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All the three-electron wave functions and energy levels are obtained for the one-dimensional Hubbard
model. The second and third virial coefficients for the system are calculated exactly. The virial
expansion is converted into an electron density expansion which appears to converge much better than
the virial series. The two-particle and three-particle contributions to the specific heat, entropy,
intra-atomic correlation function, and magnetic susceptibility of the system are obtained and presented
graphically.

I. INTRODUCTION

The Hubbard model is frequently used as an
approximate description of electrons in solids.
In its simplest form this model describes a single
band of electrons which interact only when two
electrons occupy the same lattice site. Although
a great deal of effort has been devoted to the study
of this model, it is still far from being under-
stood. ' Furthermore, it has not been proven
that the Hubbard Hamiltonian is actually a reason-
able model of any real solid. Despite the likely
shortcomings of the Hubbard model, one might
hope to gain insight into real physics from exact
or approximate solutions of this simplified model,
and it has been suggested that the Hubbard model
may contain the essential physics necessary to ex-
plain magnetism or the metal-nonmetal transi-
tion

Much of this paper is concerned with the thermo-
dynamic properties of the one-dimensional Hub-
bard model. This one-dimensional system is not
eritirely academic. Recent investigations of
charge transfer salts based on tetracyanoquinody-
methane (TCNQ)'3 '5 and on other solids~6 '7 show
that these systems can be well approximated by
one-dimensional models. One can also hope that
some of the conclusions based on the study of this
one-dimensional system will apply to other sys-
tems.

Previous theoretical work on the thermodynamics
of the one-dimensional Hubbard model has taken a
variety of forms. The ground-state energy was
obta, ined by Lieb and Wu." Takahashi' and Shi-
ba~o have calculated the susceptibility at T= 0,
and Ovchinnikov and Coll~ have computed ele-
mentary excitations. Exact results for nonzero
temperature consist primarily of calculations
for finite chains of six or less atoms. ~s ~5 Re-
cently, Beni, Holstein, and Pincus pointed out
that the infinite- U one-dimensional Hubbard mod-
el can be easily solved.

An important theoretical reason for considering
the one-dimensional Hubbard model is that the

many-electron states can be obtained exa, ctly. '
As a step toward taking advantage of the simplicity
of these states, all of the three-electron energy
levels will be expressed in a form sufficiently
simple to allow a calculation of the third virial
coefficient of the one-dimensional Hubbard model.
In principle, the virial series should be useful in
understanding the thermodynamic properties of
the Hubbard model. In practice, we find that the
virial series converges slowly and a knowledge of
the third term in the series is not particularly
useful. To overcome this difficulty, an alterna-
tive series expansion for the free energy of the
Hubbard model will be presented. The new series
appears to be more rapidly convergent than the
virial series, and is easier to use because it is a
power series in the electron density rather than
in the fugacity. Using this series we are able to
calculate various thermodynamic properties of
the one-dimensional Hubbard model up to third
order in the density. Results of numerical calcu-
lations of the entropy, specific heat, susceptibility,
and intra-atomic correlation functions will be
presented.

II. HUBBARD MODEL

The one-dimensional Hubbard Hamiltonian is

N N

a= Z'(c', .c,„.+ c',.c. ..)+ v Z c', ,c, , c', ,c.. . (l)

where C';, (C,,) is the creation (annihilation) opera-
tor for an electron in a Wannier state with spin o
located at a site labeled i. Periodic boundary
conditions mean that the site X is equivalent to the
site 0. The creation operators acting on the vacu-
um state Q denote Slater-determinant wave func-
tions. The creation and annihilation operators
obey the usual fermion anticommutation relations.
Single-electron eigenstates (g~) of this Hamil-
tonian are the usual Bloch functions:

q,.=(l/v X)Z e'"C',.y .
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The energy of this state is

&~ = 2 cosk ~ (3)

The units used here imply that the total bandwidth
is equal to four. To satisfy the periodic boundary
conditions,

k= 2vn/N, (4)

where n is an integer and k must lie in the first
Brillouin zone.

