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A dynamical theory is developed for the elastic diffraction of low-energy electrons from disordered

monolayers adsorbed on ordered substrates. The quasicrystalline approximation is adapted to treat

multiple scattering from the adsorbate. Multiple scattering within the periodic substrate is analyzed

without approximation in the context of the inelastic-collision model. Multiple scattering between

adsorbate and substrate is considered in two distinct manners, namely in (a) a renormalization of the

quasicrystalline description and (b) a more restricted version of this renormalization. Expressions for the

cross sections, suitable for numerical evaluation, are calculated for an isotropic-scatterer model of the
elastic electron-ion-core interaction. These expressions are functionals of only two statistical quantities:
the adsorbate coverage and the pair correlations between adatoms. A lattice-gas model is used to
describe the thermodynamic properties of the overlayer thus providing an adequate basis for the

consideration of effects on electron scattering associated with the degree of both short- and long-range

order in the adsorbate. The expressions for the cross-sections predict characteristic dynamical structure
in the intensity and beam profiles associated with the degree of order in the overlayer.

I. INTRODUCTION

In recent years, the theory of elastic low-ener-
gy-electron diffraction (ELEED) from solids has
been developed in two complementary directions.
On the one hand, consideration of the combined
consequences of ("dynamical" ) multiple-elastic
scattering and inelastic- electron-electron-inter-
action-induced processes has led to a generally
satisfactory description of ELEED from low-index
single-crystal surfaces, as well as from or-
dered overlayers adsorbed on such surfaces. '
On the other hand, studies of defects and disorder
at clean surfaces and within adsorbed overlayers
have been pursued using single-scattering (i.e. ,
kinematical) models. ' Only one calculation
of LEED intensities from an empirical distribution
of steps has so far been based on a semidynamical
analysis. In this paper we proceed one step fur-
ther by developing a dynamical theory of electron
diffraction from disordered overlayers and by
combining this theory with a microscopic model of
the degree of order within the adsorbed layer.

A field of extensive activity which exhibits a
close conceptual relationship to our analysis is
that of the electronic structure of liquids and sub-
stitutional solid-state alloys. Indeed, our treat-
ment of multiple-scattering processes within the
adsorbed overlayer is directly analogous to the
quasicrystalline (or "geometric "~') approximation
(QCA) ' in the theory of liquids and to the aver-
age-t-matrix approximation ~ in the theory of sub-

stitutional binary alloys. An essentially new com-
plexity in our analysis, however, lies in the oc-
currence of dynamical scattering between the peri-
odic substrate and the disordered adsorbate. This
aspect of the present problem is taken into con-
sideration in two distinct manners. First, the
presence of the substrate is incorporated by uti-
lizing new intra-adsorbate electron propagators
which are renormalized to account for intermedi-
ate dynamical substrate scattering. This proce-
dure formally reduces the problem of multiple
scattering from the entire adsorbate-substrate
system to that of multiple scattering from the dis-
ordered overlayer alone. While the propagator
renormalization requires, in practice, an approxi-
mate treatment of intermediate dynamical sub-
strate-scattering events, the renormalized quasi-
crystalline approximation (RQCA) of the substrate-
adsorbate interference terms is adequate in the
entire temperature region, i. e. , in the presence
of both short- and long-range order within the
overlayer. Moreover, the RQCA reduces to the
exact zero-temperature limit of the expressions
for the scattering cross sections. An immediate
and highly useful consequence of this result is
the description of dynamical scattering from or-
dered superlattices adsorbed on periodic sub-
strates entirely in terms of layer, rather than
sublattice' scattering matrices.

Second, an additional approximation is imposed
on the RQCA to the effect that multiple-scattering
processes between overlayer sites are replaced
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by their infinite-temperature limits whenever in-
termediate substrate-scattering events occur.
This restricted BQCA exhibits the attractive ana-
lytical fea,ture that it lea,ds to an exactly summable
multiple-scattering series for the cross section
which is directly accessible to a numerical analy-
sis. Because of the underlying assumptions, how-

ever, this approximation results in a satisfactory
incorporation of adsorbate-substrate interference
terms only in the high-temperature region.

An improvement of the present analysis in anal-
ogy to the self-consistent versions of the QCA does
not appear essential for three reasons. First, a
distinction between the quasicrystalline approxi-
mation and its self-consistent extensions does not
occur until third order in a perturbation-theory
description of the diffraction process. Second, the
strong inelastic-collision damping reduces con-
siderably the relative importance of multiple-elas-
tic-scattering processes. ' ' Thus, self-energy
corrections due to self-consistency requirements
will be small. Third, "realistic" model atomic
potentials lead to no sharp electron-scattering
resonances in the energy region of interest in
LEED. Therefore, we expect that the failure of
our analysis to be self-consistent leads to far less
serious consequences than in the case of calcula-
tions of the electronic structure of binary al-
]oys 27y33

