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Relationship between two-body interatomic potentials in a lattice model and elastic
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General equations are derived for the second-, third-, and fourth-order elastic constants given by a
lattice model for a monatomic material, based on two-body central interactions and volume-dependent

energy contributions. Explicit equations for a cubic lattice are given. The Brugger definition of the
elastic constants is used with the required expansions in terms of the Lagrangian strain parameter. The
relationship between the two-body and volume-dependent terms arising from the condition of
equilibrium at zero initial stress is discussed in detail.

I. THEORY

It was shown in an earlier paper, ' referred to
as I, that the bond energy per unit undeformed
volume for a monatomic crystal can be expanded
in powers of strain parameters o, ,j for a homoge-
neous deformation as

1
E& = A+ QijAi j + z™ijapiAi jgi + ' ' '

where

0;j =
a;

1 ~ 1 8 18$,
B;j„—

2
~ —, , —, , a;aja~, , etc.200, r ~r r er

With the definition of the elastic constants as given
by Brugger~ and discussed by Wallace, 4

&U
Cij e~,j

~ UCj„=,etc. ,

where U is the internal energy per unit undeformed
volume, the change in internal energy is given by

1&U= tl;jC;j+ ~ &;,tl„,C; jar + ~ ~ ~

with the elastic constants evaluated at the state of
zero strain. Direct comparison of Eqs. (2) and

(2) gives

I ~ O'P(r')
A, j~r =2~ ~,&, a,'a'„, etc. ,

0 s ~rj r& 0

ij ~" -Bij~ ~ ~ ~C. (4)

1B+'fbi jB;j + ~~;jg„,Bijar + (2)

with q,.i the Lagrangian strain parameter ri, , = —,'(n, ,
+ n, , + n, ,n,.,) (the symmetric finite-strain param-
eter introduced by Murnaghan') and

1 ~18$,
20 r'80 s r 0

with Ao the undeformed atomic volume, P(r') the
potential energy function for two atoms separated
by the vector r', the sum is taken over the position
vectors of all lattice atoms relative to an atom at
the origin, rj is a Cartesian component of r', a' is
the undeformed value of r', u'= r' —a' is the dis-
placement vector, evaluation of the derivatives are
at the undeformed state, and the summation im-
plied is by repeated indices.

If Q(r') is a central potential Q(r') = g(r') = P„
the expansion can be transformed to

If the initial state from which measurements are
taken is assumed to be stress free, then Cij is
zero and the potential and lattice symmetry must
be such that 8;j =0. In general, the restriction on
the potential from this condition is sufficiently
severe that the experimental second-order elastic
constants cannot be matched by Eq. (4). To cir-
cumvent this problem, an additional strain term
E, = —pi jBij can be added to the change in bond en-
ergy for a lattice-model calculation. With this
scheme, an over-all g,j strain associated with a
defect configuration would have to be determined
and E, added to the energy associated with changes
in bond lengths to calculate a defect energy.

The strain g; j is difficult to determine in a defect
calculation, whereas the volume change is easily
found. Thus, lattice models have been used with
an energy contribution which is solely a function of
the volume change for the additional term required
to maintain equilibrium in the unstressed state.
Although this procedure is not as general as the
method outlined in the previous paragraph, it has
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been found to be satisfactory for most cases.
Brudnoy' has recently determined a potential for
hcp zirconium using the strain method. The math-
ematical requirement for equilibrium to be attained
by volume-dependent forces at zero initial stress
is that the potential and lattice structure be such
that A;j = K5;j If this condition does not hold, a
term F., must be added to the model energy.

II. ELASTIC CONSTANTS FOR A CENTRAL POTENTIAL
AND VOLUME-DEPENDENT TERMS

Since there has been some confusion in regard
to the expansion of the volume in strain param-
eters, V/Vp is listed for expansion in terms of
p(~

—o(;, +5;,, a... and (7,, :

V/Vp=~(( (P(;&;;»a —3& (~»» +(2~'&»»() ~

V/ Vp = 1+n((+ 2(a((a, , —((!(,o', () + (( (o(((o(((o(aa 3o((&((&((+ (r((&((&((()

V/ Vp
——[1 + 2';, + 2((), ,(i(, —()(((i,;) + p (()„q(J1)~(,—3()((1i(~(t(„+21);,(), (rj(()]

Then, to fourth order in g,

(V/ Vp)" = 1 + n();; + ,' n(n();;-()» —2(t, ~(i~, )+ p n(.n q, ,(i~j1i» —6n(i, ,(i»(t„+8(i.,,(t»(1„,)

(6a)

(6b)

(6c)

+ p'4 n(n —2) [(n + 2n + 8)(l, , rt((()»(i« —12(n + 2)(l, ;ri,z()»()» + 32(), ,(),,ri((t)» + 12rI ((),(ri„()»] . (6)

To relate the model-energy change AE, +aE„[where E„=P(V/Vp)"] to the elastic energy given by Eq. (3),
the symmetry properties of the elastic constants must be considered. As pointed out in I, this is because
the energy change involves summations and does not lead directly to unique correspondence of terms with
respect to subscripts. With elastic-constant symmetry taken into account,