The two-electron states are either spin triplets
or spin singlets. The triplet states are unper-
turbed by the short-ranged interaction of the
Hubbard model, and the two-electron energies
are simply the sum of the single-electron energies
with only Pauli-principle restrictions (the two
electrons must have different momenta). The sin-
glet states are either phase-shifted continuum
states or bound states. The continuum singlet
states have energies

Wu equations (9)-(11).'8 The simplification is
possible only when there are three electrons.
Lieb and Wu considered only states characterized
by real momenta (values for k), and did not derive
expressions for wave functions or energy levels
involving bound pairs. The states involving bound
pairs have been discussed by McGuire and Yang '
from an S-matrix point of view for a similar prob-
lem (the one-dimensional electron gas with delta-
function interactions). We will obtain the bound
three-electron states. and energy levels for the
one-dimensional Hubbard model in a form which
satisfies the periodic boundary conditions.

The three-electron continuum states are charac-
terized by three unequal momenta: p„p~, and p3.
The doublet-state momenta are phase shifted away
from their noninteracting values. In order to ob-
tain the three-electron continuum phase shifts
from the work of Lieb and Wu in simple form, we
make the following variable substitutions:

Ep p
= 2(cos p2+ cos p2),

where p, and p2 are phase-shifted momenta:

pg = 01+25&&& /N, p2 = k2 —25»&&/N .
The phase shift is given by

(6)

(6)

X, -N)
2w I& /N, —k~, j= 1, 2, 3

k--Pg ~

8(2 sink, . —2A ) —26&+m .

cot6» = (-2/U)(sing, —sin $2)

and the magnitude of 5p]p2 is less than —,'m. A one-
to-one correspondence between the two electron
interacting and noninteracting (U=o) states and
energies is obtained by letting the phase shifts
vanish.

For a fixed total momentum q = p, + p~, the
bound-state energies are greater than the band

energies. These states correspond to the non-
interacting state with k, = k2 or k, =k2+2m/N, and
with the magnitude of k less than —,'m. For these
values of the single-particle momenta, the phase
shifts change discontinuously from - -,'m to —,'m. A

continuum state is lost and a bound state appears.
The energy of the bound state with total momentum

q is

For three particles, the interacting states are
described by the Lieb-Wu equations (9)-(ll) with
M= 1 and J =-,'. After division by V, Eq. (9) be-
comes

P, = k, + 25, /.V;

Eq. (10) becomes

5)+ g~+ 53= 0;
and Eq. (11) becomes

cot6,. =(-4/U)(sing, . —A) .

(9)

(10)

If k„kz, and k3 are all different, there are two
solutions to the above equations denoted O'. They
correspond to two different solutions for A(= A').
The values for A' can be found using simple trigo-
nometric identities:

= [U + (4 cosi2 g) ] (6)
A' = -,' (s+ (s'+ 2[(-,' U)' - s]}'"), (12)

The three-electron states of the Hubbard model
are spin quartets and spin doublets. The quartet
states are unaffected by the interaction. The
doublet states are either continuum states, or
states composed of a bound-pair scattering from
a continuum electron. The much more difficult
problem of the many-electron continuum states
of the one-dimensional Hubbard model has been
solved by Lieb and Wu using methods of Yang and
Gaudin.

The three-electron continuum state energies can
be obtained from a simplified form of the Lieb-

and

8 = sin p& + sin p2+ sin p3

6'= sin p, sin p~+ sin p~ sin p3+ sin p3 sin p, . (14)

sink, ~ sink2 ~ sink3, (16)

The phase shifts are determined up to a phase
factor of nm. Rather than restricting the magni-
tude of the phase shifts to be less than —,

'
m, we

make the following choice for the phase shifts:
if
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then

2 1——, m&51(gm,

6, = 6, —w sgn(6, )

and

cot6, = (- 4/3U)( [sin p, —sin p, ]

4 [(sinp, —sin p, )'+3(-,' U)']'"] . (17)

The sign of the square root is taken to be the nega-
tive of the sign of (sin p, —sin ps), and the magni-
tude of 5, is taken to be less than —,'7).

