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Isotope effect for self-diffusion*

J. J. Burton~
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(Received 1 August 1973}

We have calculated the correction factor h, K to the isotope efFect for self&iffusion by computing the

normal vibrational frequencies of the defective lattice and applying absolute rate theory. We find for

single-vacancy difFusion in face-centered-cubic solids hK, —0.96, and for divacancy diffusion in argon
kK 2 0 90 6K 1 for single-vacancy difFusion in body-centered-cubic metals is calculated to be =0.72
in sodium and -0.89 in iron. The mass dependence of the isotope efFect is also examined. The results

of our calculations are compared with experiment.

I. INTRODUCTION

The mass dependence of the self-diffusion co-
efficient is generally expressed as'

(m /m )'" 1'
where D, and D~ are experimental diffusion coef-
ficients of two tracers of the same solute of
masses ~n and mz in the same solvent. f is the
correlation factor which is a characteristic of the
diffusion mechanism and can be calculated from
first principles. 2 3 b K is a correction term which
arises from the cooperative nature of the jump
process.

An experimental determination of f4K provides
a most important clue to the diffusion mechanism.
For instance, a value of 0.78 for fhK for self-
diffusion in a face-centered-cubic (fcc) solid
strongly indicates a single-vacancy mechanism. 7

However, a knowledge of fAK does not uniquely
determine the mechanism, as 4K is generally un-
known. A prior knowledge of bK is particularly
necessary when the experimental results for fAK
depend on temperature and one wishes to fit the
data so as to obtain information about the various
mechanisms which contribute to diffusion. There-
fore, theoretical estimates of ~K are very useful.

Two closely related theories are widely used-to
describe self -diffusion in solids: absolute rate
theory and dynamical theory. ' "Feite has shown

that, though the physical interpretations of rate
theory and dynamical theory are dissimilar, the
two theories lead to identical formal expressions
for the diffusion jump frequency. %e shall, in
this paper, use the rate-theory formalism to cal-
culate b K. Estimates of 4K have been made pre-
viously. ' ' However, b K has not been calculated
exactly by rate theory; this requires computation
of the normal vibrational modes of the defective
lattice.

II. THEORY

(~l 2)1/2 Zs(3N 1)
z(3N)

(2)

where v, are the 3N normal vibrational frequen-
cies at equilibrium, v,. are the (3N —1) normal

frequencies with the system constrained to the
(3N- 1)-dimensional hypersurface orthogonal to
the path of motion through the saddle point, and

4U is the energy difference between the saddle

point and the equilibrium position.
Equation (3) for r' is very convenient for cal-

culating hK. Let us call r'(m, ) the value of F for
a tracer with mass m and v(m ) the eigenfrequen-
cies for this mass. (Note that, in general, all of

the eigenfrequencies and eigenveetors are mass
dependent. ) Then

(4a)

3N

IIv;(m )/v;(m~
i=1

where Z is the complete quantum-mechanical par-
tition function for the full 3N dimensional system
of N atoms, Z' is the partition function for the N
atoms with motion constrained to the (3N-1)-di-
mensional hypersurface orthogonal to the path of
motion through the saddle point, A. is the de Broglie
wavelength of the diffusion atom, h/(mKT) "2, and
i is the velocity of the diffusing atom in the jump
direction. Equation (2) has been used by Frank-
lin' to calculate the frequency factor for copper
single-vacancy self-diffusion; he obtained good
agreement with experiment when anharmonic ef-
fects were considered. Assuming that the har-
monic approximation is sufficient for calculation
of the partition functions, Eq. (2) reduces to a
familiar form at high temperature obtained by

Vineyard9

3N 3N-1r=n. , n. ,),--. ,
i=1 i=1

According to the absolute-rate-theory formu-
lation, the jump frequency is given by' x [(m6/m, )'"—1] ' . (4b)
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The difficulty in evaluating 4K is the determina-
tion of the eigenfrequencies, v, in Eq. (4b). Ap-
proximate expressions for bK have been devel-
oped" ' '~ which avoid calculation of the frequen-
cies. There is no way to assess the accuracy of
various approximations for AK without direct
evaluation of Eq. (4b).

