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Field ensfsston as a probe of the surface density of states
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Field-emission measurements of the total-energy distribution from a clean metal surface are shown to
provide information about the density of states near the surface. Specifically, we find the field-emitted

current per unit energy at energy eo to be given approximately by j(co) (2 /m)SX '(eo) X Do'(Ej )
(x ) P $(~ —e ), where D~ is the usual barrier-penetration probability with image potential

corrections, E, = re —8'k~/2m, where k~~ is the electron momentum parallel to the surface, lgjx ] is

the amplitude of the metal electron at the classical turning point (x ~ 1-2 A), X(eo) is a slowly

varying function of co, and S is the metal surface area. The Do factor in j(co) strongly weights

electron states with small kII and consequently j(co) measures the density of states at x arising from
the component of the bulk band structure normal to the surface. Measurements of j(co) for several

singl~rystal planes of tungsten will be presented and compared to the relevant photoemission data.

I. INTRODUCTION

It has been realized for some time, both the-
oretically' and experimentally, ' that structure
in the energy distribution of electrons field emit-
ted through absorbed atoms or molecules can be
used to characterize the electronic properties of
the adsorbed species. %'hat has generally not been
appreciated is the potential ability of field emis-
sion to probe the electronic properties of the
"clean" surface. This is a consequence of both a
lack of properly presented experimental data and
of clarity as to what the theory actually predicts.

Almost any total-energy distribution will have
an exponential nature, decreasing rapidly with en-
ergy below the Fermi energy and being cut off at
higher energies by the Fermi-Dirac distribu-
tion. 7'8 This exponential shape is a consequence of
the field-induced barrier in the vacuum, which to
first order (on a, metal) is not affected by the elec-
tronic properties of the surface. This exponential
tunneling probability must be divided out if the
electronic properties of the substrate are to be in-
vestigated. A fuller interpretation of the resul-
tant curves is the subject of this paper.

Swanson and Bell' review the commonly accepted
formulation of the field-emission tunneling problem,
originating from Harrison'si WEB calculation.
The conclusion of this calculation is that the energy
distribution does not explicitly depend on the bulk
density of states, but may be affected by the shape
of the projection of a constant-energy surface on
the transverse (to the surface) momentum plane.
Calculations by Appelbaum and Brinkman ' for tun-
nel junctions indicated the sensitivity of normal-
metal tunneling to the electronic properties of the
metal interface.

Plummer and Bell ' have illustrated that total-
energy distributions from clean single-crystal
faces of tungsten contain structure presumably re-

lated to the surface density of states. This struc-
ture is sensitive to the surface condition and var-
ies from plane to plane. ' Likewise calculations by
Duke and Faucher for a one-dimensional Kronig-
Penney model revealed structure in the energy
distribution related to the one-dimensional band
structure. They also found the energy distribution
is sensitive to the position and magnitude of the 5

function nearest the surface.
It is our objective in this paper to determine

what property of the field emitter is measured by
field emission. We will show that field emission
provides a measure of the weighted density of
states near the surface. This weighting factor
strongly enhances the contributions of those elec-
tronic states with total momentum normal to the
surface. More precisely, the field-emission cur-
rent per unit energy at energy e is approximately

j((c) = (2h/rrt) Sk s(tc)

xQD', (z, ) I q (x )
I

~(tc —e )

where the weighting factor Do is the usual barrier-
penetration probability with image-potential cor-
rections, E, =&c —I k„/2m, where k„ is the elec-
tron momentum parallel to the surface, P (x ) is
the metal wave function at the classical turning
point x (x =1-2 A), X(&c) is a slowly varying
functiun of tc given by Etl. (30b), and S is the sur-
face area.

