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Photoemission spectra and band structures of d-band metals. I. Practical aspects of fcc
interpolation schemes
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A variant is described of the combined interpolation scheme for the band structures of the
face-centered-cubic d-band metals, devised originally by Hodges et al. and by Mueller. Since
it is intended to use the scheme in the interpretation of photoemission experiments, where
optical transitions can occur to states well above the Fermi level, special attention has been
paid to obtaining a good reproduction of the unoccupied bands. It is found that this is achieved
by a suitable choice for the parameters, V~ii and Vpoo representing the purely local part of
the pseudopotential and the coefficient S of a nonlocal contribution to the pseudopotential aris-
ing from explicit orthogonalization to the d states. The band structures of Ni, Cu, Rh, Pd,
Ag, Ir, Pt, and Au have been calculated by a nonrelativistic augmented-plane-wave method,
and the parameters of the scheme have been fitted to the results by a nonlinear least-squares
method. These parameters are to be used in a subsequent paper as the starting point of an
interpretation of photoelectron energy spectra.

I. INTRODUCTION

This is the first in a series of papers dealing
with the photoemission properties of d-band met-
als and their interpretation in terms of one-elec-
tron band theory. Following previous work, '
the aim has been to interpret photoelectron energy
spectra using combined interpolation schemes. At

the start of this program, two practical schemes
were available, one proposed by Hodges, Ehren-
reich, and Lang~ (HEL) and the other by Mueller.
During the course of the work, we have developed
several refinements to these original methods.
These experiences are summarized in the present
paper. The actual comparison between these mod-

el band structures and the experimental photo-
emission spectra will be made in subsequent pa-
pers. We consider here only the face-centered-
cubic (fcc) d-band metals. The extension of these
methods to the body-centered-cubic metals will be

treated separately.
In this investigation, we have paid particular at-

tention to the behavior of the unoccupied bands. In

photoemission, one is often concerned with optical
transitions to states well above the Fermi level.
For example, in a conventional ultraviolet experi-
ment where the upper limit on the photon energy is
determined by the transmission cutoff of LiF win-

dows, electrons are excited to states ashigh as
11.7 eV above the Fermi level. We would like to
have, therefore, an accurate representation of the
band structure both in this energy range and in the
occupied region. Thus far, most applications of
the combined interpolation schemes have concen-
trated on the problem of predicting Fermi-surface
topologies and features of the d bands. Relatively

little attention has been given to the unoccupied
bands. Indeed, one finds that some of these model
band structures go badly astray at higher energies.
However, since the available schemes contain a
large number of disposable parameters, we have
investigated whether some of this flexibility can
be mobilized towards the task of improving the
representation of these upper bands. We find that
this can indeed be done, without seriously sacri-
fic ing the accuracy of the fit to the occupied bands.

The organization of this paper is as follows: In
Sec. II, we describe in some detail the derivation
of the parametrized Hamiltonian of the combined
interpolation scheme. The physics here is not
new and is already contained in the original pa-
pers by HEL3 and Mueller. However, since we
have made several modifications which may be of
use to other workers, we will spell out the details
of this modified scheme. In Sec. III, we describe
a quick recipe for obtaining an approximate fit to
the results of first-principles band calculations
using this modified scheme. In particular, we
discuss the relative magnitudes of the local pseudo-
potential and orthogonality terms which best re-
produce the upper bands. Finally, in Sec. IV we

present the results of a more elaborate fitting
procedure which is applied to nonrelativistic first-
principles augmented-plane-wave (APW) calcula-
tions for Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au.

11. PARAMETRIZED HAMILTONIAN

A. Preamble

We start with the customary 9 &&9 form for the
model Hamiltonian
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Hcc Hc4

Hgc Hgg

H« is a 5X 5 block involving d-type tight-binding
Bloch sums of the form

) = P7 2+ z'" "'i
)&&(r —H, ) .

$2= zxf(r)/r', it, =-z'(x' —y')f(r)/r',

02 =F2&3 (3z' —r ')f (r)/r '.
(3)

Hcc is a 4& 4plane-wave block and H,„ is a 5&& 4
hybridization block. Here we work in the same
~48th irreducible wedge of the Brillouin zone used
by HEL (namely, k, » k„» k, ). The appropriate
set of normalized plane waves, l k, ), for reduced
wave vectors k within this wedge involves the
following wave vectors:

k, =k, kz=k+(27&/a )(0, —2, 0),

kz=k+(2v/a') (-1, —1, -1),
R, =k+(2x/a')(-1, —1, 1).

Kith these nine basis states, the aim is to set
up a model Hamiltonian whose matrix elements
have the simplest possible form, yet whose eigen-
values reproduce those obtained in first-principles
band calculations. In doing this, one encounters
hybridization and overlap integrals of the type
(d„l Htk, ) and (d„lk,). Whenever these occur, our
procedure (which follows closely but not precisely
that established by HEL2 and Mueller2) is to intro-
duce the following parametrized forms:

(d„~k,) = af(k) Fz„(k,), (5)

(d„~ H~ k, ) = kg(k) F,„(k,) . (5)

The coefficients a and b are treated as disposable
parameters and the functions Fz„(k, ) represent the
set of real spherical harmonics given by

F„(q)= q, q„/q', F„(q)= q„q,/q',

F22(q) = q.q./q', F24(q) = 2(q q )/q

F22(q) =L2~& (3q'. - q')/q',

where n corresponds to the subscripts in Eq. (3).
These spherical harmonics obey the addition theo-
rem

& F.(q)F.(q')=-'Pz(q q'),

where P2(x) = —,'(3x —1) is the usual f = 2 Legendre
polynomial, q and q are unit vectors, and x is the
cosine of the angle between q and q .

N is the number of atoms in the crystal and R, is
the position vector for the atom at site L The
atomic d orbitals i&„(r) are chosen to be of the form

Pq = xy f( r)/r, $2 = yz f(r)/r',

B. d-d block, H&&

The standard procedure is to express the ele-
ments of this block, (d„l Hl d ), in the tight-binding
form given by Slater and Koster or Fletcher and
Wohlfarth. For the most part, we have used the
nearest-neighbor three-center form, as worked
out by Fletcher. ' An alternative two-center form,
extended to second-nearest neighbors, is con-
sidered in Sec. IV. The Fletcher notation involves
eight parameters: ~oy ~y A» A~~ A3 A4, A5 and A6.
The last six specify the dispersion of the bands
while Ep and Ep+b, are the mean energies of the

tz, and e, subbands, respectively.