The three-particle states involving a bound pair
can be obtained in a straightforward but tedious
manner by fitting boundary conditions at the point
of the electron-electron interaction. In terms of
the creation and annihilation operators, these
unnormalized states are

g, q, =Re"'C, [Aq(l)+Aa(f)]g,
l

1 (1 1 (2——,m&5, (-, m, --,m&5g(-, m.
(16)

This choice of phase shifts has the following proper-
ties:

(i) All the phase shifts are continuous functions
of U, and they vanish as U-0; (ii) The sum of the
phase shifts (6', +6&+63 or 6, +6&+63) is zero; (iii)
The two- and three-electron phase shifts are re-
lated as follows: 6', +6, =6»+6»+ 0(l/N). Analo-

gy P u1ag
gous equations apply for 5~ and 5g.

If two of the k's are equal (say k, and k4), there
is only one doublet solution and no quartet state.
The phase shifts for this special case are speci-
fied by Eq. (10) and the following equations which
are a special case of Eqs. (11)-(14):

sin p = cosh I' sin-,'(q —p) . (24)

To make a one-to-one correspondence between the
U=0 and UWO states, this eliminated interacting
electron state must be associated with the non-
interacting state forbidden by the Pauli principle.
These two states approach each other continuously
as U-O.

This completes our description of the three-
electron solutions to the one-dimensional Hubbard
model. These solutions will be used to obtain the
virial coefficients to be described in Sec. III.

III. VIRIAL COEFFICiENTS

The grand partition function of a system of elec-
trons can be expressed as a series expansion in-
volving the one-particle, two-particle, etc. , par-
tition functions. Such an expansion is particularly
useful in the limit of high temperatures and low
densities.

The grand partition function Z of a system of
electrons at temperature T may be written

e, ~ =2cos p+(U'+ [4cos-', (q —p)]2}'" .
The three-particle state in which the bound pair

has momentum (q —k —26/N) and the free particle
has momentum (k+26/N) corresponds to the U=O

states in which the three electrons have momenta
—,'(q —k), —,'(q —k), and k. If -', (q —k)=k, there is
still a bound state even though there is no free-
electron state which corresponds to this state.
Qn the other hand, there is a three-particle bound

state which is eliminated when the phase shift 5

changes discontinuously from —,'p to ——2'm. This
discontinuity occurs, according to Eq. 21, when

where A, (I) and A4(l) are Z = I+ Z, e" + Z, e'"+ Z, e'"+ (25)

N N/P

A (I) e-f4 + P ei [&4-0&/2]n e-r 1nl
1

~=1 n=-N/2

x C(l+n)iy ~(l+m)fy &

A2(I) = 2jsjnby P/ e» 4 ~ ~ "+~

n&0 m)0

(19)

where Z„ is the n-electron partition function, i.e. ,

Z„=Trg e 4 "&j (2s)

with P= I/ kTe, 8„ is the Hamiltonian for n inter-
acting electrons, and v = Pp, where p, is the chemi-
cal potential.

The expansion for ln(Z) can be written

-1 (]n(+( ml) ~fxe ~(l+n)II ~(l+m)fy ln(Z) = Zq(e" + b2 e "+b4 e~+ b4 e + ~ ~ ) (27)

The quantity q represents the total momentum of
the system. There is a phase shift associated
with p, but none with q.

p= k+26/N, (2o)

cot6 = (- 4/U) [sin p —coshl sin-,'(q —p)], (21)

where the b„are called the virial coefficients. ~'

Using (25) to expand ln(Z), comparing with (27),
and equating coefficients of equal powers of e",
we easily obtain

b4 = (Z4 —
2 Z i)/zi,

and the magnitude of 5 is less than —,'m. The "width"
1/I' of the bound state is given by

b4 ——(Z& —Zi Z+ —', Z i~)/Z&,

b4= (Z4+ Z& Za —Z& Z3 2 Z2 4 Zg)/Zg .
(2s)

sinhl' = U/[4 cos —,'( q —p)]

and the total energy of the state is

(22)
A numerical evaluation of the mth virial coeffi-
cient, b, requires the knowledge of the exact m-
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Z =3+e k»~sk
1 (30)

with
—m&k, q&m.

