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A continuum theory is used to derive an anisotropic piezoelectric polaron Hamiltonian. The
intermediate-coupling theory is applied to this Hamiltonian and it is shown that the polaron has a

maximum velocity is each direction. This maximum velocity is less than the velocity of the phonons moving

in the same direction. This effect was previously shown only for an isotropic Hamiltonian. The angular

dependence of the coupling constant is derived from the anisotropic Hamiltonian and average values for
the quasilongitudinal and quasitransverse modes are obtained. The increase in effective mass due to the

polaron eFect is also calculated for slow polarons.

I. INTRODUCTION

The piezoelectric polaron has been the subject
of much discussion in recent years. The impor-
tance of the interaction between an electron and the
acoustic phonons of a piezoelectric crystal such as
CdS was pointed out by Hutson' and numerous ex-
periments followed. The shift in the electron's
effective mass due to this interaction was measured
in these experiments and two sets of masses were
found. Cyclotron- resonance experiments in CdS
performed by Baer and Dexter and Sawamoto'
gave a slightly anisotropic mass tensor with com-
ponents between 0. 153mo and 0. 1?1mo, where mo
is the free-electron mass. Qther experiments in-
volving analysis of impurity activation energies, 4

exciton spectra, ' Faraday rotation, 6 electron mo-
bility, and free- carrier absorption gave larger
masses in the range of 0, 19' p to 0, 22plp.

Mahan and Hopfield tried to explain these dif-
ferences by formulating a temperature- dependent
semiclassical theory of the piezoelectric polaron.
Their results indicated that the lower masses
were polaron masses. This semiclassical theory,
however, is not applicable to the experiments giv-
ing the lower masses, since these were performed
in the quantum region of low temperature and high
magnetic field. Larsen' then formulated a quan-
tum theory at zero temperature, but this theory
cannot be safely extrapolated to finite tempera-
tures.

Qther theories ' and experiments' have ap-
peared recently in the literature, but the problem
of the correct polaron mass (and the interpretation
of the experimental results given here) and the ef-
fect of the electron-phonon interaction in CdS has
not been resolved.

In view of this situation, we feel that more
might be gained by a critical study of the nature of
the ground state of the piezoelectric polaron, than

by directly trying to resolve the situation just de-
scribed. This was initially done by using the ap-
proximation of an isotropic Hamiltonian. ' ' It

has been argued"' '" that the lowest solution of
this Hamiltonian has an anomalous energy-momen-
tum relation, in that as momentum increases, the
velocity approaches the speed of sound instead of
being proportional to the momentum as is usual.
These arguments are based on the intermediate-
coupling theory. ' '

In the present paper we continue the study of the
ground state of the piezoelectric polaron. Since
the anomalous energy-momentum relation results
from a singular integral obtained in the isotropic
formulation of the problem, it was thought that
perhaps the formulation of the problem in terms
of a more realistic, anisotropic Hamiltonian might
remove the singularity and the resulting anomaly.
Following a method suggested by Henry, ' we de-
rive an anisotropic Hamiltonian and apply the in-
termediate-coupling theory, using the crystal pa-
rameters of CdS. The anomalous behavior is found
to persist. The anisotropic coupling constant o.'(8)
and the polaron effective mass are also calculated.

II. EQUATIONS OF STATE AND

LATTICE DYNAMICS

When work is done on a piezoelectric crystal the
internal energy per unit volume is increased by an
amount dU given by

dU= T(dS;+E;dD(/4m+ gdo,

in cgs units (the Einstein summation convention is
used throughout the paper). In the above, T; is
the stress, S; the strain, E; the electric field, D;
the electric displacement, 8 the absolute tempera-
ture, and 0 the entropy. A piezoelectric crystal
is stiffened owing to the electric fields produced
when a strain is applied. The second term in dU
represents the work done against these forces in

applying a given strain dS; .
There are three pairs of variables used in the

equations relating to piezoelectric crystals. These
are stress and strain, electric field and displace-
ment, and temperature and entropy. Any three of
these (taking one from each pair) can be used as
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independent variables. Here we will use the strain,
electric field, and entropy.