In the approximate multiple-diffraction theory
developed in this paper, only two manifestations
of the site-occupation probabilities ultimately are
required: the adsorbate coverage and the pair
correlation between occupied sites. It is of no
consequence in the multiple-scattering analysis
whether the correlations are obtained empirically
(a statistical model) or via an assumed interaction
between adatoms (a statistical-mechanical model).
In order to devise a microscopic model whose con-
sequences could be evaluated with as few approxi-
mations as possible, however, we consider in our
numerical work a lattice-gas model characteris-
tic of an adsorbate coverage of one-half and re-
pulsive nearest-neighbor interactions. It should
be emphasized that this choice of a statistical-
mechanical system is based on considerations of
conceptual simplicity rather than of analytical ne-
cessity or of physical "realism. "

The problem of evaluating EI.EED intensities
from overlayers described by a. lattice-gas model
closely resembles that of describing x-ray diffrac-
tion from solid-state alloys. Indeed, kinematical
analyses of ELEED associated with order-disorder
transitions in adsorbed overlayers are essen-
tially identical to those of x-ray diffraction from
disordered solids. An important qualitative re-
sult which emerges from these analyses is a clas-
sification scheme for models of lattice disorder.

Disorder of the first kind is characterized by the
preservation of long-range correlations, i.e. , by
deviations from a, periodic "average lattice. "
These deviations can be either displacements (as
in lattice-vibration-induced disorder) or substitu-
tions (as in homogeneous-solid binary alloys).
Disorder of the second kind is characterized by
the loss of long-range correla, tions. Liquids, gas-
es, and sputter-damaged surface layers are ex-38

amples of this type of disorder. Houston and

Parks concept of disorder of the third kind, char-
acteristic of lattice-gas domain models of adsorbed
overlayers, is a. special case of substitutional dis-
order of the first kind, as defined in the literature
of x-ray crystallography.

It is evident from the above discussion that our
use of a lattice-gas model to describe the adsorbed
overlayer restricts our analysis, a priori, to one
of disorder of the first kind. Thus, if surface
melting is regarded as a two-dimensional solid-
liquid phase transformation, it is excluded from
our consideration. In this context, however, three
facts are noteworthy. First, lattice-gas models
exhibit both long- and short-range order. There-
fore, our model can provide a suitable basis for
the study of the consequences of order-disorder
transformations on ELEED intensities. Second,
the asymptotic long-range behavior of the autocor-
relation function is irrelevant in the analysis of
LEKD. The range of correlations parallel to the
surface probed by this technique is limited at best
to about 100 A by the coherence of the incident-
electron beam. Moreover, the corresponding
range normal to the surface for single-scattering
processes (and in all directions for multiple-scat-
tering processes) is limited by the inelastic-colli-
sion mean free path, 2~„, of the incident elec-
trons. For the energies of interest in LEED, we
find 2 ~ &„~10 A. Consequently, we see that the
ELEED intensities are sensitive to atomic corre-
lations on the scale of two to five lattice spacings
normal to the surface and perhaps of as many as
50 spacings parallel to the surface. Third, sur-
face melting has been defined operationally as an

abrupt loss of intensity with increasing tempera-
ture of the additional overlayer beam characteristic
of an adsorbate structure of lower symmetry than
the substrate. Since the substrate beams still
exist ' at temperatures above those at which
surface melting occurs in the sense defined above,
the lattice-gas model remains conceptually plausi-
ble above the "melting" temperature of the over-
layer. The combined effects of this plausibility
and the restricted range of correlations measured
by LEED lead us to the conclusion that a definitive
distinction between a, solid-liquid and order-dis-
order transformation for an adsorbed overlayer
cannot be made at the present time. Consequently,
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there is little incentive to generalize our model
to describe disorder of the second kind.

Having noted the relationship of our analysis
both to existing experimental ELEED data and to
related x-ray and substitutional-alloy calculations,
we proceed by describing in Sec. II our model
Hamiltonian. The development of the multiple-
scattering theory is outlined in Sec. III. In Sec.
IIIA we describe a general diagrammatic version
of the perturbation series for the cross sections,
while in IIIB we discuss modifications of this se-
ries expansion due to the use of the RICA and the
restricted RQCA. Section IV deals exclusively
with the evaluation of the cross sections. It is
organized so that approximations and complications
are introduced sequentially. Section IV A contains
a review of the explicit summation of the exact
perturbation series in the case of multiple scat-
tering only from the substrate. In IVB, the ap-
proximate series is evaluated for the adsorbate
alone. In Secs. IVC 1 and IVC 2, the summation
is performed for the substrate-overlayer system
in the RQCA and in the restricted RQCA, respec-
tively. Finally, in Sec. V, we present a critical
assessment of the accuracy and limitations of the
quasicrystalline approximation within the frame-
work of which numerical calculations may be car-
ried out.

