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This paper deals extensively with the coupling of phonons to an electron gas with a Fermi surface
consisting of two parallel. planes and its effect on the stability of the lattice and on the phonon
dispersion around 2p F. The phonon dispersion and the phonon spectral density distributions are
calculated at zero temperature for the equidistant and the deformed lattice, and at temperatures above
the transition temperature to the deformed lattice. Two excitation branches are found under certain
conditions. The calculation is performed in the random-phase approximation, but the effect of vertex
renorrnalization by summing all ladder diagrams is discussed. The phonon dispersion in the distorted
lattice is also treated within the framework of the Sawada model.

I. INTRODUCTION

In the recent years there has been a growing
interest in the properties of materials with quasi-
one-dimensional electronic systems. One class
of such materials contains intermetallic compounds
of the A-15 (p-tungsten) crystal structure. ' There
is a theoretical indication, ' supported by experi-
mental evidence, that the Fermi surface of sev-
eral of these compounds contains planar sections,
reflecting the presence of groups of electrons,
which are restricted to move in one dimension.
This one-dimensional character is the basis of
the I abbe- Friedel-Barisic model. 3' Another
class of quasi-one-dimensional materials consists
of organic conductorss like the tetracyanoquinodi-
methan (TCNQ) charge-transfer salts and the Krog-
man compounds (for example, Kapt(CN)4Bro. M3H20).

The present paper deals mainly with the effects
of one dimensionality on the phonon spectrum. The
coupling to a one-dimensional electron system af-
fects the electrons in the neighborhood of q = 0 and

q = 2p~. The first region was investigated by Eng-
elsberg and Varga within the framework of the
Tomonaga model. Although we shall briefly dis-
cuss these regions, our main purpose is to study
the vicinity of q =2p~, where the Tomonaga model
does not apply, since it excludes excitations across
the Fermi surface and is valid only for long-wave-
length phonons. We adopt an idealized picture of
an electron gas with a Fermi surface consisting
of two parallel planes separated by 2p„and limited
by the Brillouin-zone boundaries. Such a system
was investigated by Alfanas'ev and Kagan, who
pointed out that in this case the phonon spectrum
near 2p~ differs considerably from the case of a
spherical Fermi surface. The origin of this effect
is the sharp increase in the phase-space volume
available for low-energy-electron excitations ac-

companied by the absorption or emission of phonons
with q = 2P~. This leads to a strong coupling with
such phonons and, thus, to a significant renormal-
ization of the phonon spectrum in this region, which
results in a much stronger Kohn singularity than
for a spherical (three-dimensional) or cylindrical
(two-dimensional) Fermi surface. The Kohn sin-
gularity in the one-dimensional case is a mani-
festation of the instability discussed by Peierls
and Frohlich. '

After formulating the model in Sec. II, we dis-
cuss in Sec. III the phonon spectrum at T = 0. In
the first part of this section we calculate, within
the random-phase approximation (RPA), the phonon
spectrum near q = 0 and reproduce the results of
Ref. 7. We then consider the region q = 2p~, the
main conclusion being the appearance of two phonon
branches. The RPA is valid as long as Migdal's
theorem, which asserts that the electron-phonon
vertex may be approximated by the bare coupling
constant, holds. This theorem breaks down in the
one-dimensional case and a proper renormaliza-
tion of the electron-phonon vertex is required. We
perform such a renormalization in the last part of
Sec. GI by summing the "ladder" diagrams and
discuss its effect on the phonon spectrum. Most
of the results of this section were reported in a
short communication. "

The nature of the instability resulting from the
strong electron-phonon coupling is discussed in
Sec. IV. The energy of the system is minimized
by producing a stable lattice distortion of wave
vector q = 2Pz, which leads to an energy gap in the
single-electron excitations. This is the result of
Frohlich. The phonon spectrum of the distorted
lattice near 2p~ is also calculated. If the coupling
is not too strong, so that the energy gap does not
exceed the unperturbed frequency coo, one gets
again two-phonon branches near q = 2p~ . The lower
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undamped branch contains the point & = 0 at q =2P„.
The phonon dispersion in the distorted lattice is
treated again in the framework of the Sawada'
model in Sec. V. This is a solvable model which
generally reproduces the results of RPA. It is
based on certain assumptions which can be checked
a Posteriori to justify the applicability of the model.

In Sec. VI we compute the phonon dispersion at
finite temperatures. As long as the Peierls-Froh-
lich instability temperature T~ is less than the
bare-phonon energy, the phonon spectral density
distribution exhibits a two-branch structure as
the temperature is lowered and approaches T~.
Similar results were recently obtained by Bari.sic
et al. ' As T comes extremely close to T~ the
mean-square deviation of the ions diverges be-
cause of critical vibrations of momentum q = 2p~.
This is discussed in Sec. VII.

The nature of the instability, the characteristics
of the phonon dispersion, and the possible exis-
tence and properties of two-phonon branches are
the underlying questions of the present work. They
may be relevant to the understanding of three recent
observations on, presumably, quasi-one-dimen-
sional systems. One is the appearance of two nar-
row phonon-excitation peaks in the neutron-scat-
tering experiments of Axe and Shirane'~ on Nb3Sn.
We believe at present that our simple treatment is
inadequate to reproduce this result. This point is
discussed in some detail in Sec. VIII. The second
experimental result to which our work may bear
some relevance is the suggestion by Coleman
et al. ' of strong paraconductivity above 60 K in
tetrathiofulvalinium (TTF)-TCNQ crystals. This
was interpreted by the authors of Ref. 15 as BCS-
pairing Quctuations and the high T, was attributed
to the soft phonons associated with the Peierls in-
stability. This idea was further developed by the
authors of the present paper. A different inter-
pretation was suggested by Bardeen, ' who invoked
Frohlich's original idea of a moving lattice dis-
tortion carrying along the electron "sea" through
the crystal.

Although Bardeen's interpretation is probably
correct, the question arises whether materials like
TTF-TCNQ canatall be superconductors, and if so,
whetherthe transitiontemperature maybe high. "
This question may depend critically on the nature of
the phonon softening investigated in this work.

The third experimental result is the observation
by neutron diffraction ' of a possible Kohn anomaly
in K&Pt(CN)4Bro 33H~O similar to the one investi-
gated here.

II. MODEL

We start from the Frohlich Hamiltonian

Jf =Z g,'e+5c(uoata,
q

+ Q g, (a, + a t ) c~t c~
Pse

(2. 1)

g =
i

(k+q
i

VU
i
k)

i
/2NM&u, (2. 2)

(or, V(k+q l Ul k) instead of (k+ql VUlk), following
Barisic }, where N is the density of ions, M is
their mass, and U is the electron-ion potential.
One can use this form together with Eq. (2. 2} to
estimate s for q = 2P~. Fermi-surface averages of
the matrix elements in Eq. (2. 2} for various ma-
terials were given by McMillan. ' The value of P~
may be estimated from positron-annihilation, mea-
surements' and (d~~ from the Debye temperature2Pp
or, for optical phonons, from the molecular vibra-
tion frequency. On the grounds of such crude esti-
mates one gets for V,Si, s=0. 1-0.5.

