i-electrons in our case) to be very
small, the above formula can be expanded in pow-
ers of kod:

e 4GF 1 (k )2Tc dGF

p 4GF T (49)

This formula has to be compared with our formula
(39), which can be rewritten as

2I T~,. 4 kp
p 3T 3I k~,.

(50)

The comparison of (49) and (50) is particularly
striking: we just identified, above, p 4GF with
our p„and T, 4GF with our 3IT„,; moreover in
the remaining brackets, we have the same wave-
length effect as de Gennes and Friedel. If we sup-
pose the distance between the scatterers to be
much smaller than the conduction-electron wave-
length, their formula is similar to ours if one as-
similates d with 3/IkF, ——(2/l)(v/. n,.). This is rea-
sonable. ' the phenomenological interaction I in the
paramagnon model is very short range, ' actually
it is taken to be a contact interaction, so that the
identification between d and (2/I)(v/n&) is not
strict although physical.

However, one can discuss the role of our param-
eter ( in the same way as the role of the param-
eter kpd of de Gennes and Friedel; when this pa-
rameter increases, the wavelength of the interact-
ing electrons becomes larger than the conduction-
electron wavelength and thus the intensity of the
scattering decreases leading to a smaller resis-
tivity for larger $, as it has been shown on the
numerical results.

In their discussion of the wavelength effect, de
Gennes and Friedel noticed that for large kI. ,d the
correlation effect is small, while for small values
of that parameter one expects a large correlation
effect and an important increase of the resistivity
in the neighborhood of T„in which case the mo-
lecular-field approximation has to be refined.
This is quite true in our case, too. The RPA ap-
proximation should be improved at lower temper-
ature by including higher-order paramagnon cor-
rections, as was already indicated in Sec. II A.

%'e wish also to point out here the following re-
mark: T, 4GF in the de Gennes-Friedel case is the
critical temperature separating the disordered
paramagnetic region from the ordered ferromag-
netic one. Here we never reach a magnetic order-
ing, since the system remains paramagnetic over
the whole temperature range; however, the tem-
perature -,'I T~,. = T, ~F corresponds to a smooth
transition between a high-temperature region,
where the i electrons act almost independently
(cf. the disordered region of de Gennes and Fried-
el), and a low-temperature region, where the i

electrons act as strongly interacting ones under the
form of paramagnons (cf. the ordered region of
de Gennes and Friedel). From that point of view,
the larger is I and thus the wider is the tempera-
ture range 0 —T —T, 4GF

———,'I T&, where the para-
magnons are important. Moreover, when S is
stronger, the spin-fluctuation temperature is
smaller and so is the temperature nf the maximum.
This effect of 8 is shown numerically in Table I,
where we have reported, for different 8 and $ val-
ues, T, 4GF = —,'I T+„the spin -fluctuation tempera-
ture T„=TF;/S and the numerically computed tem-
perature T and value p of the resistivity maxi-
mum.

E. Low-temperature behavior: Comparison with

previous theories

1. Low temperature behavior

The 4' term at low temperature is directly ob-
tained by use of the expansion of Im&(q, u&, T) up to
the first order in m and T. So, for Re)f (q, w, T)
we use the expression (20) giving X (q, 0, 0) and for
ImX (q, &o, T) we use:

Imp (q, u, T) = — = —— for q & 2kF,2vpq 4 q

0 otherwise (51)

Since the expressions (20) and (51) are also a first-
order expansion in &u and T for X (q, w, 0), the low-
temperature T term is exactly the same here, in
our case of a temperature-dependent susceptibility,
than in the previous case where one has taken
g(q, ~, 0) in the whole temperature range.