C. Hybridization block, H &

Following Mueller, we orthogonalize the plane
waves to the d states explicitly. The set of orthog-
onalized plane waves (OPW's) is given by

I &;&
= c '

I I
k &

—r
I &.& & &.

II

ic &},
n

where

(10)

c;= 1 — d„k,

The elements of the hybridization block are then
given by

&& I
&&lrr&= c '(&&i

I
&&I&&-& &k; Id.&&d

I
&&I& &)

(12)
This expression can be simplified if dispersion
effects within the d bands are neglected and the
matrix (d I H!d„) is replaced by the diagonal ma-
trix consisting of Ep times the unit matrix. Sub-
stituting Eqs. (5), (6), and (9) into Eq. (12), we
obtain

(y, ~
H

~ d„) = c, '(5 —E,a) jz(k, H) Fz„(k,.)

= Hj, (k, H) F,„(k,) . (13)

Here, we have neglected the weak k dependence of
c; and have lumped together various parameters
into the new disposable parameter B. Following
HEL, we also reserve the possibility that B may

The functions f (k) and g(k) are radial form fac-
tors which we parametrize as

f(k) =g(k) = jz(kR),

where R is a parameter and jz is the usual spheri-
cal Bessel function of the order 2. Note that we
have used the sa.me functional form for both f (k)
and g(k). This is useful though not an essential
assumption. In fact, Mueller employs the spheri-
cal-Bessel-function form for both f (k) and g(k)
but introduces two separate radii, Rp and Ri How-
ever, using the same arguments for both the hy-
bridization and overlap parameters leads to sim-
plifications in the algebra, as will be shown below.
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be different for the orbitals with t& and e sym-
metry. In this case, we write

&4&, I
H

I Q; &
= a k; 5„+v&,

+ Sj z(k; R)j2(0~R)P2(k, k~) . (18)
B=B, for n=l, 2, or 3,

B=B, for yg =4 or 5.
(14) Apart from the last term, this is the same as the

plane-wave block of the HEL scheme. The H, ~ and

Hq„blocks of the HEL and Mueller schemes are
essentially identical. What we have demonstrated,
therefore, is that the essence of Mueller s orthog-
onalization refinement can be captured in the HEL
scheme by adding to each element of the plane-
wave block a single additional term. We refer to
this term as the orthogonalization term or S term.
We refer to the V;,. term as the local pseudopoten-
tial. The combination of the V,.z and $ terms may
be thought of as a nonlocal pseudopotential.

One cannot help noting a strong resemblance be-
tween the $ term and the I = 2 terms which enter
the standard APW and Korringa-Kohn-Rostoker-
Ziman (KKRZ)-pseudopotential methods. » In terms
of this analogy, one would identify the parameter
R as the muffin-tin radius while $ would be given by
an expression involving phase shifts or logarithmic
derivatives. For our purposes, however, $ and R
are treated as disposable parameters. Because of
this similarity, it is not too surprising that,
through the inclusion of the S term, the present
scheme is better able to mimic the detailed re-
sults of first-principles band-structure calcula-
tions.

D. Plane-wave block, H„
Since we are ultimately concerned with the solu-

tion of a secular equation of the type det[ I H-EI l

=0 we consider the matrix elements of H-E
rather than H. This is not necessary in the hy-
bridization and d-d blocks because the d states

1 d„) are assumed to be mutually orthogonal and
the OPW's have been explicitly orthogonalized io
them. The matrix elements of the plane-wave
block are given by

.Z &k, Id„&&d„IHId„&&d. Ik, &-E5„

+»& &»,. I»&&»„l»&).
n

(15)

E. Symmetrizing factors

We have shown in Sec. IID that the orthogonality
effects discussed by Mueller can be incorporated
into the HEL scheme by the addition of a simple
new term to the HEL plane-wave block. With this
addition, we will follow, hereon, the HEL scheme.
In particular, we retain the so-called symmetriz-
ing factors. The need for these arises from the
fact that the four plane waves or OPW's are a trun-
cated set and do not reflect the full symmetry of
the crystal. The symmetrizing factors allow one
to remedy this defect and restore the symmetry-
induced degeneracies at symmetry points. Ac-
cording to HEI., each OPW, I &t,.&, has associated
with it a k-dependent symmetrizing factor E;(k).
These are equal to 1 or 0 at points of high sym-
metry, depending on whether or not the corre-
sponding OPW bands are involved in the desired
symmetric combination at that point. The varia-
tion between these values is arbitrary. The follow-
ing form is assumed for the symmetrizing factors
of the OPW's with wave vectors given by E&I. (4)9.

Note that setting f (k) =g (k) in K&I. (8) is essential
to obtain the simple form of the final term in Eq.
(17). We can absorb the normalization factors c,
and e~ by redefining the parameters z and V;, . By
neglecting the off-diagonal E dependence within the
square brackets and representing the remaining
terms by $, we obtain the expression

&e(I(H E)l&,& =&@,I-Hle, & «„. -
k, —k„

16 k ky

k+k,
12 —k,

7T

F2 = sin—
2

r
sin

2
The first term is an energy-independent Hamil-
tonian given by

The first term in the parentheses is written in the
standard nearly-free-electron (NFE) form

&k»IH Ik;&= &rk? 5;, + V;&. (16)

The free-electron value of n would be (k'/2m)
x(w/4a ) where a is the lattice constant. The V,.~
are pseudopotential coefficients, of which only the
lowest three (V,M, V», , and Vzoo) are assumed to
be nonzero. Other terms within the parentheses
are simplified as follows. In the double sum over
n and m, we once again neglect the dispersion of
the d bands by setting &d„l H Id ) = E,6„. Using
Eqs. (4), (5), and (7), we obtain

«t&, I
(H —E)I @z& = (c, 'c, ak, —E. )5;, + c, 'c~'V,

&

+ ,' c, 'c, '[ —2ab+-c -Eo+ &PE(I —5;,)]
x 1,(k,R)j,(k~R)P, (k,. k,.). (17).
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F4 = sin
size of the plane-wave block of the model Hamil-
tonian.