Since we anticipate that the formal structure of
our theory may be of direct interest only to a mod-
est audience, we have performed such numerical
calculations, based on a one-dimensional lattice-
gas model, which illustrate some of the main con-
sequences of the theory. These are presented in
the following paper. The application of the theory
to three-dimensional systems (two-dimensional
adsorbates) will be considered in the third paper
of this series. A synopsis of our major qualitative
results is given in the following paper, to which
those readers interested in the predictions but not
the mathematical structure of the theory are re-
ferred.

II. MODEL HAMILTONIAN

The most general situation describedby ourmod-
el analysis is that of ELEED from an overlayer
adsorbed on a vibrating but otherwise periodic
single-crystal substrate. The sites occupied by
the adsorbate atoms are determined by the sym-
metry of the substrate. If one of these sites is
occupied, however, the adsorbate may vibrate
harmonically about its equilibrium position.

Five types of parameters are contained in such
a model Hamiltonian. The substrate is character-
ized by parameters specifying its geometry, those
describing the electron-ion-core potential in a
rigid lattice, those defining the electron-electron-
interaction-induced "optical" potential, and those

k (E) = 2m [E —Z(E)]/5

(l)
(2)

The index p labels the layer parallel to the surface
in which the ion core is found. The quantity Z(E)
is the one-electron optical potential which, by
definition, is taken to be uniform inside the solid.
The wave vectors, k inside the solid are expressed
in terms of the incident electron's energy E and

angle 8, with the exterior surface normal via con-
servation of energy and momentum parallel to the
surface. Indicating the components of the momen-
tum perpendicular and parallel to the surface by
the corresponding subscripts, we obtain

k~(g» E ) 2m [E Z (E)]/8 (k() + g)

k„= 2mE sina8/I

(3a)

(3b)

The unit vectors k a.nd 5 in Eq. (l) are defined by
Eqs. (3), in which the symbols g designate the re-
ciprocal-lattice vectors of the atomic-scattering
subplanes. Finally, the single-ion scattering

specifying the thermal motions of the ion cores.
The adsorbed overlayer is described in terms of
the statistical probability that the various possible
adsorbate sites are occupied and the scattering of
the electron from the occupied sites. The speci-
fication of the geometry of the lattice enters our

theory through the definition of certain electron
propagators and the performance of sums over
atomic scattering amplitudes. We discuss it fur-
ther only within the context of evaluating these
quantities. In this section we proceed by describ-
ing first the scattering of the electron from the
sub-strate and adsorbate ion cores. We then
examine the specification of the adsorbate site-
occupancy statistics.

The electron-ion-core interaction in a rigid
lattice is described by a one-electron muffin-tin
potential. Specifically, we consider a. model con-
sisting of spherically symmetric ion-core poten-
tials within individual layers of the solid parallel
to the surface. For such potentials, the scat-
tering of the electrons from an individual ion core
is specified by a. sequence of phase shifts, (5,(E)f,
which depend on the angular momentum L =lb and

energy E of the incident electron relative to the

scatterer. The periodic substrate is described
in terms of an array of atomic "subplanes" paral-
lel to the surface of the solid. All of the scatter-
ers in each subplane are taken to be identical.
For a monatomic solid, these subplanes become
the atomic layers parallel to the surface, in each
of which the individual reduced electron-ion-core-
scattering vertex is given by

2
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phase shifts 5",(E) depend on the subplane index v

as well as the electron energy E. This dependence
is obviously important if the adsorbate (v = 1) and
substrate (v~2) are different materials. More
significantly, however, the presence of an adsor-
bate at a given site alters the scattering potentials
and hence phase shifts of the neighboring substrate
(and adsorbate) scatterers. This effect has been
examined for both clean surfaces and chemisorbed
monolayers. Although the changes in potential
can be appreciable, the corresponding alterations
of the ELEED intensities usually are small.
Therefore, we neglect this effect by presuming
both substrate and overlayer scatterers to be char-
acterized by 5",(E), which are independent of the
occupancy or lack thereof of neighboring adsorbate
sites.

We next turn to our discussion of the parameters
associated with the electron-electron-interaction-
induced optical potential. As in Hefs. 2, 8, and
41-44, they are specified by taking the single-
electron proper self-energy to assume the form

Z(E) = —Vo —N [2m (E + Vo)] /m X„ (4)

in which Vo is the real "inner potential" and ~„
is the inelastic -collision damping length. For
typical solids in the energy range of interest in
ELEED, the damping length assumes the values
2&&„&10A.

The final atomic electron-ion-core-scattering
parameters which we must specify are those as-
sociated with the vibrational motion of the scatter-
ers. This motion is incorporated into the calcula-
tion of the ELEED intensities by a renormalization
of the rigid-lattice electron-ion-core vertex.
This is accomplished, in an approximate way,
by the multiplication of the rigid-lattice t vertices
by the associated Debye-Wailer factor. Using the
spherical Debye model of the lattice vibration
spectra, we get.