This T term is given by

(52)

with

and

2 min(4, 1 j —2d-
~S( )~2q

16 p
(53)

S(q) = Ii -IX'(q, 0, 0)] '
~ (54)

p/p = B(T/TF;), (55)

After this T term, the resistivity increases, but
there is a change of curvature at a more-or-less
high temperature; so one cannot speak strictly of
a linear behavior, perhaps only in the region where
the change of curvature occurs. The previous lin-
ear behavior was obtained as an asymptotic high-
temperature behavior in the case of a temperature-
independent susceptibility. In order to compare
with the exact behavior, let us derive this T term.
It can be obtained just by replacing &P(q, 0, T) in
(29) by X (q, 0, 0), so thai it is given by
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where

2( 3

8= — )| (q, 0, 0)S(q )
0

(56)

The comparison between the two cases of tempera-
ture-dependent and temperature -independent sus-
ceptibility is shown in Fig. 7. In Fig. 7 we have
plotted the resistivity curves computed directly by
the general formula (1) by use of g(q, &u, T) [curves
(1)] or by use of X(q, &u, 0) instead of Z{q, &u, T)
[curves (2)] for S = 10 and for two values of (:
)=0.5 and )=1. In this figure one can observe
the importance of the departure from the T law
arising in the region of T„=Tz,./S.

But let us now compare the behaviors with pre-
vious theories which correspond generally to an
approximation for the curves (2) of Fig. 7.

2. Comparison with previous theories

Approximate analytical expressions can be ob-
tained to describe the T -T behavior in the case
of temperature -independent susceptibility.

If we approximate &{ (q, ur, T) in the whole fre-
quency range by its low-frequency first-order ex-
pansion given by (20) and (51), we obtain

~,=l; i.e. , for &u= (2/v)vF&q/S(q) T. he discrep-
ancies with the exact shape given by Fig. 5 for
T= 0 are (i) a small shift of the maximum due to
the neglect of the ar dependence of Re){ {q,~, 0), and
(ii) the introduction of tails for large &u values
where (20) and (51) are no longer valid.

Then the resistivity takes the form

' ""'q'dq 1

P 7T 0 T,

r
OO -2x, ' ', , (59)(es' ~& —l)(1 e—so~ra)(1+~~) '

with

'T 'T
S(q) = —=S(q) .a 2vz;q 4 q

(60)

Then, we recongnize the T -T function of Kaiser
and Doniach:

OO -2
f(T)= =- .- z . (61)

T o (e" ~& —1){I—e "~r)(1+m )
'

In the case of alloys, this function describes di-
rectly the spin-fluctuation resistivity curve, but
here one has to integrate over q, and the resistiv-
ity is given by

Im){{q,(u, 0) = S(q) z, (5V)

7l' 7F (0
S{q)= —:S{q).2v~q 4 q

(58)

where &, is a q-dependent reduced frequency given
by

p 5 0
f ——s(q)4 (4 ~ (62)

Using the change of variable z = I/2zT, the function
f(T) can be expressed in term of the digamma func-
tion q(z)":

In (58), we assume I close to l.
So, within this approximation for X, we obtain

a Lorentzian shape for Imp which is maximum for

c
1 1 z Sg(z)

2' 2 4z 2 ~z

So, using the following expansions ':
(68)

], p pm

0.5 0.5

0
0 0.1

T/T,
0—

02 0 03 0.2
F(

FIG. 7. Low-temperature part of the resistivity curves for S =10 and two values of $: $ = 0.5 (left-hand part of the
figure) and ( =1 (right-hand part of the figure), as explained in text: the curves labeled (1) and (2) correspond, respec-
tively, to the exact computed resistivities with temperature dependent and temperature independent Stoner susceptibility.
The parabolas and straight lines, (3) and (4), correspond to approximate analytical derivations of the low- and high-tem-
perature limits, respectively, with hpproxirnation (a) ] or without [approximation (b) ] taking into account the q /12 term
in S(q).
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8(t) (z) 1 1 1= —+ 2+ 3+. ~ - when z-~,

ez z 2z2 6z'

s({)(z) 1 m

~z z 6
= ~+ when z-0,

the asymptotic forms of f(T) are 4(( T at low tem-
perature and —,'gT —~ at high temperatures. Thus,
formula (62) is characteristic of a curve starting
as T at low temperatures and reaching an asymp-
totic linear T law at high temperatures. These as-
ymptotic behaviors are given by