These are introduced into the model Hamiltonian
by multiplying each off-diagonal element,
(Q~ I H I p,.), of the plane-wave block by F,F, and.

each element, (@,I H I d„), of the hybridization
block by F, . These functions in Eq. (19) differ
from those used by HEL but are similar to alter-
natives proposed by Smith. ~ The present choice
for the functional form of these symmetrizing fac-
tors is based on the results of studies that are
described in Sec. IIIC.

To illustrate the role of these symmetrizing fac-
tors, we plot in Fig. 1 the free-electron bands in-
volving the four OPW's with wave vectors given
by Eq. (4). In this figure, the solid (doited) lines
designate bands for which the symmetrizing fac-
tors are 1 (0). In those cases where the symme-
trizing factor varies from 1 to 0, the long (short)
dashed lines indicate schematically those por-
tions where the symmetrizing factor is large
(small). From these results, it is clear that the
symmetrizing factors play an important secondary
role; namely, they eliminate the need to modify
the functional form of f(k) and g(k) in Eq. (9) at
large k. Mueller introduces such a cutoff to
eliminate hybridization and orthogonality correc-
tions involving these higher OPW's.

One of the less attractive features of the present
scheme is the fact that the quality of the fit de-
pends on. these rather artificial symmetrizing fac-
tors. However, there appears to be no satisfactory
method for eliminating them without increasing the

III. QUICK PROCEDURE FOR FITTING BANDS

(E —E,) (E —E ) = y' (20)

where E~ and E, are the d band and OPW energies,
respectively, when B, = B, = 0. We now summarize
these results. We introduce the abbreviations j~
j», and j~ to denote the values of jo(kR) at L, X,
and W, respectively.

The model Hamiltonian is sufficiently simple in
form that, at points of high symmetry, it is easily
reduced by hand. In this section, we present these
results for the symmetry points I', X, I., and W

and show how they may be used in terms of a quick
"recipe" to fit the results of first-principles cal-
culations and thereby determine the parameters of
the plane-wave- and hybridization-blocks. In

particular, we discuss the best choice for the
magnitude of the orthogonalization term.

We assume that the parameters of the d-d block
have already been found. These can be determined
quickly by fitting a few of the nonhybridizing d
levels. Within the context of the present scheme,
the levels I'~5. , I'», X„X„X„L"„L,', and K4 are
pure d states and these may be used to determine
the d band parameters. In the case of Burdick's
APW results on Cu, ' which we will take as our
example in what follows, the values found in this
way" for the parameters Eo, 4, A„A„A3, A„A„
and Ao are given in column (a) of Table l.

When hybridization is introduced (i.e. , BOO),
it is found that the energies of several pairs of
states at X, I., and TV are given by a simple qua-
dratic equation of the form"

i
\
\
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~ ~

~ ~
~ ~

~ ~
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I
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E,(L ) = T(L)+ V (L),

E,(L, ) = T(L) V,'»(L), —

(21)

(22)

where the kinetic energy term T(L) and the non-
local pseudopotential term V„,(L) are given by

A. Energy eigenvalues at L,X, and V

At L, we have F, =1, F, = 0, F,=1, and F4=0.
The sum and difference of I p&) and Ipo) yields
functions which transform like L& and L, , re-
spectively. In the absence of hybridization, we
obtain the following NFE form for the energies E,:

x w L I

R E DU CEO NAY E V ECTOR

K X

T(L) = 48a+ Vooo+ Sgr ~

V111(L) 111+~i L (24)

FIG. 1. Schematic representation of the strengths of
the symmetrizing factors associated with the plane-wave
bands. The full (dotted) curves indicated free-electron
bands for which the symmetrizing factors are 1 (0). For
the other bands, the symmetrizing factors vary smoothly
from 1 to 0.

Note that the E(Lo, ) is independent of the S-term
whereas E(L,) includes a contribution 2Sj~~. The
contribution of this nonsymmetric orthogonality
term to the L& —L~, splitting has been discussed
previously by Mueller. In addition to these effects,
the L& level also hybridizes with a d level of the



PHOTOEMISSION SPECTRA AND BAND. . . I. 1345

TABLE I. Interpolation scheme parameters for Bur-
dick's APW results on Cu, from {a) quick fitting pro-
cedure and {b) nonlinear least-squares fitting.

T(W) = 80n+ Vopo+Sj w,

Vsse( W) = Vut '22'2' Sf w

Vopp(W) = Vppp+2$ Sjw .

(36)

(37)

(38)

oooo

~2oo

R
$
B~
B~

0. 01397
—0. 1000

0. 0553
0. 0773

0. 40
0. 866
0. 970
0. 970

0. 01401
—0. 1119

0. 0529
0. 0761

0. 4111
0. 7341
1.0562
1.0818

Eo(W)) = Eo+ &+ 2 A4+~2 Ao,

Eo(W2 ) = Eo+ 4 4A4~

Eo(W2) = Eo —4A2

(39)

(4o)

(41)

Each of these states hybridizes with a d level ac-
cording to Eq. (20), with

Eo
A)
A2

A3
A4

A5

A6

0. 33075
0. 02031
0. 00619
0. 01025
0. 01295
0. 00262
0. 00826

—0. 00445

0. 32818
0. 02038
0. 00556
0. 00754
0. 01094
0. 00287
0. 00931
0. 00244

Zo(Lg) = Zp —8A2,

r (Lg) = (W) &pi 2

(25)

(26)

At X, we have F, = F~ =1 and Fs= F4=0. The
situation is similar to that at L, in that the re-
maining two OP%'s form symmetric and antisym-
metric combinations which transform as X, and

X4. , respectively. In this case,

E,(x,) = T(x) + v,'„(x),

E,(X4, ) = T(X) —Vopp(X),

where

T(X) = 64n+ Vooo+ Sj»

V2oo(X) = V200+ Sj» ~

~ 8

The X& level also hybridizes with a d level and

(27)

(28)

(28)

(30)

Zo(X)) = Zp+& —
2 A4 —

2 Ap

r(X1) = —(&o ) &.j» ~

(31)

(32)

At W, F, = 1 for i = 1 to 4 so that we must con-
tend simultaneously with all four OP%'s. In the
absence of hybridization, symmetrized combina-
tions of these OP%'s yield two singly-degenerate
levels W, and W~, and a doubly-degenerate W,
level, with