The consequences of this result will be discussed,
specifically under what conditions the "normal lo-
cal density of states" at the surface can be mea-
sured. Field-emission measurements on single-
crystal planes of tungsten8 will be compared to pho-
toemission data' where the one-dimensional den-
sity of states was purported to have been mea-
sured.
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H. THEORY

V.(r)- -e'/4(x-D)

V,(r) ——eFx

(2a)

(2b)

where D is the position of the image plane' and F
is the strength of the external electric field. The
Fowler-Nordheim calculation of the field-emis-
sion current assumed

v. (r) =0, x&0

V&(r) = —eFx, x&0

(3a)

(3b)

and the standard expression for the field-emission
current with image-potential corrections was de-
rived by assuming

V.(r) =-e'/4x, x&0 (4a)

V&(r) = —eFx, x&0 (4b)

In order to calculate j(ar) we use the Bardeen
version' of the Oppenheimer-transfer-Hamiltonian
approximation. '7 The validity of the transfer-
Hamiltonian method as applied to field emission
has been verified in some detail by Penn, Gomer,
and Cohen. It was shown that the transfer-Hamil-
tonian method gives the correct expression' for
the field-emission current in the case that the po-

In this section we calculate the field-emission
current j(&u) at energy + for a metal .TheHamil-
tonian for the metal plus external electric field is

H= T+ V~+ Vf

where V is the metal potential and V& is due to the
external electric field. H is shown in Fig. 1. The
metal is in the region of space x & 0 and the surface
atoms are centered on the plane x=0. The zero of
energy is taken to be the vacuum level. For suf-
ficiently large x,

tentials are given in Eq. (3). Furthermore, the
method gives essentially the correct expression
for the field-emission current if a 5-function po-
tential representing an adsorbate outside the metal
is added to the potentials in Eq. (3). Define a
"left-system" Hamiltonian by

HL=T+ V + Vyy x~xp

HL= T+ V, x&xp

(sa)

(5b)

HR= T+ Vy, x& xp (8a)

HR = T+ Vy+ V, x & xp (Gb)

H~ is shown in Fig. 2(b). This choice of Hr and

HR ensures that if the metal is free-electron-like
then the calculated tunneling current will be iden-
tical to that predicted by the WKB approximation. "
The eigenfunctions and eigenvalues of KL and HR
are denoted by tt» EL and pR, E» respectively.
At the energies of interest the eigenstates of HL
are largely confined to x & 0 and those of HR to x & 0.
Tunneling is viewed as transitions of electrons
from eigenstates of HL to those of HR. The prob-
ability per unit time for an electron to tunnel from
the eigenstate gL to the eigenstate gR is

7 =H —HL

The tunneling current per unit energy at energy co

ls

j((g) = Q f(E )P 5((o -E )
LeR

where f is the Fermi function. In (I),

(8)

where xp is the point at which V + V& is a maximum.
The results of the calculation do not depend on the
precise choice of xo. HI, is shown in Fig. 2(a). A
"right-system" Hamiltonian is defined by

X

~=H-H, =e(x-x, ) V,

=9(x-x,)(H~ -H~)

where

8(x) =1, x&0

e(x)=O, x«0

Use of (9) in (7} yields

(9}

(10a)

(10b)

where

FIG. 1 Diagram of the metal potential and external-
field potential entering H. The work function is ft& and

xo is the position at which the potential barrier is a
maximum.

The integral in (lib) is over the surface x= xo.
In order to calculate j(&u) from (8) and (11) the

eigenfunctions gL, (R must be obtained for x =xp.
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k = (2mb')' '(E + W)" ' (14b)

HR

H„

, Xo

The region x & 0 is assumed to be a cylinder of sur-
face area S and length L/» W/eF. Requiring I„'z be
normalized yields

(ER) k1/2/(23L )1/2

In (12a) we have neglected a small term which rep-
resents a function that increases exponentially to
the left for x &xo. This term arises from the dis-
continuity in the potential at xo and has a magnitude
of a factor of ~ V (x2)/E, smaller than y~z at x =x2.
This term may be dropped since E",-~ in the pres-
ent calculations, and for field emission I + I

& Q,
where Q is the work function of the metal. From
(5) we find that for x = xo

~ ~

gz«Nzxz exp (-. f Kzdx)e' ~

" (16a)

xz = xz(E; x)

=(2m/k ) / (V eFx E—,)1 2, —x&x2 (16b)

FIG. 2 (a) Potentials of the left system consisting
of the metal potential and the external-field potential.
The external-field potential of the left system is con-
fined to 0& x&so. (b) Potential of the right system
consisting of the external-field potential extended over
all space and the metal potential confined to x&xp.