C;j =B;j+nP&;, ,

2
Cijkl = B;jk, +n P~ijkr nP~ijki )

3 2
Cij klmrf Bij klmrf + P'2 P+i jklmp 'l2 P+i jkmlrl + P2P ikjm

C;,~( „&,=B;,»„&,+n(n —2)(n +. 2n+4)P n»„&,—n(n —2)(n+2)PD;, » &„,

(7a)

(7b)

(7c)

+n(n —2)P&;»»„,+n(n — )2', »(~„, . (7d)

The symbol &,l, g f .means the sum of all independent arrangements of the term 5„6,„5,f. . . from inter-
change of i and j, k and l, m and n, ~ ~ ~ and interchange of ij with kl, ij with mn, kl with mn, ~ ~ ~ . Thus,
for example

+ikjl ~ik~jl + ~il~jk

ijkmln ~ij~km~ln+ ~i j~kn~lm ~ki~im~ jn ~kl~in~jm ~mn~ik~ji + ~mn~il~ jk

The number of terms associated with each 4 is:
ij r ijkl r ijklmnr ijklmnpqr 1r ikjl r 2r ijkmlnr

+ikjmin r r +i jklmpnq r +ikjlmpnq r r a +ijkmlpnq r

32. As pointed out in I, these equations can be ex-
tended to the case of several different volume-
dependent terms by simply summing their contri-
butions. For example, with two contributions, Eq.
(7a) becomes

C;, = B;, + (n,P, +nmPp)4;, .

III. CUBIC SYMMETRY

For cubic symmetry in a monatomic lattice, with
Voigt notation (ll-l, 22-2, 33 -3, 23-4, 31-5,
12 —6), Eq. (7) reduces to

C„= Zg, '(x') +n(n —21P,
0 s

C(2=
&

Z(C(,"(x') (y') +n P,
0 s

C„= „Zq,"(x')'(y')'- nP,
0 s

C(11= Eg, (x')'+n(n —2)(n —4)P,111

C(1, =2~ Z((,"'(x')'(y')'+n'(n —2)P,
0 s

C(pp = (-(((( (x') (y') —n(n —2)P,
0 s

(Sb)

(Sd)

(8e)

(Sf)

(Sg)

C, =
2

Z I,'( ()'xnP+,
0 s

(Sa) Z 0 "'(x')'(y')'(z')' —n'P,
0 s

(Sh)
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C„,=
2

Z i(,"'(x')'(y')'(z')'+ n'P,
0 s

(8i)

C „= Z i(I, (x')'(y')'(z')'+nP,
0 s

(8I)

Z0, (x') (y') +n (n —2)(n —4)P, (81)
0 s

C»66 = Z g, (x') (y') —n(n —2)(n —4)P, (8m)
0 s

C„„= „Zq,
'" '(x')'(y')'+ n'(n —2)'P,

0 s
(8n)

C„„= Z g,
""(x')'(y')' —n(n —2)'P,

0 s
(8o)

C~~6~= ZP, (x') (y') +3n(n —2)P,
0 s

(8p)

C„„= Z g,""(x')'(y')'(z')'+ n'(n —2)P,
0 s

(8q)

C„„= „Zq,""(x') (y') (z') —n (n —2)P,
0 s

(8r)

C5566= Zg," (x') (y') (z') +n(n —2)P,
0 s

(8s)

Cqqqq = +0, (x') + n(n —2)(n —4)(n —8)P, (8k)200,

IV. DISCUSSION

Thomas has recently carried out a pseudopoten-
tial calculation of the third-order elastic constants
of copper and silver, and reports that the overlap
energy (approximated by a Born-, Mayer central
force) makes the dominant contribution to the third-
order constants. A fitting with a nearest-neighbor
two-body central force and a single volume-depen-
dent term using the above formalism gives very
similar results (see Appendix). It is felt that, in
some respects, the discussion given by Thomas
may be misinterpreted. He lists the contributions
from four terms separately: band structure, free
electron, electrostatic, and overlap. However,
these contributions are not independent because of
the equilibrium condition, and thus it is the over-
all fit which has meaning within his model, not the
individual contributions.

This feature of model fitting to the elastic con-
stants is evident from Eq. (8). The relation for
C«[Eq. (8d)] contains a term from the volume con-
tribution. However, equilibrium at zero initial
stress requires that C, in Eq. (8a) is zero, yielding
a relation between the potential and the volume
contribution. For fitting to experimental elastic
constants, it is immaterial whether Eq. (8d) is
used as given or is converted to

C, = Zg,""(x') (y') (z') —n (n —2)P,
0 s

(8t)
C4g =

2
Z g,"(x')'(y')'+ Z g,'(x')' .

0 s 0 s

Cg456 = Zt(& (x ) (y ) (z ) +n(n 2)P ~

0 s

The notation

(8u)

x' &r'
I, p

'Y ~f' f 8'v p'
'''

has been used. Standard cubic relations, e. g. ,

Cqq = C~a= C3$ C]gp Cgpgy ~ ~ ~ p
are implied in this

listing. Two relationships for the fourth-order
elastic constants are found with this model which
are not required by normal elastic-constant sym-
metry: C»44= C,2» and C556~= C~4~~ (in full notation

C111128RS= C11221318 and C1212181S= C11233112)'

Although the corresponding relations are more
complex in the Thomas model, the various contri-
butions cannot be independent of each other.