5„(k', k) = f„(k', k) exp [ —(k —k) W„(&)], (5a)

(5b)

in which M„ is the mass of the atoms in the layer
labeled by v, O~ is the Debye temperature describ-
ing the motion of the atoms in this layer, T is the

temperature, and & is Boltzmann's constant. The
quantity b„{k',k) is the renormalized electron-ion-
core vertex, which is expanded into partial-wave
components in calculations of ELEED intensities.
The temperature dependence of these intensities
created by the use of Eqs. (5) occurs in addition
to that associated with order- disorder transitions
in the adsorbate overlayer. Consequently, both

phenomena must be incorporated into an adequate
model description of experimental observa-
tions. ' ' Our general analysis in Secs. III
and IV includes both. In our numerical estimates
presented in the following paper, however, we
examine the case in which the vibrational motion
of both substrate and adsorbate atoms is neglected.
This permits us to isolate those features of the
results which depend solely on the combined effects
of multiple electron-ion-core scattering and the
disordering of the adsorbed overlayer. Calculations
which include the consequences of both lattice vi-
brations and thermally induced overlayer disorder
are underway.

The model- Hamiltonian and multiple- scattering
theory, based on the considerations given above
and appropriate for the periodic substrate, is given
in Refs. 41 and 42. We adopt the notation and
Hamiltonian defined in these papers without further
discussion. In addition, however, we must specify
the occupation statistics for the adsorbate atoms.
We conclude the present section with the discussion
of this topic.

A fundamental assumption of the multiple-scat-
tering analysis of ELEED is that the (rigid-lattice)
electron-ion-core interaction can be written as a
sum of spherical, atomic" potentials. ' The new

feature of our model lies in the fact that the sites
in the surface layer which can be occupied by over-
layer atoms need not be so occupied. This aspect
of the analysis is incorporated into the Hamiltoni-
an by writing the electron-ion-core potential as

in which e"„is a site-occupancy number whose val-
ue is unity if the site at 0 is occupied, and zero
otherwise. We will apply this notation to both ad-
sorbate and substrate with the assumption that all
substrate occupation numbers are unity. The mul-

tiplee-scattering

analysis proceeds by first calculat-
ing the ELEED cross sections as functionals of the
ey and subsequently evaluating the thermodynamic
equilibrium average of the resulting expressions
to give the observed cross sections. Therefore
the quantities of interest in this theory are thermo-
dynamic averages of products of the ey numbers,

(eRg eR )T
The multiple-scattering theory is developed in

the following sections. In this theory, however,
we introduce the quasicrystalline approximation
by decomposing the thermodynamic average of a
general product of n site-occupancy numbers into
products of thermodynamic averages of one and
two such numbers. Consequently, the fundamental
statistical quantities entering the final approximate
theory are the average site-occupancy function
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fp(R T)= (ea&T (7a)

and the site-occupancy pair-correlation function

f,(%, R', T)= (esca+ li. )T

The Fourier transform of the two-site autocorrela-
tion function of the adsorbate is defined by

C(k) -=~ (ef ~ &,
"'""', (8)

R%'

Hp= —Q v, ett- Q Wetiett,
R

where the second sum runs over all pairs of neigh-
boring lattice sites in the adsorbate. The quantity
v, is the single-atom adsorption energy, whereas
W is the interaction energy between nearest-neigh-
bor adsorbates. The grand partition function of the
lattice gas may be written as

Z e & NA/xT Q . .. Q -HP/xT
t

and the thermodynamical ensemble average of a
quantity A is defined as

(9b)

(A&
= Z-1e&NA/"T Q . .. pQ e Hp/((T

ega eQ&
(9c)

The quantity p. is the chemical potential of a gas
phase in equilibrium with the lattice gas and N is
the total number of sites available for adsorption.
The total number of adsorbed species is given by

NA=Q efi (10)

Accordingly, the fractional coverage y is given by

y= (NA)T/N

Using the above-specified Hamiltonian, the grand
partition function and the site-occupancy functions
can be evaluated analytically for one-dimensional
systems (i. e. , adsorption along a line). These
results are used in the following paper in a numer-
ical analysis of the multiple-scattering theory

where the sum is restricted to adsorbate lattice
sites.

As indicated in the Introduction, it is irrelevant
for our multiple-scattering analysis whether f0 and

f, are prescribed (statistical models) or are de-
rived from microscopic models of interactions of
the adsorbates with each other and the substrate
(statistical-mechanical models). All the multiple-
scattering theory requires is that fp and f, be in-
dependent of 0 (i.e. , lateral homogeneity along the
surface). To illustrate the main features of our
theory, however, we use a lattice-gas model' for
the overlayer to evaluate these statistical quantities.

The Hamiltonian describing the interactions be-
tween the adsorbates in this model overlayer is
given by

developed in Sec. III. For two-dimensional lat-
tice-gases, series expansions of the pair-corre-
lation function are available. These are utilized
in the third paper of this series, in which we pre-
sent an application of our dynamical theory to the
case of three-dimensional systems (two-dimen-
sional adsorbates). Although the lattice-gas de-
scription is only one possible selection of a model
to calculate the statistical probabilities of the ad-
sorbate, it suffices to illustrate many of the con-
sequences of surface disorder on the dynamical
theory of ELEED intensities.

