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The physics of quasi-one-dimensional solids which undergo a Peierls distortion, such as the organic
material TTF-TCNQ (tetrathiofulvalinium-tetracyanoquinodimethan) is discussed. In particular, the effect
of fluctuations into the Frohlich superconducting state on the free energy and the electrical conductivity
is examined theoretically at temperatures above that of the Peierls distortion. A phenomenological
approach is used, but the physical basis for a microscopic treatment is given and the results are
compared with the effect of fluctuations into a BCS superconducting state. It is found that such
fluctuations give a paraconductivity which is too small to account for the extraordinary conductivity

peaks reported for TTF-TCNQ.

I. INTRODUCTION

There has been considerable interest in the pos-
sibility of superconductivity in pseudo-one-dimen-
sional organic solids following a suggestion by
Little.! Recently, Coleman et al.? reported high
electrical conductivity just above the Peierls soft-
mode instability in an organic system. The high
conductivity was observed using a four-probe meth-
od in three single crystals of TTF-TCNQ (tetra-
thiofulvalinium-tetracyanoquinodimethan) out of
70 and in polycrystalline specimens of a closely
related compound, ATTF-TCNQ (asymmetric-
TTF-TCNQ). They attempted to account for the
results in terms of fluctuation superconductivity,
usually called paraconductivity, resulting from a
BCS-type pairing just above the transition tem-
perature T,. Below T,, the materials exhibit a
semiconducting or insulating behavior. One of
the authors of the present paper suggested® that the
paraconductivity is more likely described by an
earlier theory of Frohlich,* who showed that super-
conductivity in one-dimensional systems might re-
sult from a coupling between the electrons and a
traveling macroscopically occupied lattice wave.
This concept is further developed in the present
paper, and we find that the model, at least in its
simplest form, gives a paraconductivity that is
too small to account for the results.

Frohlich’s theory was based on a nearly-free-
electron model and applied only to T=0°K. Asa
result of electron-phonon coupling, a macroscopic
energy gap opens up at the Fermi surface (the
Peierls transition). Frdghlich suggested that if,
when the electrons are displaced in k space so as
to give a current flow, the gaps follow the displaced
Fermi surface, superconductive behavior might re-
sult. The theory was extended to higher tempera-
tures by Kuper,5 who calculated the behavior near
the transition temperature 7,, but only for zero
current flow.

I

A tight-binding model is more appropriate to the
organic conductors. We have extended Froéhlich’s
theory to apply to the case of tight binding and have
made a mean-field estimate of the paraconductivity
above T,, although we do not yet have a complete
microscopic theory. It turns out that, although
the physics is quite different, Frohlich’s model
gives some mathematical results very similar to
those of the BCS theory. However, Patton and
Sham® have shown from a diagrammatic approach
that in the Froéhlich model there are two conduc-
tivity diagrams analogous to the Aslamazov-Lar-
kin? diagram that give equal and opposite contribu-
tions to the paraconductivity, and so give a null
result. (See note added in proof.) Further they
have shown that diagrams analogous to the Maki®
diagrams give a negative contribution to the para-
conductivity.

As shown by Rice and Strissler® and Patton and
Sham,® soft modes cannot account for superconduct -
ing behavior in materials with such a high 7,. Ac-
cording to the BCS and Eliashberg!® theories based
on pairing, modes with frequencies below the gap
(or k5T,) give a repulsive rather than an attractive
interaction. Gutfreund, Horovitz, and Weger!!
have suggested a pairing theory based on high-fre-
quency optical phonons. This is a possible ex-
planation, but according to them, it is just a coin-
cidence that the superconducting transition tempera-
ture is close tothe Peierls transition temperature.

Bychkov, Gor’kov, and Dzyaloshinskii'? have
shown that a BCS pairing resulting from a net at-
tractive interaction between electrons combines
with the Peierls instability from a lattice deforma-
tion to give a single transition in which both effects
contribute to the energy gap. A theory of this sort
may be the correct one. However, it appears like-
ly that the gap comes mainly from a lattice defor-
mation, and in this case superconducting effects
from pairing are greatly reduced.

Actually, because of fluctuations, one cannot
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have a phase transition in a one-dimensional mod-
el. The observed transition takes place in three
dimensions, reflecting at least a weak interaction
between parallel chains of TCNQ molecules, per-
haps via the cations. As Lee, Rice, and Ander-
son!? have pointed out, the actual transition tem-
perature T, may be reduced considerably below
that given by mean-field theory for a single chain.
Our calculations are based on mean-field theory
and may underestimate fluctuation effects.

The main purpose of the present paper is to
discuss the physics of Frohlich’s model, in par-
ticular as it applies to paraconductivity. It is
hoped that it may serve as the basis for a more
complete microscopic theory.

In a superfluid there must be a macroscopic occu-
pation of a quantum state that picks out a unique refer-
ence frame whichdescribes the velocity, v,, of the
superfluid. Associated with each value of v,
there is a whole set of elementary excitations of
the system. If, when excitations come into equi-
librium with the rest frame, a current J () re-
mains, the system is a superfluid with a super-
fluid velocity v,. In superfluid helium, there is a
macroscopic occupation in the Bose condensate of
the momentum state p,=mv,. In a superconductor
based on pairing, it is the common momentum of
the pairs that defines »,. In the Froéhlich model
there is no pairing and no Bose condensation; v,
is determined by the velocity of the macroscopical-
ly occupied lattice wave which produces energy
gaps at the boundaries of the displaced Fermi sur-
face. In calculating the various thermodynamic
quantities, including supercurrent flow, v is
treated as a fixed macroscopic variable of the sys-
tem. It is possible that v, may vary slowly in
space.