We consider the stress as a function of these
variables and write

in full tensor notation:

E STij fjtm Slm elijEt
S S

Di = &fjEj+ 4meij~Sj„

(lc)

(3b)

d T(S)Zq, ,r)=( —'
) dS;+( ') dEq

+ ' do. 1a)

We will confine the discussion to conditions under
which linear relations exist between stress and
strain, stress and electric field, and electric field
and electric displacement. Thus the partial deriv-
atives appearing in the above equation define a
number of constants relating to the crystal. These
are

(
8 1',

)
the elastic-stiffness constant measured at constant
field and entropy; and

the piezoelectric constant which relates the stress
to the electric field when the strain is held fixed
(crystal clamped). Since we are interested in an
acoustic wave propagating in the crystal, we will
set da equal to zero since such waves propagate
adiabatically. Integrating Eq. (la) we can write

Equation (3b) illustrates the direct piezoelectric
effect (mechanical strain producing a polarization
and a resulting electric displacement), while Eq.
(lc) describes the converse effect (electric field
producing a mechanical stress). The above equa-
tions are analogous to the phenomenological equa-
tions of Born and Huang 3 describing an ionic crys-
tal. We also note that the same piezoelectric con-
stant appears in both Eq. (lc) and Eq. (3b}.

From the equations of state we can now derive
the characteristic equation giving the sound speeds
of a piezoelectric crystal. Writing the strain in
terms of the displacements p. t of an element of
mass of the crystal, i. e. ,

~P
Slm o + —2 (Vm I 1+Vi i m)

~Xm ~Xt
(4)

Cfj lm Clmf j C jilm C f jml

jiml ml ij ml ji l mjf

we can write the equation of motion of this element
of mass pd V as

Vy T& =

pent

= (Vycy&r V ) pi+ (Vi eA, Vg )Q, (5)

where Q is the electric potential. The elastic and
piezoelectric tensors possess symmetry in their
indices of the following forms":

T; =c "S —e s"E, ,i ij j ji (lb)

where our initial state has zero stress, strain,
and electric field.

In order to derive the equation of state for the
electric displacement it is useful to consider the
electric enthalpy H„:

H, g
——U- E; D;/4 , v

with differential dH„given by

dH„= T; dS; —D, dE(/4m+ Hdg .

dH, &
is an exact differential so the following re-

sult holds:

= —4m j = 4mes"

Maxwell's equation 0 D= 4vpo is here written as

V&DI = 4&po= 4s(V&e;ya V, ) Py —(V; e~y q) p . ( )

We define the Fourier transform of p;(x) as
fk x

p;(x)= Q p;(k},ya, (&)
17

ignoring the k= 0 mode of uniform translation. In
order for p, (x) to be real we must have p;( —k)
= p;(k) . Similarly transforming Q(x) and po(x),
we can write Eqs. (5) and (6} (thus eliminating the
spatial derivatives) as

Using the above and a procedure analogous to that
used in deriving Eq. (lb), we get an expression
for the electric displacement:

D i —- 4m e f j' Sj + e; j' Ej,
and

pPl(k)/& = (c&& p&(k) el+4(k))

4vpo(k)/O'= e Q(k) —4ve, p~(k).

(6)

where (SD;/SE&)o„= e,&" is the dielectric constant
at constant strain and entropy.

We will drop the o superscripts on the constants,
remembering that these must be measured adiabat-
ically. Thus we can write the equations of state

ECil ™jcjilm +m ~

Sei j e jik +tt y

(10)

In the above equations c;, , e;, and 7 are defined
as
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Qi f]j Q

where the ni are direction cosines for the vector
k. Equations (10) depend only on the direction of
k.

Solving Eq. (9) for P(k) and substituting in Eq.
(8) gives

p tl&(k)/k' = —d;, p, (k) —[4vp, (k)/O'Z] e &,

where

d«=e;, + 4ve&e, /Z. (12)

and

p|l(k)/k = —d p, (k)

tl„(k)+ (d„&'/p) p, (k) = o (14)

for one of the g's (with similar equations for f = 2,
3). The general solution for p«(k) is

p«(k)=A(k)e' «' B(+k)e '"~~',

where

(u, , = (d, /p)'~2k =v, , k .

The sound speeds v~, can be determined for any
direction in the crystal by finding the eigenvalues
of d.

