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Comparison of theories of anhannonicity applied to a model of coppere

E. R. Cowley and R. C. Shukla
Department of Physics, Brock University, St. Catharines, Ontario, C'canada

(Received 10 September 1973)

%'e have applied five different formulations for the calculation of thermodynamic properties of an

anharmonic crystal to a simple model of copper, in order to investigate the range of validity of each
theory for a weakly anharmonic system. The theories used are the quasiharmonic approximation,
anharmonic perturbation theory, self-consistent phonon theory, improved self-consistent phonon theory,
and the cell model. %e find that perturbation theory, improved self-consistent theory, and the cell
model give comparable results up to half the melting temperature, with perturbation theory diverging

slightly above this.

I. INTRODUCTION

There exist at the present time several approxi-
mate schemes for the calculation of the thermody-
namic properties of an anharmonic crystal. In
particular we refer to the quasiharmonic approxi-
mation (QH), anharmonic perturbation theory (PT),
self-consistent phonon theory (SC}, the improved
self-consistent. phonon theory (ISC}, and the cell
model (CM). A large number of calculations have

been carried out in which these methods are ap-
plied to a model of an inert-gas crystal, often in-
volving a Lennard-Jones potential. A review of
recent results has been given by Glyde and Klein. '
The conclusion drawn from this work is that the
quasiharmonic approximation is very unreliable,
perturbation theory is useful only below about one-
third of the melting temperature, and that the im-
proved self-consistent theory is the only one giving
at all satisfactory results. However, one of us
has applied the quasiharmonic and perturbation
theories to a model of sodium chloride, with the
finding that perturbation theory gave good results
up to 70k of the melting temperature and that quasi-
harmonic theory was useful up to 30%%d of the melt-
ing temperature.

In these circumstances it seems useful to apply
the various techniques to a model of a crystal with
a completely different type of binding, and a metal
is the obvious choice. The interatomic forces in
many simple metals are long range and oscillatory,
and in addition change as the crystal volume
changes. While these effects can all be incorpo-
rated they do increase the magnitude of the calcu-
lation. For this reason we have chosen to apply
the various theories to a model of copper. The in-
teratomic forces in copper are known to exist pri-
marily between nearest-neighbor atoms, and the
largest contribution to the forces is a term arising
from the overlap of the 3d orbitals on adjacent
atoms, which is well represented by a phenomeno-
logical expression. It is thus possible to set up a
model which is a fair representation of copper but

which is computationally tractable.
We emphasize, however, that we are primarily

interested in a comparison of the results of the
various methods of calculation, rather than in a
comparison with the experimental results for cop-
per. The agreement with experiment in fact turns
out to be not very good. The model is described in
Sec. II, the different theories are given in Sec. IG,
and the numerical techniques and results in Sec.
IV. The results are discussed in Sec. V.

II. THE MODEL

The model we have used is based initially on a
calculation by Jaswal and Girifalco of the binding

energy of copper. ' They write the total energy per
unit, cell of the static crystal as a contribution 6E, ,
describing the overlap energy of nearest-neighbor
ion cores, with

E = me~"o~& +0
C C

to which is added a complicated expression describ-
ing the kinetic, correlation, and electrostatic en-
ergies of the conduction electrons, and their inter-
action with the ion cores. This whole expression
was left unchanged. The values of the three param-
eters appearing in E, , were changed very slightly
in order to fit more recent experimental data. The
values adopted are given in Table I.

The overlap energy E, is the largest single con-
tribution to the effective interatomic potential, but

there is an additional contribution arising from the
electronic-energy terms. Further, this contribu-
tion is a function of the volume of the crystal. %e
approximate it as follows. First we assume that
only nearest-neighbor interactions are important.
This is to some extent justified by direct calcula-
tions ' of the electron-ion contribution to the
forces, which indicate that the convergence is ra-
pid, and by the fit to experimental phonon disper-
sion curves given by a nearest-neighbor model.
Next we assume, for simplicity, that for the near-
est neighbors this contribution has the same spatial
dependence as the overlap contribution (1}. The

1261



1262 E. R. CO%LE Y AND R. C. SHUKLA

TABLE I. Parameters of the overlap energy.