The total momentum, which includes the crystal
momentum of the lattice waves, is considerably
larger than that of the electrons and may be ex-
pressed, following Frohlich, as

P=P,+P; =n(m*+my)v,, (1.1)

where m* is the effective mass of the electrons
and m; > m* is related to the momentum in the
lattice waves. Such states may decay by umklapp
processes in which an electron may be scattered
from one side of the Fermi distribution to the other
by a lattice wave of small wave vector g,

k=-k tq+G, (1.2)

where G is a reciprocal-lattice vector. Thus be-
low T, the only stable state is that with »,=0. This
is a true insulating state; when an electric field is
applied v, remains equal to zero. However, if the
relaxation times for umklapp processes are suf-
ficiently long, one could have fluctuation modes
with finite lifetime existing above 7,. We assume

|©

this to be the case.

In a true superfluid, states with v #0 are meta-
stable and can exist for a very long time. This is
because a large momentum is required to change
v, and scattering of individual particles of the
system does not give a momentum change suffi-
cient to change the value of v,. In a one-dimen-
sional system, the momentum associated with v,
is not sufficiently large, and the decay to v,=0
may be fairly rapid. This apparently happens in
the systems studied by Coleman et al.

In Frohlich’s theory, one starts with a Hamil-
tonian which includes interactions between the
electrons and phonons, but direct Coulomb inter-
action between electrons is neglected completely.
The main virtue of the TCNQ materials is that the
extra Coulomb energy is small when there are two
extra electrons on the TCNQ molecule, making
the free radical (TCNQ)™". This is helped by the
juxtaposition of the highly polarizable cations TTF
or ATTF. If the Coulomb energy is less than the
bandwidth of the tight-binding band for conduction
along the (TCNQ)™ chains, it may be neglected in
first approximation and may be treated in higher
approximation by perturbation theory if so desired.

The crystal structure of (TTF)* (TCNQ)™ has
been determined recently by Phillips ef al.!* using
x-ray-diffraction methods. They find that “the
structure is made up of segregated columnar stacks
of radical cations (--- D*D*D*D*- - -) and radical
anions (---A“A"A"A"...).” It is not certain whether
or not there is transfer of a full electron from the
cation to the anion, although we shall assume for
simplicity that this is the case.

We take for our model a simple one-dimensional
chain of molecules, with a spacing 4 ~3.8 A and
one extra electron per molecule. Above T, the
spacing between molecules is equal so that the
tight-binding band extending in % space from -7/
d to +m/d has room for two electrons per mole-
cule. Since we assume one, the band is half-
filled. This makes the mathematics a little sim-
pler, since there is symmetry between electrons
and holes, but it is not essential to the theory.

There is still some uncertainty in regard to the
experimental results. The extraordinary conduc-
tivity was observed in TTF-TCNQ in only three out
of some 70 crystals measured. Consistent results
were obtained with ATTF-TCNQ, but it has not
been possible so far to make single crystals, ne-
cessitating the use of silver paint to short out the
high resistance between grains. Conductivity mea-
surements by a four-probe method in highly aniso-
tropic systems can be misleading. Bloch ef al.,
working at Johns Hopkins, found no anomalous
conductivity associated with fluctuation supercon-
ductivity at microwave frequencies in either TTF-
TCNQ or ATTF-TCNQ, but it is not certain that
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the samples measured by the Johns Hopkins group
were of equivalent quality to those measured by the
Pennsylvania group. Chaikin et al.!® note that the
tendency of the thermopower to go to zero at T,
which they have observed, is consistent with the
appearance of superconducting fluctuations just
above T,.

Independently of the work on these organic sys-
tems, Rice and Strissler!” have worked out the
theory for the Peierls instability in one-dimension-
al systems for application to systems such as
K,Pt(CN),Br, - 3H,0 (KPC), in which above T,
there is conduction along chains of Pt ions. The
bromine ions take electrons from the platinum,
leaving a partially filled tight-binding band with
hole conduction. Below T,, there is a Peierls
transition to an insulating phase. Although they
do not consider current-carrying states with v,
+0, they show the close connection between the
Peierls instability in which gaps appear at the
Fermi surface and the BCS theory. They also
start from the Froéhlich Hamiltonian in which Cou-
lomb interactions are neglected.

The basis for Frohlich’s theory as applied to a
half-filled tight-binding band is shown in Fig. 1.

It is assumed that on the average there is one
electron per molecule with spacing d so that the
energy as a function of wave vector £ measured
from the Fermi energy is

€(k)= - Egp cos(kd) , (1.3)

where kp =/2d for a half-filled band. When v,=0,
the Peierls instability gives a distortion of period
2d with energy gaps of magnitude 24, at k, = 1/2d,
the boundaries of the occupied states at T=0 °K,
as shown in Fig. 1(a). If only the states below the
gap are occupied, there will be a lowering of elec-
tron energy at the expense of the energy required
to distort the lattice.

If there is a current flow with velocity v, the
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electrons are displaced in 2 space as shown in
Fig. 1(b). In tight binding, if the electrons are
displaced by g with g < ks, We may define v, by

m*v,=hq , (1.4)
with

m*vp = fikp (1.5)
and

h—u,,=(3—2; )M:EFd; (1.6)
thus

m* =1%ky/Epd=2W%K/(1Eg) . 1.7

The displaced Fermi distribution extends from
— kg +q to kp +q. If the energy gaps follow the
Fermi distribution, the energies of the electrons
will be as shown in Fig. 1(b). If Akpv <4, only
the states below the gap will be occupied and the
current flow will be nev,. Thus at T=0°K, n,=n.
As the temperature is raised, electrons will be
scattered back to the next higher band to decrease
the current. Thus »n, will decrease, approaching
zero as T- T,.