The first term on the right of Eq. (11) is the re-
storing force due to the lattice (elastic force and
piezoelectric stiffening), and the second term is
the force exerted by the free charges through their
electric field, coupled to the lattice by the e;.

To get an expression for the lattice frequencies
and sound speeds let us take pp(k) = 0, i.e. , no

free charges present. The equation of motion,
Eq. (11), now becomes

pli((k)/k =-d(r p, r(k) . (13)

Since di, is a symmetric tensor, the matrix formed
from its elements possesses three orthogonal eigen-
vectors g, , g&, and gs, with corresponding eigen-
values d&, , d~2, and d~s. These are obtainedby solv-
ing d g& =d«g, (i = 1, 2, 3). The directions of the g's
depend on that of k and we choose them to be unit
in length. If we write the vectors p(k' and p(k) us-
ing the g's as abasia, i. e. , p(k)=P; p~(k)g, we
can write

We will do this for wurtzite-structured CdS,
taking the z coordinate axis to be the hexagonal
c axis. The values for the elastic, piezoelectric,
and dielectric constants are given in Table I.
Specifying the direction of k by 8, the angle be-
tween the z axis and the k vector, and Q, the
azimuthal angle, let us rotate the coordinate sys-
tem about the z axis through &f& (see Fig. 1). Since
k now lies in the x-z plane the d matrix becomes

0 d', 3

0 d22 0

d', 3 0

where

d 11:d 1,cos'Q +d» sin'Q+ 2d 12 sing cosp

d,', = d» sin Q+ d» cos Q —2d» sing cosQ,

dss= dss~

d 13 d 13 cos p + d 23 s 1QQ.

(15)

(18)

The eigenvectors, while mutually orthogonal, are
not necessarily longitudinal and transverse to k.
However, one eigenvector is transverse and lies
in the y direction as shown in Fig. 1. This is
seen by writing

0 d22

13

0 ~2 '-d22 g2

d'3 0 dss 0

where the speed of this transverse mode is given
by

22 2( gg
—c g2) sin 8+c44cos 6

V~ ——

I 1l2 ~ 2 ~ 1/2

P P (17)
This mode is not piezoelectrically stiffened.

The other eigenvectors, therefore, have no y
component and the eigenvalue problem for them
is a two-dimensional one. Solving for the two
remaining modes gives v+T and v«, the velocities
of the quasitransverse and quasilongitudinal
modes, respectively. These are given in the
Appendix. The angular dependence of these ve-
locities is shown in Fig. 2, where we note that
they are independent of the azimuthal angle (t).

TABLE I. Elastic, dielectric, and piezoelectric constants of wurtzite structured CdS
at 25'C.

elas tie~(&& 10 dyne s/cm ) dielectric"
Pie zoelec tric

(x 10 statcoulombs/cm )

C

8.431
C33 C44 Cfg CfS ff/~0 33/

s S

9.183 1.458 5. 208 4. 567 9.02 9.53 —0. 73
ess
1.32

e»
—0. 63

~E. Gerlich, J. Phys. Chem. Solids 28, 2575 (1967).
~D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963). The

piezoelectric constants were multiplied by 3 &&10 for conversion to cgs units.
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& (& ) &e (& ) 2p

k

where the sum is over all the conduction electrons
and the effective-mass tensor is symmetric and
the same for all the electrons. The right-hand
side of Eq. (20) is just the rate at which the kinetic
energy of the conduction electrons decreases in the
volume V. Therefore

FIG. 1. g2 is the transverse, gi the quasilongitudinal,
and g3 the quasitransverse polarization vector.

III. POLARON HAMI LTONIAN

We now put the free charges (by free charges
we mean electrons in the bottom of the conduction
band) back in the crystal and derive the polaron
Hamiltonian. Our method is analogous to that
used by Born and Huang~~ in deriving the optical-
polaron Hamiltonian. We start with Maxwell's
equations:

5= V (E+ 4v$) = 4vpo(x)

iI —0 ~ (g x H)dr = ——Q z
— P„' "P,' '

gy 4' dt .; m

du—d7
dt

where u is the energy density (u includes the lat-
tice energy and electron-electron and electron-
lattice interaction energies). Taking H= 0, there-
by omitting retardation effects, we write

du 1 ' ' E D—= —E 'E+E '5 =
dt 47T 4m'

(21)

In a piezoelectric crystal, where a strain produces
an electric field, it is not valid to write u = E -5/8v.
Instead we must use the more general Eq. (21).