The continuum-state contribution bk, (U) can be
calculated by expanding the partition function to
first order in the phase shifts 5» '.

1 2

(U) b (p) (pp/Nz ) Q -2 k(cook~ cos»k)

k 1k2

electron eigenenergies. Some work has been done
in the past on the calculation of the virial coeffi-
cients for a system of electrons interacting accord-
ing to the Hubbard Hamiltonian. 9 3' Callaway
has obtained an exact expression for the second
virial coefficient in this case. Callaway and
Rajagopal~o have approximately evaluated the third
virial coefficient.

In this section we outline the exact calculation
of the second and third virial coefficients for a
system of electrons described by the one-dimen-
sional Hubbard Hamiltonian. There are two con-
tributions to the second virial coefficient 52.
First, there is a contribution from the two-elec-
tron bound states. Second, there is a term which
results from the two-electron scattering states. ~

The bound-state contribution bk»(U), where U

is the potential, is given by

(U) b (p) pf -Bf(4 cos 1/k q& +U

a

-4g cos 1/2qL /~f/~1 ~

where

x 5»» (sinkl sinks) (31)

The calculation of the third virial coefficient 53
is a good deal more complicated than that of the
second. In evaluating Z3, the three-particle par-
tition function, we have to consider the following
contributions.

(i) The three-particle bound-state contribution,
obtained by expanding these terms in the partition
function to first order in 1/N. For example, for
the free electron (not bound),

-2 8 cos p -2 g cos ( ki 25/N )

~'k(1/4Psinkb/N) . (33)

A similar expansion is used for the bound pair.
(ii) A correction to the above term which arises

because a bound state is eliminated every time
the phase shift changes discontinuously from ——,'m

to —,
'

m.

(iii) The continuum contribution to Ze and Z, Zk

terms in which k„k2, and k3 are all different.
These terms denoted Z, and (Z, Zk) can be ex-
pressed in terms of phase shifts, but the calcula-
tion is considerably more complicated than the
corresponding calculation of the second virial co-
efficient because of the cancellation of terms first
order in 1/N. To first order in 1/N,

The second virial coefficient bk(0) with the poten-
tial U=O has the simple form

b (0) Qe-4t2 cook/Z

Zk= — X e '»t"»k"ks' —[(5', +5,)sink~+(5k+5k) sink»+(5&+5k) sink»] (34)

and

(Z, Z, )'= —Z e k"»"»2"kk' —[(bk...+5k,»,) sink, +(5,~, +5k~ ) sink, +(5,~, +5,~, ) sink, ) .
k1 k2k3

(35)

The difference Z, —(Z, Zk) vanishes to first order
in 1/N because

bj+bj = 5»» +5k» + O(1/N) .
Analogous equations apply for 52 and 53. This
formula can be proven by taking the cotangent of
each side and replacing p, by k, (a correction of
order 1/N). The choice of phase shifts described
by Eqs. (15) and (16) means that there will be no
difference of + nm between the right- and left-hand
sides of the above equation. Because there are
Nk terms in Z, and (Z, zk)', we must expand each
term to order (1/N) to find a nonzero contribution

cosk, 3 ink, -g
2o 2(2' ~ 2[(-'o)' —q]j"')' (38)

where 8 and S' are defined in Eqs. (13) and (14).
The two-particle corrections to the phase shifts
are simpler:

to b3. The following is the correction to the phase
shifts:

5] + l5j bs» 5»» (1/N)[D; +D, —D,z
—D»]

(36)and

D', = —8 sin 5,[-b, (cask, /U)+ a]+ a»+ a',], (37)
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be expanded as a power series in the density. The
description here is somewhat different but leads to
the standard results. The introduction of the arti-
ficial system gives an intuitive picture of the mean-
ing of the power series, and makes the derivation
of the susceptibility relatively simple.