For the reader's convenience we relate our pa-
rameter s with the dimensionless parameters used
by other authors to characterize the electron-pho-
non interaction: (a) s = 8/q, for s ~1 (Barisic '3),
(b) s = 3Fv (Frolich'0) and (c) s = n /4 (Engelsberg
and Varga ). For s«1, s=2X (McMillan ).

We assume that the electron energies are given
by e~= p /2m, although the tight-binding form of
E~ seems to be more suitable for the materials
under consideration. However, we are interested
in drastic effects on the phonon spectrum, which
are not sensitive to the detailed behavior of the
electron dispersion.

All the information about the phonon spectrum
is contained in the phonon Green's function

D(q, (u) = 2(u, / [~ —((u,) —2(u, ll(q, (u) J (2. 4)

where 11(q, u) is the phonon self-energy, given by

fl(q, (u) = —[2i/(2w)'J J g,r (p, e;q, (g)

&&G(p+ q, f + (ar) G (p, e ) d p de . (2. 5)

I' is the electron-phonon vertex function. To close
this set of equations, one has to add the equations
for the electron Green's function G a.nd the elec-
tron self-energy. We shall replace 6 by the free-
electron Green's function G~, the argument being
that these two functions differ only in a small re-
gion of integration around the Fermi energy. How-
ever, more work is needed to verify this approxi-
mation. What is still needed is an approximation

where c~, a, are the electron and phonon destruc-
tion operators and g, is the electron-phonon cou-
pling constant. We find it convenient to character-
ize the strength of this coupling by a dimensionless
parameter s„defined by

g,' = s,v'~', /Pmp, , (2. 2)

where m is the electron mass, P~ is the Fermi
momentum, and p= Jdp„dpgps T.he parameter
P is related to the electron density by n = —,

' P(Ps/s) .
The coupling constant may also be expressed by
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for the vertex function. %e shall replace I' by the
coupling constant g, and solve for the poles of D

(q, &u). The effect of higher-order corrections to
7 will be discussed in Sec. III C. These assump-
tions amount to the random-phase approximation
for the phonon self-energy,

that k~ is very small, and vobis not large com-
pared with e, . For this case, our approximations-
do not apply. It is therefore clear that the bare
phonon frequencies for these values of q are almost
unaffected by the electron-phonon interaction. The
latter will be important only near q = 0 and q = 2p~.
Note that this is different from the case of a spher-
ical Fermi surface where the shaded area extends
down to the momentum axis between q=0 and

q = 2Pz, and the electron-phonon interaction is
felt everywhere, but its effects a,re drastic no-
where.

II (q, (u) = —[2i/(2z) ]g, J G (p+q, z +(o)

xGp(p, e) dppde

['-./(2 )']j d'p

x[(g~, —nq)/[(g -( e~, -&~)+i 6$, 6= +0
(2. 6)

where n~ is the electron-momentum distribution.
%e have used here the retarded form of the "bub-
ble" propagator, 'which for co &0 is identical to
the Feynman propagator. Assuming that the inte-
grand in Eq. (2. 6) depends only on p, (we drop the
z index), using Eq. (2. 2) and &~=ps/Sm, we obtain
after simple manipulations

A. Region q~ 0

Let us now consider briefly what happens around
q=0. In the limitq-0, we get

I(q, (u) = ——,'(vrq)'/[(u'- (v q)'] (3.4)

and the phonon Green's function becomes

2(uo

(o' —(u,
' [1+s,(vsq)'/(o'- (v„q)']lip(q, (o) = —s,(o,I(q, (u) (2. 7)

p (u —(v/q) 1
=2+q 2 2 2 2 2 2

2 + -i +-&2
(S.5)

where co& and co2 are two branches of dressed pho-
non excitations,

(o, ,=-,' ((u,"+(vsq)'+ [((u', —(vsq)')'

+ 4s,(o, (v q )'P ". (S.6)

where

1
dPnq]

Ip ~/q pq

1
~&q'-'e-'&) .

I(q, (u) = —~
4q. „

(2. 6)

The phonon-excitation energies appear as poles of
the function D(q, ra), or roots of the equation

(d = (d/ [1—2sqI(q, (0)] (2. 9)
This is exactly the result obtained by Engelsberg
and Varga by solving the Tomonaga mode, which
is not surprising since these authors showed that
the Tomonaga model is equivalent to replacing the
phonon self-energy II by its. expression in the RPA.

For an optical phonon (&uP, = ~p) we obtain, for
q~0

III. PHONON DISPERSION AT T = 0

The momentum distribution at zero temperature
is np=8(zr-pp) [8(z) =1 for z&0, and 8(z) =0 for
z & 0]. The integration in Eq. (2. 6) is then
straightforward and one obtains

lO g
= (d p + S/(V s q )2= 2 2

~,= (vsq) (1-s,).2 2} P~l„(lq+P )'-( /q)'
(3 1)

4q (-', q —p„}'—(m(o/q)'
(3.7}

lmI(q, u)) = (spy/4q) [8 (I —,'q+m(o/q
I

—ps)
- 8 (I -,' q —m(o/q

I

—ps}] (3. 2)
/

/
//

/
r

/
/

/
r

/

lt follows that ImI(q, v) 4 0 in the region (for q & 0) 3.0—

vsq I (q/2pr) 1
I

~ ~ & vs (q/2ps+ 1.) ~ (3.3)
2.0—

This is the region of possible electron-hole exci-
tations of energy & and momentum q, and it cor-
responds to the shaded area in Fig. 1. A phonon

withq and + in this region is expected to be at-
tenuated, namely, its "dressed" energy is expect-
ed to be complex. The "bare" phonon-dispersion
curve lies for most values of q much below the
curve defined by the left-hand side of the inequal-

ity (S.3) as long as v„»v, . Barisic'" assumes

1.0—

[

0.5 1,0 q/2p

FIG. 1. Region of possible electron-hole excitation
energies and momenta in a one-dimensional system
(shaded area).

HOROVITZ, %EGER, AND GUT FREUND



PHQNON DISPERSION AND INSTABILITY IN LINEAR. . . 1249

For an acoustic phonon ((q), = v,q), we get
2 2( 2 2)

o)a = q u, (1 —s,) .2 2 2
(3.8)

—y =(do2 2 2

((tq+qq, q')'+q')I( - q q')'+q'1}
(x 1+Ssln— («r)'

(3.9)2~ = - -,'s~',
l

we((u —2~~lq' l)

2coy
+ ql'ctqll

(q )q p ), (3.10)

where ——,'m ~ arctan ~ —,'w. We have assumed that
s, and ou, do not vary strongly in the neighborhood
of q = 2p~ and replaced them by constants s and &0.
In view of the 8 function, we consider separately
the two possibilities: w & 2' Iq' I and co & 2vz lq'I ~

In the first case the only solution of Eq. (3.10)
is (oy= 0 (due to the opposite signs on both sides).
There exist two values q„qa (0 & q, & 2pz & qa), such
that for q, &q&q2 the solution is or=0 and y&0
(actually r may be of both signs), and (d qq 0, r = 0
outside this region. For s g o. 5, the values of q&,

qa are very close to 2pz and are given by

q12 —2Py(ly2e ') . (3.11}

At the points q„q2 themselves, co = 0 and y= 0 is a
solution of Eqs. (3.9) and (3.10). When s in-
creases above 0. 5, q, decreases rapidly until

q, =0 for s=1. Thus for s&1, there exist solu-
tions with ~= 0, ys0 in the entire range 0&q &q2.
Such solutions clearly indicate an instabQity of
the system. In particular, a solution with up = y= 0

These solutions lie outside the shaded area in Fig.
1 and are therefore real, as expected. By check-
ing the residues of the two poles in D(q, o)), one
finds that the weight of the higher branch falls off
rapidly when q exceeds (q), /vr. As noticed by

Wentzel, ' the system becomes unstable when

s, &1 for some small q.