Parameter

t'p

Unit

10 ergs

dimensionless

Value

0, 154795

13.2377

2. 543

total interaction then has the same form as (1) but
with a modified volume-dependent value for the
coefficient Q. . The value at a given lattice spacing
was obtained from the condition that the compres-
sibility derived from the slopes of the phonon dis-
persion curves at long wavelengths should have the
same value as that obtained from the second deriv-
ative of the total energy. The electron-ion con-
tribution to the modified coefficient n turns out to
be about 20% of the overlap term, and to be only
weakly volume dependent. One test of the model is
the calculation of phonon dispersion relations. At
low temperatures the experimentally measured
frequencies can be compared directly with the
quasiharmonic frequencies. The frequencies cal-
culated for the lattice spacing which corresponds
experimentally to 80 K are in reasonable agree-
ment with the measured values. The mean ratio
of calculated to experimental frequencies is 0. 960,
and the root-mean-square percentage deviation is
5. 8%a. At higher temperatures the comparison is
less direct. Figure 1 shows dispersion curves
measured for the two principal symmetry directions
at 673 K. v The solid lines are the quasiharmonic
calculation and the dashed lines are the first-order
self-consistent frequencies, both at the experimen-
tally measured lattice spacing. The two sets of
curves differ by 10', and the experimental points
lie in between them. This is probably as much
as could be expected.

The Helmholtz function for the crystal includes
a thermal contribution arising from the electron
gas. This was taken to be of the form —~aT, with

I

n having the value (166.3 peal/'K g atom), ' inde-
pendent of the crystal volume.

There are other models which we could have
used. DeWette, Cotterill, and Doyama have given
the parameters for a Morse potential fitted to the
compressibility, lattice spacing, and vacancy-
formation energy. More recently, Moriarty' has
tabulated a reciprocal-space form of the effective
interaction. It is our hope that as far as the com-
parison of different methods of calculation is con-
cerned, any of these models would lead to the same
conclusions.

III. THE THEORIES

We have used the model described in the previous
paragraph to calculate the Helmholtz function for
copper, as a function of temperature and volume,
using five different theoretical formalisms, which
are here briefly reviewed.

A. Quasiharmonic theory (QH)

In this theory the Helmholtz function has the
same form as for a harmonic crystal, namely

Au„- (N/2) Z P(R, )
l

+ kTZ in[2 sinh[2Ph&u(q j)]}.
The first term is the static energy, the sum being
over the neighbors of a particular atom. The sec-
ond sum is over the 3N normal modes of vibration, '

k is Boltzmann's constant and P is 1/kT The an-.
harmonicity manifests itself through the volume
dependence of the static energy and of the frequen-
cies, &u(q j).

B. Perturbation theory (PT)

To lowest order in perturbation theory' '" the
Helmholtz function is given by

ApT =A~„+A3+A4,

where the cubic (A4) and quartic (A4) correction
terms are given by

I4 ~ ~(q, +q2+q, ) I (q, j„q2j2, q3j,) I'
48N- J (q1j1~ q222p q3 23j ~

'1 1'1~~2~2~~3'3 1 2 3

1 -exp[- Ph(&0, + ~&+ &u, )] exp(- Ph'ur, ) - exp[- Pk(~, + v, )]f q4j4 qaja qsjs = Pl [1—exp —P ~ )]
s=1 {d1+Ca)2 —(d3

and

Z 'q' " q'j" + ' @ ' oth(-Pk, ) th(-PI, ).h2 4( — )
32N (d 1(d2

Here N is the number of unit cells, and ~, has been
written in place of &u(q, j;) for brevity. &(q, +~+q, )
is unity if the argument is a vector of the reciprocal

t

lattice (including zero) and zero otherwise. C'(q, j„
q2 j„q,j,) and C'(q, j„qzj„q,j„q4j4) are the Fou-
rier transforms of the third- and fourth-order
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FIG. 1. Phonon dispersion relations for the two highest
symmetry directions in copper at 673 K. Points are the
experimental measurements of Ref. 7, solid lines are the
quasiharmonic frequencies, dashed lines are the self-
consistent frequencies.

Q, ...s(R,)e (q, j,) ~ ~ ~ es(q j„)
ls 0( ~ ~ eB

&& P [1 —exp(zq, ~ R, }],

where M is the atomic mass.

C. Self-consistent phonon theory (SC)

In the first-order seif -consistent phonon theory'2

(SC1) the eigenvalues, ~(q j) and eigenvectors e(q j)
for a given q are obtained by iterating the following

set of equations:

D (q) =—Z [1—cos(q R,)] (g (R,)),

(y.,(R,)}= (sv'det~, )-~

x exp 2~ ~l ~ BRl+~ d ~' 4

(X,)„s= Z [1 —cos(q ~ R,)]e,(q j}es(qj)

&& coth[s Ph~(q j}]/~(qj) .