E, (Wq) = T(W)+ 2 V qu(W) + Vooo(W),

E&(W2 ) = T(W) 2 Vying(W) + Vppp(W)i

E,(W2) = T(W) —Vooo(W)

(33)

(34)

(35)

same symmetry; as a result, Eq. (20) applies with

r(%) = —k~&&oaw,

r (W2 ) = -
o Z.i w

y ( Wp) = + fv 2 Bqjw

B. Recipe for fitting

(42)

(43)

(44)

E =E +E (45)

setting E = E„ in Eq. (20) and eliminating E, with

Eq. (45), we find

y2=(E E)(E E,). (46)

Using Eqs. (45) and (46), we can calculate E, and

y for each pair of hybridized levels. Each value
for y yields a corresponding value of Bj2(kR).
From these results, one may choose the optimum
values for the parameters B and R. In the pres-
ent example (Burdick's APW calculation for Cu' ),
the values B=0.970 Ry and R=O. 400 are obtained.
In this simplified method, we ignored the value of
Bj~ obtained for W, since it differs widely from
the values of Bj~ obtained from the W2, and W~

states. In absolute terms, the actual hybridiza-
tion shift is small for Wi and therefore suscep-
tible toa largepercentage error. As a result, it
is advantageous to use only the larger shifts as-
sociated with W~. and W3.

Having determined R, this fixes the values of

j~, j~, and j~. Let us turn now to the values ob-
tained for E, and show how they lead to estimates
for Vy]y Vppp and $ %e will require the values
of E,(L2. ) and E,(X4,). Since these levels do not
hybridize, their energies may be read off directly
from the results of a first-principles calculation.
App)ying the appropriate equations of Sec. III A to
Burdick's Cu results, ' we find

Since we assume that the d-band parameters have
already been found, we can calculate E„ for each of
the pairs of hybridizing levels discussed above.
The two eigenvalues (E„and E, ) which we wish to
fit with Eq. (20) are also known (they may be read
off from the same first-principles E(k) curves that
were used previously to deduce the d-band param-
eters). According to the diagonal-sum rule, E„
+ E, =Eu+E, , so that
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V 111(L) V111 Z2 l
= -', [E,(L,) —E,(L,, )] = 0. 1251 Ry,

V5«(X) = V,«+ Si»
= —,

' [E,(X,) —E,(X;)]= 0. 1585 Ry,

V 111(W) V111 25 Z2 5'
~1

= —,
' [E,( W1) —E, (W5, )] = 0.020'7

V5«( W) = V5«+ 55 Z2 5

= g[E,(W1)+E,(W5.) —2E,(W5)]

=0.0848 Ry.

Vie therefore have four equations with three un-
knowns Vyyy V2pp and S. Happily, a reasonable
solution is possible for Cu with V», =0.0553 Ry,
Va«=0. 0773 Ry, and 8=0.866 Ry, respectively.

All that remains is the determination of the
final two parameters, Vpoo and 0. The first is
readily evaluated since E(I',) = V«5. The second
is determined by noting that the values of T(L),
T(X), and T(W) can be obtained from the previously
determined values of E,. Using Eqs. (23), (29),
and (36), we obtain three estimates for o. In the
case of Cu, the average of these gives +=0.01397.

The values of the parameters obta, ined in this
way for Cu are shown in column (a) of Table I.
Column (b) shows the values obta. ined by a more
elaborate nonlinear least-squares fitting procedure
described in Sec. IV of this paper. It is seen that
the recipe described here gives values not far dif-
ferent from those obtained via the more elaborate
procedure.

In Fig. 2 we show the bands obtained using the
parameter set of column (a,) of Table I. The re-
sults are compared with the actual APW eigen-
values of Burdick indicated by filled circles. The
open circles represent the levels used in the quick
fitting recipe to determine the parameters of the
plane-wave and hybridization blocks. It is seen
that the fit is quite close. The fit to the d bands
is comparable to that obtained by HEL and Mueller.
We draw particular attention, however, to the
quality of fit in the unoccupied region. The fit is
quite good up to about l.4 Ry (i.e. , about ll eV
above the Fermi level) which is quite adequate for
analysis of conventional photoemission experi-
ments. Above this value, the bands begin to go
astray. The eighth and ninth bands at X, for ex-
ample, (which transform as X5.) are in error by
more than 2 eV.

C. Relative magnitudes of orthogonalization and pseudopotential
terms

There has been some discussion in the litera-
ture~' concerning the relative contributions of the
local pseudopotential (V», ) and the orthogonaliza-

).2

m ).0K

~~ 0.8

z 0.6
Ld

0.4

~~ 0.2

0

X W L I'

REDUCED WAVE VECTOR
K X

FIG. 2. Energy-band results for Cu that are gener-
ated by the parameters in column (a) of Table I. The
filled circles represent Burdick's APW eigenvalues. The
open circles represent those eigenvalues that are in-
volved in the fitting procedure of Sec. III.

tion term (S term) to the L, L5. splitti-ng. We refer
here only to the difference between E,(L,) and

E,(L5, ) when hybridization with the d bands is ne-
glected. Hybridization can increase (decrease)
this gap if the L, state is above (below) L5, . In

the original HEL scheme where there is no 9 term,
the L&-L2. splitting is due entirely to V„~. In
Mueller's original para, meterization, V», and Vppp

are assumed to be small in analogy with the situa-
tion in Al so that his orthogonality terms provides
the main contribution to this gap. While both
parameterizations yield the correct L~ —L, sepa-
ration, as well as a rea.sonable X4, -Xj gap, they

go badly astray at other points in the zone. In
particular, the band gaps at P are not well re-
produced. In the present parametrizati. on scheme,
we have emphasized the importance of fitting that
bands at 8'. It has been found that, in order to do

this, the magnitudes of V», and the S term must be
roughly comparable. The present scheme is there-
fore a compromise between the two extremes repre-
sented in the HEL and Mueller schemes.