For T-O,

p { &i)
with

2 m(n((, 1(
~s(

(65)

(66)

We recognize the same T term as in the exact
case [formulas (52) and {53)j.
For T~ Oy

T 48 {min/t', Ij)
p Tr; 5n

with

3 2 mini), 1) 3d-s()qq

{67)

(68)

Equation (68) appears as an approximation of (56)
by taking an Heaviside function for X (q, 0, 0) with
a cutoff at the Kohn anomaly instead of the exact
q -dependent curve.

At this step, the analytical expressions of A and
& will depend on the approximate analytical ex-
pression used for S(q).

Approximation (a). The small-q expansion of
X (q, 0, 0) usually taken in the low temperature
theories leads to

S(q) = 1
(69)

S(I7)= =S .1
(72)

Assuming $ &1, we find the following analytical
expressions for A and B:

, (-.S) a|c(an(((-.S) ]-, ),1/2 t(3S)' '
4$ 3+$ S

(vo)

B,= ~ 1 — q jn(l+ 3t' S)
~
.S (71)

Expression (70) was already given by Mills.
&approximation (b). For very-small-$ values, if

P& Iq ~ (= 3 I P ) is much smaller than 1 -I, i.e. ,
( «3(1 -I )/I, one can then drop the q term in the
denominator of (69) and one gets

Bb= ~S (v4)

In order to compare the approximations (a) and
(b) with the exact curves (1) and (2) of Fig. 7, we
have reported, in the same figure, the two parab-
olas corresponding to (65) [with (70) and (73)] and
the two straight lines corresponding to (67) [with
(71) and (74)]. So, the curves labeled (3) and (4)
in Fig. 7 correspond, respectively, to the approx-
imations (a) and (b).

Then, we can finally make some remarks.
(i) In Fig. 7, we see clearly that the approxima-

tion (a) and (b) are very rough for large g, as $ = 1.
When $ is smaller they become realistic and ob-
viously the approximation (a) is always better than
the approximation {b).

(ii) For very small t' values, when approxima-
tion (b) is valid, one notes a scaling in T /T „and
T/T„for the low-temperature behavior of p.
Kaiser and Doniach found a similar scaling in the
case of alloys, but Mills pointed out that this
scaling does not hold in general; indeed; as we see
here, it depends very much of the value of the en-
hancement (as shown by Mills ) but also of the
value of (.

(iii) These analytical results permit a better de-
scription of the respective roles of S and $. When

$ tends to zero, the opposite roles of S and ( ap-
pear clearly, since formula (73) involves only
S /g. In this very small g limit, the resistivity be-
haves at low temperatures as

(v5)

(iv) Since there exists a scaling in (T//T„~(
for very small $ at low temperature, it looks in-
teresting to compare the temperature T of the re-
sistivity maximum to T„&$.Table II gives TJ
T„W)forthe values of S and $ of Table I. Accord-
ing to Table II, this ratio is reasonably constant
and we estimate T to be roughly given by

r = 5T„Wj=5T„(~)/s. (76)

This formula can be very useful for analyzing the
experimental data.

(v) According to Table I, the larger the S and the
smaller the $, the smaller the T and the larger
the p .' this is in perfect agreement with the anal-

This approximation is the one considered by
Mills and Lederer in their first derivation of the
low-temperature T term.