Using Eqs. (3b) and (4} we can write du/dt as

and

0x H= (1/c)(Qi 4vJo)

V'H=0,

Vx E = —(1/c)H,

(18)
du d E(elqEq S
dt dt 8m

V] Qe ] Vky)k

We now integrate over the volume of the crystal.
If we integrate the second term by parts we have

du d V~/ c~& V&Q

where

Jo(x) = —Z ex, 8(x —x;) .
S

Jo(x) is the current density due to the conduction
electrons (e is the magnitude of the electron's
charge). Forming the Poynting vector (c/4v) ExH,
and using the vector identity

y. (gxg) H. (fxg} g (fx H)

along with Maxwell's equations, we write

4 20-
v
Iu

E
IJ

0—2.00-

+ P& (V, e&»V~/) dv.
V

(22)

V ~ (E XH)dr
v 4m

LJ
& I80-
UJ

—(H ~ H+E ~ E)+E $yE 30 dv . (19)
4m

Equation (19) gives the total rate of flow of energy
out of the arbitrary volume V. The last term in the
integral can be cast into a more instructive form:

E J dr= Q e K(x) x"'8(x-x"')dv
V i

160-

I

45~

e,e
l35

I

ISO

FIG. 2. Sound speeds (CdS) for the transverse mode
(T), and the quasimodes (QL and QT). The dotted curve
is the velocity to which the polaron asymptotes when it
waves in the direction 8' (with p'=36').
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Using Eq. (5) in the last term and integrating again
by parts, Eq. (22) becomes

d d V]gf(( V~/ PPg Vgp)&g]g

X Vfft p ) dT
y (23)

with the integrand on the right-hand side being the
energy density u, Thus the polaron Hamiltonian
ls

and

p, (k)= (3/2p~~)"'(u +u-'~)

t, (k) = i(~~&/2p)"'(s-'«- o&),

(29a)

(29b)

(i(~(x) is the/ component of i((x), where g is one
of the polarization vectors for an arbitrary k). iif
is the total mass and N is the number or atoms.
We then define a transformation from the normal
coordinates p, (lt} to the operators ait and a„, de-
fined by

H= Z —— p„' ~p,' '+ 1(dT .
1 1

ra V
(24) with

[&m&&(&&e'] =
5(&(& ~ 5ee»

We Fourier analyze the above Hamiltonian ac-
cording to Eq. (7) and write

p
(( jp (()1

2m rs

I ~ 2

+ Z —i((k) ii(k)»+ —i((k) C ~ i((k)»
2

+ Q(k}Q(k)» (25)

where C is the tensor whose elements are eq&.
Substituting Q(k) from Eq. (9) into the above gives

0=H, +HI +H,q,

where

[a(»& a„&~&]= [a(»& a~&~&] = 0.

The Hamiltonian now becomes

(3o)

4 1/2
H=H, + Qlm( (a( a( +-,)+ Z= e 'g

kii 2p &~

H =
2
—,p„p, + Q h v k(a(t a( + —,)2 f11

where2~

+ 5 V,(k)(a~e' '*+a(t e '"'*), (32)
fig

&& pf(k)(u~+o-"~).

To write the Hamiltonian corresponding to a
single electron interacting with the acoustic modes
of the lattice vibrations, let (d(,~= v k and po(k)
= —e e i™/V'i~. We now have the final anisotropic
polaron Hamiltonian:

and

Hq- —Q [k p, (k) d i((k)»+ pp, (k) ~ i((k)»],
4me . a

V (k)= — e.g (33)

H„= 2= [p,(k) e ii(k)»+ p, (k)»e P$)] .
E'

d is the previously defined tensor with elements
d~& and e is a vector with components e&. Intro-
ducing again the polarization vectors g by writing
ii(k)= gf p~(k)g, Eqs. (26) become

and

Hz = 5 2 [i,(k)i,(k)»+ ~~i .(k)p, (k)»]
k,i 2

H, (= Z —e g[p, (k))( (k)»+pa(k)»i(, (k)»], (27)
t,i &

with H, unchanged. 8, is the energy of the free
electrons described by po(k), Hi; is the lattice en-
ergy, and H, & is the energy of interaction between
the free electrons and the lattice.