B. Region q —2pF

We shall now concentrate on the second region
where the electron-phonon interaction is expected
to be significant, namely, around q =2p~. Let us
denote q =-,'q —p„and consider Iq'I «P„. We are
now looking for complex solutions of Eq. (2. 9),
and the function I(q, o)) has to be continued analyti-
cally to the complex + plane. This is done by re-
placing o) by (o+iy and subtracting for (u & 0, y & 0
the jump in the imaginary part across the real &

axis. Separating the real and imaginary parts of
E(I. (2. 9}, we obtain for small q' the following two
coupled equations for the real (0)) and imaginary
(y) parts of the phonon frequency,

reflects a static distortion of the lattice. This will
be further discussed in the following sections. In

general, when s, depends on q, one gets an unstable
solution for any q for which s, exceeds a critical
value s,(q). For this critical value (d =0, y=0 is
a solution of E(ls. (3.9), (3. 10), or Eq. (2. 9),
and it is therefore determined by the equation

1 = 2s,(q) I(q, 0). (3.12)

1.0

0.8-

0.4

0.2

0 G02

X

FIG. 2. Typical phonon dispersion curve at T = 0,
near q=2Pr, for s=0. 25 and n=uo/2&r=0. 01. The bro-
ken lines correspond to co = +2ezq'. The broken curves
are the negative imaginary parts of the damped solutions
with (d & 0 (the higher one) and with ~ =0 (the small bump
around fo =0, q=2p+). Momentum is measured in units
of s = (q —2')/2pp.

-0.03 -0.02 -0.01 0.01 0.03

The parameter s,(q} for T = 0 is plotted in Fig. 6.
In the second case, when v & 2v~ Iq' I, one finds

a solution with + w0, y w0, which exists as long as
u exceeds

nrqlq/ Pr Il=». lq'I.

This solution falls entirely within the shaded area
in Fig. 1 and is therefore complex as expected.
Both solutions are plotted for s =0. 25 and n =(de/
%~=0.01 in Fig. 2.

It is instructive to analyze the phonon dispersion
with the help of the spectral density function, which
is related to the phonon Green's function by

B(q, (d) sgn(q) = —(1/w) ImD(q, (d). (3. 13)

The function B(q, (d) measures the weight of the
energy w in the energy spread of phonon excitations
of momentum q. Itisdefinedon the real co axis and
reflects the existence of poles in the complex plane,
if these are not too removed from the real axis.
The solutions with o) qq 0 w = 0 appear in B(q, o)) as
6 functions. The solutions with co =0, y 0, in the
region q, &q&q2, carry no spectral weight, since
B(q, o)) = —B(q, —0)), as long as B is continuous,

and therefore B(q, 0) = 0. In the shaded region of
Fig. 1, B(q, (d) is continuous and has a maximum
at the solution with (q) qq 0, y qq0 (for q = 2pr). We
shall further discuss the function B(q, o)) in subse-
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quent sections and show typical curves for the dis-
torted lattice (Sec. IV) and finite temperatures
(Sec. VI).

C. Effect of ladder diagrams

In Sec. III B we have replaced the electron-pho-
non vertex function by coupling constant g,. This
procedure is justified by Migdal's theorem which
states that

value there outside the integral. We obtain, on
account of Eq. (2. 5),

I'(p, e; q, &u) = g, —(1/2g', )g».,&z g & z

D (p+zq & -&,gz)il(q, ~)
(3.16)

Inserting this expression for I' into Eq. (2. 5), we
get

I'(p, e; p, oo}=g,[1+O(m/M} ~ ] . (3.14) 11(q, (u) = IIo(q, (u) + 11(q, (u) I (q, (u), (3.17)

In our case, however, already the lowest correction
[Fig. 3(a)) to I' has a logarithmic divergence' on

the lines co = + 2v+ )q I. One therefore should re-
normalize the electron-phonon vertex. The sim-
plest renormalization is achieved by summing all
the ladder diagrams [Fig. 3(b)]. In this approxi-
mation I' satisfies the Dyson equation [Fig. 3(c)],

Z(p, e,. q, (u)= g, +[i/(2z)'] f d'p'de'

xl" (p', e'. q, ~) Go(p'+q, e'+o )

x«o(p» e )g»» D (p -p e - e )

(3.15)
where Do is the unperturbed phonon Green's func-
tion. The dominant contribution to the integral
over E' comes from the region E'= E~.„—~ -—E~.,
because then the poles of the two Green' s functions
overlap. In the one-dimensional case this corre-
sponds to p' = ——,'q+ mar/q. Being interested in

q
-—2p~, we can neglect the second term because

v (energy of the incoming phonon) is much smaller
than pz /m. Thus, the main cont'ribution to the in-
tegral in Eq. (3.15) comes from the neighborhood
«p'=-q/2, &'=Kg».zThe factor g Dodoes not
vary significantly around this point and we take its

+ ~ ~ ~

(b)

where

I (q, ra} = [i/(2v) ]f d k kg»
x Do(k, e —e gz)Go(k+ q, e + ~)

xco(k ——.'q &).

It follows from Eqs. (3.17) and (2. 7) that

Il(q, u} = —s~,I(q, &u)/[I —I (q, ~)]

(3.18)

(3.19)

To evaluate I(q, &u) we note again that the main con-
tribution to the integral in Eq. (3.18) comes from
k= 0, so that the vertex renormalization is due to
small-momentum phonons. Taking &~ = v, k, &~
=v,k, and «»~(z —e,sz)=akvz, and using Eq.
(2. 2), we can write, near q = 2p„~

g D (k e c /z)=(2v so/PmPr)

(v'. k)'
[(vr k)' —(v, k)']

where so is the coupling-strength parameter at
q=0. It follows that near q =2p~, I has the form

I(q, (o) = [sov /(vz —v, )]I(q, (u). (3.21)

The function I(q, &u) has the same singularities as
I(q, u&) and, hence, the function II(q, &u) given by
Eq. (3. 19) has no divergences. If v„vo«vr, then
I(q, &u) contains a small coefficient (v, /vr) and it,
therefore, affects the phonon spectrum only in a
close neighborhood of the singularity lines + 2vzq

It follows from Eqs. (3.1) and (3.21) that
this neighborhood is defined by

~
(2vr q') —&oz

~
/8&~ -exp[- (4/so)(vz/vo)z] . (3.22)

Only the solution with &ueO, r = 0 (Fig. 2) passes in
the vicinity of these singularity lines. One can
show from Eq. (3.9) that this solution satisfies

+ 'WW'
~(2v, q')' —~'I/8e„&e "" (3.23}

(c)

FIG. 3. Diagrammatic representationof (a) the lowest-
order correction to I', (b) the ladder-diagram approxi-
mation for I', and (c) the Dyson equation for I' in this ap-
proximation.