III. MULTIPLE-SCATTERING ANALYSIS

Having given a description of our microscopic
statistical model for the adsorbed monolayer, we
now turn to the development of a multiple-scatter-
ing theory for the system consisting of the ordered
substrate and the thermally disordered adsorbate.
We first give in A an exact expression for the ther-
modynamic cross section in the form of a pertur-
bation series. We then describe in B how the
terms of this series have to be approximated in
order to become suitable for numerical evaluation.
This leads us to a quasicrystalline approximation.
The summation of the approximate series is per-
formed in Sec. IV.

A. Perturbation-theory expansion for the cross section

We employ a diagrammatic multiple-scattering
formalism which embodies a partial-wave-expan-
sion technique. As already indicated in Sec. II,
the lattice of the adsorbed rnonolayer is taken to
have the same geometry as the layers of the under-
lying substrate. The adsorbed atoms are all of
the same species, constituting a single layer of an
unspecified coverage. The electronic and thermo-
dynamic properties of the target are allowed to
vary normal to the plane of the surface, i. e. , from
layer to layer, but not within a given layer. With
these restrictions, the elastic-electron-solid-
scattering amplitude is specified by the following
multiple-scattering s eries

R(k/, k;, E)= Z R, (R/, k;, E)
j=0

(12)

R/(k/, k;, E)= 2 Y~(k/)
LLi

xe"") "p "/ "/'bt, (k(E))'
xa(R/ 1

—5 , /)bEt(tb(E)) ~ bt) (k(E))

xG(Q —B,„E)by(k(E)))'(1,.))
(13)

For j= 0, the site-dependent part of the summand in
Eq. (13) simply reduces to exp[i(k; —k/) Rp]
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xb]]i (k(E)). The quantities Y(k), by(k(E)), and

G(g E) are matrices whose elements are labeled
by the angular momentum quantum numbers L:

Y(k)= ff Y, (k) 5„,ff

by(k(E))=-
f fb„(k(E), k(E), E )

f f

G(R, E)—=
f f

G ~ (%, E)
f f

(14)

(15)

(16)

Gii. (R, E)= Z ( —i)'21(L, L', L2)
2

xk,&" (k(E) I~l)Y (~) (16)

in which h,"' are the spherical Hankel functions and

I(L, L', L2)= j dQR Yi(k|) Yik(kg) Yg (k, ) . (19)

The quantity k(E) in Eqs. (13), (15), and (18) rep-
resents the complex momentum of the electronic
wave inside the solid as defined by Eq. (2). The
sums over the lattice site vectors 0 in Eq. (13)
include the sites in the substrate as well as the
(occupied or vacant) sites in the adsorbed mono-
layer. We write R=—5+d„, where d„designates
the position of the vector 0=—0 of the layer with
the index v (the adsorbed layer has the index v= 1)
and 5 specifies the sites within this layer. We
take into consideration the existence of vacant lat-
tice sites in the adsorbed layer by incorporating
into each ion- core- scattering vertex the appropr i-
ate occupation number, i. e. ,

The Yi(k) are spherical harmonics ' and the b„
(k', k, E) are the partial-wave components of the
reduced ion-core-scattering vertices given by
Eq. (5a), i. e. ,

by(k', k, E)= Zba (k', k, E) Yk'(k') Y, ($) . (lq)LLi

The partial-wave components of the electron prop-
agator are defined by

amplitude, Eq. (13), can no longer be performed
as in the case of a perfectly ordered bulk. For a
particular statistical configuration, (eg, of the
adsorbed atoms, the elastic-scattering cross sec-
tion is given by

2'—(k,, k. , E&=('".
) [R(k, , k, , E&[* . (21)

In electron-scattering experiments, however, the
thermal-equilibrium average of the cross section
is measured. It is therefore necessary to average
the cross section, Eq. (21), over all possible sta-
tistical configurations of the adsorbate lattice gas:

—k, k, , E = R kf, k;, E z, 22

with

(— (ki, k;, E))

Z (RR~) (ki, k„E)R)(k~, k;, E))r . (24)
27T l -0

The first term in this expansion represents the
familiar kinematical (Born) approximation to the
cross section:

kf, k], E

in which ( ~ )r designates the thermodynamical
average of the occupation numbers in the lattice-
gas model, as described in Sec. II. Usings Eqs.
(12), (13), and (22), we construct the following
expansion of the equilibrium cross section in terms
of powers of the reduced ion-core-scattering ver-
tices:

(d—(kq, k;, E) = Z —(kq, k;, E)
T E 0 r

bit y, (t, (k(E))=ey(b„(k(E)), v 1

with

(20a)
Z e "'" ~ [Y'(&P a(k(E))

2mB

ey y, R
=—ey (v= 1)
=-1 (v) 2) (20b)

x Y(k;)]», '
T

(25)

Because of the lack of translational invariance
in the adsorbed layer, the sums over the lattice
sites in the expression for the multiple scattering