P s(r) is the tensor derivative of the two-body po-
tential, evaluated at the point r.

The Helmholtz function is then calculated from

A,c = sNZ (P(R, )}+kTZ 1n(2sinh[sPk+(q j)])
qi

—4 kZ ur(q j)coth[&Pk~(q j)] . (5)

Except for the last term, this is the same as the
quasiharmonic expression (2), with each quantity

atomic force constants. For a two-body force sys-
tem they take the form

4(q»„", q.j.) =(1/2M"")

replaced by its averaged, or smeared, value. The
last term can be written in the alternative form

-s& ~ &4w(Rr)}(~r) s, (6)
l, oB

which occurs naturally in the derivation of self-
consistent theory from perturbation theory. " We
found this to be a useful alternative.

D. Improved self-consistent theory (ISC)

In the improved self-consistent theory' the
Helmholtz function is given by the self-consistent
value, Asc, to which is added a cubic correction
term of the same form as As, in Eq. (3), but now

~(q j) and e(q j) are to be obtained from self-con-
sistent theory, and Q s„(R,) is replaced by an aver-
aged value similar to Eq. (4). Then

Arse =Asc+ (As }~

E Cell model (CM)

The Helmholtz function for the cell model" cor-
responds to that of N atoms each moving indepen-
dently in the field due to its neighbors fixed at their
equilibrium positions:

Acu= sNZ P(R, ) ——,'NkTln(2smkT/k )

-XkT lnG,

G = Jexp[- P,(u)/kT] d'u,

P,(u}=Z [P(R, —u) —P(R,)].

The integral G is taken over a single Wigner-Seitz
cell. The expression given above is derived from
a classical theory, applicable only at high tem-
peratures.

IY. NUMERICAL TECHNIQUES AND RESULTS

For each of the theoretical formalisms described
in Sec. III the Helmholtz function was first calcu-
lated, at temperatures in 100-K steps to 1400 K,
at three volumes, the volumes for each tempera-
ture being chosen to bracket the expected equilibri-
um volume. By interpolation between these results
we could make a much better estimate of the equi-
librium volume. The Helmholtz function was then
calculated at this new volume and at six other points
displaced slightly in temperature or volume or
both. The various second derivatives of the Helm-
holtz function were then obtained as suitable second
differences.

The sums over the normal modes occurring in

&zH, &&c, and A~ were each carried out over a
simple cubic mesh of wave vectors in the irreduci-
ble part of the first Brillouin zone, corresponding
to 13 500 wave vectors in the whole zone. The
sums over wave vectors in As and (As} were per-
formed with a mesh of 256 wave vectors in the
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whole zone. In the perturbation-theory calculation,
the expression for A, was actually replaced by the
first two terms in a high-temperature expansion,
which gives adequate numerical accuracy with some
saving in computation time. This was not done in
the improved self-consistent calculation.

The smeared force constants defined in Eq. (4},
and the smeared cubic force constants required in
the calculation of (A,), were evaluated in several
ways. In most of the calculations the integral was
replaced by a summation over a simple cubic grid
of 3375 points with a spacing which was automati-
cally optimized for each temperature. We also
used Gauss-Hermite quadrature formulas applied
in three dimensions. This yielded more accurate
results for a given number of points but was slight-
ly less convenient to program. The two methods
gave results which agreed to five or six figures.
No precautions were taken to omit the area around
the origin from the integration since the Born-
Mayer potential remains finite in this region. A

third method of evaluation which we investigated
for the harmonic force constants was to expand the

$&z(R, + 7') appearing in Eq. (4) as a Taylor series
and to integrate term by term. For the Born-
Mayer potential this was a practical method. The
first three correction terms to the harmonic force
constants yielded satisfactory results at all but the
highest temperatures. However, the same proce-
dure applied to the Lennard-Jones potential gave
very poor results.

The self-consistent calculations were iterated
until the self-consistent Helmholtz function was
constant to seven figures. We also examined the
convergence of the elements of the ~, matrix. It is
interesting that when Eq. (5) was used for the
Helmholtz function, the rates of convergence of
ABC and of && were very similar. If the modifica-
tion to &ac given by Eq. (6) was used the conver-
gence of A«was greatly accelerated.