For x = xo the WEB approximation is valid and
from (6)

q„=Nzxz1" exP f xzdx e""~~"
+R

xz = (xEx, )

(12a)

—(2m/tf2)l/2 ( eFx Ez)1/2 (»b)

zz ——(2m/)I )
/ (V -eFx —E, ) /, x&x2 (12c)

E„=E',+ (8'/2m) (k'„)' (12d}

where x~ is the classical turning point for HR and
is obtained from the condition

Vm(xz) —eI'"xR (12e)

N„=N„(E,) is dictated by normalization and is con-
veniently obtained if V -eI'x is approximated by a
square well of depth W for large x,

V —eFx- —W, xz «W/eF ~ x (13)

The final expression for j((d) will be independent of
W. Using (13),

q =@V &-"'cos
R

K =(2mk')"'(V -E')"'

E, =E,'+ (k'/2m)(k'„)'

x &x, (16c)

(16d)

where x~ is determined by

E ~
= V (x/. ) —eFxz (17b)

and it is understood that the averaged potential is
used in (17b). Ignoring potential variations paral-
lel to the surface will result in an image correc-
tion that has a small error. $L is now given by

qz= , N,"x' xpe(- -f" x, dx)e'*""'
xL

(18)

The integral in (16a) is indefinite. In order to
complete the specification of $1 a lower limit to the
integral, x» must be chosen. In order to make
contact with the usual WKB treatment of tunneling
it would be convenient to choose the lower limit to
be the turning point of HI. . However, self-consis-
tent calculations by Appelbaum and Hamann for
the (100) Na surface indicate that V (r) has an ap-
preciable dependence on the y, z coordinates for
moderately large x. For Na, x~ is determined by

P = 2. 7 eV =eFx+ i V (xz, y, z) i . For eF = 0. 3 eV

A, x~ varies from. 2. 2 to 2. 7 A depending on the
values of y and z. The dependence of V on p
= (y, z) for x &xz has been ignored by all previous
authors and we will assume that for x &x2, V (r)
is averaged over y, z to obtain a potential that de-
pends only on x:

V (r)- V (x)=fdydz V„(x, y, z), x&xz (17a)

where

x( f k dx —v/4} e""~~", W/eF~ x (14a)
R

where xz is specified by (16b) and (16c), and V is
understood to be the averaged potential. In (18) we
have neglected a term which increases exponential-
ly to the right for x& xo. This term is a factor &
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eFxo/lz, l smaller than gz, at x=xo.
Use of (12), and (18) in (11) yields

P~ „=(2v/k) [NRN~Sff /m ] 6„z ~
xD'(E') 5(z' E")—

D(E, |'=e p(-x f x(x;E, )d )xxL

t(x, z,') =(2m/k')'"(V -eFx-Z')'"

(19a)

(19b)

(19c)

(24b)

(24c)E„=Z,+ (n'/2m)(k „)'

and x is given by

z",= v„(x.)
The quantity

(24d)

=N x '/aexp (- f x„dx) e(ik™~ p), (24a)
+m

(2m/8-2)1/2 (V Em)1/2

where &„,„. is a Kronecker 4. Terms of order
[(V (xo) —eFxo)/E, ]P~ e arising from 8 x "/ sx
have been neglected. Equation (19) is independent
of x, and D(E,} is seen to be the usual WKB bar-
rier-penetration probability since from (19a}E/
=Ee, and from (12e} and (17b) xz, and xe are the
two solutions of

E",=E, = V (x) —eFx

Use of (19) in (8) gives

j(~)=f(~)(2 /vh)(h /m) S Z N~NeD (E„)
l„gR

x (6z,
' E',}5(~-E,)-

(20)

(21)

Carrying out the sum over Ee and using (15) for
NR yields (22a)

j(&o) = (S/h)(8 /m)f(&u) Q N LP(z, ;P)6(&u -E )
(22b)

where from (19b) and (19c)

D (E 'P)=exp{ —[+(2m/I )' ( E )' /eF][I-P]}.
(22c)

The quantity P depends on the exact form of
V (x). If V = —e'/4x, then p is the usual image-po-
tential correction and is denoted by pp. Replacing
P by Pp is a reasonable approximation since P -Pp
=0.1 for typical external fields I' and because we
are primarily interested in the ~ dependence of
j(~) rather than its absolute magnitude. Thus the
functional form of D (E) is essentially independent
of the properties of the field-emitting metal. On
the other hand, X~ and EL have only a weak depen-
dence on I' since they are determined by Hl, .
From (5), F enters H/ in the region x & x, however,
V& is zero in the metal and is dominated by V out-
side the metal except for x =xp, where V = V&.