The comparison between the various parametri-
zations is illustrated i.n Fig. 3, where we sho% the
band structure of Cu in the X- W and 8'- L direc-
iions. The middle panel, Fig. 3(b), represents
the same parametrization given in Table I, col-
umn (a), illustrated in Fig. 2. Figures 3(a) and

3(c) represent simulations of the HEI. and Mueller
parametrizations. These were obtained by vary-
ing ~, Viiiy Vapo~ and $, but in such a way as to
leave the energies of the levels I, , L, , and X4.
unaffected. All other parameters of the scheme
a,re kept constant. The HEL scheme is retrieve~
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I4

l2

8

K
W 4
W

zo 0

-6—
-8—
-)0-

X W

(a) (b)

L X W L X W

REDUCED WAVE VECTOR

(c)

FIG. 3. Comparison of three alternative parametri-
zations: (a) the original HEL parametrization {zero S-
term); (b) the present parametrization; {c)a simula-
tion of Mueller's parametrization (large-& term and
small Vifg, 200).

changes are in the correct sense and of the correct
relative magnitude to reproduce the results of
first-principles band calculations. Mueller's pa-
rametrization tends to "overdo" the variation of
V,» and Vgpp with k. If the S term dominates, it
can be seen from Eq. (36) that V, » will swing
negative at W, thus inverting the order of the W2,

and W, levels. This in turn causes crossings be-
tween the bands joining L& to W3 and L, to Wy.

D. Simulation of relativistic effects

Relativistic effects in the 5d transition metals,
and even the 4d series, are quite large. It is
therefore desirable to make some provision for
including them in the scheme. The most important
relativistic effect is the spin-orbit coupling since
it lifts degeneracies and brings about a qualitative
change in the nature of the bands. When spin-orbit
coupling is included, the model Hamiltonian of Eq.
(1) is applied to both the spin-up and spin-down
electrons. The total Hamiltonian has the form

simply by setting S equal to zero. The Mueller
parametrization is simulated (because of the sim-
plification introduced in Sec. II, there are some
minor differences with the actual Mueller scheme)
by setting ~ equal to its free-electron value. One
finds that this forces V»j and V2« to be small and
the $ term to be rather large.

It can be seen in Fig. 3 that the level most af-
fected by these changes is the s-like level W, . In
the HEL parametrization scheme, this level oc-
curs several electron volts higher than it should.
Why this happens is immediately obvious from
Eqs. (33)-(38). If S is zero and V,«and V200 are
large and positive, then E,(W, ) is forced upwards.
This gross error in the positioning of W, (and the
rest of the ninth band) is present in previous cal-
culations of the joint density of states and the ener-
gy distribution of the joint density of states. ' Its
most serious effect is that in describing optical
transitions from, say, the d bands to the ninth

band, the calculations overestimate the threshold
for optical transitions near W, raising it above the
normal upper limit of the calculations (12 eV).

An important goal of the present parametriza-
tion scheme is to reproduce the correct band gaps
at W. This is achieved by the S term in the follow-
ing way. Since both V», and S are positive, the

V»y and the S terms at the L point in the Brillouin
zone reinforce each other to give a large value of
the nonlocal pseudopotential V july At W however,
the behavior of the Legendre polynomial P, causes
the S term to reverse its sign and, according to
Eq. (36), this cancels most of V„, and yields a
much smaller V,». In a similar way, V2pp is re-
duced by a factor of 2 in going from X to W. These

H„,=

H„H,„
H~, H~~+ $M 0

0 0 Hcc Hcg

0 —]X" H„, H+

(48)

where M and N, which involve a single additional
parameter $, are given by Friedel et al. and Abate
and Asdente. '3 For simplicity, one can set the
spin-orbit parameter $ equal to the corresponding
atomic value from Herman and Skillman' and
thereby avoid the introduction of yet another param-
eter.

The influence of the other relativistic effects
(mass-velocity and Darwin terms) can be ab-
sorbed by readjpsting parameters in the original
nonrelativistic scheme. We have found that the
special properties of the S term can be exploited
to good advantage here. Let us consider the ease
of Au, where Christensen and Seraphin' have pub-
lished eigenvalues for relativistic and nonrelativis-
tie APW calculations. We consider the plane-wave
gaps at L and X. In the double-group notation of
the Christensen-Seraphin paper, the relativistic
L4+ and L4- states correspond to the nonrelativistie
L, and L2, levels, respectively. Similarly, the
levels X6. and X6- correspond to X& and X4. , re-
spectively. Comparing the relativistic and non-
relativistic eigenvalues, we find that the combined
effect of the mass-velocity and Darwin terms is to
lower both the p-like L,. and X4. levels by 0. 12 and
0.16 Ry, respectively. Likewise, the s-like levels
L& and X, are depressed by 0. 35 and 0.38 Ry, re-
spectively. These results are consistent with the
relativistic shifts of the 6p and 6g states of the free
atom, as given by Herman and Skillman. ' We
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note, in particular, that the downward shift of the
s-like levels is greater than that of the p-like lev-
els. This results in narrower band gaps at both
X and I..

I et us consider how these results can resolve
the ambiguities that arise in the corresponding
states at W. In the nonrelativistic limit, there
are four levels: the s-type W„ the P-type W, ,
and the doubly degenerate p-type W3 levels. In
the relativistic limit, one has four singly c'egener-
ate levels (W„W„W~ and W,). The relationship
between the relativistic and nonrelativistic levels
is, at first sight, ambiguous. In general, one
would like to know the ordering of the W» W, ,
and W3 levels if spin-orbit coupling were neglected
in the relativistic calculations but the other rela-
tivistic effects were retained. The best way to
answer this question is to perform the relativistic-
rAPW calculations with spin-orbit coupling included
and then omitted. Short of this, we can proceed
approximately as follows. We apply to the non-
relativistic s- and p-like levels at W the same
shifts found for the s- and p-like levels at I. and
X, respectively. This leaves the relative separa-
tion between the p-like levels W, , and W3 unchanged.
However, owing to the greater downward shift for
the s-like levels, the W, level (which lies close to
W2. in the nonrelativistic case) should be the low-
est state in the relativistic limit. In Christensen
and Seraphin's Au calculation, we identify the low-
est relativistic-plane-wave W, state with W„and
the uppermost W, level with W~, . The average of
the two intermediate W8 and Wv levels then cor-
responds to the doubly degenerate W~ state.