Assuming that s, is of the same order of magni-
tude as so, we conclude that the solutions of Sec.
BIB do not come sufficiently close to the singu-
larity lines to be affected significantly by I (q, &u)

This is confirmed by a numerical calculation in-
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eluding the analytically continued function I(q, &o, 'Y).

The calculation was performed with the exact func-
tion defined in Eq. (3. 18) and not with the approxi-
mate expression (3.21). For vJvw =0.01-0.1 and
s=0. 25, we find deviations of at most 51 from the
solutions of Eqs. (3.9) and (3. 10). At finite tem-
peratures the effect of I(q, a) is even less impor-
tant, because then the singularity in I(q, m) is
smeared out and appears as 1n(T/Tw). One should,
however, keep in mind that other higher-order
diagrams might affect the phonon spectrum more
significantly than the ladder diagrams. Diagrams
with intersecting phonon lines yield divergences
due to q = 2P„phonons, and 'Parquet" diagrams
must also be considered. "

ED= KM& u, , (4. 4)

where N is the density of ions and M is their mass.
It is convenient to express this energy by means of
b, „which will serve as the variation parameter.
Using Eqs. (4. 3), (2. 3), and (2. 2), we find

where E~ is the electron energy in the equidistant
lattice, and

6, =u, (p+q i
VU ip) (4. 3)

or, h, =u, VQ&+q lUlp), following Barisic.
VU being the gradient of the electron-ion potential.
In addition to the change in the electronic energy,
the deformation introduces an elastic energy densi-
ty equal to (in the harmonic approximation)

IV. DEFORMED LATTICE
E,= (pmp, /2w's, )a,' (4. 5)

u, =u, (e" ~+e " J) . (4. 1)

Such a static deformation mixes the single-particle
states with momenta p, p+q and the new electron
energies are eigenvalues of the matrix

The occurrence of solutions with co=y=0 at a fi-
nite q indicates that the state with equidistant ions,
on which the calculation was based, is not the
ground state of the system and that a lower energy
can be obtained with a distorted lattice. Let us as-
sume a static deformation characterized by a sin-
gle wave vector q. The deviation of the jth ion
from its equilibrium position R& in the regular lat-
tice is given by

8Ez
8b

a

so that the undeformed state always corresponds
to an extremum of the energy. To find if it is a
minimum, we have to consider the second deriva-
tive. One easily finds that

(4. 7)

The total energy density of the system is

Er= [2/(2w) ]f n~e~(a, )d p+ Ev

= (mppr/s, w )[(spr/4m) f n~e~(g ) dp+ —,'gw]

(4. 6)
where e~(A, ) is that eigenvalue of (4. 2) which satis-
fies e~(6, = 0) =&~. Let us now minimize the total
energy by varying 6,. Since e~(A, ) is a function of
b,„we find that

(4. 2) s'e, (n.)
Bb,

2

0 ~P
a

(4. 8)

Therefore,

g~E~ mPPF 1 SPF
4mS

a ha0

2 mPPF
n~dp = 3 [1—2s, ReI(q, &v=0)] . (4. 9)

The last equality is based on Eqs. (2. 6) and (2. 7).
The undeformed state is stable and corresponds
to a minimum of energy if the expression in the
brackets is positive for all q. This is exactly the
condition for the nonexistence of phonon excitations
with ~ = 0. If this condition is not satisfied, as it
always happens for T = 0 at q = 2pF, one has to look
for another solution of the equation BEr/sd, = 0.

Let us now assume a deformation characterized
by the wave vector q=2pF. In this case it is suf-
ficient to consider the 2x2 matrix

8pF 28+lp
4m Ã~(b, ) —(&~+e~~ )

(4. 12)

where we have dropped the index 2p„of b, . The
eigenvalues of this matrix are

ep(~)=-'(e~p +~p) +5[(ep-wp en) +4~ ]
(4. 11)

A gap of 2A appears in the electron spectrum at

p =ps. The condition SEr/Sn, ,=0 yields the equa-
tion

PPF
(4. 10)

where s =s~ and e~(h) is the solution with the
F

minus sign [Eq. (4. 11)]. Assuming again a free-
particle dispersion e~ = p /2m, we find for T = 0
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that the energy attains a minimum when 6, satisfies
the equation

1+ ~~s 1 n(Pr/mn }[(1+m~h /Pr) —1]]=0. (4. 13)

For b, «2er(s & —,'), the solution of this equation is
approximated by

6=4&„e 2
(4. 14)

which is essentially the result of Frohlich.
%e concluded in Sec. III that the lattice is un-

stable for any q for which s, exceeds s,(q). We ex-
pect that the deformation with q = Pp~ will stabilize
the lattice against any other deformation. To see

this explicitly, let us calculate the phonon disper-
sion of the distorted lattice in the neighborhood of
q = 2pz. Since this is affected only by electrons
near the Fermi surface, we may approximate the
electron energies by

(4. 15}

p'/2m+ ~,
This is a somewhat crude approximation, since
se~/sp should vanish as p -p„. Using this disper-
sion in Eq. (2. 6), we obtain an account of Eq. (2. 7},

( (Pr+q/2+2mb/q) —(m&u/q)

4q Ii [Pr -q/2+ (2mb/q)sgn(2P+-q)] —(m&u/q) )
(4. 16)

+)= ("Pr/4q)[8 (I 2q+ m&u/q —2md/q
I Pz) e(pr-

I aq -m&/q+2m+/q I)] . (4. 17)

These expressions are very similar to Eqs. (3. 1)
and (3. 2}, except that the region of electron-hole
excitations (namely, the region in which Imf(q, ~)
+0) around q = 2pr is shifted upwards by n and so
are the singularity lines &= + 2@~ Iq' ). Inserting
Eq. (4. 16) into Eq. (2. 9) and assuming «&er, we
find that = 0 is a solution at q = 2P~ if & satisfies
the equation

The height of the arrows representing the 5 func-
tion in Fig. 5 is equal to the contribution of the
undamped branch to this sum rule, and it ap-
proaches unity when Iq —2Pr [ &a&0/v~ (x~ 0. 002,
in Fig. 5}. For such values of q there is only
negligible phonon spectral density in the region of
electron- hole excitations.

1- (s/2) 1n(4er/&)= 0. (4. 18)
V. PHONON DISPERSION SANDA MODEL

For this &, ~= 0 is not a solution at any other q.
But Eq. (4. 18) is equivalent to Eq. (4. 14), mean-

ing that the gap which minimizes the energy yields
a real zero energy phonon "excitation" at q = 2p~,
corresponding to the static distortion, and stabi-
lizes the lattice at all other momenta.