The artificial fermion system has single-elec-
tron energies equal to the s ingle-electron energies
of the Hubbard model. The interactions are as-
sumed to be infinitely long range and momentum
and spin independent, so that the thermodynamics
can be simply calculated. The energy of two-elec-
tron states for this system is

E,.@
= e,, + e,, + [Ez(P)/N], (41)

where Ez(P) is an effective temperature-dependent
pairwise-additive interaction, which is determined
by equating the second virial coefficient of the ar-
tificial system b2 to the same quantity for the Hub-
bard model. Neglecting terms of order 1/N and
smaller, this virial coefficient is

bz --,'=- PZ, Ez(P) . (42)

Equating b, to b, yields

E,(P) = —(-,'+ b, )/PZ, .

E(p) = E'(P) ,' p'E, (p—) .' p'E, (—p)

+ ~ ~ +(p"/n t)E (P)+ (48)

In order to demonstrate the density expansion
and its convergence properties we first consider
a particularly simple case; the Hubbard model in
the localized-electron limit (hopping equal to zero)
and one electron per atom. This is a good test
because it is probably the most unfavorable case
for the convergence of the density expansion. This
is because the density is large and the expansion
is about the itinerant- rather than the localized-
electron limit.

For this simple case the first three virial coef-
ficients can be easily calculated. They are

than or equal to m. The term Ez(p), for example,
which represents a three-particle interaction in
the artificial system is given by

—6[hz(U) —bz(U= 0)] —2 [bz(U) —bz(U= 0)]Es(p)= ' '
p(g /N)z

(4~)
The free energy of the model system can still be
simply calculated, and for large n this free ener-
gy is naturally expressed as a power series in the
density:

n(n —1)E,, z ...z„=~ e„,+ E(P) .
i=1

(44)

Because Ez(P) was assumed to represent pair in-
teractions, the energy of an n-electron state with
—z'n(n —1) distinct electron pairs is

bz= z z(1 e )i
b, =-,'+(1-e "),
b& ——,

' —z—-(1 —e ) ——,'(1 —e )

(49.)

The free energy per atom of this artificial system
can be easily calculated because the interactions
are so simple, and for large n it is

F(P) = EM'(P)+ ,'p E,(P), — (45)

where Es(p) is the free energy of the noninteracting
Hubbard model and p is the electron density.

The artificial system with only pair interactions
can reproduce only the second virial coefficient of
the Hubbard model. In order to duplicate all the
virial coefficients, additional parametrized inter-
actions involving more than two particles must be
included in the artificial system. The energy of
an n-electron state is then

and the chemical potential is —,U. The virial series
for this system does not converge, and the first
three terms in the series give a very poor approxi-
mation to the thermodynamics of the system.

The effective interaction energies E (P) are ob-
tained from the virial coefficients, and they are

Ez(p) = (1/2p)(1 —e s ),
E,(P) = (3/4P)(1 —e ' )', (50)

Es(P) = —(3/4P)(1 —e ) + (5/2P)(1 —e )

and for an electron density p equal to one, the
series expansion for the free energy is

F = (-1/P)ln(4)+(1/4P)[(1 —e s )+ z(1 —e s
)

+ $(1 e-sU)z+ ]

The exact free energy for this simple case is

(51)

n(n —1)(n —2)
6+2 3

(46)

where (&) is a binomial coefficient. Each inter-
action energy E (P) is uniquely determined by the
Hubbard-model virial coefficients of order less

F = ~z U —(1/P) ln(2 + 2e '
) (52)

In Fig. 2, we have compared the exact specific
heat obtained from free energy given in Eq. (52)
with the series approximations of the specific heat
accurate to second, third, and fourth order in the
density. Clearly the approximations are qualita-
tively reasonable for small PU, but are far from
perfect. This is not surprising since a low-density
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0.4

0.3

llm(E2„, /p")- C,„,.
8 0

The constants C„could, in principle, be obtained
from a power-series expansion at Tr(e 8"j, but in
practice it is tedious to go to a very high order.