The corresponding values of A and B are the as-
ymptotic forms of A, and B, when $-0 and are
given by

$2
A ———

b
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Tc dGF/Tzg
T,f/TF;

T /TJ, ,

pm/p

=0.2
=0.3
=0.5
=0.2
=0.3
=0.5

0.44
0.33
0.78
0.94

&1
1.26
1.16

0.53
0.20
0.47
0.57
0.73
1.53
1.38
l. 13

0.60
0. 10
0.25
0.29
0.38
2. 11
1.85
1.38

ysis in Sec. IIID on the high-temperature results
where we noted that the effects of the correlations
are larger for smaller $ and larger S. We remark
also that, according to Table II, the product (pJ
p )(TJT&;) is practically constant and close to
1 ~

IV. COMPARISON WITH EXPERIMENTS

A. Experimental situation

The improvement brought by the present theory
with respect to the previously obtained T and T
laws for the spin-fluctuation resistivity concerns
the clear departure of the high-temperatures re-
sistivity from the T law, with the possible occur-
rence of a maximum. We would like to review
here the experimental situation of spin-fluctuation
systems, with special attention paid to the high-
temperature domain.

Our present study of extended spin fluctuations
can be applied as it stands only to pure metals and
compounds. Extension to local paramagnons in-
volving g; )( (q, ~, T) would be needed to account
for dilute alloys with nearly magnetic impurities
and is not included in this paper. The resistivity
of some semimetals like V203 or ytterbium
close to the metal-semiconductor transition also
exhibits a tendency to saturation at high T which
would certainly involve, as in our case, the tem-

TABLE I. Values of the critical temperature of de
Gennes-Friedel T, ~F/TF;, of the spin-fluctuation tem-
perature T,t/Tz&, of the temperature TENT+, and. the re-
sistivity p~/p at the maximum of the resistivity curves,
for different S and ( values.

10

perature dependence of the correlation function;
but, to start with, the model is different, and our
calculation cannot be simply extended to include
those cases.

In the transition elements series, palladium
and platinium are the two well-known exchange-
enhanced paramagnetic metals. The resistivity of
palladium presents a small T term at low temper-
atures with a coefficient A„,= p/T equal to
3x10 p&cm/K, and then increases linearly
with temperature as shown on Fig. 8. Moreover,
both resistivities of platinum and palladium de-
part from a linear law at high temperatures. If
we call T~ the temperature at which the resistivity
departs from the T law, T~ is roughly equal to 300
or 400 K, respectively, in the palladium and the
platinum.

In the rare-earth series, only a-cerium is
known to be an exchange-enhanced paramagnetic
metal with a large Stoner enhancement factor. ' '

The resistivity of a-cerium at normal and high
pressure has been recently measured by several
authors, but the present results are controversial.
Katzman and Mydosh' have found, at low temper-
ature, a large T term which is rapidly decreasing
with pressure; on the contrary, Brodsky and
Friddle, Grimberg et al. , and Nicolas-Francillon
and Jerome' have found either no T term or a
very small one in a pure a-cerium sample which
contains no P-phase. Then the resistivity of &-
cerium increases linearly with temperature, but
there also exists a controversy as to whether there

P
{pQ cm)30-

20

10-

TABLE II. Values of the rations T~/T, f&j and {p~/p„)
{T~/Tg~)t for the S and E values reported in Table I. 0

0 200
I

400
I

600 800

TSt

{T,f ~j)
5.2

5.2

1.11
l. 12

5.2

5.2
5.2

1.05
1.04
0.97

10

5.6
5.3
5.4
1.05
1.00
0.85

FIG. 8. Fit of the resistivity of Palladium; {&, +, ~,
0, 6) experimental data of Pd {Ref. 12): v according to
White and Woods, a according to Ricker and Pfluger, ~
and 0 according to Schindler et al. , & according to Epel-
boin and Uapaille; {-———-) the theoretical resistivity
with $=10, ( =1, p =47 pQcm, T+; =2000 K, { ) the
total theoretical resistivity obtained by adding the resis-
tivity of Ag {Ref. 44).
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p
{pQ cm)

Np

50

T{x)
l

600

FIG. 9. Fit of the resistivity of Np; (&,A) experimen-
tal data of Np according to Meaden (Ref. 18); (-----)
the theoretical resistivity with S=10, $ =0.5, p„=71.5
pQcm, Tz& =750 K; ( ) the total theoretical resistivi-
ty obtained by adding the resistivity of Th (Ref. 22).

is a negative curvature at high temperatures.
Katzman and Mydosh and Nicolas-Francillon and
Jerome have found a slight departure from the
T law at 60-80 K, but Brodsky and FridcRe' have
obtained a linear law up to the highest measured
temperature. Thus, the experimental situation
of a-cerium is not sufficiently clear to allow a
direct comparison with our study.