I

in which q-=k& —k& denotes the momentum transfer.
Using Eqs. (20) and writing 5 = 0+ d„we obtain
for Eq. (25)

g(0) )0 ~ W
2

(k, k, , E) =
@ N„Q 5(q —g) Z e + P [Y~(k&)b„(k(E))Y(k, )]zz,dQ g 2'll'8 g y)2

kyR Z ' ' " Z [Y (ky)k, (k(E)) Y(k )], e 'k' E [Y"(ki)k (k(E))F(k )]
y)2 LL'

+ . 4)(q) 2 [Y"(k&)bk (k(E))Y(k&)]» ~2vk' IL' (26)
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In Eq. (26) N„designates the number of cells per
unit area in a subplane and g denotes the recipro-
cal-lattice vectors of the Bravais net of each plane.
4(q) is the autocorrelation function of the adsor-
bate, as defined in Eq. (8). The first term in Eq.
(26) represents the cross section due to single
scattering from the ordered substrate and contains
conservation of the momentum component parallel
to the surface plane. The second term gives the
interference between single scattering from the
bulk and from the adsorbate. It also leads to mo-
mentum conservation. The last term represents
the kinematical cross section for scattering from
the disordered monolayer. We notice that, in the
Born approximation, the effect of disorder in the
adsorbate is entirely described by the autocorrela-
tion function 4(q).

The terms beyond the kinematical approximation
of the thermal cross section [Eqs. (3) and (4)] con-
tain as the fundamental statistical quantities ther-
mal averages over products of occupation numbers
of the form

(en ~ ~ en )r, 1&n &~
n

The inclusion of terms in Eq. (23) that depend on
these higher-order correlation functions constitutes
the new feature of our analysis. Our main task
is to develop a procedure which allows the incor-
poration of these correlations in an approximate
way such that the individual terms of the series
[Eq. (23)] can be evaluated.

In order to accomplish this goal, it is conve-
nient to express the perturbation-theory expansion
for the thermally averaged cross section in terms
of its diagrammatic representation. To obtain all
possible terms of nth order in the reduced ion-
core interaction we use the following prescription.

(a) Draw two vertical lines, the one on the left
being directed upward and the one on the right
being directed downward. On these lines distrib-
ute n dots with the only restriction being that at
least one dot must be on each line. Label each
dot with a lattice-site index.

(b) Connect the highest dot on the right side
with the highest on the left side with a wavy line.
Similarly, connect the lowest on the right with the
lowest on the left. Furthermore, connect neigh-
boring dots on each side with a wavy line.

(c) Completely interior line segments in this
drawing (those connecting two dots) represent
electron propagators. The four exterior line seg-

I

ments label the initial and final scattering states
of the incident electron. Label the incoming line
segments with momentum k;, and the outgoing line
segments with momentum k&.

(d) Construct all topologically distinct diagrams
using the preceding instructions.

(e) With each dot on the right-hand line, asso-
ciate a site-renormalized interaction vertex
bn(k(E)) defined by Eq. (15), where 0 denotes the
label of the dot. With a corresponding dot on the
left-hand line associate ba(k(E)).

(f) With each interior line segment on the right-
hand line, associate the electron propagator
G(R —R', E) defined in Eq. (16), where 0 and EP

designate the upper and lower of the two dots be-
tween which the line is drawn. With each interior
line segment on the left-hand line associate the
propagator G*(R—R', E), where R(R') is now the
lower (upper) of the two dots between which the
line is drawn.

(g) On the right-hand side of the diagram, as-
sociate the phase factor e'"~ with the ingoing line
and e '"~ with the outgoing line, where R and R'
are the labels of the dots connected to the corre-
sponding line. Use the complex-conjugate phase
factors on the left-hand side.

(h) For each side of each diagram, form the
matrix product of all quantities associated with the
lines and dots by using the same sequence as in
the diagram, the dot next to the ingoing line being
at the right end, the dot next to the outgoing line
at the left end of the product. On the right- (left-)
hand side of a diagram, multiply the product with
the matrix Y(k, ) [Y*(k,)] from the right and with

Y*(k&) [Y(k&)] from the left. Sum the resulting
product matrices over all matrix elements and

then multiply the two sums by each other.
(i) With the entire wavy line, associate the cor-

relation function (en ~ ~ en )r, where the R; de-
note the labels of the dots.

(j) Sum over all site indices, labeling the dots
with the restriction that no two neighboring sites
be equal.

(k) Multiply each diagram by the factor (n /2m' ) .
To illustrate this prescription let us consider

the diagrams shown in Fig. 1. Figure 1(a) rep-
resents the kinematical (Born) approximation.
The corresponding thermally averaged cross sec-
tion is given by Eqs. (25) and (26). Figure 1(b)
represents the two contributions to the second
term in the expansion of the cross section, i. e. ,

ky, kg, E = Y*ky &
' '~&~ kE Yk;

T II'.0
&&2 Y*(k~) Z e'"~' ' ~' ~'bit (k(E)}G(g—Q„E)ba (k(E))Y(k,.) + c.c.