It is not possible to exactly evaluate the normal-
mode vibration frequencies in Eq. (4b); however
they can be approximated quite accurately. Con-
sider a region containing N atoms imbedded in a
rigid crystal. If the N atoms are allowed to vi-
brate as 3N coupled oscillators while the remain-
der of the crystal is rigid, 3N normal vibrational
frequencies are obtained. Now move one atom to
a diffusion saddle point, and again 3N normal fre-
quencies are obtained; one of these, associated
with motion through the saddle point, is imaginary
and the other 3N-1, required for the computation
of 1", are positive. These eigenfrequencies for the
N-coupled-atom system give an approximation to
I'. As N gets large, the value of F becomes more
reliable. This approach has been applied pre-
viously to the calculation of vacancy-formation en-
tropies, and the method and convergence problems
have been thoroughly discussed. '~'~

III. MODELS

We have used the procedures described above
to calculate 4K for diffusion in argon, copper,
sodium, and body-centered-cubic (bcc) iron. The
interactions of argon atoms were described by a
Lennard-Jones potential. Those of the copper,
sodium, and iron atoms were described by a
Morse potential. The relaxed positions of the
atoms adjacent to the defect were obtained by
Burton for argon and by Wynblatt ' for copper,
sodium, and iron. In the defect configuration cal-
culations, ~ ~' the relaxations of at least 26 atoms
near the defect were considered explicitly.
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FIG. 2. Calculated ~ for self-diffusion in iron and
sodium by a single-vacancy mechanism.

IV. RESULTS

The calculated values of ~K are shown in Fig.
1 for the fcc solids, argon and copper, and in
Fig. 2 for the bcc solids, sodium and iron. We
plot r E as a function of M/Mo, where M is the
average atomic mass of the isotope pair in Eq. (4)
and Mo is the atomic mass of the host lattice
atoms. M/Mo = l corresponds to the normal cases
of self-diffusion where all of the available isotopes
have similar masses. We show the mass depen-
dence in the figures primarily because of recent
discussion of the possible mass dependence of the
isotope effect. The uncertainties in bK shown in
the figures reflect the uncertainty in our calcula-
tions of the eigenfrequencies in Eq. (4b); a ran-
dom error of + 0.001/~ in the eigenfrequencies
g ives an uncertainty in b K of + 0.01.

In the course of this work, we calculated vibra-
tional eigenfrequencies for both a lattice with an
equilibrium defect and with the diffusing atom at the
saddle point. These are used to obtain a number
of quantities of interest in self-diffusion. Table I
gives the effective frequency in Eq. (3)

0.9- SN SN-1

V =
Vg Vg (5)
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FIG. &. Calculated ~ for self-diffusion in argon and

copper plotted against M/Mo, where Mo is the mass of
the lattice atom and M is the average mass of the tracer
pair. V& and V2 indicate single-vacancy and divacancy
mechanisms.

v* calculated exactly is three to four times larger
than predicted by the Einstein approximation. We
also list the number of localized modes of the lat-
tice with the atom in the saddle point, as well as
the force constant, k. .. for the saddle-point de-
composition mode. This force constant and v* in
Eq. (5) were normalized by the frequency v and
the force constant, k ~, for the highest-frequency
lattice normal modes in order to facilitate corn-
parison of the various materials. We also give
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TABLE I. Hesults of normal-mode calculations on the seE-diffusion saddle point. v* is the frequency IEq. {5)j,
v~ is the maximum lattice frequency, k, ~ is force constant for the decomposition mode of the saddle point, and

k~ is the maximum lattice-mode force constant.

Structure Material Defect (v*/v~) exact

Number of
saddle-point
localized

modes k, , jk

Number of
nearest

neighbors
to diffusing

atom in
saddle point

Distance of
nearest neighbors
to diffusing atom

in saddle point
divided by lattice
nearest-neighbor

distance

fcc

bcc

CU

Ar
Ar
Na
Fe

V)

V)

V2

V)

V)

0. 36
0.21
0. 85
0. 11
0. 13

—0. 09
—0. 07
—0. 03
—0. 005
—0. 12

0.84
0. 92
0. 92
0. 97
0. 97

some data in the table regarding the structure of
t'he saddle point.

V. DISCUSSION

Several results are apparent from Figs. 1 and

2 and Table I:
(i) b,K for the single-vacancy mechanism is

nearly unity for all fcc solids and is independent

of mass.
(ii) hK for the single-vacancy mechanism in bcc

solids is material dependent and decreases for low

mass isotopes.
(iii) There are very few band-gap vibrational

modes associated with the saddle-point configura-
tion in fcc solids and none in bcc.