The most conclusive cases concern the resistiv-
ities of actinide metals and compounds. The re-
sistivity of neptunium has an important T term
with a coefficient A,~= 2x10 ' p& cm/K, ' begins
to depart from the T law at T~=80 K, and saturates

i . .' he
resistivity of plutonium behaves as T at low tem-
peratures with A,~ of order 10 p, Acm/K (A,~
=0.021 pQ cm/K for single-crystal monoclinic
e-Pu with the current along the [010]direction'),
then departs from the linear law at T~ = 40 K and
reaches a maximum of order 160 p, A cm at roughly
100 K, as shown in Fig. 10. The maximum is
more pronounced with a lower maximum tempera-
ture for the single-crystal Pu with the current
along the [010]direction, while the resistivity re-
mains almost constant from 120 to 300 K for the
single-crystal Pu with the current along the [100]
direction, as also shown in Fig. 10. However,
the magnetic susceptibilities of both neptunium
and plutonium ' remain roughly constant up to
300 K.

The maximum of the resistivity curve becomes
less pronounced when small amounts of aluminum, '

24cerium, scandium, ' or neptunium ' are diluted
in plutonium. The same type of resistivity curve
with a maximum exists in PuqFe, Pu3A1, or
PuA4 compounds. In particular, the resistivity

P
(pQ cm)

150

100

)
)

—(b)
c)

I)
c)

'l00
I

200

T{K)
300

of PuA12 is quite surprising, with an enormous
2

A, coefficient equal to 0.94 p, &cm/K for the T
law, a maximum of order 220 p, ~cm at a, temper-
ature smaller than 10 K and a rapid decrease to
reach at room temperature the same resistivity as
that of plutonium itself. The PuA12 magnetic sus-
ceptibility has a Curie-Weiss temperature depen-
dence at high temperatures and deviates from this
at low temperatures, but there is no evidence of
localized magnetic moment.

Other compounds present a resistivity that sat-
urates at high temperature, like that of neptunium.
This is, for example, the case of UA12, PuRh2,
PuIr2, PuRu2, ' and NpRh3. ' On one side, the
resistivities of UA12,

' PuRh2, and NpRh3 be-
have as T at low temperatures with A,~ coeffi-
cients respectively equal to 0.27, 0.127, and
5x10 p, &cm/K and T, temperatures respectively
equal to 20, 30, and 90 K. Furthermore the mag-
netic susceptibilities of these three compounds
decrease appreciably with temperature. On the
other side, no T term was found in the resistivity
of PuIr2 and PuRu2 at low temperatures, the T~

temperatures are relatively large (of order V5 K)
and their magnetic susceptibilities are roughly
constant up to room temperature, as in the case of
Np and Pu.

FIG. 10. Fits of the resistivities of a randomly ori-
ented (a) sample of Pu and of monocrystals with the (010)
direction parallel (b) and perpendicular (c) to the current;
Q), (&), and ('7) experimental data (Ref. 23) correspond-
ing, respectively, to the cases (a), (b), (c); (----) the
theoretical resistivities with S=10, p„=95pOcm, T&;
=280 K and different $ values: $ =0.4, 0.37, 0.53, re-
spectively, for the cases (a), (b), (c); ( ) the total
theoretical resistivities obtained by adding the resistivity
of Th (Ref. 22).
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TABLE IG. Values of the A,~ coefficient for the low-
temperature T2 law and of the temperature Tz at which
the resistivity departs from the T law for different met-
als and compounds.