The shi~ts described above are very readily ac-
commodated by adjustments to the parameters of
the nonrelativistic scheme. The narrowing of the
gaps at X and L, is readily simulated by adjusting
Vggy & V20p and S (and possibly n). This is done
in such a way that, although the magnitude of the
band gaps decrease, the contribution of the S term
increases relative to Vyyy and V2pp Ultimately,
this causes V,» to change sign at W, thereby in-
verting W, and W~. . We recall that this is pre-
cisely the ordering that occurs in the Mueller
scheme, where Vasty and Vzpp are constrained to be
small.

IV. NONLINEAR LEAST-SQUARES FIT TO APW RESULTS

A series of nonrelativistic APW calculations have
been performed for the fcc metals in the Bd (Ni,

Cu), 4d (Rh, Pd, Ag), and 5d (Ir, Pt, Au) transi-
tion series. The purpose of these calculations is
to provide a first-principles estimate of the inter-
polation parameters for each of these metals. It
is anticipated that these results will serve as a
useful starting point for subsequent attempts to fit

the observed structure in the photoelectron energy
spectra for these materials. Since the present
APW calculations neglect relativistic effects, such
an empirical-adjustment procedure will have to
make corrections for these errors as well as those
introduced as a result of inaccuracies in the crys-
tal potential.

A. Details of APW calculation

The present APW calculaticns for these fcc met-
als involve approximate crystal potentials that are
derived from the atomic charge densities of Her-
man and Skillman. ' Exchange and correlation ef-
fects are included by means of Slater's original
p' approximation. '

These calculations improve the muffin-tin ap-
proximation to the crystal potential by including
corrections to the constant potential outside the
APW spheres. The techniques for calculating the
muffin-tin potentials and the corrections have been
described previously. ' In the present close-
packed fcc structure, these corrections to the
muffin-tin potential are expected to have a small
effect on the energy eigenvalues. Prior studies
by Koelling, et al. for Pd and Pt indicate that
these corrections shift energy eigenvalues by
0.001-0.005 Ry, and in a few cases by 0.010-
0.015 Ry.

We list in Table II the atomic configurations and
the lattice constants that are involved in determina-
tion of the individual crystal potentials. In each
case, the APW sphere radii were chosen so that
neighboring spheres touched along the (110) direc-
tions. The atomic configurations for Rh, Pd, Ir,
and Pt are identical with those used in previous
calculations by Andersen. "

B. Determination of parameters

The APW calculations for each metal were car-
ried out at seven points of high symmetry in the
fcc Brillouin zone, including I'(0, 0, 0), X(0, 8, 0),
L(4, 4, 4), W(4, 8, 0), K(6, 6, 0), n. (0, 4, 0), and
Z (4, 4, 0). The model Hamiltonian parameters
were determined by applying a nonlinear least-
squares procedure to fit the energy eigenvalues
of the 40 states listed in Table III. This fit did
not involve some of the higher-energy OPW states
(n, , Z, , and Z3) that are generated by the model
Hamiltonian. In the fitting procedure, each eigen-
value is given equal weight, regardless of its de-
generacy or location in the Brillouin zone.

For purposes of comparison, we first applied
this fitting procedure to the results of Burdick's
APW calculation for Cu. The resulting set of
parameters is listed in column (b) of Table I.
Encouragingly, the values for these parameters
are in good agreement with those obtained by the
less elaborate recipe of Sec. III.
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TABLE II. Atomic configurations and lattice constants for the fcc metals.

Element

Atomic no.
Conf iguration

0
Lattice constant A

M uff in-tin Vo {Ry)

Ni

28
3d8 4s2

3. 5166~
—1 ~ 392

Cu

29
3d' 4s
3.6147~

—1.078

Rh

45
4d8 5s
3. 8031

—1.249

Pd

4d"
3. 8898

—0. 848

47
4df0 5 1

4. 0855'
—0. 932

Pt

76 77
5d 6s 5d 6s
3 8389 3 2931

—l. 500 —l. 179

Au

78
5d'0 6s'
4. 0781b

—1 ~ 012

~E. I. Zornberg, Phys. Rev. B 1, 244 {1970).
W. J. O' Sullivan, A. C. Switendick, and J. E. Schirber, Phys. Rev. 8 1, 1443 {1970).

'O. K. Andersen, Phys. Rev. B 2, 883 {1970).

The corresponding parameters that are obtained
from a similar fit to the present APW results are
listed in Table IV. In each case, the rrns and
maximum errors involved in the fit are listed.
These errors, which are roughly proportional to
the bandwidths, are largest in the case of Ir. It
is found that the parameter A, provides a useful
estimate of the d bandwidth since its magnitude is
consistently about 10'& of the total d bandwidth. It
should be emphasized that no attempt has been
made, at this stage, to bring these band struc-
tures into agreement with any experimental data.
The model band structures obtained using these
parameters are illustrated for the I X direction
in Fig. 4.

C. Improvements

We have investigated several possible means
for improving the accuracy of the present model
Hamiltonian. In one such study, we reduced the
six three-center nearest-neighbor d-d parameters
A, -A6 to three parameters via the two-center ap-
proximation and then added second-neighbor inter-
actions. The corresponding parameters for this
case are included in Table V. A comparison be-
tween the results of Tables IV and V indicates that
both variations reproduce the APW results with

compara, ble accuracy.
We have also studied the relationship between

accuracy and the functional form of the symme-
trizing factors E' in Eq. (19). In the present fit-
ting procedure, these are particularly important
at the Z and 4 points in the Brillouin zone where
the symmetrizing factors assume value intermedi-

ate between 0 and 1 (see Appendix). The results
of these studies indicate that the sin'~2x form of
Eq. (19) provides a more accurate fit than the
previously suggested sin~x dependence. ~

Other passible sources of error include the ap-
proximations introduced in Secs. II C and IID,
where the effects of d-band dispersion were ne-
glected in parametrizing various hybridization
and orthogonality terms in the model Hamiltonian.
We recall that k-dependent normalization factors
were absorbed into the parameters z, V»„Vgpp,
Vppp and 5, and thereafter, these were treated
as constants. We have tested the accuracy of
these approximations by introducing overlap be-
tween the OPW and d-type states explicitly in the
matrix elements of H —E. Equations (5) and (6)
were used to parametrize the overlap and hy-
bridization matrix elements, respectively. For
maximum flexibility, two separate radii were in-
troduced so that f (k) = ja(kHO) and g (k) = ja(kH'). The
results of the corresponding nonlinear least-squares
fit reduced the rms error by about 20%. However,
part of this improvement can be attributed to the
two additional parameters that were introduced.
We conclude that the approximations of Secs. II C
and IID are reasonably accurate.