Thus NI and EI. are essentially independent of F
and depend on the properties of the metal as deter-
mined by H =T+V .

Therefore,

j((o) = (2/5) (8'/m)Sf(&u)

x +Do(E, )N 5(&o —e„) (23)
m

where a factor of 2 has been inserted to account for
spin degeneracy and where Dp(E, ) =—D(E, ;Pp) ~

is an eigenvalue of H, and N is determined by the
condition that the eigenfunction g of H in the re-
gion x»0 be

p ((u) =25((u —e ) (25)
m

is the bulk density of states, and the presence of
the surface has no effect in (25). j(m) differs from
p (~) because of the factors Dao and N2. Do(E,) is
a very rapidly increasing function of E, . The
maximum value of E, is co, in which case k„=0.
For eF = 0. 3 eV A and &u = —5 eV, Do(E ) = z Do(ld)
for ~ -E, = 0. 1 eV. Thus, only those metal states
with small k„will contribute to j(~). N can be a
rapidly varying function of energy, however, it is
instructive to examine the case where V is a
square well (of depth V, in the metal) and is suf-
ficiently slowly varying outside the metal that the
WEB approximation is valid everywhere except
near x . In that case

Nm =k „/2SLm

(k,)' = (2m/k'}(E, + V,}

E = (8'/2m) [(k,)' (k„)']

(26a}

(26b)

(26c)

where L and S are the length and surface area of
the metal. Equation (23) becomes

Z, (&u) = (2/h)f((u)

x Q Do(~ —k'(k"„)~/2m)
&ii

(2'I)

c(x xm) p xm ~ x~xwKaX/2

where x„K~ is determined by the condition

dKm
2K &c 1

dx

(28)

(29)

and x is given by (24b). For V = —e /4x and E,

which is the standard result"' for the field-emis-
sion current with image-potential corrections.
Equation (27) for j(&u) contains almost no informa-
tion about the bulk density of states and predicts a
smooth j(ru). However, in a real metal the poten-
tial is periodic and (26a) is not correct. There can
be structure in j(~) although calculations indi-
cate, ' and our experiments show, that there is
much less structure in R(v) = j(ur)/j04u) than in the
bulk density of states.

A more physical interpretation of j(u) can be
arrived at as follows. In the region x&x we ap-
proximate V by a linear function of x until x is
sufficiently large that the WKB approximation is
valid. This means
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= (v/3) (c/3) '~ [I'(-', ) cos(x/6) 7' (30b)

where X has a relatively weak dependence of E,
through c; roughly ccc E, . Use of (30) in (23)
yields

j((o) = (2K/m)Sf((u)x ' (~)

x Q D', (E,)
~ q. (x )

~
&(~ —e.) . (31)

From (31) it is evident that j{&o) measures the met-
al density of states as the turning point weighted by
a factor Do, which restricts the sum over metal
states to those with small k,}. If only states with
k„=0 entered (31), j(~) would measure the one-
dimensional density of states at the turning point
x . The result, Eq. (31), is not as rigorous as
(23) primarily because (30a) overlooks the fact that
the real-metal potential V is a function of y, s at
x=x . Obviously at the very high fields used in
the field-ion microscopy (10 times larger) the bar-
rier is thin enough that the three-dimensional na-
ture of the potential is critically important. In the
field-emission case the barrier is very thick corn-
pared to the surface roughness on a single-crystal
plane and Eq. (31) should be a good approximation.
Clearly j(ur) can also be related to the density of
states at any point x & x„„svia (24). Equation (23)
for j(v) can be simplified if N =N (E „E ) and

p =
I BE,/Bk, 1 are much more slowly varying

functions of E, than is Do(E,). Do(E, ) is a very
strongly increasing function of E, as discussed
above. In this case