Pt
Pd
Np

NpRh3
PuIr2
PuRu2
Pu
PuRh2
UA12

PuAl&

A~~(pQ cm/K )

3 x10-'
2 x10
5x10

10 (0.021 for (010)Puj
0. 127
0.27
0.94

400
300

80
90
75
75
40
30
20

5

B. Analysis of the experimental data

Table III gives the values of A,~ and T„for all
the metals and compounds reviewed in the last
paragraph. The existence of spin fluctuations is
apparently established for all the systems of Table
III.3 41-43 Two reasons support this hypothesis:
first, these materials have a large T term in the
low-temperature resistivity; then according to
Arko et al. , the ratio of the total densities of
states deduced from magnetic susceptibility and
electronic specific-heat constant is, respectively,
2. 9 for n-Np and 2. 1 for +-Pu. But if we remem-
ber that these metals have Vs, 6d, and 5f bands
and that essentially the magnetic susceptibility of
the 5f electrons is exchange enhanced, and more-
over if we take into account the mass enhancement
effect for the electronic specific-heat constant, we
find Stoner enhancement factors of order 10 for
both Np and Pu.

So, we apply the preceding theoretical model to
the systems listed in Table III. The interacting
band i is the d band for Pd and Pt, while it is the

f band for rare earths and actinides. In the case
of Np and Pu metal and compounds, we consider
that the i band is the very narrow 5f band and the
c band is formed by the 7s and 6d bands and we
neglect here the d-f hybridization. We will come
back to this point later on.

First, two interesting comments can be drawn
from Table III: (a) There is a connection between
A,~ and T~; the value of T„decreases when the
A,~ coefficient increases or when the material is
closer to becoming magnetic. This result agrees
with the model for which the saturation at high
temperatures is clearly linked to the importance of
the paramagnons yielding the T law. (b) The tem-
perature T~ is larger by in order of magnitude for
Pd and Pt than for the actinides, while the A,„,co-
efficient of Pd is smaller by at least two orders of
magnitude than the A, coefficients of actinides.

Since the Fermi energy T+, is larger by an order
of magnitude for d bands than for f bands, this re-
sult agrees with the theory where T~ varies as TJ;;
and A„,as I/(T&;) . It results also that the re-
sistivity is smaller for d metals than for f metals

Then, we can present the fits of the resistivities
for palladium, neptunium, and plutonium. These
three metals have a large exchange-enhancement
factor, chosen here equal to 10. We assume that
the resistivity is the sum of the paramagnon re-
sistivity given by the theory and of the phonon re-
sistivity; this small contribution is supposed to be
equal to the total resistivity of neighboring normal
metals: silver for the fit of Pd, and thorium
for the fits of Np and Pu. The value of T~; is
chosen to be some 10 K for Pd and some 10' K for
Np and Pu, which is reasonable, although too
small, for d and f bands. At last, the values of p„
and especially of the unknown E parameter are cho-
sen for the best fit of the experimental curves.

Figure 8 shows the experimental resistivities of
palladium and silver and also the theoretical re-
sistivity (in full line) obtained by the sum of the
phonon resistivity, i.e. that of silver, and of the
theoretical paramagnon resistivity (in dashed line)
plotted for S=10, T~; = 2000 K, (=1, and p„=47
p, ~cm. But because of the uncertainty in (, the
theoretical fit of Fig. 8 is certainly not the only
one.

Figure 9 shows the experimental resistivities of
neptunium and thorium, as well as the theoretical
plot for Np. The resistivity of Np is almost con-
stant from 300 to 550 K, so that the para, magnon
resistivity has a maximum at roughly 300 K. The
parameter $ is chosen here equal to 0.5, in order
to have such a maximum. We have taken here
S = 10, TF; = 750 K, $ = 0.5, and p„=71.5 p, 0 cm in
order to have a very good theoretical fit to the ex-
perimental data. These values are slightly differ-
ent from those reported previously, in order to
make a better fit to the high-temperature plateau.