It appears that the accuracy of the present model
Hamiltonian is particularly poor for OPW's which
hybridize with the d states. Since these errors
could arise from the assumed functional form for.
the radial form factors f (k) and g(k) in Eq. (9), we
have compared the relative accuracy of several
alternative forms. Since the overlap matrix ele-
ment (kid„) is simply the Fourier transform of the

TABLE III ~ Summary of energy-band states included in the nonlinear least-squares fitting
procedure.

Type X K

OP%' x, ,x4' Lg, L2'

I i2 25' Xg, X2,X,X 2L3, L

W't, W3, W'2'

S'g, PV3, 8'(', W2'

2K), K3

2K), K2

K3, K4

6t, b2

zg

2Zg, Z2

Z3, X4
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tight-binding Bloch sum (d„), then f (k) in Eq. (5)
corresponds to the radial part of the momentum
wave function. If one assumes a hydrogenic form
for g„ in Eqs. (2) and (3), then one can evaluate

f (k) directly (see Podolsky and Pauling~'). It is
found that little to no improvement in accuracy is
achieved in the fit when these alternative forms
are used. The reason is that, in the wave-vector
range where hybridization is important [t.e. , from
0 = 0 to the first maximum in f (k)], the alternative
forms for f(k) exhibit the same k dependence as
jg(kR).

Based on these studies, we conclude that the
accuracy of the present model Hamiltonian is
limited primarily by the size of the (4&&4) plane-
wave block. If a more accurate representation of
the unoccupied states is required, then it will
probably be necessary to add additional OPW's.
By increasing the number of OPW's, one would
also reduce the importance of the somewhat arti-
ficial symmetrizing factors in fitting the lowest
conduction-band states.

APPENDIX: BLOCK DIAGONAL FORM OF MODEL
HAMILTONIAN AT VARIOUS SYMMETRY POINTS

0 —
Rh

~ 0.8
K

~ 06
C9
K
LLf 04
4J

z 0.2
0
K 0-.
4J

1.0-

0.8

0.6

0.4

0.2

08- Ni

0.6

04

0.2

pd Ag X

Au

E(I',) = Vooa (A 1)

E(I'„,) = Eo —4A, + 8A2 (triply degenerate), (A2)

E(1'ia) = Eo+ 4 + 4A4 —8A,

(doubly degenerate)

b X(0, 8, 0).. We have

E(X5) = Eo+ 4Ai,

E(X3) = EO —4A, —8A~,

E(Xz) = Eo+ 4 + 4A4+8A~,

(A8)

(A4)

(A5)

(A6)

c. L(4, 4, 0). The block diagonal part of the
Hamiltonian for the purely d-like I.3 levels is

In the nonlinear least-squares fitting procedure
used in Sec. IV, the parameters of the interpola-
tion scheme were determined by fitting 40levels of
the first-principles calculations at the following
seven points in the zone: I'(0, 0, 0), X(0, 8, 0),
L(4, 4, 0), W(4, 8, 0), K(6, 6, 0), d (0, 4, 0), and

Z(4, 4, 0). Each level was identified according to
its group-theoretical transformation properties.
We emphasize that the symmetrizing factors are
essential if the Hamiltonian matrix is to be re-
duced to block diagonal form at points of high sym-
metry. Previously, some of these reduced ma-
trices have been given in Sec. III. Here, we sum-
marize the remaining results that have been used
in the nonlinear least-squares fitting procedure.
For the d-bands, we use the three-center nearest-
neighbor approximation.

a. I'(0, 0, 0). We have

xr xr
wAYE vECT0R

given by

ff(L,) =
Eo+ 4A3

4v 2A,

4&2A,

Eo+
(AV)

Each solution is doubly degenerate.

d. W(4, 8, 0). We have

E(kg) = Eo+ 4Ag .
K(6, 6, 0). If we write

j,=j,(@72 R),

T='72&+ Vooo+ Si r
~ 2

1 ~ 2
V111 V111 3 ~~ K

li ~ 2
V200 V200+27 ~~ E ~

then we have

(A8)

(A9)

(A 10)

(A11)

(A12)

E(K2) = Eo+ 2v 2 Ai —2A2(u 2 —1) + 2AS,'

E(K4) = Eo + a + 2A 4 + 4v 2 Aq.

The elements of the Ks matrix age given by

(A18)

(A14)

(A15)

FIG. 4. Model band structures for the fcc d-band rnet-
als obtained by a nonlinear least-squares fit to nonrel-
ativistic APW calculations.
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TABLE IV. Parameters of the interpolation scheme obtained by a nonlinear least-squares fit
to the results of nonrelativistic APW calculations on the fcc d-band metals.

oooo

&2oo

R
S
B,
Be
Eo
Ai
A2

A3
A4

As
A6

rrji|s error
max error

0. 0147
—0. 0517

0. 0781
0. 1070
0.4076
0. 7076
l. 0055
1.0217
O. 2310
0. 0200
0. 0056
0. 0076
0. 0110
0. 0027
0, 0093
0 ~ 0022

0. 0035
O. 0112

CU

0. 0138
—0. 0904

0. 0613
0. 0921
0. 4073
0. 6761
1.0085
1.0202
0. 3302
0. 0185
0. 0053
0. 0070
0. 0099
0, 0023
0. 0084
0. 0029

0. 0042
0. 0125

0. 0139
0. 1148
0. 0824
0. 0955
0.4177
1.5598
1.5536
1.5495
0. 4238
0. 0448
0. 0112
0. 0154
0. 0238
0. 0061
0. 0213
0. 0001

0. 0130
0. 0512

0. 0130
0. 0310
0. 0701
0. 0894
0. 4104
1.3056
1.3429
1.3381
0. 3136
0 ~ 0362
0, 0091
0. 0126
0. 0190
0. 0049
0. 0171
0. 0013