This is illustrated in Table II, which shows the
values of some contributions to the Helmholtz func-
tion at one temperature and volume. The first
three values are the quasiharmonic Helmholtz func-
tion, the quartic anharmonic contribution, and the
sum of these two. The fourth and fifth values are
the value of the self-consistent Helmholtz function
on the first cycle, so that the quasiharmonic value
of &, was used for the smearing, the two numbers
corresponding to Eqs. (5) and (6}, respectively.
The number obtained from Eq. (6) is very similar
to the sum in the third line, the difference repre-
senting the effect of higher-order contributions
from even terms in the potential. The number ob-
tained from Eq. (5} is quite different. Both for-
mulas lead to the same converged answer for the
Helmholtz function, the final value in the table, but
if 'Eq. (6) is used this value is obtained in the third

TABLE II. Calculations of the Helmholtz function at
300 K, cell volume 11.62851 A3.

Contribution

Age
A4
Aq~+A4

Asc[Eq ~5), first cycle)
A«[Eq. (6), first cycle)
Asc (converged)

Value (J/mole deg)

—1956.80
169.52

—1787.28
—1462.48
—1797.02
—1795.99

BA
BVBT

Cv= —T

Cp = C„+9TVBz, a~.
Here V is the volume of the speci~en. The re-

sults for the five models are shown in Figs. 2-6.
In all except Fig. 5, which is plotted on a very ex-
panded scale, it was not possible to separate the
ISC and CM results. The experimental results
are also shown in the figures.

cycle, whereas if Eq. (5) is used six cycles are
required. Note also that the difference between the
last two numbers is not very large, indicating that
the iterative procedure does not have much effect.
If accurate eigenvectors and eigenvalues are re-
quired it is still necessary to converge the X„but
if A« is the only quantity required the use of Eq.
(6} seems preferable.

The integration over the Wigner-Seitz cell occur-
ring in the cell-model theory is also easily evalu-
ated. The only difficulty which might be encoun-
tered is that at low temperatures the integrand is
very strongly peaked at the origin. An efficient
way around this is to replace the integration by a
summation over a mesh of points with a spacing
dependent on the temperature. We actually adopted
the simpler approach of using a very dense mesh
of points. The summation was carried out over a
simple cubic grid of points in «of the Wigner-Spitz
cell corresponding to 54 000 points in the whole

cell. Cell-model calculations were carried out

only for temperatures of 300 K and higher.
From the values of the Helmholtz function the

values of the lattice parameter (ao), isothermal
bulk modulus (Br), linear thermal expansion coeffi-
cient (a~), and heat capacities at constant volume

(C„) and constant pressure (C~) were obtained from
the equations

BA
= 0 at zero pressure,

Bao

BA
B~= V
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FIG. 2. Calculated and experimental values of the lat-
tice parameter in copper.

FIG.. 4. Calculated and experimental vaLues of the iso-
thermal bulk modulus.
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FIG. 3. Calculated and experimental values of the
thermal expansion coefficient for copper.

V. DISCUSSION

We have used five different theoretical formalisms
to calculate the thermodynamic properties of a
model of copper, and the principal motivation of

the work is to compare the results of the different
theories, The model used was a plausible one, and
we believe that the same qualitative canclusions
would be obtained from any reasonable model of
copper or of other metals with predominantly short
range force systems.

The most sophisticated and time consuming of
the theories is the improved self-consistent theory
and we assume that the results of that calculation
represent the correct values of the various proper-
ties. Then we can say that the much simpler per-
turbation theory gives good results for tempera-
tures up to about half the melting temperature of
1350 K. The quasiharmonic and first-order self-
consistent theories are much less satisfactory,
discrepancies already being serious at one-fifth
of the melting temperature, The simple cell model
gives embarrassing agreement with ISC, though we
believe that this is to some extent a coincidence,
A perturbation treatment af the cell model shows
that it gives an anharmonic contribution to the
Helmholtz function closely equal to one-half of the
quantity A~ appearing in the conventional theory.
For the madel we have used A, is approximately
minus one-haU of A4, The sum is then similar in
magnitude to the cell model term. In some mate-
rials A, is as large as, or greater than, A4 in mag-
nitude, and the cell model would then not be so
reliable.

As far as comparison with the experimental re-
sults is concerned the model is clearly inadequate.
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FIG. 5. Calculated and experimental values of the
heat capacity at constant volume.