A macroscopic travelling lattice wave is re-
quired to give the gaps at the two sides of the dis-
placed Fermi distribution. The wave should have
Fourier components exp[i2kp(x - v )], or a wave
vector 2k, and frequency w=2kzv,. The energy
7iw just corresponds to the energy difference be-
tween the opposite sides of the displaced Fermi
surface. For simplicity, we shall assume that
the matrix elements of the lattice-wave potential
between the states & and & - 2k, are independent of
k. If one goes to a reference frame moving with
the electrons with velocity v, relative to the lattice
frame, the energy gap will be the same as for v,
=0, except for the fact that excitations from the
ground state should come into equilibrium with

(b) E

FIG. 1. () The half-filled tight-binding band which has undergone a Peierls transition. There is no current (v, =0),
and the gaps are exaggerated for clarity. (b) Same as (a) except v, =0,
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the lattice moving at a relative velocity - v,.

There is a problem with an exactly-half-filled
tight-binding band which is believed to be more
formal than real. Inthiscase, 2kr is associated
with a periodicity of 2d, which corresponds to
every other molecule vibrating in phase with fre-
quency w. This represents a standing wave rather
than the running wave we require. This difficulty
is not encountered if 24, departs slightly from n/
d. This case is discussed in Appendix A.

Actually, we make no explicit use of a half-
filled band except for assuming equivalence between
electrons and holes, and this will be true to a
good approximation in any case in the vicinity of
the Fermi energy as long as kg T << Ep, as is true
in most cases. Since fluctuation conductivity de-
pends only on such excitations, the results should
be valid in general. Use of mean-field theory is
not justified for one-dimensional systems, so that
our results cannot be expected to be valid except
as to order of magnitude.

In Sec. II we review the theory of the Peierls
transition for v,=0 and show that the expression
for the free energy near T, is very similar to that
given by the usual Ginzburg-Landau theory. In
tight binding, the gap parameter 4, at T=0 °K is

Ag=4E, e, (1.8)
where X is the electron-phonon interaction parame-
ter. Note that the Fermi energy appears in place
of the phonon-energy cutoff of the BCS theory, giv-
ing the possibility of a high transition temperature.
The relation between T, and A, is exactly the same
as in the BCS theory:

ks T, =0.574, . 1.9)

In Sec. III we show how the results are modified
if the gaps follow the displaced Fermi distribution
so as to give a current flow. Again, the Ginzburg-
Landau result near 7, is very similar to BCS for
vs#0, with extra terms coming from the kinetic
energy of the supercurrent and the lattice waves.
It is likely that for one-dimensional systems these
states are not metastable but decay rapidly to the
insulating state corresponding to v,=0.

Section IV is concerned with the calculation of
the propagator for the lattice waves, D(2kp, w),
in the neighborhood of 7,. Just above 7,, the col-
lective modes corresponding to decaying moving
lattice waves for various values of v, have rela-
tively long lifetimes and contribute to the para-
conductivity. Expressions for these lifetimes and
for the Ginzburg-Landau free energy are derived.

Finally, in Sec. V an estimate is given of the
paraconductivity based on mean-field theory and
semiphenomenological arguments. We do not yet
have a complete microscopic theory so that the

results must be treated with some reservations.
An estimate of the validity of mean-field theory is
given.

II. PEIERLS DISTORTION

In this section we give a brief review of the
physics of the Peierls phase transition applied to
one-dimensional tight-binding systems. The quan-
tities of interest that we shall discuss are the tem-
perature at which the transition occurs 7,, the
size of the resulting energy gap in the band struc-
ture at T=0, 24, and the free energy of the sys-
tem as a function of the energy gap and tempera-
ture, F(A, 7). We consider in this section only
the case of no current flow (i.e., v,=0). The the-
ory as presented here is essentially equivalent to
that of Rice and Strissler.!?

We begin with the Hamiltonian for the quasi-one-
dimensional linear chain of length L consisting of
n atoms or molecules. We include the electron-
phonon interaction, but neglect the Coulomb and
phonon-induced interaction between electrons:

H=H,+H,+H_, . (2.1)
The electron part of H is given by
H,=2ie(k)a}ay, (2.2)
R

where €(%) is the tight-binding energy of Eq. (1.3),
which may include the self-energy from the pho-
nons. Here a} (a,) creates (destroys) an electron
in state k. The index % includes both wave number
and spin. Similarly, the phonon part is

H,=217w,blb,, (2.3)
Rk

where w, in the Debye model is %w,= ks for the
velocity of sound s, and b} and b, are the usual

phonon creation and destruction operators. Last,
the electron-phonon part is assumed to be
H,., =2.g(k)a,,a,(b,+0',), (2. 4a)
ok

where g(k) is the electron-phonon coupling constant.
An equivalent form of H,., expressed in terms of
electron wave field operators is

Hey =2 [[axgl®)(b,+b,) e " (00(2) . (2. 4b)
13

However, as discussed by Peierls, Fr(’)’hlich,4
and Kuper,® for T < T, the phonon modes of wave
numbers + 2k, which connect the two points of the
Fermi surface become macroscopically occupied.
For the special case of a half-filled band, the
lattice undergoes a distortion in which the period
of the lattice doubles. This case is discussed in
Appendix A. In general, the order parameter A
that describes the distortion is defined by

A =g(2kp) by, + bl ) !2F™ (2.5)
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where the angular brackets denote a thermal
average. The equilibrium value of A is 0 for T
> T,, and there is macroscopic occupation of the
+ 2k states for T< T,. An energy gap, 2lAl, is
introduced in the electron band structure so that
the one-electron energies become

E(k)=sgn[e(k)][(k) + 141212, (2.6)

with
sgn[e(k)]=+ for e(k)>0
=~ for e(k)<0 .