R =-j((o)/jo((o)

=N'(~, ~) p„'(~)/N', (~, ~) p', (~) (32)

where jo is the image-corrected Fowler-Nordheim
current given by (27) and No is the wave-function
amplitde appropriate to a free-electron metal:

N ((u0&(u) (2m/h ) l ((o+ Vo) I /2SL . (33)

p'„and po are the bulk densities of states for the
real metal and the free-electron metal in the di-
rection normal to the surface. Equation (32) pre-
dicts an R(ur} that is independent of external field

Equation (23) can be generalized to the case in
which the metal electrons are interacting and may
not be regarded as independent particles. The
formalism developed by Appelbaum and Brinkman'
leads to

j((o) = (2h/xm) Sf(&o)

= —5 eV, x =0.8 A and x~„~=1.5 A. At x=x,
g~ is

(30a)

x Q Do((g —(tf /2m)(k „)2)N Im G ((o)
(34)

where G(u) is the Green function of the metal. In
the case that the electrons do not interact (34) re-
duces to (23).

III. EXPERIMENT

The objective of this section is to present exper-
imental data to test the theory developed in Sec. II.
The ideal test of the theory would consist of first
calculating the band structure and wave functions
at the surface for a real material, measuring the
total-energy distribution of field-emitted electrons
from this surface and then comparing the calcula-
tion and experiment via Eq. {23). Unfortunately,
we are not yet at this stage of sophistication, but
considering the nature of calculations like Appel-
baum and Hamann's for Si surfaces, ~3 there is evi-
dence that this will soon be attained.

A more realistic approach will be pursued. The
critical predictions of Sec. II will be identified and
compared to experiment wherever possible. There
are four general predictions which can be identi-
fied from Sec. II.

(i) Whenever there are metal-electron states
with energy (d the shape of the energy distribution
will be dominated by the tunneling probability
D'(E,).

(ii) There is weak structure in j(ur} induced by
the electronic properties of the substrate [Eqs.
(23) and (31)).

(iii) The total-energy distribution samples states
with nearly zero transverse energy or momentum
components [Eqs. (23) and (31)]. This predicts
that the structure in the total-energy distribution
j(u&) from a real material should be very sensitive
to the normal direction of emission, i.e. , the
structure should be different for different single-
crystal planes of the same material.

(iv) When the electronic properties of a given
crystallographic direction, as represented by

5(&u —e ) in Eq. (23), vary slowly with re-
spect to the tunneling probabilities Do~(E,} as a
function of transverse energy E„ then the total en-
ergy distribution j(&u) samples the "one-dimen-
sional" local density of states perpendicular to the
surface [Eq. (31)]. This local density of states can
be displayed experimentally by plotting the data in
the form

R(~) =j(~)/j, (~)

where j((d) is the measured energy distribution and

jo(~) is a calculated free-electron distribution
given by Eq. (27}. This condition can be checked
experimentally by measuring the field dependence
of R(&o). R(&u) should be field independent [Eq.
(32)] when g N 5(&o —e ) is slowly varying over a
0.2-eV range in transverse energy.
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If the R(&u) curves are not field independent then
one or more of the following assumptions is not
correct: (a) The potential is not correctly de-
scribed by Eq. (4). The one-dimensional image po-
tential may not adequately describe a real surface.
(b} The band structure as described by g Na

x 5(u& —e) in Eq. (32) is changing rapidly over a
small change in transverse energy. (c} The
transfer-Hamiltonian approximation to tunneling
may be deficient.

Item (i) is obvious and predicted by all calcula-
tions. The reviews by Swanson and Bell or
Gadzuk and Plummer illustrate this point. The
experimental work of Plummer and Bell and
Gadzuk and Plummerv show that there is structure
in the energy distribution j(~) [Item (ii)] and that
this structure is sensitive to the specific crystal
plane or to the normal direction of emission [Item
(iii)]. It is stated in the review by Gadzuk and
Plummer that the enhancement function R(co) [Eq.
(32)] is field independent [Item (iv)]. We illustrate
that point now in Fig. 3. Figure 3 plots R(&u) for
(100) W, which exhibits the most pronounced struc-
ture of any crystal plane of tungsten. 3' ' The R(e)
curves are arbitrarily normalized. jo(~) was cal-
culated using 4. 64 eV for the work function and the
field determined from the shape of the Flower-
Nordheim plot.