(iv) The force constant for the decomposition
mode of the saddle point is small compared to
largest normal-mode force constants. This
means that the lifetime of the saddle point is large
compared to high-frequency lattice vibrational
times, and that the saddle-point configuration can
be "thermalized" within its lifetime.

Our values of 4K can be understood as follows:
b,K can be regarded as proportional to the fraction
of the total kinetic energy of the saddle-point de-
composition mode associated with the diffusing
atom in the saddle point. ' In the extreme case
where the jumping atom is completely decoupled
from the lattice and the important jump mode is
completely localized on the jumping atom, all of
the kinetic energy is carried by the jumping atom
and 5K=1. In the other extreme case, where the
jumping atom is very well coupled to the lattice,
the diffusive jump is highly cooperative involving

the simultaneous motion of a very large number

of atoms, and the jump rate is independent of the
mass of the jumping atom giving 4K=0.

In the case of the single vacancy in fcc materials,
the saddle-point atom is very close to its nearest
neighbors (Table I) and the nearest-neighbor force
constants are very large compared to usual lattice

force constants. Therefore the saddle-point atom
is effectively decoupled from the lattice, there are
localized modes, and 4K=1. In the bcc systems,
the saddle-point atom is not so close to its neigh-
bors, the diffusing atom is well coupled to the
lattice, there are no local modes, and 4K is re-
duced.

Our results for the mass dependence of bK are
difficult to understand. Apparently, less energy
is carried by lighter diffusing atoms than by heavy
diffusing atoms but we have no simple physical
explanation of this result. A similar phenomena
has been observed for impurity diffusion in lithi-
um.

Our results for dK are compared in Table II
with those calculated-by other investigators. '
The data in the table indicate theoretical agree-
ment that 4K=0.96 for the single-vacancy self-
diffusion mechanism in any fcc solid. However,
for the single-vacancy self-diffusion mechanism
in bcc solids, we can only say that ~K is greater
than 0.65 and varies widely from system to sys-
tem.

These results are in agreement with the limited
reliable experimental data available on ~K, which

are also collected in Table II. The problem with

most experimental data on the isotope effect is
that f&K is measured for only one temperature.
Hence, unless the result can be assigned unequiv-
ocally to one particular mechanism, as in Pd, it
is not possible to reach reliable conclusions on the
value of 4K. If fAK is measured over a wide
temperature range, it is possible to fit the experi-
mental data and obtain estimates of diffusion pa-
rameters for the (possibly several) operative
mechanisms. This has been done by Feit with
Mundy's data~~ for self-diffusion in sodium and

by Burton with Rothman's data for silver, and
the results for 4K for the single-vacancy mech-
anism are in the table. The calculated results
are in good agreement with experiment.
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TABLE II. Values of bE.

Theory

Structure Mechanism Material or model Reference

Experiment

fcc

bcc

fcc

bcc

V,

V2

V(

V(

Ar
Cu
CQ

Born-Mayer potential
Ho potential (Ref. 23)
Ar
Na
Fe
Born-Mayer potential
Ho potential (Ref. 23)

Ag
Pd
Na

0. 96 ~0. 02
0. 96 + 0. 02
0. 92
0. 98
0. 98
0. 90 + 0. 02
0. 72 + 0. 02
0. 88 + 0. 02
0. 65
0. 97

~0.90
1.02 + 0. 04
0.65-0.74

This work
This work

14
13
13

This work
This work
This work

13
13

8, 26
7

24, 25

VI. CONCLUSIONS

We have calculated the correction to the isotope
effect, bK, for several model systems. We find

(i) For single-vacancy self-diffusion in fcc
solids

b,K=0.96+0.02 .
(ii) For the single-vacancy self-diffusion in bcc

iron and sodium

1.00 o b,Ko 0.65

These results are in good agreement with experi-
ment. We also find

(iii) n.K can depend on the mass of the diffusing

isotopes. In particular in bcc solids and for
divancancy diffusion in argon, bK is smaller for
light isotopes than for heavy isotopes. This result
appears to agree with a recent study of impurity
diffusion in Li. We also find:

(iv) 4K for divacancy diffusion in argon is =0.90
(v) Absolute rate theory can give values of hK

& 0.5. (Note light masses diffusing in Na, Fig. 2.)
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