V. RESU LTS

C3

tL 0.2
C3
LIJ
CL
V)

O. I

0.0 I.O

PU
2.0 3.0

FIG. 2. Specific heat of the Hubbard model in the lo-
calized-electron limit with one electron per atom. Exact
results are compared with approximations accurate to
second, third, and fourth order in the density.

S 0

expansion has been applied to a high-density sys-
tem. Note that contributions to the specific heat
from the higher-order terms proportional to p
and p can be either positive or negative, depending
on the value of 13U.

Finally, we would like to point out a general
property of the series expansion: that terms
proportional to p

" and p~~ are proportional to
P" for small P. This means that the density
power series should converge both for high tem-
perature and low density. This convergence prop-
erty of the density expansion can be seen from
perturbation theory. The partition function of the
Hubbard model could, in principle, be determined
from a traditional perturbation expansion about
the U= 0 limit of the Hubbard model. An gath-order
term in this series would be proportional to (PU)"
times the expectation value of a string of 2n in-
teraction representation number operators. These
expectation values include terms proportional to
various powers of the density-but only powers less
than or equal to 2n since that is the number of
number operators. Equivalently, by a rearrange-
ment of terms, any term in the partition function
proportional to the mth power of the density must
also be proportional to an integral power of f) (= n )
greater than or equal to —,'m. Then, if the free
energy [- (1/P)ln(Z)], is expressed as a power
series in p, the term proportional to p must
vanish at least as fast as P'" " as P goes to zero.
This implies that

0.5

U=4 C 2

0.2

0. 1

LLI

X

0.0

C3
4J
CL
M

-0.1

-0.2

-05
0

/'

1

1.0
1

2.0

FIG. 3. Interaction contributions to the specific heat
proportional to p and p denoted C2 and C3 respectively.
Curves are shown for U=4 and U=8. The electron den-
sity is p.

A sampling of the results obtainable from the
density expansion of the free energy of the one-
dimensional Hubbard model is presented graphical-
ly in this section. Because of the oversimplicity
of the Hubbard model, comparisons of experimental
data with these results should be treated with some
skepticism, and only a limited number of data are
presented here. We feel that the primary utility
of the results presented here is to give a qualita-
tive picture of electron interaction effects from a
high-temperature, low-density point of view. The
results are presented for U= 4 and U= 8 because
these interaction strengths characterize, roughly
speaking, the "intermediate-coupling" regime
where perturbation treatments are least useful.

The interaction corrections to the specific heat
(curves C, and C,) are presented in Fig. 3. The
total specific heat is obtained by adding the specif-
ic heat of the noninteracting system (U=O) to paCz

+ psCS+higher-order terms in the density. Since
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0.3

0.2

O. l

CL

0.0
I-z
LLI

-O. l

-0.2—

-0.3—
I

I.O
I

2.0

C3 is multiplied by one additional power of p, the
density expansion appears to be converging for
small p, but when p=1 the third-order correction
is about as large as the second-order term. The
anomaly in C~ for small P occurs when the tem-
perature is sufficiently large to produce a large
number of high-energy bound states. The high-
temperature behavior of C3 is complicated. At
lower temperatures, the second-order correction
to the specific heat constitutes an enhancement,
while the third-order correction decreases the
specific heat.

The interaction corrections to the entropy pro-
portional to p and p3 are shown in Fig. 4. The
high-temperature anomalies can be seen again in
the entropies. At lower temperatures the second-
order entropy correction is negative, but the third-
order correction is positive.

The intra-atomic correlation terms are shown
in Figs. 5 and 6. The correlation function is ob-
tained by differentiating the free energy with re-
spect to U. Unlike the cases of the specific heat
and the entropy, no additional terms need be added
to the results in Figs. 5 and 6. Instead,

&n, n, &= p'(n, n, &, +p'&n, n, &, + (54)

FIG. 4. Interaction contribution to the entropy propor-
tional to p2 and p3, for U=.4 and 0= 8.

as p goes to zero, the second-order contribution to the
correlation function approaches the uncorrelated
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O.20 0.20 -t

V=8

O. I5 O. I5
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C
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O. IO O. IO

0.05 0.05

0.0 0.5 I.O l.5
0.00

0.0
I

0.5
I

I.O I.5

FIG. 5. Intra-atomic correlations proportional to p
and p3 for U=4. Curves remain roughly constant for
larger P.

