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A physical interpretation of recently obtained sum rules for dielectric functions and for the index of
refraction is provided in terms of the inertial properties of the linear dielectric response of material
media. The superconvergent sum rules are then compared with experimental optical data for AgCl, Al,
and Mo and shown to produce good agreement as well as a critical test of extrapolations and of the
Kramers-Kronig relations. A straightforward extension to higher powers of the optical constants and
their moments is briefly discussed.

I. INTRODUCTION

Investigation of optical properties is one of the
most powerful experimental methods of probing
the electronic structure and properties of matter. ~

However, since the range of frequencies over
which an optical "constant" may be measured is
necessarily limited, theoretical tools such as ex-
trapolations, Kramers-Kronig inversions, and
sum rules are needed for the analysis of optical
experiments.

Recently, it was shown~ that sum rules for the
optical constants can be derived systematically and
in a very general way from dispersion relations,
by exploiting the rapid fall-off of the quantities of
interest as co approaches +~. ' This high-frequen-
cy behavior is common to all electronic systems
and may be inferred from the observation that, at
frequencies much higher than any of its resonances,
an electronic system responds to an electromag-
netic perturbation in the same way as a system of
an equal number of free electrons.

The purpose of the present paper is to investi-
gate and further clarify the physical meaning of
some of the results of Ref. 2, and to test them
against experiment using materials for which data
are available over a sufficiently wide frequency
region. In particular, the connection between
high-frequency behavior and short-time response
will be emphasized, and the "inertial" character
of the latter will be related to the physical meaning
of the sum rules in Sec. II. In Sec. III a compar-
ison with experiment is carried out for AgCl, Al,
and Mo, and the usefulness of the sum rules as a
test of extrapolations and of Kramers-Kronig in-
versions is demonstrated by a few examples. Sec-
tion IV is devoted to a brief sketch of some exten-
sions of the results of Ref. 2 to higher powers and
moments of the optical constants, which may be of
practical value because of the rapid convergence
of the integrals involved.

II. PHYSICAL INTERPRETATION OF SUPERCONVERGENT
SUM RULES

In the present section we discuss a number of
the sum rules derived in Ref. 2 in terms of time-
dependent (rather than frequency-dependent) linear
response. It is found that the rules may be viewed
as a consequence of the short-time behavior of the
system following an excitation. In particular, the
impossibility of an instantaneous response, i.e. ,
inertia, leads to sum rules for components of the
dielectric function tensor e;&(~) and its inverse,
VlZ. ,

f [Re&,, (&u) —5;,] d~ = —2w'o, ~(0) (l)

f [Ree,~(co) —5,~] «u = 0, (2)

where o;,.(0) is the ijth component of the dc conduc-
tivity tensor, and to the sum rule for the real part
of the refractive index n(&u) for a cubic or iso-
tropic medium

f (u Ime;;(u)) d(u = —'w(v~~5;, , (4)

f (d fme~j((d) d4l —a7f(d&5o,

(6)

are a consequence of the dynamical equations of
motion. For simplicity, in writing Eqs. (l), (2),
(4), and (5) we have ignored spatial dispersion,
which does not alter the arguments substantially.

f [n(~) —l] d&u = 0 .

For this reason these and similar rules in Sec. IV
of the present paper might be classed as "inertial
sum rules. " Similar reasoning leads to the well-
known result ' that the f sum rules
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G(t —t') = 0, t & t' . (8)

In the case of insulators, it is easily shown that4

G(7) = (2w)
' ' f e '~'d

W QQ 4n
(9)

For metals, however, e(w) has a simple pole at
the origin since e(ur) = I+4wia(~)/(e, where o(&u} is
the complex conductivity, and Eq. (7) must be
slightly modified to satisfy the theorems governing
Fourier transforms. To this aim we follow the
usual "adiabatic -switching" procedure, and multi-
ply E(t') by a factor e"', where q is positive and

will be made to approach zero at the end of the
calculation. Thus Eq. (7) takes the form

P(t) = (2w) "'f'" G(t —t')E(t') e"' dt' (7')

and Eq. (9) becomes

The connection between the sum rules and the
short-time response of the system may be related
to the superconvergence theorem proof given in