LL' Z

(28)
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ki

kf k;

(a)

kf

(b)
kf

FIG. 1. Diagrams representing contributions to the
perturbation series expansion [Eq. (23)] of the exact
equilibrium-scattering cross section. Panel (a) illus-
trates the lowest-order contribut;ion, i. e. , the kinemat-
ical (Born) ayproximation, and is given by Eq. (25).
Panel (b) represents the two first-order contributions
and is given by Eq. (28). Site-renormalized vertices
are designated by solid dots. Wavy lines connecting the
dots indicate correlations between the sites that are
symbolized by the dots. The labels of the dots refer to
adsorbate as well as substrate sites.

In contrast to the Born approximation, which de-
pends only on the coverage and the pair-correlation
function, the term given by Eq. (28) involves a
three-point correlation function. This is indicated
in Fig. 1(b) by the fact that the three dots are con-
nected by wavy lines. In general, the nth term in
the expansion of the cross section, Eq. (24), is a
linear functional of the n-point function,

dg(n)
(kz, k, , E) =F((eg ~ ey ) ]dQ

(29)

Because of the presence of the higher correlation
functions, the sums over the lattice sites in the
expressions for the terms of the thermal cross
section [Eqs. (23) and (24)] cannot be performed
even if the correlation functions were known. The
difficulty resides in the fact that the correlations
are not simply functions of the distances between
two consecutive sites appearing in them. In addi-
tion, the thermal cross section cannot be written
as the square of the absolute value of the thermal-
ly averaged scattering amplitude, since the squar-
ing and the thermal averaging do not commute.

B. Approximate expressions for cross section

An approximation for the exact expression of the
thermally averaged cross section [Eqs. (23) and

(24)] is particularly suitable for numerical analy-
sis if the sums over lattice sites implicitly in-
volved in Eq. (24) can be performed analytically.
A convenient and conceptually plausible way to
achieve this goal in the case of scattering from the
disordered adsorbate alone is to factorize all high-
er correlations into products of two-point func-
tions in such a way that the latter depend on the
same arguments as the electron propagators en-

tering the expression for the scattering amplitude.
Since by using this procedure only pair correla-
tions between consecutive scattering sites are
taken into consideration, this factorization is re-
ferred to as the "geometric " ' or "quasicrystal-
line" approximation (QCA) in the theory of liquids
and substitutional alloys. The presence of the
substrate is incorporated by summing over all in-
termediate scattering processes which take place
in the substrate between scattering events in the
overlayer. This summation leads to the definition
of new intra-adsorbate electron propagators which
are renormalized for intermediate dynamical scat-
tering from the substrate. Thus we will refer to
this approximation as renormalized quasicrystal-
line approximation (RQCA).

The utilization of renormalized intra-adsorbate
propagators renders the analysis of multiple scat-
tering from the substrate-overlayer system for-
mally analogous to that of scattering from the ad-
sorbate alone. We will show in Sec. IV C 1 that the
thermal-equilibrium cross section in. the renor-
malized QCA can be written in the following sim-
ple form:

RICA—(ky, k;, E)
T

m g

x [A(kz, k„E)+ey B(kz, k„E)] . (30)
T

The quantities A(k&, k, , E) and B(k&, k;, E) do not de-
pend explicitly on the occupation numbers and are
functionals only of the coverage, r (ey)r, =and the
pair-correlation function, (ey ey. )z,.

The form of Eq. (30) indicates that the RQCA
introduces a partial thermodynamical average of
the scattering amplitude which depends explicitly
only on a single occupation number. This is the
original formulation of the QCA and geometric
approximation, since the partially averaged scat-
tering amplitude ean be directly related to the lo-
cal density of states. ' ' Because we are dealing
with a nonuniform system exhibiting both short-
and long-range order, however, the procedure
for obtaining a partial average of the scattering
amplitude is rather more subtle than in the case
of a randomly ordered system. The derivation
of this procedure is the topic of Sec. IV. The
RQCA exhibits the attractive feature, in that it
represents an appropriate description of short-
and long-range-order effects in the overlayer on
dynamical scattering processes that involve both
substrate and adsorbate. Unfortunately, the sum-
mation over intermediate substrate-scattering
processes that is required for the propagator re-
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normalization cannot be performed exactly.
If the adsorbate-substrate interference contri-

butions to the cross section [Eq. (30)] are, how-

ever, further approximated such that pair corre-
lations between overlayer sites are replaced by
their random (i. ek Y infinite-temperature) limits
whenever intermediate substrate scattering events
take place, the renormalization described above
can be performed analytically. This restricted
RICA is useful because the resulting expressions
for the cross section are directly accessible to a
numerical evaluation. Due to its inherent assump-
tions, however, this approximation leads only in
the high-temperature region to a satisfactory de-
scription of multiple-scattering processes that
involve both the overlayer and the bulk.