Rice and Stridssler have shown that in the tight-
binding approximation

kpT,=2.28Ep e™'/* 2.7

and

A(T=0)=Ay=4Ep e’ '*, (2.8)

where kjp is Boltzmann’s constant, and X is given
by

A=2N(0)| g(2kp) [*/ Fwwgs, »

with N(0)=n/7Eg.
We now turn to the free energy of the one-dimen-
sional chain, which is assumed to be of the form

F(8, T)= - (2/B) Z1n{2 cosh[ $BE(R)]} + NO)[4]%/2
* (2.9)

where 8= (ks T)"!. The first term is the usual free
energy of a gas of fermions with energies E(k)
given by Eq. (2.6). The spin sum has been done,
and it accounts for the factor of 2 preceding the
summation symbol. The last term is the energy
that is required to distort the lattice. There is an
additional term when v,#0 which represents the
kinetic energy of the moving lattice wave. We
point out that the form of Eq. (2.9) is formally
identical to that for a BCS superconductor, but the
physics underlying the second term and the sig-
nificance of A are different.

To obtain an expression for F(A, T) in the region
near T, where |A| is small, we expand (2.9) in
powers of |A |2

F(a, T)-F(0, T)=a|a|2+(Eb)|Al4+... . (2.10)

The coefficients ¢ and b are calculated in Appendix
B and are found to be, for T near T,

a=~-=N©0)In(T,/T)~ - NOXT, - T)/ T,
and

b=~0.106 N(0)/ (ks T, .

(2.11)

(2.12)

These values are nearly identical with the BCS
case.

III. ELECTRON FREE ENERGY ASSOCIATED WITH
MOVING LATTICE WAVES

As suggested by Frohlich and illustrated in Fig.
1, there can be states with current flow if the en-
ergy gaps are displaced with the electrons and re-
main attached to the Fermi surface. This requires
that the phase of the order parameter A vary in
time as well as in space. We shall ignore fluctua-
tions in electron density so that the lattice wave
which connects opposite sides of the Fermi dis-
tribution and is macroscopically occupied will have
a wave vector 2k.. If the lattice wave moves with
the electrons with velocity v,, the order parameter
will vary as

A= |A| 2ikr mvgt) (3.1)

Note that v, is related to the frequency and thus to
the time derivative of the phase.

We shall assume that |A| < Eg, so that we can
ignore the differences between the gaps on the
right- and left-hand sides of the one-dimensional
Fermi distribution. For energies small compared
with Ep, the excitation energies are of exactly the
same form as for a BCS superconductor in which
the momentum of the pairs is 2p =2m*v,. As we
have seen, expressions for the Ginzburg-Landau
free-energy functional are nearly identical and
differ mainly in the term associated with the kinet-
ic energy of the moving lattice wave.

If the electrons in the ground state are displaced
by a wave vector ¢, it is convenient to measure %
from the displaced origin ¢ so that the Fermi sur-
face remains at + kb, with kz a positive number.
Near the Fermi surface, the energies are given by

(3.2)

where the ¢, are the energies relative to the Fermi
surface of the undisplaced distribution with A=0.
The positive sign refers to the right and the nega-
tive sign to the left. Note that the frequency fac-
tor in A, w=2kpv,, just makes up for the differ-
ence in energies between the left- and right-hand
sides of the displaced distribution, so that the ex-
pression for the gap as derived from the matrix
elements of the potential of the lattice wave is es-
sentially the same as for v,=0. There is a slight
difference for energies near the top and bottom of
the band, but these have a very small effect if |A|
< Ep and v is small. At T=0°K, the current
density for Zkpv, <4, is proportional to

E(k)=sgn(e) (€2 +|a |22 1 nkpo,

ke
fF 5£dk=E(kF)—E(—kF),
kg OF

(3.3)
and is the same as that for A=0. The mass flow

is nm*v, so that n,=n. When Zkzv, becomes great-
er than |A|, electrons can be scattered back to

the next higher band and the current will decrease
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rapidly to zero, as in a pairing superconductor.
This gives an effective upper limit on v,.

Near T,, one may expand the free-energy func-
tional (2.9) in powers of 1412 and 2 and obtain to
order of v%

F=F,~F,=a|a[?+3b|a[*+ fonm*2|a ]2,
(3.4)
where ¢ and b are given by (2.11) and (2.12) and ¢
is identical with the value for a pairing supercon-
ductor:

c="T¢(3)/4m (kg T.)? . (3.5)

The mass flow of the electrons is to first order in
v$5

P,=ngm*v = cnm*v,| A |7 ; (3.6)
thus
ng/n=clal?. 3.7

If we use m*v =g, the terms in |A |2 may be
written in the form

a(l+ &) al?, (3.8)
where
£2=n2cn/2m* | a| (3.9)

defines the Ginzburg-Landau coherence length, ap-
proximately equal to

E~gl/e,

where £ is the temperature-independent coherence
distance and €=|7- T7,1/7,. Inour case v, is re-
lated to the frequency or time derivative of the
phase of the order parameter, not to the space
gradient. There is an additional term of order 2
from the lattice kinetic energy which may be in-
corporated in £ by adding a factor (1 +m,/m*) as
discussed in Sec. IV.

Because of umklapp processes in pure one-di-
mensional materials and scattering by imperfec-
tions, the states for a given v, are not metastable
but will decay with some relaxation time 7 to the
equilibrium state v,=0. For the states defined by
v, to make sense, one should have w7=2kpv,7>1.