We have solved Eq. (2. 9) with f(q, ~) given by
Eqs. (4. 16) and (4. Iq), and 4 given by Eq. (4. 14),
in the complex ~ plane. The solution is plotted in

Fig. 4 for s=0. 25 and a=0. 01. We find again two

phonon branches. The lower branch is undamped
and it has a cusp at 2Pz. The higher branch is
damped and it exists only in the region in which

Imf(q, ~) &0. This branch disappears when n&&uo,

as is the case, for s=0. 325 (Fig. 4). The spec-
tral density function B(q, ~) for the solution repre-
sented in Fig. 4 is plotted, for several values of
the momentum around 2P&, in Fig. 5. This func-
tion consists of a 5-function peak corresponding
to the undamped branch and of a continuous part
representing the phonon spectral weight in the
region of electron-hole excitations, The function
B(q, &u) satisfies the sum rule

(u&/~0)B(q, ~) d &u= 1. (4. 19)

To complete the discussion of the phonon disper-
sion at T = 0, we shall now treat the problem with-
in the framework of the Sawada model. '

Let us first reformulate the Hamiltonian in Eq.
(2. 1) so that the gap in the single-electron spec-
trum resulting from the static deformation will ap-
pear explicitly. This can be done systematically
by treating the phonon operators a2p ~2p as2'
numbers in a manner similar to the Bogoliubov
method in liquid helium. The terms involving
these operators may then be incorporated in the
electron kinetic energy, modifying the electron
energies and the electron creation and destruction
operators. We shall not dwell upon the details of
this step and simply write the Hamiltonian

H=Q e,c,'c,+ Z ~,'a,'a,
p q~2pF

+ Z gq(aq+a q)c~qcp (5 1)
piqp2pF

where Ep are the energies of electron states in the
distorted lattice [Eq. (4. 11)], and c~, c~~ are their
destruction and creation operators.

Let us now apply the Sawada method to this Ham-
iltonian. This method treats the particle-hole ex-
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citation as a single entity and takes into account
only terms which involve the creation, destruction,
and scattering of such excitations. The particle-
hole destruction operators are

d, (p) = c ~~cq (5. 2}

Here, and in what follows, Ip+q I &p~, )p ) &p~.
The basic assumption of the Sawada method is that
these operators satisfy the Bose commutation rela-
tions

[d.(P), d" (P')] = [d,'(P), d! (P')1= o,
[d.(P), d' (P')1 = 5- 5pp

(5. 3)

(5. 4)

H, =pe, etc, + Z (boa,'a, +
0~2PJ

To estimate the validity of this assumption we eval-
uate the expectation values of these commutation
relations in the ground state of the Hamiltonian
(5. 1):

&ol[d, (p), d,', (p )]lo)=5 .5„,[8 -8„,], (5. 5)

where n~ is the occupation number in the interact-
ing ground state. The expectation values of the
other commutation relations vanish exactly. It is
clear from Eq. (5. 5) that the validity of the Sawada
assumption depends on how close is the interacting
ground state to a filled Fermi sea. Putting it dif-
ferently, it is assumed that

c, l0 &0, ctl0& —0. (5. 6)

The Sawada model Hamiltonian is in our case

u]', = u],' + 2(doF (q, u],),
where

(5. 11)

F(q, ~,)=g,'+ ~e- ~p e+ ~u e+ ~~a- ~n

(5. 12)
Note that except for a factor of 2 (coming from the
two spin states which we have ignored here),

F(q, ((]) = Re ll0(q, &u). (5. 13)

An additional equation is needed to fix the coeffi-
cients in g„and this comes from the normalization
condition

[&., '(„']= [l(4 o,((,.Z [~'.((') - (('.(( )])5... = ((„..
(5. 14)

The commutation relations of two g, —s or two
[(}t- s vanish because A,(p) =A,(-p), B,(p)
=B,(-p). From Eq. (5. 14) we obtain, on account
of Eqs. (5. 10) and (5. 12),

1

Pq= — + &~ ~a (5. 15}

Let us now derive the phonon spectral density
function B(q, ~). We start from the general defi-
nition"

B(q, (d) =p [l (m l(p, l0)l 5((d —(d„)

—
1
(~14,10)I'«~+ ~.}] (5 16)

where Q, = a, +a~„and m is an excited state with
energy ((] . Putting n )0~~)= )m), and using n, )0=)0
and the commutation relations

~ ~ ~.(a. a-', )[d.'(p) d-. (-p)]. (5. 'f)
pt ql'2PE

The excitation energies of this Hamiltonian may be
found from the equation

[ff n,']=~.n,' (5. 8)

The operators n~, which generate the excited states,
are assumed to be of the form

nt= Q,(at+a, )+ p, (at- a,)+/[A, (p)dt(p)

+ B,(p) d-.(-P)] (5. 9)

Comparing the two sides of Eq. (5. 8), we obtain
equations for the coefficients a„p„A,(p), B,(p):

&,((](( = P(((dq+8q+ [Ae(p ) Be'(p)]

o.e—

0.4

/

S =0.325
V /

/
/

/
/'

/

/
/

0
~q~o = 0'e~e

A, (p}~,= 2P,S.+A, (p)(&&., eo}—
B,(p)~, = 2P.g, B.(p)(e„. e&-) . —

(5. 10)

Multiplying the first two of these equations by each
other and inserting the expressions for A, (P},
B,(P) derived from the last two, we obtain an equa-
tion for the excitation energy „

-0.008 -0.006 -0.004 %002 0 0.002 0804 M06

X
FIG. 4. Typical phonon dispersion of the deformed

lattice at T=O, for s=0. 25 and 0'=0. 01. The broken
curve is the imaginary part of the damped branch, which
eXists only between the singularity lines (broken lines).
When s = 0. 325, these lines are too high for the damped
branch to occur. The cusp in the broken curve at g = 0
is a spurious result, caused by the crudeness of approx-
imation (4. 15).
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g -. x=0
b" "x = 0.00]
c-- x = 0.002
d" .x = 0003

It follows from Eq. (5.9) that

[r)„c,]=A,(p)c,t„. (5. 20)

Let us make a rough estimate of A,(p). Equations
(5. 10) and (5. 12) imply that

F(q, ~,)= ' ~[A,(P) -B,(P)l
a P

(5.21)

0.0i
0 0.5 10 1.5 20

The electron-energy differences E ~, —E& have a,

lower bound of 2b, . We mentioned that the coeffi-
cients A, (P) increase as u, departs from wP.

Therefore, if we can justify the Bose commutation
relations for , & 2h, they will certainly hold for
larger values of &u, . For such ur, the A, (p) coef-
ficients are negative and so is F(q, &u). It follows
from Eq. (5. 12) that

FIG. 5. Spectral density B(q, a) in the distorted lat-
tice at T=O for =0. 01, s=0. 25 and for various values
of q around 2p+, measured in. units of x= (q —2pz)/2p~.
The vertical arrows correspond to the undamped branch
and their height is the contribution of this branch to the
sum rule in Eq. (4. 19).

fF(q, &u)
f

~ —,'(u, ,

and therefore

p
0' ' -'P IA, (» I+ IB,(» I) .

(5. 22)

(5. 23)

The terms in the sum do not depend strongly on p,
so that

(5. 17)

we obtain

B(q, &u) = 4P, [5(&u —&u, ) —5(u+ m, )] . (5. 18) ge (~a ~a

Equation (5. 8) provides only the undamped excita-
tions, and hence, Eq. (5. 11) describes the lower
branch of Sec. IV starting from the definition of

B(q, &u) given in Eq. (3.13), we find that in this case
(for &u&0)

B(q, (u) = 2(u, 5[&v —(u, —2(u, Re11p(q, (u)]

CO l

-1
—5(~ ~ ) ~ ——ReIlp(q, R

~(d

(5. 19)

This is consistent with Eq. (5. 18), in view of Eqs.
(5. 15) and (5. 13).