The anharmonic contribution to C„ is of the wrong
sign. Analysis of the experimental results indicates
that the term A., should be slightly greater than A 4

xn magnitude, instead of being half of it. At the
same time the calculated thermal expansion is too
large which we interpret as indicating that the
third derivative of the potential is also too large.
As discussed in Sec. II the model gives quite rea-
sonable results for the phonon dispersion curves 7

so that the poor values obtained for the thermody-
namic properties indicate a surprising sensitivity
to the details of the model. The most serious
weakness in the model is probably the assumption
that the contribution to the interatomic forces
arising from the electron-phonon interaction has
the Born-Mayer form. An attractive component
in this force would almost certainly have the effect
of enhancing A., relative to A4.

The experimental results shown in Figs. 2-6 all
contain, at high temperatures, a contribution aris-
ing from point defects. The heat-capacity data
have been analyzed by Brooks, who concludes
that the contribution to C„arising from equilibrium
lattice defects is negligible for temperatures below
800 K, rising to about 0. 7 J/mole K at 1200 K. The
subtraction of this contribution from the experi-
mental curve would bring it into closer agreement
with the quasiharmonic calculation, but would not

o 30-
6
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+ 2S-
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20-

300 600 900 I 200
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FIG. 6. Calculated and experimental values of the
heat capacity at constant pressure.

change the basic disagreement, that all the other
models predict that C„decreases with increasing
temperature. Point defects make a similar con-
tribution to C~, and also make positive contribu-
tions to the bulk modulus and the thermal expansion
coefficient. Presumably these contributions will
also be negligible except at temperatures above
about 800 K.

Any calculation of anharmonic properties re-
quires the adoption of a model for the interatomic
forces and of a theoretical technique for the calcu-
lation. It is then difficult to ascribe discrepancies
between theory and experiment to either one source
or the other. In this work we have shown that for
a weakly anharmonic material, such as copper,
several methods of calculation give similar results
over a wide temperature range. In particular )

anharmonic perturbation theory gives results com-
parable with those of the much more time-consum-
ing improved self-consistent theory. It is now

reasonable to apply the perturbation technique to
several different models, with the knowledge that
any variations in the results obtained do reflect
real differences in the models. %e intend to do
this in the near future.

ACKNOWLEDGMENTS

All the calculations were carried out on the
Brock University Burroughs B-5500 computer.
B. Krawchuk and S. Kumar assisted in the prepa-
ration of the manuscript.



COMPARISON OF THEORIES OF ANHARMONICITY APPLIED. . . 1267

*Work supported by the National Research Council of
Canada.

H. R. Glyde and M. L. Klein, Crit. Rev. Solid State
Sci, 2, 181 (1971).

E. R. Cowley, J. Phys. C. 4, 988 (1971).
S. S. Jaswal and L. A. Girifalco, J. Phys. Chem. Solids
28, 457 (1967).

A. I. Gubanov and V. K. Nikulin, Phys. Status Solidi
17, 815 (1966).

5J. A. Moriarty, Phys. Rev. B 6, 1239 (1972).
G. Nilsson and S. Rolandson, Phys. Rev. B 7, 2393
(1973).

A. P. Miiller and B. N. Brockhouse, Can. J. Phys.
49, 704 (1971).

D. L. Martin, Phys. Rev. 141, 576 (1966).
F. W. DeWette, R. M. J. Colterill, and M. Doyama,
Phys. Lett. 23, 309 (1966).
W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-
Horsfall, Ann. Phys. (N. Y. ) 15, 337 (1961).
N. S. Gillis, N. R. Werthamer, and T. R. Koehler,

Phys. Rev. 165, 951 {1968).
' P. Choquard, The Anhannonic Crystal (Benjamin,

New York, 1967).
V. V. Goldman, G. K. Horton, and M. L. Klein, Phys.
Rev. Lett. 21, 1527 (1968).
A. C. Holt, W. G. Hoover, S. G. Gray, and D. R.
Shortie, Physica {The Hague) ~49 61 (1970).

' F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).
R. O. Simmons and R. W. Balluffi, Phys. Rev. 129,
1533 (1963).

' Y. A. Chang and R. Hultgren, J. Phys, Chem. 69,
4162 (1965).
Y. A. Chang and L. Himmel, J. Appl. Phys. 37, 3567
(1966).
R. E. Pawel and E. E. Stansbury, J. Phys. Chem.
Solids 26, 607 (1965).
C. R. Brooks, W. E. Norem, D. E. Hendrix, J. W.
Wright, and W. C. Northcutt, J. Phys. Chem. Solids
29, 565 {1968).
C. R. Brooks, J. Phys. Chem. Solids 29, 1377 (1968).