To observe true superconductivity there would
have to be coherence between parallel chains,
which is unlikely for v,#0 unless there is an attrac-
tive interaction as in a pairing superconductor.
There could then be a reasonable coherence dis-
tance transverse to the chains and a large amount
of momentum associated with v,. In this case v,
could not be changed by scattering by imperfections,
and it would require a macroscopic disturbance
such as passages of a vortex line to change the cur-
rent.

However, in the absence of true superconduc-
tivity, it may be possible to observe fluctuation

(3.10)

superconductivity above 7,. In Sec. IV we dis-
cuss the propagator for the lattice wave and derive
the kinetic energy associated with the moving lat-
tice wave.

1V. 2k,.-PHONON PROPAGATOR

The value for the decay time ot the fluctuations
that contribute to the electrical conductivity for 7'
> T, and the term in the free energy due to the
kinetic energy of the moving lattice waves may both
be obtained from the propagator of the 2k, phonon.
We assume that the softening of the phonon mode is
sufficiently sharp that we may neglect any deviation
of phonon wave vector from the 2%, value. Then,
since the 2k,-phonon propagator is formally analo-
gous to the f matrix of the usual pairing supercon-
ductivity theory, the poles of the propagator may
be examined to find the real and imaginary parts
of the frequency of the excitation and also the
Ginzburg-Landau free energy of the system.

In order to do a complete microscopic calcula-
tion, one would need to obtain the total phonon
propagator D(2kg, w). Following Patton and Sham,®
we shall here consider only the electron-hole bub-
ble self-energy terms. The diagram expansion
for D(2kg, iw,) is given in Fig. 2. We shall use
the standard technique of evaluating the equation
for D at the imaginary Matsubara frequencies and
then analytically continuing to the real frequencies
(iw,—~ w +146 for & a positive infinitesimal) to obtain
the physical causal behavior.

The Dyson equation for D is thus seen to be

D (2kg,iw,) = DM 2kp, iw,) — [V/ N(0)B]
X 2 Go(p’ iwm)Go(p - ZkFy i(w,,. - wn)) ’
m,p

4.1
where ( )
Do(2kp, iwn) = Wiy, [(fw, P = wie, ] ™ (4.2)
P
|wm
ARDR A% AV
2kg p-2kg
iwn lwer w,)
k q
+ WONV\.O\W + eee
k-2kg q-2kg
H{wpwp) H{wg= wn)
FIG. 2. Diagram expansion for the 2kg-phonon propa-

gator, D@kp, iw,). A double wiggle denotes the phonon
propagator including the self-energy corrections, a sin-
gle wiggle stands for the zero-order phonon propagator
having momentum 2k and frequency iw,, and a line rep-
resents the zero-order electron propagator. A dot de-
notes the electron-phonon vertex and contributes a factor
1B =igo, 2/ way) V2.
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and
G p,iw,) = [ihw, - e(p)]™* . (4.3)

As usual, the Matsubara frequencies are %w, = 2mn/
B and Aw,=(2m +1)n/B, where n and m are inte-
gers.

From the periodicity of the tight-binding band
structure, we have

€(p —2kp)=-€(p)
and hence
G p = 2kp, i Wy = wy)) = = GO p, 1w, = wy)) -
Equation (4.1) then becomes
D (2kg,iw,) = D3 (2kp,iw,) + (A/N(0)B)
X TGO p,ico ) py ilwn — ) - (4.4)

m,p

Inserting the expression for Dj!, doing the frequen-
cy sum, and setting

Er de
E"N0f T E RnE
N0 ) T ED
results in

Wik D™ (2kp, iw,) = (iw,)? = Wiy,

Lo pr de tanh%ﬂe)
B -5, (L - FED) ihiw, - 2€)
(4.5)

Using Eqgs. (B4) and (B7) from Appendix B, we
have the relation
EF de
1=xIn(7/T,) +)\f ———37=317 tanhige.
5, 2€(1 — €/ Ef)
EF i (4.6)
This reduces (4. 5) to the following form after per-
forming the analytic continuation to the real w
axis, iw,—~w +125:
T,

wngD'l(ZkF,w) =@l - wng A[ln
c

Ep de L
+f A=/ pnie tanhzpe
. 1-€/E)) 2

-E

x<21—€_ 21_—%1'5—75)] 4.7

The integral is evaluated by again using the cutoff
X such that 2/8<«< X < Ep and expanding in powers
of w. To order w? the result is

D (2kp,w) = = M= w¥/ Ay, +10(T/ T,)
- 5imB.hw + 5 [TE(3)HwB, /7], (4.8)

where we have dropped a term proportional to w?/

EZ since it is much smaller than the term w?g2.
Equation (4. 8) gives the value of the inverse of

the 2k -phonon propagator for real values of the

frequency w. The poles of D(2kp,w) are given by
D(2kp,w=w")=0, where we have continued into
the complex w plane.