To quantize the system we start with the com-
mutation relation for the displacement and mo-
mentum,

The polaron Hamiltonian thus retains the simple
form of the isotropic case, as in Ref. 3, but the
terms of Eq. (32}all contain the anisotropy of the
crystal as shown, for example, in Eq. (33}for
V, (k) and in the mass tensor (I/ii()„, . In Eq. (32)
we have neglected the electron's electrostatic self-
energy (not to be confused with the "self-energy"
or lowering of the electron's energy at k= 0 owing
to its interaction with the phonons).

IV. INTERMEDIATE COUPLING THEORY

The intermediate-coupling theory' is a varia-
tional theory using a trial wave function (l&(x) given
by

I

(t&(x)=exp
k

0- Za(t ai kk x
&pi

xexp Z f~(a« —a( ) ~0) . (34)
—|tgi

[ p~(%), (M/N)p, .(F)]=iff5«.5(x- x') (28)
Since the Hamiltonian commutes with the total mo-
memtum operator 5 given by
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$= p+ Q a)z a) Rk, (35)

and since g(x) is an eigenfunction of 0, the total
momentum is a constant of the motion and can be

regarded as a "c"number. We form the expecta-
tion value of the Hamiltonian in the state ())(x) and
minimize it with respect to the f)u. The minimum
value thus obtained is an upper bound to the true
ground-state energy and is given by

PP—Z, , 2VF(k) Ir, k —— k, k, —II — k, P, — r f;Irk)',
PO rs k g 2 rn m rs g' g

V,'(i) (k,,k, —
(
—') k, k, -k(—'}k, P,

~ —
(
—

) (2 )vr(k)k Ir, k ~ —( ) k, k, —Ir( ) k (P—r ,f;llk') ()

) Il, k ~—
(
—

) k, k, —Ir(—) k, P—Zf , El,'.
2I, m rs I',e'

(36)

h fk hkv=z)PEP, , (37)

noting that this will still give us an upper bound to
the true ground-state energy. The form of the
second-rank tensor mrs reflects the symmetry of

If we assume the crystal to be isotropic there is
only one preferred direction, that of 5. Hence,
we can write Z~;f), ERk=z)(P)k In the anisotropic
case discussed here we write instead 0 0

0 ~, 0

0 0

(38)

Using Eq. (3V) and rearranging and combining
the terms of Eq. (36) we can write Eoas

the crystal. Looking again at CdS, which is of
crystal class 6mfkz (dihexagonal polar), z)„ takes
on the form

1 1 1 1E = — — P P —Z v'(k) lr k ~ —— k k —k — k(P —k, P, ) ,
IQ 2 m r s g 2 r s ~ r s s&

rs &zZ rs rs

1 2 8 1 1Q V2(k)(k„zi„P, ) iz k v—+— k„k, —ll — k,(P, —zi„P() (39)

Since the polaron velocity is given by v„($)= 8E0/8P„, we can write

v„(p) = — (P, z)E( P,)—
PB

(40)

and

EQ= —— P,P, —— — P — — v P — — v

—Zr P(k) Kv k+ —— kk, —hkv($) . (4l)
&gE rs

EQ is here written in a form analogous to that of the isotropic case. However, we must remember that our
v„(V') contains the anisotropy of the crystal through (I/m)„and z4( .

V. POLARON VELOCITY AND COUPLING CONSTANT

The polaron velocity, Eq. (40), is given by

(y)
I P V I g dzk VE(k) k,/k

m „' 8zf m „, ; iz[vi+ —,
' h(l/m)„, a„k, —a, v, ($)]'
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where in the denominator v, is the sound speed and v, ($) is the polaron velocity. The last term in the de-
nominator of the integral can be written

u; v;(T )= u, v, ($)+ usvs($)+ usvs(%)

= sin8 cosQ v(P) sin8' cosQ'+ sine sing v(0) sin8'sin@'+ cos8v(0) cos8'

= v($)[sin8sin8'(cosP cosQ'+ sing sing') + cos8 cos8']

= v(5)f(8, @, 8', Q'),

where 8' and Q' give the direction of the polaron velocity. Thus, the above expression for the velocity be-
comes