Ref. 2 by observing that in order to apply the theo-
rem, certain conditions for the high-frequency be-
havior of e(&u), n((e), etc , .must be satisfied. In
the time domain this corresponds to restrictions
on the short-time response of the system. To see
this in detail, consider the conventional classical
discussion of the dielectric function in terms of
volume polarization and the macroscopic electric
field for an isotropic medium. The response of
the medium may be characterized by the induced

polarization

P(t) = (2w)-'" f G(t —t')E(t') dt', (7)

where E(t) is a component of the electric field,
P(t) is a component of the polarization, and

G(t —t') is the polarization kernel which gives the
polarization at time t resulting from a unit-6-func-
tion electric field pulse at time t'. Here, it is
understood that E(t) is square integrable, corre-
sponding to a wave train of finite energy. Cau-
sality requires

G(T = o) = (») "'
x Ref' co —1 d~+2g~o 0 (12)

The sum-rule equation (1) for the real part of the
dielectric tensor is therefore equivalent to the
statement that

G(T=0)= 0 .
In other words, there is no instantaneous dielec-
tric resPonse, because the inertia of the charges
involved pre eludes an instantaneous polarization.
The fact that the sum rule contains information
about the inertial properties of the system should
not be surprising, since its derivation is based on
the free-electron-like behavior of e(ur } at high
frequencies, which in turn is a consequence of the
dynamical equations.

The f sum rule may also be related to the short-
time behavior of the system, namely, to dG/dr
—= G(r) at r= 0. In order to show this, consider the
inverse of Eq. (9'):

[e((e+ iq) —1]= (2w) '~2 f G(r)

x ei(u+(q)T d7. (2w)-(/2

x f"G(r)e""'""d7. , (14)

where the causality requirement [Eq. (8)] was
used. The validity of the inversion Eq. (14) is a
consequence of the square integrability of E along
a straight line parallel to the real axis in the up-
per half-plane I,. This, in turn, is a consequence
of the square integrability of the conductivity o((e}
on any such line. Integrating Eq. (14) by parts
twice and using Eq. (13), we obtain

around the origin, we obtain

G(&) = (2w) t (f [Ree((o) —1]cos((e7}d(o

+ f Ime(u&) sin(~r)d&u+2w2o(0)) . (II)
Evaluating this expression for 7 =0, one obtains

x «~+»~&y (9')
—[e((e+ iq) —1]= —(2w} ('2
4w (u+ i(7)

On closing the contour of integration in Eq. (9') in

the upper half-plane, it follows immediately from
Cauchy's theorem that Eq. (8) is satisfied. Since
the only singularity of E lying on the real axis is
at the origin, this procedure is equivalent to dis-
torting the path of integration in Eq. (9) near the

origin into the upper half-plane. Using the cross-
ing relations for e((e),

e((u) —1- —(e~/(e', (16)

.(G(0) f. G( ) ""'""d ) . (»)

Taking the limit of Eq. (15) as (e- ~, the integral
on the right-hand side vanishes (by the Riemann-
Lebesgue lemma2), the left-hand side approaches
the free-electron behavior

&(- ~*)= &*(~) (10)
where v~ is the plasma frequency, and therefore

and choosing a small semicircular distortion G(0') = (e /2(2w)'~ (17)
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On the other hand, from Eq. (8),

G(0)=0. (18)

R(r)=(2w) ' ' f [N(&o) —1]e '"'d~ . (20}

Despite the fact that R does not have a simple
physical interpretation as a response function, its
short-time behavior is determined by the dynam-
ics of the system. The sum rules for the index
can be given a physical interpretation very similar
to that for the rules involving E and E '. To see
this, let us first note that, in the case of metals,
N(co) has an integrable &u

'~ singularity at the or-
igin, and, its asymptotic behavior as v- ~ is

Therefore, the derivative of G(7} has a discontinu-
ity at 7'=0.