In Sec. TI we found that |A|2 is proportional to
ns. Assuming that n, decays as e™’", we then have
that

7=3(Imw")? . (4.9)

Setting D™(2kp,w’) equal to zero yields a quadratic
equation in ' having the two complex roots

w' = = imAB I (el {1 £[1 = (16/ 778w, PN /2L,

(4.10)
where In(7/T,)~(T - T,)/ T, = € and we have as-
sumed 1> fg[x7§(3)(wszBc/1r)2]. Defining €, as
that value of € at which the square-root term in
(4.10) goes to zero,

€= A({5mBwae, )", (4.11)

we find that, as a function of temperature, the
frequencies of the 2k, elementary excitations are

w' > £(A€) 2wy, — f5iMABAIWS,, for e>¢  (4.12)
and
w' ~-i8e/mB K
or
W' =5[= imB,w},, | + Be/TB 7 for € <¢ .
(4.13)

For /1w,y ~1andX~73, €,is of the order of 0.01.
Then the relaxation time 7 is found to be

7~nhnB,/16€, for €<<¢g, (4.14)

where we have used the smaller value of (4.13),
and

(4.15)

Equation (4. 14) is identical to the relaxation time
obtained from the time-dependent Ginzburg-Landau
equation for pairing superconductors. For our
model, however, 7 is seen to level off at a constant
for large ¢ instead of continuing to decrease as 1/e.
In this limit (4.12), 7 is independent of the real
part of w’ and thus of v,.

For pairing superconductors the Ginzburg-Lan-
dau free energy F is involved in the time-depen-
dent Ginzburg-Landau equation®®

T ~8/mM\Bwiy 71 for €>¢ .

8y __9F

TR

(4.16)
where ¥ is a new parameter, and ¥ is related to A
by ¢ =c?a, with ¢ given by Eq. (3.5). Equation
(4.16) and the values of the parameters it contains
can be obtained from the equation for the ¢ matrix,
a quantity describing the repeated scattering of a
pair of electrons into other pair states. Since the
2kr-phonon propagator may be viewed as describ-
ing the repeated scattering of an electron-hole pair



126 ALLENDER, BRAY, AND BARDEEN

which has singular behavior at T=T,, we expect
the Fourier transform of Eq. (4.8) to be similar
to (4.16). In fact, we find that the thermodynamic
energy obtained from (4. 8) differs from the Ginz-
burg-Landau free energy by a Legendre transfor-
mation with respect to v,.

The term proportional to w in (4.8) corresponds
to the left-hand side of (4.16) while the remaining
terms are used to obtain the free energy. Multi-
plying by the proportionality factor N(0)|A |2, we
get

G=N(0)In(7/T,)| A |2 - w*N(0)| ]2/ 2w,
+7¢(3)(hwB, /T N(0)| A|%/186
= [a = w?N(0)/ X}y, + T£(3)
x (hwB,/m2N(0)/16]] a2, (4.17)

where « is given by (2.11). Using w =2kzv,, N(0)
=n/mEp, and Eqs. (1.7) and (3.5) we identify the
(ch ? term with the kinetic energy contribution of
the superfluid electrons to the free energy as dis-
cussed in Sec. III:

7¢(3)(HwB,/T)?N(0)| A]2/16 = cnm*e?| a|2/2
=iPv, . (4.18)

Similarly the (w/kaF)z term represents the lattice
kinetic energy. We define an effective mass m, by
the relation

enmy?| A]%/2= w2N(0)| A Z/Xwgkr

=2nm*2| A lz/xwgkp (4.19)
Thus, from (4.19) and (3.5) we find
my/ m* = 1672/ N(way, B,)7¢(3). (4.20)

We get m;/m* ~56 if Fwg,,B,~1 and A~ 3, but these
values are uncertain. Introducmg the lattice mo-
mentum P; = cnm,v,1 A% (4.17) becomes

G=ala|?+¥P, - P)v, (4.21)

Since the Ginzburg-Landau free energy F involves
the sum of the lattice and superelectron kinetic
energies, the energy of Eq. (4.21) differs from F
by a term P,v,. The resultant form of F is

F=alal2+3(P, +Pp)v,=al A %(1+£*%¢?)
where (4.22)

EX=£(1 +my/m*)Y? (4.23)

with £ given by (3.9). We point out that (4.22) has
the same form as the Ginzburg-Landau free ener-
gy for pairing superconductors, with the coherence
distance ¢ replaced with £*. However, now the
term (£*g)? comes from the time dependence ra-
ther than the space dependence of the order pa-
rameter.

l©

V. ESTIMATE OF THE PARACONDUCTIVITY

In this section we shall make an estimate of the
paraconductivity and of the validity of mean-field
theory, upon which our estimate is based. We
employ standard techniques of mean-field theory,°
in which the excess conductivity due to fluctuations,
o'=0 -0y, is given by summing the contributions
from independent fluctuations of frequency w. We
shall use the variable ¢ [see Eq. (1.4)] to designate
the fluctuations. Allowed ¢ values for periodic
boundary conditions are integral multiples of 2n/L,

and ¢ is related to w by g=m*w/2%k,. Then we
have
o' =2ing, &7/m* , (5.1)
q

where n,,=c| A, is the density of superfluid elec-
trons with v, =7%g/m*, and 7 is their lifetime. The
lifetime 7 has been calculated in Eq. (4.15) for

the temperature range of interest.

We point out that (5.1) depends in part for its
validity upon all momentum change accruing to the
electrons. In a fluctuation, P, and P, decay as
et’". The decay of P, has the effect of releasing
2kp phonons, which will accelerate the electrons
as an electric field will, scattering the electrons
from the left to the right of the Fermi surface.

In an electric field E, the total crystal momentum
change due to the field, 6P=6P,+6P,, is given by

<6t> ?n eE ,

of which a certain fraction m*/(m, + m*) of the in-
crease in momentum due to the field goes to the
electrons and the remainder to the lattice:

(%) -
ot

Now we neglect umklapp processes not related to
7 and require that the lattice momentum (5. 3) be
released to the electrons at a time much shorter

than 7. Then the total momentum change of the
electrons due to the field becomes
Zn eE=Ensqu.
q

(5t
(5.4)

In other words, all of the increase in crystal mo-
mentum ends up in the electrons. The current is
then given by

I=(%22\ o7 fm*=Ton, 2E+ m*
5t ), ;e

(5.2)

—A—En €E .