Figure 10 shows the experimental resistivities
of Plutonium either (a) with a maximum for a, poly-
crystal, or (b) with a more pronounced maximum
for a monocrystal with the current along the (010)
axis, or (c) with a plateau from 120 to 300 K for a
monocrystal with the current along the [100j axis.
In the cases (a) and (b), the total resistivities ex-
hibit a maximum so that the $ parameter has to be
small; in the case {c), $ is a. little la, rger to give
a maximum only for the paramagnon resistivity.
So, the theoretical fits have been obtained for.'
S = 10, TF, = 280 K, p„=95 p, ~ cm, and three dif-
ferent $ values: ( = 0.4 for the case (a), $ = 0. 37
for the case {b), and (=0.53 for the case (c). The
choice of different ( values for fitting the highly
anisotropic resistivity of &-Pu single crystals can
be qualitatively understood because the Fermi sur-
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face of plutonium is certainly complicated and an-
isotropic; however, we cannot compute quantita-
tively this effect. The p„limits have practically
the same value for Np and Pu, which is consistent
with similar conduction bands and number of 5f
electrons; but in order to obtain a pronounced
maximum for Pu, we must choose different T~;
and $ values without any clear justification in the
parabolic band model.

So, very good fits have been obtained for Pd,
Np, and Pu. We have not fitted the data on plati-
num because it has a small Stoner factor, nor
that on n-cerium because they are presently con-
troversial. Acording to Fig. 6, it would be pos-
sible to fit the data on PuA12 by for example taking
the same p„and TF; as for Pu, but a much smaller
f and larger S than in Pu, in order to obtain its
extremely pronounced maximum. The curves of
PuIr2, PuRua, PuRhz, UA12, and NpRh& compounds
can be fitted by taking a $ value of order 0. 5 to
avoid a maximum as in the case of Np; the S val-
ues have to be chosen very large for UA1& and

PuRh2 and smaller for the three other compounds.
At last, the high-temperature decrease of the

resistivity of plutonium is less pronounced when

pressure is applied up to 13 kbar. Figure 6 in-
dicates that this variation can be described by a
decrease of S for increasing pressure, as a result
of the weaker f character in actinides as well as
in rare earths under pressure. It is worthwhile
to note that the change in the density of states am-
plified by the effect of S in a nearly magnetic metal
can be experimentally observed, while the simple
change in the density of states in a normal metal
would have been too small to be seen'. this fact is
a strong argument for the present paramagnon
model.

However, the value of TF, used for plutonium is
very small —on the order of room temperature-
and furthermore, according to Fig. 3 for q = 0, the
temperature variation of the Stoner susceptibility
for the i band must be very large to account for
the observed behavior of p. The magnetic suscep-
tibility of PuAlz and UA1& have a Curie-Weiss tem-
perature dependence at high temperatures and
deviate from this at low temperatures; similarly
the magnetic susceptibility of NpRh& and PuRh2 de-
creases appreciably with temperature. So, these
results on the magnetic susceptibility are in good
agreement with the theoretical model and consis-
tent with the results on the resistivity.

But, on the contrary, the total observed mag-
netic susceptibility of Pu, Np, PuIr2, and PuRu&

is almost temperature independent up to room tern-
perature, although the theoretical Stoner suscepti-
bility of the i band has to decrease rapidly with
temperature to account for the observed behavior
of p. So, there are spin-fluctuation systems which

present a temperature -independent susceptibility;
according to Table III, these systems have smaller
&,~ values and larger T~ temperatures. The re-
cent study ' of the four compounds PuPt2, PuRh2,
PuIr&, and PuRu& is very illustrative of this point
of view: PuPt2 has a localized magnetism with
ferromagnetic ordering below 6 K and the resistiv-
ity curve is typical of a magnetic compound. The
effect of paramagnons is important in PuRhq, be-
cause &,~ is large and T~ small, and correspond-
ingly the magnetic susceptibility decreases appre-
ciably with temperature. At last, the two com-
pounds PuIr& and PuRu&, which have resistivities
with larger T„values, have roughly constant mag-
netic susceptibilities up to room temperature.