A rough fit to the second-order elastic constants
of Cu and Ag can be obtained with a one-parameter
model, the parameter being the curvature of a two-
body central potential between nearest neighbors
(the slope of the potential taken a.s zero so that the
lattice is in equilibrium with no additional forces).
Any model which incorporates this parameter will
yield approximate cancellation of the contributions
from additional terms. The same holds true for
the third-order elastic constants, the parameter

TABLE I. Least-squares fit to experimental data for the third-order elastic constant
parameters for copper discussed in the text. All terms are given in 10 dyn/cm .12 2

PB+ P
PB+ P'

0
300

Experimental
%oo

—15.1 —33.2 —28. 7
—13.9 —31.2 —25. 7

—16.32
—15.34

B

1.01
1.47

Fitted

Kazoo

—15.3
—13.9

—33.7
—31.1

—28. 0
—25. 8

S+A
S+A

0
300

—20.
—15.

0 —35.3 —32. 5
0 —29. 5 —27. 2

—14.02
—13.36

—6. 36
—2. 07

—20. 4
—15.4

—36. 1
—30 ~ 5

—31.3
—25. 8

H+G 300 —12.7 —32.7 —29. 5 —18 ~ 32 5.14 —13.3 —34. 0 —27. 6

See Ref. 12. See Ref. 'See Ref. 7.
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TABLE II. Lattice-model fit to the experimental elastic constants for cop-
per. All terms are given in 10 dyn/cm .

Present
Thomas~
Overton and Gaffney
Peters et al. '
Salama and Alers

T ( K) Cff Cf2 C44 Kfpp Kffp Kfff

1.78 l. 27 0.81 —14.8 —33.1 —27. 5
1.79 1.26 0.83 —17.0 —36.5 —29. 9
1.76 1.25 0.82

-15.1 -33 ~ 2 -28.7
—20. 0 —35.3 —31.6

Present
Overton and Gaffney
Peters et al.
Salama and Alers
Hiki and Granato'

300
300
300
300
300

—13.9
—15.0
—12 ~ 7

—31.2
—29. 5
—32.7

—25. 7
—27. 2
—29. 4

1.65 1.18 0.76 -13.7 -30.8 —25. 6
1.68 1.21 0.75

See Ref. 6.
"See Ref. 8.

See Ref. 12.
See Ref. 11.

eSee Ref. 7.

being the third derivative of a nearest-neighbor
two-body central potential. This rough fitting has
been discussed by Hiki and Granato. '

Most point-defect calculations have been carried
out for cubic metals in which a short-ranged two-
body interatomic potential, together with some
scheme to produce equilibrium, yields a satisfac-
tory fit to the second-order elastic constants. The
equations presented above can be simply applied
to refine these empirical lattice-model potentials
with respect to third derivatives.
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APPENDIX

The secc nd-order elastic constants for copper
measured by Overton and Gaffney' and Rayne
at 0 and 300 'K show excellent agreement. How-

ever, the third-order constants given by Hiki and

Gr3nato, ~ Salama and Alers, "and Peters, Brea. —

zeale, and Pare'~ contain significant discrepancies.
Peters et al. only give three constants:

and

'C„p= 8 A+B,~1

Kfff =
g A+B

&

with

A = (1/20o)[at~I 3aifi + 3aikij

and

B=n(n —2)(n —4)P .

(1/iso) alai l o '/(1/W) aieil z~ '

A least-squares fit to the experimental data is
given in Table I. The parameter B shows little
consistency, while the room-temperature data by
Peters eg gl. give the best over-all agreement.
Also, the value of B for this case is close to that
predicted by an exact fit to the second-order con-
stants. Thus the lattice model listed in the next
paragraph was biased towards a fit to these data.

Generally good agreement was obtained with the
following lattice model: aP, = —13-', a&@& (13-', cor-
responds to the common Born-Mayer exponential
parameter), a, &5, = —12—,

' a, Q, , n = —,', and the ratio

KfPP = Cfff ~

Kyoto
= 4(C»& + 3C»z + 12C&M),

and

K&q, —
o (C», + 6Cqqz+ 24C&oz+ 2Cizz+ 12 C&44+ 16C4zo).

=1.075'for i=1, 2, and 3 .

With (1/Qo)a&/& I ooK =2.08x10 dyn/cmz, this
model gives the values in Table II.

The primary reason the calculations by Thomas
yield somewhat higher values for the third-order
constants than the present fit is that he took

For a lattice model with a two-body nearest-
neighbor central potential and a single volume-
dependent term, these three constants are deter-
mined by two parameters:

Kfpp=A+B ~

a141 /a141 a1~1 /a14 1

whereas the magnitude of the left-hand ratio was
taken as slightly smaller than the right-hand ratio
in the present model.
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