(5.3)
m* +my

q

Zn eE+
m* +my

(5.5)

which gives (5.1) as desired.

To calculate n,, we perform the necessary
thermodynamic averaging of IAqiz. We take our
thermodynamic energy from (4.22) and neglect
|al* terms:



9 THEORY OF FLUCTUATION SUPERCONDUCTIVITY FROM... 127

F,=a(l +£%2g)|a |2, (5.6)

where £* includes the effects of the lattice mo-
mentum. Thus

A ]A ]2 e'Fq/ kgT EaT
(|la,l? =fd e ! g _ B . 1
| ¢| ) fqu e'Fq/kBT a(1+£"‘2q2) ’ (5 )
SO

Mg = Cnkp T/ a(l + E¥3q %) . (5.8)

We may now write (5.1) as

o' =2.8e%(ky Tc)zcn/m*nzwgkpansh'(l +E¥2 g2,
a (5.9)
Now let 2, ~ (L/2m)[-.dg, where L is the chain
length, and assume fw,,, ~ kg T, to get

o' =8e%ty/ €3 (1 + my/ m*)V2nKS (5.10)

where we have used (3.9), (3.10), and (4.23).
Here S is the cross-sectional area of a one-dimen-
sional chain, or equivalently 1/S is the number of
chains per unit area in the plane perpendicular to
the chains.

One should note that in this model for €> ¢, the
temperature dependence of (5.10) is € /2 rather
than € %2 as in regular pairing theory. This dif-
ference arises, of course, from the fact that in
this model 7 is independent of € in the range of
temperatures in which we are interested [see
(4.11) and (5.13)]. The usual € ¥2 dependence of
o’ is recovered only for values of € < €,=~0.01.

We shall now substitute numbers relevant to
TTF-TCNQ into (5.10). Using Ep ~0.2 eV, T,
~58 °K, and d=3.8 A, we obtain m* ~4.2m and
£,~70 A. From the data of Phillips et al.'* we
have S=~114 A2, Using the estimates of (4.20) we
have (1 +m,/m*)"2~1.5. Thus we get

o' ~(5x10%)[T, /(T - T,)]"’* mho/em .  (5.11)

If we assume a normal room-temperature conduc-
tivity for TTF-TCNQ of 2 x10° mho/cm =0y,
then Eq. (5.11) predicts a paraconductivity at

68 °K of

o'(T=68 °K)/0gr =6 . (5.12)

It is somewhat difficult to compare (5.12) to ex-
periment! since we do not know the normal con-
ductivity oy at 7=~68 °K. If we assume for in-
stance o,(7T=68 °K) ~ 40y, then we have o/0gy
~10, in good agreement with the majority of mea-
sured TTF-TCNQ samples, but about an order of
magnitude lower than the extraordinary conduc-
tivity peaks reported in a few samples. Further,
at somewhat lower temperatures (7~ 60 °K) Cole-
man ef al. report values of 6/0gr~500, which re-
quire a mean free path 7 of at least 2000 A. In
our model vy ~107 cm/sec and 7 ~3x 10" sec (as-
suming Kw,y, ~ kp T;) for €> €, giving 1=~300 A at

best, a value far too low to explain such extra-
ordinary conductivity values.

Now we examine the validity of mean-field the-
ory for our model. We require that the fluctua-
tion-induced superelectron density at some tem-
perature € >0 be less than the equilibrium super-
electron density at — €<0:

Z;n,q/n< ca/b=c|lAl=n,/n .
q

The coefficient b is given by Eq. (2.12). We let
a= ag€ as before and define €, as that value which
produces an equality in (5.13). Substituting (5. 8)
into (5.13) and performing the sum over g we get

(Emlra)s,2 = chL/ZG%EO(l +my /m*)llz . (5- 14)

Using the same TTF-TCNQ values as before, we
obtain from (5. 14)

€pn ~0.13= (T=T,),,a~7.5 K .

(5.13)

(5.15)

We note that at €,,,, n,/n~3. We see that mean-
field theory breaks down quickly as we approach
T,

P
VI. CONCLUSION

We conclude that superconducting fluctuations
above T, leading to paraconductivity should be
observed within a Fréhlich-type model. However,
at least within mean-field theory, the Frdhlich
model is incapable of accounting for the magnitude
of the extraordinary conductivity peaks reported
for some samples of TTF-TCNQ. Furthermore,
the temperature dependence of the paraconductivity,
which varies from €'/2 to €2 in the Fréhlich mod-
el, does not agree with the ¢*¥2 dependence re-
ported. We also conclude that the Frohlich model
is a viable theory for realizing superconductivity
below T, only if some attractive three-dimensional
interchain interaction exists to lock the individual
chains together so that the system has sufficient
momentum to make the superconductivity long
lived.

An accurate microscopic formulation of the
Froéhlich model is needed to decide whether it can
in any form give high paraconductivity values.

The Frohlich paraconductivity may involve dia-
grams which are not analogous to any of the usual
BCS paraconductivity diagrams. It would be of in-
terest to seek out other fluctuation phenomena
which may be different in the Frohlich and BCS
theories. Perhaps most important, the experi-
mental results should be verified by other methods
of measuring the conductivity, such as two-probe
methods and ac techniques.
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FIG. 3. ¥ and yy; illustrate the two possible static
Peierls distortions for a half-filled band.
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APPENDIX A: HALF-FILLED TIGHT-BINDING BAND

There are special problems involved in construct-
ing running waves with a tight-binding band which
is half-filled with electrons, such as may be the
case for TTF-TCNQ with one extra electron per
molecule in the chain. The gaps at + & are then
produced by a distortion of period 2d where d is
the spacing between molecules along the chain.
This could occur by displacing alternate atoms by
+ +6d. Displacements of opposite sign are shown
as ¢; and P, in Fig. 3. Oscillations of molecules
will give an alternation between ¥; and ¥;; and no
charge transport. Below T,, ¥; and ¢; could rep-
resent the two stable positions of equal energy for
the Peierls instability.