FIG. 6. The intra-atomic correlations proportional
to p and p for U=S. Again the curves approach a con-
stant value as P increases.
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limit, 4 p . As the temperature is decreased, cor-
relations reduce the second-order contribution to
(n, n, ), but the third-order contribution increases
with P for small I3. At lower temperatures the
correlations tend to approach a constant.

A great deal of theoretical work has been de-
voted to investigations of the magnetic properties
of the Hubbard model. We will use a low-density
expansion of the one-dimensional Hubbard model
to obtain expressions for the first two corrections
to the inverse susceptibility. All the previous re-
sults could be obtained simply by appropriate dif-
ferentiation of the free-energy terms in the ex-
pansion, but in order to obtain the susceptibility
a slightly different expansion must be considered.

The susceptibility can be calculated from a
knowledge of the free energy as a function of mag-
netization m. This quantity F(P, m) is obtained
by artificially constraining the magnetization.
Minimization of the free energy with respect to m

yields the true free energy and the equilibrium
magnetization. The quantity F(P, m) can be ex-
panded in a series similar to the density expan-
sion discussed earlier. By equating the second
virial coefficient of the Hubbard model to the
second virial coefficient of the artificial system
with the same magnetization, the term —,

' p'Eo(P)
becomes

2p, p, E(P) =
o (p —m )Eo(P) 8 (55)

where p, is the density of electrons with spin o.
The form of this term is a consequence of the
fact that only electrons with antiparallel spins in-
teract. Similarly, the third-order term becomes

~op(p' —m')Eo(P) . (55)

+—', p(p' —m')E, (P) + —Bm, (5V)

where Fo(P, m) is the free energy of the noninter-
acting Hubbard model. Setting the derivative of
F with respect to m equal to zero, and writing
SFo/Sm as 2mSFo/82rP we obtain the susceptibility:

1
1 — ~Z3 1

88 28F /8 2 888 /8 )
(58)

Denoting the susceptibility of the noninteracting
Hubbard model as y„y becomes

X
= Xo[1 (Eo + Eo P)Xol (59)

Here (Eo+ —,'Eop) can be interpreted as the effective

Higher. -order terms have more complicated mag-
netization dependences and are not simply propor-
tional to (po —m'). The susceptibility is found by
adding an external field term —Bm to F(B, m).
The free energy of the Hubbard model is then

F(P, m) = Fo(P, m) + —,'(p' —m')Eo(P)

-0.2

I

lS
-0 l

0
LLI

V)

V)

0.0
0 1.0 2.0

FIG. 7. Interaction contributio~s to the inverse sus-
ceptibility (enhancement factor) proportional to square
and cube of the electron density p. The zero-order sus-
ceptibility is that of the noninteracting Hubbard model.

interaction of the Stoner theory of ferromagnetism
which enhances the susceptibility. Equation (51)
can be written

X -Xo -(Eo+.EoP+" ) . (50)
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This result appears to differ from the result of
Ref. 30 because we have calculated y

' rather than

g, and our yo which is the susceptibility of the non-
interacting Hubbard model differs from the Xo de-
fined by Callaway and Rajagopal.

The interaction corrections to g
' are shown in

Fig. 7. Z~ is denoted X~', and —,'E3 is denoted as
g 3 Both terms enhanc e the sus ceptibility . The
two-particle susceptibility enhancement decreases
with increasing P, and the three-particle enhance-
ment generally increases with increasing P.

Clearly, the calculation of the third virial co-
efficient and the associated density expansion is
only a small step toward the understanding of the
Hubbard model. It is possible that a virial analysis
could be carried out to higher order, but a con-
siderably more sophisticated treatment of the
eigenenergies would be necessary.
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