0. 0095
0. 0371

Ag

0. 0114
—0. 0797

0. 0434
O. 0694
0. 4047
0. 8250
0. 8468
0. 9386

—0. 0005
0. 0210
0. 0054
0. 0074
0. 0102
0. 0029
0. 0095
0. 0041

0. 0041
0. 0164

0. 0142
0. 1318
0. 0687
0. 0932
0. 4212
l. 8966
l. 7373
l. 7163
0.4158
O. 0546
0. 0129
0. 0177
0. 0279
0 ~ 0073
0. 0261
0. 0005

0. 0186
0. 0767

pt

0. 0134
0. 0534
0. 0614
0. 0864
0. 4155
1.6003
l. 5054
1.5030
0. 2998
0. 0448
0. 0107
0. 0148
0. 0226
0. 0060
0. 0212
0. 0017

0. 0137
0. 0565

Au

0. 0121
—0. 0497

0. 0437
0. 0728
0. 4094
l. 1743
l. 1176
1.1609
0. 0761
0. 0310
0. 0075
0. 0105
0. 0152
0. 0043
0. 0145
0. 0035

0. 0075
0. 0307

Hoo = Ho+2' 2 —2Ao(u 2 —1) —2Ao,

H12 9 Bc)lt. -

The elements of the 4&&4 E, matrix are

(A16)

(A1V)

H14=-6 v 3 B,jz, H23=16v 2 B,j z,

Ho4 18 W6 He JK& H34= —(4/W3)Ao.

6(0, 4, 0). Let us write

H11= T, H22= T+ V2oo~

H33= Eo 2A1 —4v 2A2,

H44= &0+& --..94+ 4Ao) -
o ~2 (2&4-&o),

(A16)
H12 = V 2 &111, H13 =

2 B,j~,

T, = 16~+ Vooo+ S(go(~16 R)],
To = 144a+ Vooo+ S[jo(v'144 R)],
V2oo V200+ Sjo(~16R}jo(4144R),

p ~ sjn1/2 ~1 = 2 1/2
2 6

(A19}

(A20)

(A21)

(A22)

TABLE V. Alternative set of parameters for the interpolation scheme using, for the d bands, a two-
center approximation taken to second nearest neighbors.

oooo

V111

&2oo

R
S
B,
B
E

(dda) i
(dd7t ) )

(ddt)q
(ddt),
(dd~),
(ddt)2

Ni

0. 0147
—0. 0529

0. 0766
0. 1093
0.4113
0. 7070
1.0134
0. 9765
0.2303

—0. 0260
0. 0121

-0.0014
—0. 0008

0. 0004
—0. 0000

0. 0021

Cu

0. 0139
—0. 0917

O. 0597
0. 0949
0.4093
0. 6824
1.0162
0. 9685
0. 3292

-0.0242
0. 0111

—0. 0009
—0. 0008

0. 0005
—0. 0003

0 ~ 0035

Rh

0. 0138
0. 1169
0. 0820
0. 0976
0. 4159
1.5294
1.5924
l. 5547
0. 4240

—0. 0589
0. 0243

—0. 0027
0. 0019
0. 0007

—0. 0003
—0. 0010

Pd

0. OJ. 30
0. 0310
0. 0690
0. 0119
0.4099
1.2874
1.3726
1.3239
0. 3135

—0. 0474
0. 0199

—0. 0022
0. 0009
0. 0006

—0. 0001
0. 0002

0. 0114
—0. 0787

0. 0422
0. 0715
0. 4069
0. 8463
0. 8309
0. 8583

—0. 0025
—0. 0272

0. 0117
—0. 0016

0. 0002
0. 0011

—0. 0001
0. 0041

0. 0142
0. 1351
0. 0690
0. 0944
0. 4189
1.8639
1.7745
1.7352
0.4149
0. 0718
0. 0281
0. 0027
0. 0029
0. 0014
0. 0005
0. 0008

pt

0. 0134
0. 0555
O. 0608
0. 0883
0.4140
1.5803
1.5368
l.4993
0. 2990

—0. 0587
0. 0233

—0. 0024
0. 0018
0. 0012

—0. 0003
0. 0014

Au

0. 0121
—0. 0487

0. 0425
0. 0752
0. 4099
1.1801
l. 1270
l. 1114
0 ~ 0745

—0. 0405
0. 0165

—0. 0019
0. 0004
0. 0011

—0. 0002
O. 0034

rms error 0. 0039
max error 0. 0116
(dd7t )1/(ddcr) i 0. 466

0. 0045
0. 0132
0.459

0. 0131
O. 0518
0.413

0. 0097
0. 0378
0. 420

0. 0045
0. 0172
0.430

0. 0185
0. 0772
0. 393

0. 0137
0. 0573
0. 398

0. 0077
0. 0316
0. 408
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H11 T1 H22= T2,
I

Hz&=Eo+n' s (4A&+A4), H&2= VaooF~,'
(A23)

H„= —(1/MS) B.q, (~SR),

The elements of the 3~3 b, , matrix are the follow-
ing:

V 200= ~aoo 33'I j2(~~~R)]

=P =P =sinC 3 4 4

The elements of the 4&4 Z, matrix are
I

H2a= T2+ V2oo&c ~

H33 = Eo, H44 = Eo+ &,

(A30)

(A31)

H = —(1/&3) B,j,(v'144 R)F

For the other symmetries, we have

E(&5) = E, +4A, (doubly degenerate),

E(&~.) = Eo —4A, ,

E(4,) = ED+4+ 4A4.

g. Z(4, 4, 0). Let us write

(A24)

(A25)

(A26)
I

H&&
= Tg —V ~oo z q, H3~ = Eo —4A3y

H„=-', B,j,(~96 R) F, .
(A33)

H„= W2 V', »Fc, H»=-,'B,j,(v 32R), (A32)

H, 4= —
~ ~3B,jz(~32R), H23=~ v 2Bjz(~96R)Fc,

H„=(1/~6B,jm(~SGR) Fc, H„= —(6/W3) A, .
The corresponding results for the 2X2 Q matrix
are

r, = 32a+ Vo~+ s [j2(v 32 R)]~,

T2=96a+ V000+ S[j2(~96R)]
I

Vij.c = Vugg~

(A27)

(A26)

(A29)

For the remaining states, we have

E(Z2) = Eo+ 4Aq,

E(Z,) =E,+~.
(A34)

(A35)
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