The f sum rule may be related to this short-
time behavior by considering the derivative at 7
=0 of the left-hand sides of the Fourier expansions
Eq. (9') or (11). Noting that this is a poin. of dis-
continuity for G(v), one obtains'

f (o Ime(ur) d(u = (2w)'~'
0

x-,'[G(0')+ G(0 ) ]=-,'w~~ . (19)

Summarizing, we have seen that G(7), the response
to an impulsive excitation at ~= 0, remains iden-
tically zero for times up to and including w= 0 .
Then for small positive times G(w) increases with
a slope &o&/2(2w)'~ . The continuity of G(r) at v=0,
the moment of excitation, reflects the inertia of
the system and is equivalent to the inertial sum
rule [Eq. (1}]. The initial displacement, which is
linear in 7, is the free-electron-like response ex-
pected for a system just following an impulsive
excitation. That is, the response at times suffi-
ciently short that displacements from equilibrium
remain small and restoring and damping forces
are negligible. This short-time response depends
only on the charge and mass of the particles in-
volved and not on the detailed interactions within
the system. Physically, this is the content of the

f sum rule [Eq. (4)].
It should be obvious at this point that a similar

physical interpretation is possible for the sum
rules equation (2) and (5) involving e '(m). In this
case P is related to the displacement D, and the
argument is even simpler due to the absence of
poles on the real axis. Actually, the use of the
causality condition for the transform of &

' is
justified on more fundamental grounds than its use
for the transform of E, a point that has been em-
phasized particularly by Martin. "

Let us now turn our attention to the sum rule
equation (3) and (6), involving the complex index
of refraction, N(u} We shall .consider the Fourier
transform

1
N(co) —1 - —~ uP~/&u (21)

-C(Cu+Cq)7 y (22)

Furthermore, application of the Phragmen-
Lindelof theorem' to the function ur[N(u&) —1], which
is bounded on the real axis and analytic in I„'3
allows one to conclude that the asymptotic behavior
of Eq. (21) holds uniformly as 1 urI —~ in I,
Therefore, by closing the contour in Eq. (22) in
the upper half-plane, one finds

R(r}=0, 7&0. (23)

In the special case of insulators, the same con-
clusion follows more simply from Titchmarsh's
theorem. From the relation between N(&u) and

c(~) it follows that

[e(a+iq) —1]= 2[N(&u+iq) —1]

+[N(u+iq) —1] (24}

Taking Fourier transforms, using the Faltung re-
lations and Eqs. (22) and (23), we finally obtain

4wG(7) = 2R(r)+ (2w) '~' f™R(s)R(& —s) ds

=2R(r}+(2w) '~ f R(s)R(r —s)ds . (25)

Therefore, on evaluating Eq. (25) at r = 0 we have

R(r = 0) = 2w G(r = 0} (26)

so that, using the symmetry properties of N(+) in

Eq. (22), we obtain

f [n(u} —1]dm = ~(2w}' G(7= 0} . (27)

This relation, in analogy with Eq. (12), allows one
to interpret the sum-rule equation (3) as a state-
ment of the inertial properties of the dielectric
response.

Differentiating Eq. (25} in the limit 7. —0', we

obtain, using Eq. (17),

R(0') = 2wG(0') = (—,'w)' i'&g~, (28)

and from Eq. (23)

R(0) =0 . (29)

In analogy with Eq. (19), one then obtains from
Eq. (22) the f sum rule

f (dK(M) de) = gw (d&,
0

thus relating Eq. (6}with the short-time dynamics
of the dielectric response. In summary, it has

for either metals or nonmetals. From the analytic
properties of «(~) =N'(&u) and of N itselfw' it is
easy to show that Eq. (20) can be written

R(r) = (2w) '~ lim f [N(a+i@) —1]
f1~ 0+
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been shown that, despite the lack of a direct phys-
ical interpretation for R(T), the dynamics of the
system directly determine its short-time behavior
and, in turn, the sum rules for the refractive in-
dex.

III. COMPARISON WITH EXPERIMENT

e ((o) = 1+ (u~/((uo —(u') for (u - 0, (30)

where ep and co~ are obtained by fitting the optical
constants at frequencies well below the fundamen-
tal absorption.

For metals the low-energy extrapolations were
made in the free-electron model (&uo = 0 limit) by
fitting sufficiently low-energy data (usually well
into the infrared) to the Drude expressions for
Re& and Ime

The optical properties of only a few materials
have been investigated over a sufficiently wide en-
ergy range to be considered in light of the sum
rules for n and Re&. Here we discuss three ex-
amples: the insulator AgCl and two conductors,
aluminum and molybdenu. Applications of the f
sum rule to the first two of these have been dis-
cussed previously. ' ' In general the published
"experimental" optical constants have been ob-
tained by Kramers-Kronig analysis of absorption
and reflection measurements and represent self-
consistent composites of experiments made over
a number of different energy ranges.