To construct running waves, one would have to
build a wave packet by combining waves of the
form exp [2ikp( x — v )] with a small spread of wave
vectors centered about 2k;. For a half-filled band
2kp=7/d and w=7v,/d so that the displacement at
x =nd would be proportional to cos(nm — wt)=(-1)"
xcoswt, corresponding to a standing wave. The
wave packet would include wave vectors differing
slightly from 2k, and the accompanying distortion
would move with velocity v,. The current density
nsev, would be a maximum at the center of the wave
packet. Above T,, there would be fluctuations in
charge density as well as in current. The wave
packet and accompanying distortion would then
move with velocity v, and in the center of the
wave packet there would be a current flow n,ev;
where 7, is related to the magnitude of the distor-

|

tion or the energy gap.

Below T, there is a free-energy minimum for
each displacement ¢; or #;; and a maximum for 6d
=0. Thus the system would have to surmount an
energy barrier in going from ¥ to ¢;; and could be
locked in one of the two positions. This would give
a true semiconducting or insulating phase. How-
ever, there could be paraconductivity above 7,
where the energy barriers are vanishing or at
least very small. Thus the absence of supercon-
ducting behavior below 7, is not surprising.

APPENDIX B

In this appendix we illustrate the techniques used
to evaluate integrals in the tight-binding approxima-
tionby calculating the coefficients @ and b of Eq. (2. 10).

The Taylor-series expansionin | A|%of (2. 9) gives
1

a= —§ tanh[}Be(k)] PR (B1)
and
b=22 ;;}g[(l/e)tanhéﬁe - (3B)sech®3p¢] . (B2)
k
The replacement 2 ,— J'_EE’; N(e) de with
N(e)=N(0)/(1 - €/ EZ)"? (B3)

results in the following equations for ¢ and b:
= - N(0) ["F detanh(}Be)e” (1 - €2/EZ) 2 + N(O)/2 ,
. (B4)
b=[zN(0)] fo " de [€'tanh(3B8¢)- 3 Bsech?®(4B¢)]

xe2(1-€/EF) /2. (B5)

We evaluate a by introducing a cutoff X such that
2/B<«< X< Ep. Thus for e<X, (1-¢€*/EZ"?~1 and
for €> X, tanh3Be~1. Then using the equation that
gives T,,

1, (Br de €

v @) @9
we obtain

a=-NO)In(T,/T) . (B7)

Similar analysis of b yields a value essentially
identical to the coefficient of the term proportional
to |A|* for a BCS superconductor:
b=~0.106 N(0)/ (ksT.)?. (B8)
Note added in proof. More recent results by
Patton and Sham for a non-half-filled band and by
Strassler and Toombs (preprint) indicate a nonzero

result for the paraconductivity associated with
these diagrams.

*Work supported in part by the U. S. Army Research
Office, Durham, North Carolina, under Contract No.
DA-HC04-69-C-0007 and by the National Science Foun-
dation GH-33634.

TNSF Graduate Trainee.

'w. A. Little, Phys. Rev. 134, A 1416 (1964).

L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G.
Yamagishi, A. F. Garito, and A, J. Heeger, Solid



State Commun, 12, 1125 (1973).

3J. Bardeen, Solid State Commun, 13, 357 (1973).

H. Frohlich, Proc. R. Soc. A 223, 296 (1954).

C. G. Kuper, Proc. R. Soc. A 227, 214 (1955).

Bruce R. Pattonand L. J. Sham, Phys. Rev. Lett. 31,
631 (1973).

"L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela
10, 1104 (1968) [Sov. Phys.-Solid State 10, 875 (1968)].

. Maki, Phys. Rev. 141, 331 (1966).

M. J. Rice and S. Strassler, Solid State Commun. 13,
697 (1973).

19G, M. Eliashberg, Zh. Eskp. Teor. Fiz. 38, 966
(1960) [Sov. Phys.-JETP 11, 696 (1960)].

""H. Gutfreund, B. Horovitz, and M. Weger, J. Phys. C
(to be published).

12y, A. Bychkov, L. P. Gor’kov, and I. E. Dzyaloshin-

9 THEORY OF FLUCTUATION SUPERCONDUCTIVITY FROM... 129

skii, Zh. Eskp. Teor. Fiz. 50, 738 (1966) [Sov. Phys.-
JETP 23, 489 (1966)].

13p, A, Lee, T. M. Rice, and P. W. Anderson, Phys.
Rev. Lett. 31, 462 (1973).

l4Terry E. Phillips, Thomas J. Kistenmacher, John P.
Ferraris, and Dwaine O. Cowan, Chem. Commun. 1973,
471 (1973).

15A. N. Bloch, J. P. Ferraris, D. O. Cowan, and T. O.
Poehler, Solid State Commun. 13, 753 (1973).

16p, M. Chaikin, J. F. Kwak, T. E. Jones, A. F. Gar-
ito, A. J. Heeger, Phys. Rev. Lett. 31, 601 (1973).
M. J. Rice and S. Strissler, Solid State Commun. 13,
125 (1973). -
185, Schmid, Phys. Kondens. Materie 5, 302 (1966).

197, schmid, Z. Phys. 215, 210 (1968).