We have reproduced the results of RPA for the
energies and spectral densities of the undamped
branch of the phonon spectrum, but in addition to
that, the Sawada model provides us with a descrip-
tion of the structure of the excitations. The sum of
the coefficients A, (P), B,(P) measures the admix-
ture of the electron-hole states in the phonon exci-
tation. One can easily show that this admixture
increases with )co, —(d, ( and attains its maximum
near q = 2p~.

In conclusion, let us discuss the validity of the
underlying assumptions of the Sawada method,
namely, Eq. (5. 4) or (5. 6). Since p, (0)=0, the
condition ct~(0)= 0 will be satisfied if [rl„F~]= 0.

VI. PHONON DISPERSION AT TWO

In the present section we extend the calculation
of the phonon dispersion to finite temperatures
and derive the critical temperature T~ of the
Peierls- Frohlich instability. The only diff erence
from the T=0 case is that now in Eq. (2. 8),

n&= exp —p. +1 (6.1)

We shall restrict ourselves to T «T~ (the Fermi
temperature) which is justified as long as Tp«T+
For such low temperatures we may put p =PF/2m,
independent of T. The Fermi-Dirac function may
be approximated in this region by an inclined step
function with the correct slope at the Fermi ener-

(5. 24)

The last factor is bounded by unity due to the sum
rule [Eq. (4. 19)]. The right-hand side diverges for
~,=0, which happens at q = 2p» but the term corre-
sponding to this momentum has been excluded from
the Hamiltonian. When (&u, /&u, )» I/N, the coeffi-
cients A, (p) are very small and the Sawada model is
valid.
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+ —,
' (2 + 1n4), (6. 3)

7T 1
lmI(x, y, 7) = ——

8 exp[(2/7)(x+y)]+1

1
e*P((2/~)( -))I ()' (6.4)

The imaginary part is evaluated with the exact
form of n~. The singularity in ReI along the lines
y =ax, found for v=0, is smeared out at 7 40.
Instead, we now find four lines y =a x+ v, on which
ReI has a logarithmic divergence in the derivative.
This, however, is a result of the two discontinu-
ities in our trapezoidal approximation for n~ and
has no physical significance.

The critical temperature T~ is the temperature
for which u = 0, y = 0 is a solution of Eq. (2. 9) at
q = 2pF, and is therefore determined by the equation

1 = 2s Re I(0, 0, T&/Tz) (6 6)

0,
(6. 2)

where 7. =2mkT/p~= T/T~. With this approximation
for n~ one can calculate explicitly the function
I(q, &u, v) defined in Eq. (2. 8). Being interested
only in the vicinity of q = 2pF, it is now convenient
to denote x = (q —2p~)/2pz, y = u/4ez. One obtains
for x, y «1,

1
Re I(x, y, 7 ) = — {(x+y + v) ln

l
x +y + v

l16~

+(x —y+T) lnlx —y+Tl
—(x+y —7) lnlx+y-rl
—(x —y —r) lnlx-y —vl)

It is c].ear from the figure, that as long as s@,
not too large (s & 0. 6), any reasonable dependence
of s on q will lead to an instability at q = 2pF.
When s &0. 5, then T~ is large and the correspond-
ing curve of the critical parameter has a shallow
minimum, so that it is sufficient that s, at some
q 12pF will exceed slightly s» in order to get an
instability for this q at a temperature higher than
T~. To explain the martensitic transitions in P-
tungstens, Barisie treats a similar model with a
strong coupling (s =1). In this case T~ 5 T~ and
the critical curve s,(q, T~) is very flat, so that a
modest variation of s, may cause an instability at
q=0 before q=2PF {if so ~ 1 and s2~ 0. 7). Em-
pirically it is found that the lattice prefers to dis-
tort with wave vectors q =0 or q = x/a. An appro-
priate variation of s, with q can account for this
observation even if 2P~v0, m/a, or 2v/a.

Let us now calculate the phonon dispersion for
T ~ T~. To this end we continue analytically the
function I(q, (d, r) to the complex equation

(co+ fr)~= (d(~)[1 —2sI(q, (u, )', v)j .

%e assume again that ~, and s, do not depend on
q. The solution of this equation for s =0.25 and
o. =&so/2&F =0. 1 is plotted in Figs. 7 and 8. In

Fig. 7, v= 0. 0018, which for the given value of s
corresponds to T = T~. The general behavior is
similar to the T =0 case, but now one gets a solu-
tion with (d =0, y=0 at q= 2pF, and except at this
point both branches have an imaginary part.
Figure 8 corresponds to a considerably higher
temperature (v = 0.02) and shows a drastic change
in the nature of the solutions. The lower branch
exists only in a narrow neighborhood of 2pF and
is strongly damped there, and now it is the higher
branch which joins smoothly with the unperturbed
dispersion curve (d(q) = (do outside the region of
q —2PF ~

With Eq. (6. 3), one gets

2T e1-2/ s
P F (6. 6) !.0

1 = 2s, (q, 7 ) I(q, 0, r), (6. 7)

which is the finite-temperature form of Eq. (3.12).
This parameter is plotted for several values of 7

in Fig. 6. The lattice is unstable for any q, for
which s, o s,(q, r) The actua.l distortion of the lat-
tice will occur at that q, for which s, =s,(q, v ~).

A similar result was obtained by Kuper. ' Compar-
ing this with the gap in the electron spectrum,
which minimizes the energy at T = 0 [Eq. (4. 14)j
we find b. = 1.47T~. Equation (6. 6) is correct only

when T~ «T» namely, for s -0. 5.
When the coupling is stronger it is possible to

get an instability at q w2pF. To see how this may

happen let us consider the critical coupling param-
eter s,(q, 7), defined by the e(luation

0.8—

CR[T[CAL ( OUPLlNG

S, (q, TI

L

0.&—

0,5
I

!.0

T/T —0.!
F

T/T =0.0!
F

=0.00!-—
TF

T=0

2.0
I

2.S

FIG. 6. Critical coupling curves s~(q, T) for several
values of 7.= T/TF.
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Let us now describe the phonon excitation spec-
trum by means of the spectral density function

B(q, +). This function (actually multiplied by &uo to

make it dimensionless) is plotted for various com-
binations of parameters in Figs. 9-11. We find

that two distinct excitation branches exist at q = 2P~
and its sufficiently close neighborhood as long as
T &T~ (Ts, =too) which is the same as v/2a& 1. For
T=T,„(the v=0. 02 frame in Fig. 10) one can hard-

ly resolve the two peaks, and for T & T~ only one

peak appears. This is reminiscent of the condition

bp + Q)p found in Sec. V, for the existence of two

branches at T =0 in the deformed lattice. As one
moves away from the point x=0 (q =2Pr), the
spread of the spectral density distribution de-
creases until only a single narrow peak appears for
x &(uo/4ez =-,'a (see Hg. 9). Exactly as in the T =0
case, the parameter 0, determines the width of the
region around q = 2p~, in which the electron-phonon
interaction is most effective. The sum rule in Eq.
(4. 19) is independent of T and we used it to check
our solutions. We found that our spectral-weight
functions satipfy the sum rule extremely well for
T ~ T~ at all values of q.