To apply the sum rules, the published optical
constants must be extrapolated outside the mea-
sured range to higher and lower frequencies. The
low-frequency extrapolations for metals and in-
sulators differ because of the low-frequency singu-
larities in E and X introduced by the conduction
electrons. For insulators it was found that a sat-
isfactory extrapolation of the electronic part of the
dielectric function or index was obtained with a
single -mode Lor entzian

As an example of the average-index sum rule
for an insulator we have considered Carrera and
Brown's index-of-refraction data' for cubic AgCl.
These data cover the range from 3. 5 to 230 eV and
were obtained from a Kramers-Kronig analysis
of absorption and reflection measurements per-
formed by Carrera and Brown'4 and by White and
Straley. ' The resulting refractive index together
with extrapolations to lower az4 higher energies
are shown in Fig. 1.

Over the range of energies treated by Carrera
and Brown the index of refraction is essentially
determined by electronic absorption. The more
prominent features of this absorption include in-
direct band-to-band transitions forming the ab-
sorption edge at -4 eV followed by strong direct
exciton absorption at -5 eV. Between 6 and 50 eV
there are a variety of absorptions involving tran-
sitions from energy bands derived from Cl -3s,
Cl -3p, and Ag'-4d states. Between -50 and 100
eV, the absorption is primarily from Ag'-4p and
-4s core states and just beyond 200 eV the I-ir reer

absorption of the Cl -2p electrons occurs. The
effect of all but the last of these can easily be seen
as structure in the index curve of Fig. 1.

There are further absorptions at both higher and
lower energies arising from excitation of ion-core
x-ray levels and transverse-optical modes of the
lattice. These, however, are well separated from
the electronic absorption considered here and, to
a good approximation, may be considered separate-
ly. That is, over the range in which these addi-
tional absorptions are important, the contribution
to E or N from the absorptions in the region from
3. 5 to 230 eV is real and approximately a constant,
say Ep or np, The x-ray and lattice absorptions
may be regarded as due to oscillators in a medium
characterized by constants 6p and np rather than the

Re& =n' —~'=1 —co~/(~'+T '),
1m~ =2n~ =(o',/(ur((u'+r ') .

(31)

(32)

50~«~[&»l ~~~&l ~&&l &&~& I5
Agcl

2 5 — ROOM T

Here the parameters required are the plasma fre-
quency v~ and the carrier relaxation time 7.

When comparing various "experimental" values
of Jo" [n(~) —1]de in light of the average-index sum

rule, it is convenient to "normalize" the result to
the integral of the absolute value by defining a
"ve rif ication parameter"
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I
d~ . (33)

According to the sum-rule equation (3), this should
be zero. However, considering uncertainties in
extrapolation and numerical methods, values of a
few hundredths should be considered as good agree-
ment with theory for the present discussion.

0.0
O.OI O. l I IO

ENERGY, w(eV)
IOO

0
IOOO

FIG. 1. Index of refraction of AgCl, after Carrera
and Brown (Ref. 14), and the integral f0[a(~') —1]des'
as a function of energy.
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vacuum values of unity. Thus, the contribution of
these absorptions to Re& and n appear superim-
posed on the backgrounds cp and np. By arguments
similar to those used in proving the Rem and n sum
rules, one expects the superimposed contributions
to have equal areas above and below ep and np so
that when integrated over frequency these addition-
al contributions average to zero. The effect of
these absorptions has therefore been neglected in

the present study.
On evaluating the integral of n(tu) —1 for AgC1

it was found that

1000 -;.
~ eN

~oN
~y&

~++oX

100

X
4J
Qz 10

IJJ

C3

4.
UJ
CL

0. I

0.01
0 001 0.01

I I

A LUMINUM

ROOM TEMPERATURE

O. i I 10
ENERGY, ttJ(eV)

25
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l5
I

3
10 ~~

3~o

0
100 1000

f [n(tu') —1]d&u' = 0+ 0. 03

x f" ~n(~') —lI d~'

for all reasonable extrapolations. That is, the
index-of-refraction data satisfy the inertial sum
rule [Eq. (3)], with I / I

& 0. 03. This is illustrated
in Fig. 1 by means of the graph of the integral
fa [n(tu ) —1]dru' as a function of &u. This function
reaches a maximum at 17.5 eV, where n passes
through unity and then decreases monotonically.
For the particular extrapolation shown the integral
approaches a limit of —0. 06 eV [compared with

fa ln(&u') —1!dtu'=20. 4 eV], which may be con-
sidered to be zero to within the accuracy of the
calculation.