There is very little change in R(~) as a function
of field. The existing field dependence could re-
sult from changes in the electronic properties with
transverse energy. As the field decreases Do(E",}

1

FIELD EMISSION
PHOTOEMISSION

%su' f0.2 eV

( I I 0)

(IOO)

-2.0 -I.O

E-Ef (eV)

FIG. 4 Comparison of field-emission R (~) curves
with the photoemission energy distribution curves of
Feuerbacher and Fitton (Ref. 12) for 10.2-eV photon
excitation. Data from both techniques are shown for
(100), (110), and (111) tungsten, and only field-emission
data are shown for (112) W. Each of the field-emission
curves is multiplied by an arbitrary normalization
cons tant.

I I I I I

+ F * Q.3t9 V/k
I I I I I I I I I I

~ F 0 337 V/A

x F= 0.355 y/A

o F=O.

~o

0

X
x
„~

I I I I I I I I I I I I I I I I I

-I 5 -I 0 —.5 0
E- EF (eV)

FIG. 3 R (cu) curves for (100) W for a range of elec-
tric fields from 0. 319 to 0. 373 V/A. .

becomes more sharply peaked at E, =0. On the
other hand the field dependence could result from
the field dependence of N . In itself Fig. 3 is not
a sufficient test to prove that R(&u) is measuring
the one-dimensional density of states normal to the
(100) surface. It shows that changing the range of
transverse energies being sampled (by changing the
field) does not change R(&o). But in this small
range of fields the change in transverse energy for
which D,(E,} falls by I/e is only 0. 050 eV, from
0. 18 to 0. 13 eV. Obviously in this model the ex-
trapolation of R(&u) to F = 0 would give the one-di-
mensional density of states at the surface.

Incideiitally, the field independence of R(&o} ac-
counts for much of the variation in published val-
ues of the work function' ' ' obtained by combin-
ing the slopes of the Fowler-Nordheim and the en-
ergy distribution. Gadzuk and Plummer~ demon-
strated how the non-free-electron structure in the
energy distribution displayed in the R(~) curves
invalidates the technique of Young and Clark. ~6 If
fp is the real work function, S» the slope of the
Fowler-Nordheim plot, V the applied voltage, and
t and s slowly varying eliptical functions, then
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Gadzuk and Plummer showed that the measured
work function P, using the Young-Clark techniques
would be

1 1 2 slnR(~} Vs(y)
y, (V) y, 3 s~ S,„f(y)

Therefore Q, will, in general, be incorrect and
field dependent. The field independence of R(u)
can be utilized to extrapolate to an absolute work
function. This is a subject of a forthcoming paper.

The capability for measuring the "one-dimen-
sional" density of states at surfaces is the most
important prediction of this theory, yet the one we
can not directly test without detailed knowledge of
the density of states at the surface. The only such
information which exists is for (100) Si surfaces
from the calculation of Appelbaum and Hamann
and there is no experimental data for this face at
the present time. What does exist is the data of
Feuerbacher and Fitton' for photoemission from

(110), (100), and (111)W. Their contention is that
they measure the one-dimensional density of states
normal to the surface. Figure 4 shows the com-
parison of this data at h~ = 10.2 eV with the field-
emission data for three planes. Most of the struc-
ture is the same, but the detailed shape cannot be
compared because of the matrix-element effects in
photoemission, which change the energy distribu-
tion with photon energy.

This comparison can in no way be construed as a
test of our field-emission theory. The theory of
field emission is on much better footing than photo-
emission, so what Fig. 4 suggests is that either
(i) photoemission measures the local density of
states of the surfaces or (ii) the density of states
at the surface is nearly the same as the bulk and
photoemission measures primarily the bulk den-
sity. Field emission with its limitations may play
a crucial role in improving the understanding of
photoemission.
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