So, for the spin-fluctuation system in actinides,
the decrease of the magnetic susceptibility appears
generally to indicate larger exchange -enhancement
factor than the negative curvature of the high-tem-
perature resistivities: this point is not clearly
understood here. But our present model for acti-
nides is greatly oversimplified, because the bands
are taken to be parabolic, the 5f band is assumed
to be extremely narrow, and the d fhybridiz-ation
is neglected. Moreover, the total observed sus-
ceptibility contains a large 6d contribution in addi-
tion to the temperature-dependent 5f contribution.
For all these reasons, the relation between the
susceptibility of our i band and the total observed
susceptibility is not obvious.

Another explanation ' has been proposed to
explain the different behaviors of the magnetic sus-
ceptibilities: the spin-fluctuation systems which
experimentally exhibit a temperature dependent
susceptibility are of the nearly ferromagnetic. type,
like those studies here, while those which exhibit a
temperature -independent sus ceptibility would be
of the nearly antiferromagnetic type.

We think that a better relation between the re-
sistivity and the magnetic susceptibility of nearly
magnetic actinides would need a better description
of the band shapes, of the d-f hypbridization and
also of the paramagnon corrections to X . We wish
to note, too, that these effects (not included here)
and especially the combination of them may act
differently on static properties (susceptibility)
and dynamic properties (resistivity), so that it is
difficult at this point to relate quantitatively the

temperature dependence of the measured total
susceptibility and the temperature variation of the
susceptibility of our i band used to account for the
observed resistivity.

C. Concluding remarks

Taking into account the explicit temperature de-
pendence of the Stoner susceptibility gives a high-
temperature saturation for the paramagnon resis-
tivity and a possible maximum at lower tempera-
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tures. The theoretical model has been applied
successfully to the resistivities of palladium, nep-
tunium, plutonium, and plutonium compounds.
However, we cannot really connect in our simpli-
fied model the temperature dependence of the re-
sistivity to that of magnetic susceptibility for Np
and Pu at the present time, but we have explained
that the apparent contradiction between them might
be irrelevant.

To conclude, we suggest some more experiments
as a further check of our model:

(a) The resistivity of Pd and dilute PdNi alloys
has been recently measured under pressure up to
4. 5 kbar, but only at temperatures below 12 K
such measurements should be extended to higher
temperatures and pressures for Pd and Pd alloys.

(b) More experiments are certainly needed on the
resistivity of u-cerium at normal or high pres-
sures, to see if there is really a departure from
the T law at high temperatures, obviously this ex-
periment is not very easy, because we need to be
at sufficiently high pressures to have a wide tem-
perature range for &-Ce and at sufficiently low
pressures to have still a large exchange-enhance-
ment effect.

(c) High-temperature measurements of the re-
sistivities would be also very interesting in ex-
change-enhanced compounds like Ni3Ga and Ni3Al. "

(d) The actinide metals and compounds are very

promising as spin-fluctuation systems. The re-
sistivity and the magnetic susceptibility under
pressure of the actinide metals and compounds
listed in Table III would be obviously very interest-
ing. The resistivity of americium is worth mea-
suring since the magnetic susceptibility of ameri-
cium is larger than that of neptunium and pluto-
nium.

(e) The temperature dependence of )((q, ur, &) has
an influence on all the physical properties: ther-
mal conductivity, Lorenz number, thermopower,
specific heat, etc. From the saturation value at
high temperatures of the I orenz number, one
can infer at once that the paramagnon thermal con-
ductivity should vary linearly with T at high tem-
peratures. Unfortunately although the experi-
ments on Pu indicate that it increases indeed for
increasing temperature at high temperatures,
there is not sufficient agreement between the data
to allow us to establish a quantitative comparison
with the theory.
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