In the case of metals the refractive index N has
an v ' singularity at +=0 arising from free-
carrier absorption. This integrable singularity is
particularly interesting because it weights the low-
energy contributions to fn" [n(&u') —1]dtu' heavily,
making evaluation of this integral very sensitive
to the optical constants in the far infrared.

As an example of a metal we consider aluminum
which is cubic. The optical constants were first
given over a wide energy range by Philipp and
Ehrenreich" and subsequently revised by Sasaki
and Inokuti' on the basis of more recent absorp-
tion studies. The latter index values cover the
range from 0. 02 to 10 eV and are shown up to 10
eV as the solid curve in Fig. 2. The prominent
features of aluminum's optical properties in this
energy range include intraband free-electron-like
absorption at low frequencies, interband transitions
involving conduction electrons leading to absorp-
tion peaks at -0. 5 and -1.6 eV, and core excita-
tions which yield the Lzz «z edge at -73 eV and K-
shell excitations at -1560 eV. In addition, most
reflectance data show structure near 10 eV. This
is attributed to surface plasmon excitations re-
sulting from surface roughness. " Dispersion
structures resulting from all except the 0. 5 eV
peak and the K edge are clearly seen in Fig. 2.

An alternative set of low-energy optical con-
stants that are in agreement with measured reflec-
tivities below -0. 155 eV has been proposed by

FIG. 2. Index of refraction of Al and the integral
fo [n(a') —1]da' as a function of energy. The index data
of Sasaki and Inokuti (Ref. 17) are shown by the solid
curve and that of Bennett and Bennett (Ref. 19) by the
dot-dash curve. Low-energy extrapolations of the Sasaki-
Inokuti data are shown by the dashed and dotted curves
(see text). The integral shown corresponds to the extrap-
olation from 0. 1 eV (dotted curve).

Bennett and Bennett. ' Their results for the index
are shown in Fig. 2 by the dot-dash curve. The
latter will be seen to join smoothly onto Sasaki and
Inokuti's n values for higher energies, but there is
considerable difference between the two below 0. 1
eV. (Note the logarithmic scale. )

Interband absorption is negligible compared with
free-electron absorption below -0.4 eV. P The
published index data. were therefore extrapolated
to low energies using the Drude-Lorentz expres-
sions [Eqs. (31) and (32)] below this energy. A
smooth extrapolation of Sasaki and Inokuti's data
from 0. 02 eV is shown by the dashed curve. Eval-
uation of f,

"
[n((u) —1]dtu for this extrapolation leads

to f -0. 17, a value well beyond acceptable bounds.
This failure to verify the average index sum rule
indicates an inconsistency between the data in the
infrared and that at higher energies. Moreover,
unacceptable values of & were found for all extrapo-
lations from points below 0. 1 eV. Similar large
negative values of ( were found using the index data
of Philipp and Ehrenreich.

Use of Bennett and Bennett's low-energy index
in place of that of Sasaki and Inokuti yields a value
of g -+0. 06 which indicates approximate consis-
tency. Even smaller values of f are obtained by
ignoring the low-energy values of n in Sasaki and
Inokuti's data and extrapolating to low energies
from points above 0. 1 eV. For all such extrapola-
tions up to 0. 6 eV —the point beyond which there is
significant interference from band-to-band transi-
tions —one finds values of g equal to less than 0. 016
in magnitude, a very acceptable figure. One such
low-energy extrapolation based on optical constants
at 0. 1 eV is shown as the dotted curve in Fig. 2.