Two excitation peaks were observed by Shirane
and Axe' in neutron-scattering experiments on
NblSn at q = 0. 02v/a. The two peaks occur at about
td = 0 and & = 0.3 meV and both have a width of ~
= 0. 1 meV. The lower peak was observed at T
=46'K and T =60'K, and the unperturbed frequency
was found from high-temperature measurements
to be vp—- 0.6 meV. Therefore, in this case T
» T» and if our idealized model were applicable
here, only one branch should exist (provided that
the given value of q corresponds to 2p~ of a very
narrow band). Barisic ef al. ' have calculated the

I.O

O.C—

0.2—

-(M8 -086 -0.04 -0.02 0 0.02 O.OC 0.06
X

FIG. 8. Typical phonon dispersion at T/TJ; = 0. 02.
The other parameters are the same as in Fig. 7. This
time the higher broken curve corresponds to the lower
excitation branch.

same spectral-density functions within the tight-
binding approximation for the case of n= 0. 1 and

reached a similar conclusion. The failure to ex-
plain the observation of Shirane and Axe within the
framework of our simple model will be further dis-
cussed in Sec. VIII.

VII. CRITICAL VIBRATIONS

In this section we show that the mean-square
deviation of the ions from their equilibrium position
diverges as T approaches T~, and find the crit-
ical-temperature region in which this divergence
would prohibit the use of a linear electron-phonon
interaction.

The deviation of the jth ion from equilibrium is
given by

1.0

O.B—

l(/&

2NM&

The thermal average of u&, is

1
~M

Oe'"Ze-" (m~y, 4', ~m),

(7. 1)

(7. 2)

0.6

O.a

where e~=g e ~"~ (P=1/kT) This av.erage may
be expressed by means of the spectral-density
function B(q, &u), using the finite-temperature ex-
tension of Eq. (6. 16)~8

0.2

-0.08 -0.06 -0.04 -0,02 J 0.02 0.04, 0.06
X

B(q, &o)=e~" P e ~~(1 —e ~)
tft ~ tl

From Egs. (7. 2) and (7.3), we get

('l. 3)

FIG. 7. Typical phonon dispersion near q=2p&, at
v=T/Tz=0. 0018 (T=T&), for 0. =0.1 and s=0. 25. The
broken curves are the negative imaginary parts of the
two branches. The higher broken curve corresponds to
the higher excitation branch.

1 ~ 1 B(q, &o)dv
2VM & ap

(7.4)

This expression diverges in the one-dimensional
case due to the contribution of the low-momentum
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X=0.005
(u,') ksT ksT 1

(g(0)) Es Ru&0 s[2in(T/T, )p" ' (7.S)

0.1—
lo-

X 001 X =0.02 X=0.05

0.1 I I I I I I I I I

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

U/J

FIG. 9. The function ~~@{q, (d) for & = 0. 1, 8 = 0.2:
T/TF = 0. 0018 {T= T&), and for various values of x = {q
—2P's)/2PF

phonons, which is usually quoted as a proof for the
nonexistence of one-dimensional crystals. Having
discussed linear-chain crystals throughout this
paper, we have implicitly ignored this divergence,
assuming that in practice it is washed out by the
weak coupling between different chains. In addi-
tion to this, there is also a divergent contribution
to (g&s) from the neighborhood of q = 2ps when T —T&.

The function B(q, &u) diverges there as u& -0 and,
therefore, the main contribution to the v integral
in E}l. (V. 4) comes from small u&. Thus, we have

"B(q, a&) d+ 2 "B(q, &u) dry

1 —e ~"
P 0 co

(7.5)

The integral on the right-hand side is the spectral
representation of D(q, &o) at m = 0 and therefore,
using E}Is. (2.4) and (2. 7),

f" B(q, &) d&u/&v =1/&@0[1—2sI(q, 0, v)], (V. 6)

where, again, r = T/Tr and (do s are the values of
these parameters at q = 2P~. We next replace the
sum in E}l. (7.4) by an integral and transform
the integration variable to x = (q —2p„)/2'. Being
interested in the neighborhood of x=0, we expand

I(x, 0, 7), given by E}l. (6. 3), for small x, and ob-
tain

&~~}= sou', 21 ( /npr)+7(x/~)s
7. 7

where r~= T»/Ts is determined by (6.6). Extending
the integration over x from —~ to + ~, we get, as
long as s is not too small (7's 1n(T/T») «1)

~ 2s(ksT) 1
' sE~(u' [2ln(T/T )]' ' (7.8)

comparing this to the zero-point fluctuations in the
absence of electron-phonon coupling, (zP~(0)) = 5/
Mero, we finally get

If we define the critical region as the region where
the thermal fluctuations equal the zero-point vibra-
tions (admittedly, a somewhat arbitrary definition,
but probably adequate for order-of-magnitude
estimates), then we get for ksT~= jkd0=10 Es,
s = 0.3 that the width of the critical region is (T
—T~)/T~ =10 ', very roughly.

In this context, we may mention some experi-
ments that may bear relevance to the possible ex-
istence of a large critical region in the quasi-one-
dimensional A. -15 compounds. Shier and Taylor29

claim, from Mossbauer effect data, that there are
strong fluctuations over a wide temperature region
in Nb, Sn; Testardi observed strong frequency
doubling of sound waves in V3Si; Fradin, Knapp,
and Kimball ' found anomalies in the specific heat
of V36a, V,Si that suggest a highly norQi near be-
havior around 100'K; this in addition to older ex-
periments on these materials' that also indicate
a highly nonlinear behavior.

VII. DISCUSSION

} } }

T/TF = 0.005
} } } } I

T/TF = 0.01

0,1-
10-

T/TF = 0,02 T/TF = 0.03

0.1 I I I . I

0 0.25 0.5 0.75 10 0.25 0.5 0.75 10 0.2505 0.75

FIG. 10. Function (dp{q, (d) for &=0.1, s=0. 25, q
= 2pz, and various values of T/TJ.

We have studied in this work the properties of
the phonon-excitation spectrum in one-dimensional
systems and the nature of the instability proposed
by Peierls and Fr5hlich. Attempting to relate our
results to observations on real quasi-one-dimen-
sional systems one should bear in mind that we
made several far- reaching approximations: (a)
We considered a strictly one-dimensional system,
namely, a single linear chain, rather than a family
of weakly coupled linear chains as in the organic
conductors, or a network of three perpendicular
interpenetrating linear chains as in the P-tungstens;
(b) we considered only one electronic band with a
free-electron dispersion e»=p /2m», while real
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FIG. 11. Same as Fig. 9, except for o. =0. 01.

materials have a more complicated band structure;
(c}we have neglected the Coulomb interaction be-
tween the electrons.