1 V 1 + „,„V,'(k) u, /k
m „, ' 8s m „, f h[vr+ ah(1/m)„u, k, —v(5)f(8, p, 8', Q')] (42)

Since (v, + a K(l/m)„u„k, ) is positive we expect
that as we increase v(P) from zero the denominator
may vanish for some v(5) and cause a divergence
in the integral, blowing up as I/x . In this case
the momentum approaches infinity as the polaron
velocity approaches this v($), and so this is a lim-
iting velocity for the polaron. Below this velocity
intermediate- coupling theory approximates an
eigenstate of energy and momentum, but we are
unable to extend this statement above this v(P).
This limiting velocity was found for CdS and is
plotted in Fig. 2 (dotted line) as a function of 8',
with Q' chosen to be 36 .

Since we are interested in finding the effect of
the theory on the electron's mass we will assume
an isotropic-band mass of ~a~ = 0. 20 nzo, where
nzo is the free-electron mass. With this approxi-
mation the polaron velocity is written as

Vr'(k) u„/k
8[v, +hk/2ma —v(g)f(8, y, 8', y')]'

(43)
Equation (43) has been solved numerically (arbi-
trarily choosing 8'= 18') for the three components
of v(P) and v, ($) has been plotted in Fig. 3 as a
function of P, . The asymptotic nature of the veloc-
ity is clearly seen here. In performing the in-
tegrations in this paper we have used a maximum
wave vector of &~~= 10 cm ', corresponding to a
phonon wavelength comparable with the lattice
spacing. We have also approximated the polariza-
tion vectors g by vectors longitudinal and trans-
verse to k. This does not affect our conclusions
qualitatively and should have only a slight effect
on our numerical results. From the linear por-
tions of the v, (%) vs P~ curves we have obtained the
polaron mass at small P and find

m q=m2 —0. 30rgo

and

&n~3= 0. 38izz0.

The polaron effect on the mass at 0 K is thus seen
to be quite large, and increase of 50%%uo for m~ and

rnid and almost 100%%u& for m3.
The pole, ron energy E,(P) in the isotropic-band-

mass approximation becomes

[0—m* v (P)]'

v P ssc
5 cm

EJ
4l

~ 20
E

O

T

.io

.50 I 00 I 50
Py ( IO g cm/sec)

I

2.00 2.50

FIG. 3. Polaron's y component of velocity as a func-
tion of the y component of its momentum. The polaron
mass m( is given for small P, i. e. , over the linear por-
tion of the curve. The velocity is clearly seen to have
an asymptote.

Vr(k)
-[hv k+ h k /2m* —hk v(5)]

'

Integrating this numerically we obtain E(P) as a
function of P in Fig. 4. This curve is quadratic
for small P and becomes linear at large P indicat-
ing the limiting velocity, and gives 7. 7&&10 eV
for the self-energy, E(0), corresponding to a little
less than 1 K.

It is common to measure the strength of the elec-
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APPENDIX

Solving the two-dimensional eigenvalue problem
for the quasimodes, the velocities of the quasi-
longitudinal and quasitransverse modes are given
by

pv~= (b + n'~')/2

where

5=c»sin 8+c33cos 8+c«~ 2 2

+ (4m/e ) [(e „+e ~,)' sin'8 cos'8

+ (e»sin 8+e„cos 8) ],
and

6= (c» - 4c ggc 4g) sin 8+ (c go
—4 cpic 44) cos 82 ~ 4 2

+ 2c11c44sin 8+ 2cssc44cos 8+c 44

+ (4c„+ac„c~,—2c„c„)sin28cos28

+ (4e/e g(e»sin'8+e, scos 8)

x(2c«+2c~~cos 8 —2c»sin 8 —4c44cos 8)

+ (e»+e») (2c,4+ 2c»»n'8 —2c»cos'8

—4c4~sin 8) sin28cos'8

+ 8(c»+ cg4)(e»+ es&)(e» sin'8+ e» cos'8)

~sin 8cos 8

+ (4v/e) [(e,s+eg, )'sin 8cos'8

+ (e „sin'8+ e „cos'8)']').
For 8= 0 the above reduces to

pv~, =css+ (4v/e)e'„

2
p QT 44 '

For 8= v/2 we have

2
QL 11

p v+ =c4~+ (4w/e )e,5 .
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