These results prompted a reexamination of the
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Ime(~) = 4wo(0)/sr (34)

[For molybdenum this yields a value for &r(0) of
103.8h ' eV]; (ii) by using the sum rule for Res in

the form

calculations of Sasaki and Inokuti. It was found '

that the difficulty lies in the assumption of a Hagen-
Rubens asymptotic form below 0. 1 eV-an assump-
tion that does not hold for aluminum until much
lower energies. This leads to a large underesti-
mate of n below 0. 1 eV, and hence large negative
values for f. A revised set of optical constants is
currently in preparation. '

This example of the use of the index sum rules
is significant because it brings to light an incon-
sistency in analysis that normally would not have
been detected. In particular, errors in the imag-
inary part of the index v below 0. 1 eV would not
have led to significant deviations from the f sum
rule. In that case the integrand involves &ux(u&) so
that the integral is insensitive to x(&u) at small &u.

With the present technique the far infrared part of
the spectrum is emphasized.

As an example of the Ree sum rule [Eq. (1)] we
consider the measurements of Veal et al. on bulk
molybdenum at room temperature. Below about
0. 2 eV the optical properties of this cubic metal
are dominated by intraband electronic transitions
which are well described in the Drude model.
Above this energy interband transitions become im-
portant and between 1 and 5. 5 eV there are intense
interband transitions involving large areas of the
Brillouin zone.

The dc conductivity o(0) may be estimated from
the optical data in two different ways: (i) by fitting
the low-energy part of Im& to the Drude model ex-
pression

The value of this integral is plotted in Fig. 3 as a
function of &u together with the value of o(0) ob-
tained from the Drude model fit to Ime [Eq. (34)].
In accord with the sum rule the high-frequency
limit of the integral and o(0) will be seen to agree
to within the accuracy of the calculation.

The effect of interband transitions on the integral
above approximately 1 eV is shown on an expanded
scale by the right-hand curve in Fig. 3. While it
is only the conduction electrons which give a net
contribution to Eq. (35), the interband transitions
may cause the plateaulike structure shown and
care must be taken to distinguish these plateaus
from the high-frequency limit.

IV. SUM RULES INVOLVING POWERS OF THE OPTICAL
CONSTANTS

We now discuss briefly the possibility of extend-
ing the sum rules for N(u), e(ur), and c '(u) to
higher powers of these functions, i. e. , to find
sum rules for [N(&u) —1] or &u"[¹u)-1] and an-
alogous expressions involving the dielectric tensor
and its inverse. As pointed out independently by
Villani and Zimerman, the interesting feature of
such sum rules is the rapid fall-off of the inte-
grand as a function of ~ as (d- ~ and the consequent
strong convergence of the integral.

Let us first consider the complex index of re-
fraction N(ur) for a cubic or isotropic medium and
separate the treatment of insulating media, for
which N(ur) has no singularities on the real axis,
from the case of metals, where both n and v be-
have as -(d ' in the vicinity of ~=0. In insula-
tors, since N(~) —1 is finite on the rea. l axis,
[N(u} —.1]", (m = 1, . . .) is square integrable; and
if we define, in analogy with Eq. (20)

1
o(0) = —lim 2 [Re@(~')—1]der' .

2F
Q

(35)
R (r) =(2s) ' ' f [N((u) —1]"s '"'den,

we obtain the recursion relation

(36}

I20
I I I

JlfAcr. =I03.8 eV
—I05 R (7) =(2x) '~sf R(s) R,(~ —s) ds (37)

90
I

3= 60
~4J

cv

N

0
OOOI O.OI O. I I IO

ENERGY, au (eV)

—100

—95

IOO IOOO

ImI[N(&u) —1] )
2&v

" Re{[(N(u&') —1] jd&u'

7T Q (d —(0

the "superconvergence" theorem yields

(38)

so that R (v) = 0 if v'& 0 for all m. This together
with square integrability implies, by Titchmarsh's
theorem, the existence of dispersion relations
for [N(u) —1] . Then from the first of these,

FIG. 3. Comparison of the dc conductivity of molyb-
denum as derived from Im & via a fit to Drude theory and

from R& (abbreviated here as &&) via the sum-rule equa-
tion (1). The right-hand curve is drawn to an expanded
scale to emphasize structure from interband transitions
(after Veal, Ref. 22).

RegN (tu ') —1] )d u&
' = 0 (m = 1, 2, 3, . . . ) .