With a simple model based on these assumptions,
we found that under certain conditions two
branches exist in the excitation spectrum near 2Pz.
These two branches are mixtures of an electron-
hole ("charge-oscillation" ) excitation and a phonon.
The width of the higher branch at temperatures
close to T~ is of the order of ksT~ (see Figs. 9-
ll). Thus, the two branches can be resolved only
if the bare-phonon frequency exceeds considerably
&&T~. This would be the case for optical phonons,
but not for acoustic phonons with a small wave
vector, such as those investigated by Shirane and

14

Each of the assumptions mentioned above sim-
plify considerably the actual situation in R P-tung-
sten crystal and, thus may be responsible for the
failure of our model to explain the results of Ref.
14. Although the low momentum q =0.02m/a, at
which the phonon softening and the central peak are ob-
served, may correspond to 2p~ of a very narrow
one-dimensional subband, it is also possible that
this value of q is completely unrelated to 2p~.
Even if the electron dispersion is one-dimensional,
the phonon spectrum may be far from the one-di-
mensional character ~(q) = ur(q, ) considered here.
The assumption u&(q} = ~(q,} is certainly wrong
for accoustical phonons; but it may be a rea-
sonable assumption for optical phonons, which
may be approximated by an Einstein spectrum.
A simple model which incorporates some of the
properties of a P-tungsten structure is a network
of two interpenetrating orthogonal families of
chains. " It is assumed that the electrons are
constrained to move along the chains and that there
are force constants between two neighboring ions
belonging to the same chain and to two orthogonal
chains. There are four phonon branches LA, LO,

TA, TO in this planar network. Depending on the
values of the force constants and of p~, one finds
that the instability may occur at q = 0, v/a or 2v/a
rather than at q = 2P~, and it may be associated
with the LA or the LQ branch. The details of this
planar network model are presently under investi-
gation. Actually, there may also be electron-
transfer between the chains, which complicates
things even further, because then the effective
coupling may depend strongly on the direction of
q. It may, for example, reach a maximum for a
TA phonon at 45' with respect to the linear chains
(in this planar network model), or for a [110]pho-
non polarized in the [110]direction in a three-di-
mensional system such as the p-tungsten structure.

In a system with several electronic bands, elec-
trons may shift from one band to another as the
lattice is distorted. Such a process may be non-
adiabatic. Consider, for example, a single chain
in the z direction with two d bands: a(z —-', r') and
I)z(xy). As the lattice is compressed, the a band

may lower its energy more than 6z band (due to a
larger overlap and/or a larger effect on the crys-
tal-field integrals). A longitudinal distortion can-
not provide the angular momentum required to
transfer an electron from the Iiz(m, =+ 2) to the
a(m, = 0) band. Thus, the angular momentum
must come from some other source (for example,
electron-electron collisions), and the band repopu-
lation may be a relaxation process, which is not
included in the present formalism.

One should keep in mind that the planar Fermi
surface extending across the whole Brillouin zone
is an idealization. In real P-tungsten one has to
deal with a considerably smaller planar section of
the Fermi surface, and thus with electron states
that cannot be locali. zed on individual chains. This
feature can be accounted for, to some extent, by
a smaller value of the parameter P [Eq. (2. 2)]
leading to a smaller value of s for a given coupling
strength g.

Finally, let us discuss one effect of the Coulomb
interaction between the electrons, which may be
relevant for the explanation of the two peaks ob-
served in Ref. 14. It is known that the Coulomb
interaction gives rise to plasmon excitations. In

an ordinary metal the plasmon energy at q = 0 is
of the order of several eV. However, in one-di-
mensional (and two-dimensional) systems this
energy goes to zero as q-0. A low-energy-plas-
mon excitation is also possible even when the elec-
trons are not one-dimensional. "Acoustic" plas-
mons with a frequency which goes to zero as q - 0
may in principle exist in a three-dimensional mul-
tiband system, if there are two groups of electrons
near the Fermi surface with widely different effec-
tive masses. These plasmons represent the move-
ment of the two groups of electrons in opposite
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directions without a net current. The properties
of such plasmons and their possible existence in
a V3Ga crystal have been recently discussed by
Gutfreund and Unna. It follows from their esti-
mates that the energy of the acoustic plasmon at
q = 0. 02v/a is of the order of ur = 0. 1 me V. It is
possible that the two phonon peaks observed in

Nb3Sn result from the interaction between a soft
phonon and such a low-energy plasmon.

The present formalism is, in effect, a solution
of Schrodinger's equation neglecting relaxation.
From neutron and light scattering work on liquids
and magnetic systems, we know that relaxation
processes, heat diffusion, etc. , have to be taken
into account, and that a central peak is indeed ob-
served in such systems with an amplitude propor-
tional to 1 —c„/c~. A central peak has also been
observed in insulating solids near a second-order
phase transition. " Because of these reasons, we
face the following alternatives: (i) The central peak
in Nb, Sn is perhaps not due to electron-hole excita-
tions at all. (ii) The central peak is due to elec-
tron-hole excitations, but the widths of the peaks
may be narrower than calculated here, due to re-
laxation phenomena. Thus the question of the ori-
gin of the central peak in Nb, Sn must be regarded
as an open question as yet.

In view of the reservations raised so far, it is
not clear how relevant is the simple model dis-
cussed in this yaper to real P tungstens. However,
we believe that the situation is quite different in

the organic conductors mentioned in Sec. I. The
one-dimensional character of the electron motion
has been established quite reliably; there is only
one family of parallel chains and the electron band
structure is very simple. A superlattice with a
wave vector q = 2Pz was observed by Comes et al.
at room temperature in Kept(CN)4Br„3 3HzO, by
means of x-ray diffuse-scattering experiments.
It was not clear whether this corresponds to a
static Peierls deformation or a one-dimensional
Kohn anomaly, as expected at temperatures above

T~. The latter was directly observed in these
materials in recent coherent inelastic-neutron-
scattering experiments. More neutron-scatter-21

ing experiments on these materials and on the
TCNQ charge-transfer salts would be desired to
study the details of the phonon dispersion around

2P~. In particular, one should look at line shapes
in search for the two-branch structure predicted
here. The knowledge of the phonon-excitation
curve at q = 2P & is very important to the discussion of
possible superconductivity in the TTF-TCNQ crys-
tal. Some authors exclude the possibility of BCS-
pairing, ' because very soft phonons lead to an ef-
fective electron- electron repulsion. However,
these authors do not take into account the higher
branch, which does not go to zero even at T = T~,
and may provide sufficient effective attraction to
make BCS pairing possible.

Recently, high superconducting transition tem-
peratures were reported for Nb3Ga, Nb~Ge pre-
pared very carefully. The question arises as to
what degree of crystalline order is required in
such compounds (as well as the better-known
Nb3Sn, Nb3Al, V~Si, V~Ga, etc. ') to achieve a high
value of T,. (In V~Aut a small degree of disorder
is sufficient to destroy superconductivity, but this
material does not possess a high order of T, to
start with). In the spirit of the present work, we
would attribute the high value of T, to the Kohn
anomaly, ' and the length of an ordered linear
chain needed to make use of this anomaly should
be of order I I/4q, where 4q is the width of the
Kohn anomaly (Figs. 2 and 4). For the ideal lin-
ear chains considered in this work, hq/k~= k~0/
Er For an .electronic band with Ez=2-3 eV (spe-
cifically, the m, =0 band'), we get I =50. Barisic'
considers another band, with a much smaller val-
ue of E&, but also much smaller value of k~ and

coo; thus for his bands, the value of / could be of a
similar order. However, in realistic materials
we have to allow for a band structure that is not
ideally one dimensional, owing to next-nearest-
neighbor transfer integrals, hybridization of bands,
etc. ' Thus, the width of the Kohn anomaly should
in reality be determined by band-structure effects,
and be much larger than ku&0/Er. Values of
0k~/kr= 0. 1-0.2 (Goldberg ') are likely, implying
l =5-1Q atomic distances for the order required to
achieve the high value of T,.
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