(39)
From the second,

Re ([N(~) -]-]
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&u' Im{[N(&u')- 1] }d{d (40)
When m = 2, Eq. (48) reduces to Eq. (1) and when
m = 4, 6, 8, . ~ ~ it becomes

we obtain, in turn,

~' Im{[N(~') —1] }d&u'= —,'zr~~z (m = 1),
0

=0 (rn)1) . (41)

In the case of conducting media we take
cu[N(u) —I] as a starting point. This function is
square integrable, is a casual transform' and
therefore satisfies dispersion relations. Along
the lines of the insulator case, it is then easy to
show that &u [N(~) —1] satisfies dispersion re-
lations as well. Attention must be paid to the fact
that ~ Re{[N(~)—1] }is even (odd) if m is even
(odd), whereas &u Im{[N(~) —1] }is odd (even) if
m is even (odd).

If m is odd, one dispersion relation reads

&u'" Im{[N(a) —1] }
" ((u')""Re{[N((u')- 1] }„

CO —{d

and taking the ~-0 limit, we obtain

f ((u') 'Re{[N(u') —1] }de'=0 (nz = 1, 3, 5, . .. ),

(43)
which is already a familiar result for m = 1. The
other dispersion relation is

f (~') Re{[N(~') —1] }d~'=0 (m=4, 6, 8, ~ .. ) .
(49)

Furthermore, from the other dispersion relation,
one has

f (~') 'im{[N(~') —1] }d(u' = 0 (50)

and

f (H) ' Im{[N(~')- I] }d~'
—gzz&dz, (rn = 2),

0 (m=4, 6, 8, .. .). (51)

Obviously, all the results obtained for metals,
i. e. , Eqs. {43)and (45)-(51) are valid for insu-
lators as well, whereas the converse is not true
for Eqs. (39) and (41).

Let us now consider the dielectric tensor
e;, (~, k), and its inverse e&&(~, k). The dielectric
tensor for nonconducting media and the inverse di-
electric tensor for all media are square integrable
and have no singularities on the real axis. There-
fore, we can follow the discussion outlined above
for N(~) —1 in insulators and obtain a generaliza-
tion of Eqs. (29), (30), (36), and (41)-(43) of Ref.
2, namely,

Re{[N(u) —1] }

(44)

f Im[[e;z(co, k) —5,,] }der

= f Im{[e;&(~, —k) —6;&] }de (m = 1, 2, .. . ),
(52)

and, after dividing both sides by &, the "supercon-
vergence" theorem yields

f (&u') Im{[N(&u') —1] }zf&u'

and

zr(v~26, r (m = 1),
0 (nz = 2, 3, ), (53)

~ ~ ~

4 zz &dr, ( m = 1 ),
0 (m=3, 5, 7. . . ) (45}

Furthermore, for m = 3, 5, 7, ~ ~ ~, we let &- 0
after dividing Eq. (44) by u& and obtain

f ((u'} Re{[N(&u') —1] }d(o'=0 (m = 2, 4, 6, ~ ~ ~ }

(47)
and

(~') Re{[N(D)—1] }d~'= ——lim ~

x im{[N((a&) —1] } (m = 2, 4, 6, ~ ~ . ) . (48)

f ((g') ~im{[N(u)') —1] }duz'= 0 (m = 3, 5, 7, ") ~

(46)
Turning now to even m, one obtains by similar
means from one dispersion relation the results

f, Re{[sr,(~, k) —5;& ]"+ [e,r(z, k} —5,r] }des = 0

(m = I, 2, . . . ) . (54}

The same results hold for e ', the only difference
being a change of sign in the right-hand side of
Eq. (53) for m = 1 [cf. Eqs. (30) and (42) of Ref.2].
As already emphasized, Eqs. (52)-(54) do not hold
for metals, where the dielectric tensor has a sim-
ple pole at the origin. In that case, one may treat
powers of ~[ez&(~, k) —5,,], i. e. , of the conduc-
tivity tensor, or more generally expressions of the
type &u'[e, &{or,k) —5z,], as briefiy discussed by
Villani and Zirnerman.

As examples of the sum rules for various higher
powers of N((u) —1, Eqs. (39) and (41) with m = 2

and m = 3 have been applied to Carrera and Brown's
data for crystalline Agcl. " For these m values
the explicit forms of Eq. (39) are
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FIG. 4. Examples of sum-rule integrals involving
Re[&(cu) —1] for the room-temperature optical constants
of AgCl reported by Carrera and Brown (Ref. 14).

m = 2.

J JL[n(+') —1] —z (u')}der' = P,
m=s:

(55}

[n(&u') —1]([n((d') —1] —3K (~')}d~' = P. (56)
0

Similarly, Eq. (41) yields the rules

m=2:

(57)

m —3.

J (u'v((u')(3[n((o') —1] —v ((o')}d&u' = p . (58)

In applying these rules, the integrals were
studied as a function of their upper limits of inte-

gration as in the discussion of the m = 1 case in

Sec. III. The results are summarized in Figs. 4

and 5. For comparison the curves for m =1 are
shown; with m = 1, Eq. (39) reduces to the average-
index sum-rule equation (3), while Eq. (41) yields
the f sum rule for tc [Eq. (6)]. In general, it will

be seen that the large the exponent m the faster
the convergence of the integral.

The integrals for the sum rules involving
Re[N(~)- 1] [Eq. (39}]are shown in Fig. 4. Of

these the m = 1 integral does not approach its lim-

iting value of approximately zero until well beyond

1000 eV, whereas the m = 2 and m = 3 integrals are
reasonably well converged by 150 and 70 eV, re-
spectively. The fact that the )n = 2 integral con-
verges to a relatively small negative value and the

m = 3 integral converges to a small positive value

rather than to zero indicates small errors in the

function N((u). That these errors are indeed small

may be seen by noting that if "verification param-
eters" for m = 2 and m =3 sum rules are defined in

analogy with the m = 1 case [Eq. (33)], values of
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FIG. 5. Examples of sum-rule integrals involving
Im[&((d) —1] for the room-temperature optical constants
of AgC1 reported by Carrera and Brown (Ref. 14). The
right-hand scale refers to the m =1 case and the left-
hand scale to the m =2 and m = 3 cases. The value indi-
cated by 471+& is the limiting value of thef sum-rule in-
tegral (m =1) for 26 electrons per AgCl pair that may be
excited by energies below the Cl L&& ~zq edge at approxi-
mately 200 eV.

only plus or minus several hundredth are found de-
pending on how the data is extrapolated to lower
and higher energies. This is taken to indicate
satisfaction of the sum rules to within the accuracy
of the data and the extrapolations used.

Similar results are found for the sum rules for
Im[N(~) —1] [Eq. (41)]. These are indicated in

Fig. 5. To interpret this figure it should be ob-
served that Carrera and Brown's absorption data
extends to 230 eV, which is just beyond the
Cl" Lzz, zzz edge. From the known excitationthresh-
olds of the ion cores it is expected that for ener-
gies up to 200 eV—just below the Cl 'Lzz zzz edge-
26 electrons per Ag'-Cl pair can contribute to real
transitions. The corr esponding value expected for
the fsum integral (m = 1 curve) is shown on the right-
hand side of the figure by the mark denoted by 4m'co&.

When the experimental data is used in the m = 1

integral, a value corresponding to transitions of
between 23 and 24 electrons is found. This sug-
gests either that there is further absorption lying
beyond the L»,», edge that is attributable to the
most loosely bound 26 electrons per Ag'-Cl pair
or that the measured absorption is somewhat low.
In any event, the f sum rule (m = 1}curve shows
the onset of a gentle plateauing below the L», z»
edge suggesting that the f sum rule for transitions
below 200 eV is almost exhausted. On the other
hand, the integrals for the m = 2 and m=3 rules
converge to relatively small values much faster
apparently plateauing at approximately 200 and
110 eV, respectively. This suggests that the sum
rules for higher powers are satisfied for practical
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purposes well before the f sum-rule has been ex-
hausted. Here again the limiting values for the
sum rules are considered small enough to indicate
satisfaction of the rules to within the accuracy of
the data.

It is perhaps worth remarking in connection with
this example that Eq. (55) [the m = 2 case of Eq.
(39)] may be rewritten in an easily remembered
form, namely,

1 [n((u') —1] d(o' = 1 x~((e')d(u' . (55')

are but a few examples of the immense number of
such generalizations obtainable by the various
techniques originally devised in high-energy phys-
ics. It seems therefore that future developments
should concentrate on identifying those sum rules
which have direct physical interpretation, are
relevant to other theoreticaly derivations, and are
useful in the analysis of experiment, as in the
example for aluminum treated in Sec. III.
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