It is well known that the quasicrystalline ap-
proximation (as well as its renormalized version)
does not deal correctly with cases in which sev-
eral lattice sites coincide in the summation in Eq.
(13). Only the autocorrelations of the sites (re-
peated scattering from a single site) are treated
exactly via the introduction of reduced ion-core
vertices [Eq. (5a)]. We consider this problem in

Sec. V and indicate how the approximation should
be improved.

IV. SUMMATION OF PERTURBATION SERIES

This section is devoted to the explicit evaluation
of the multiple-scattering series that have been
defined in Sec. IG. It is organized so that approx-
imations and complications are introduced sequen-
tially. In A we briefly review the case of multiple
scattering from the substrate alone, in order to
introduce the various substrate-scattering matri-
ces and electron propagators. Subsection B con-
tains the summation of the approximate series in
the case of scattering only from the adsorbate.
In C 1 and C 2 the multiple-scattering series is
performed for the substrate-overlayer system in
the RICA and in the restricted RICA, respectively.

A. Review of multiple scattering from substrate

In the case in which the multiple electron scat-
tering occurs exclusively in the bulk, all sums
over lattice sites in the scattering amplitude are
restricted to the substrate lattice. Consequently,
all occupation numbers are unity and can be omit-
ted. The scattering amplitude [Eq. (13)] is then
given by

l

Rs(k, k„E)= 2 yE(k ) 2 5 2 exp[-iq ~ (5s+d„)]b„(k(E))exp[ik, ~ (5y ~+d„- 5q —cl )]
L L~ j=O yp+ ~ 'Vy 5p'

xG($&, +d„—5& —d„,E)b „(k(E))~ ~ ~ b„,(k(E)) exp [ik, ~ (50 +d„o —P, —d„)]

3G()3 ~ d„—)3 —d„,E)k (k(E))Y(k~))

The summation over the 0, is restricted by the
condition 5& kk )5... whenever v; = v,.„arestriction
which is designated by a prime on the summation
symbol. The above expression can be reduced by
summing first over Po, then over 5„and so forth.
This procedure leads us to define the following in-
ter- and intralayer electron propagators:

G„,„(k,E) —= d) exp [ik ~ (ly+ d„-d„,)]G(P + d„-d„, E)

x Q Q b„(k(E))G„„(k(3E)
0 Vo Vy

b.. .( (b)) b. (b( ))

xG„„(k,, E)k„(k(E))Y(k;)) (33)

The terms inside the large parentheses in Eq. (33)
can be rearranged as follows

(Vok'Vt)' )YO) Vg 2) (32a)
Z Z b„G„„,b, ' b„G„„b„

V 0
~ ~ ey~

—= + &' ' G(5, E) =-G„"(k,E) (vo = v, ~ 2)
54to

(32b)

These propagators are matrices in the partial-
wave representation just like the quantities G(P, E)
defined by Eq. (16). The summations in these
equations are to be applied for each matrix ele-
ment. Defining 5=5&, v—= v&, we obtain from
Eq. (31}

Rs(k k E)=pe-3() ~ pe-(I'G Q yk(b~)
v&~ I,J.'

=v„+ Zv'„G„„v„+ Z v„G„kv„G„„v„+~ ~ ~

gA, %

= ZT„„(k;,E)
~&2

(34a)

(34b)

The matrices v„(k, E) in Eq. (34b) are the subplane
scattering matrices defined by

v „(k,E)= b„(k(E))+ b„(k(E))G~(k) E) 7'„(k& E),

(35}

The matrices T„„(k,E) are the interlayer scatter-
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ing matrices of the bulk representing all scattering
events which start in layer p, and end in layer v.
They are given by the following set of algebraic
equations:

T„,(k, E) = r„(k, E) 6„„+Br„(k,E) G„„(k,E)

x T„(k,E), p, p, , X~3 . (36)

The interlayer scattering matrices T„(k,E) used
in the previous literature are obtained from the
ones given by Eq. (36) simply by summing over
the index p, which denotes the layer in which the
scattering process starts: T„(k, E)=g„»T„,(k, E)
The motivation for introducing the more general
matrices T„„(k,E) becomes clear in the case of
multiple scattering between substrate and disor-
dered adsorbate (see IVC). We then need to ex-
plicitly distinguish various classes of scattering
processes according to the layers in which they
start and end. Such a classification is not re-
quired for scattering from ordered systems con-
sisting of identical sublattices.

Using Eqs. (33) and (34), we obtain for the scat-
tering amplitude

R (k&, k, , E)=pe Z e '~' ~

VfL 2

xP [Y~(ky) T(k&~ E) Y(k))'z, c'
LL'

{37)
The scattering cross section is given by the ex-
pression

g(B) 2

(ky, k(, E)= @ ~

R (k~, k, , E)
~

2

X, E6(q —g) Z Y {I,)
LI ~

2
x Z e ' T„(k„E)Y($,)

p p&2 LL'

(38)
The diagrammatic representation of the scatter-

ing cross section for the bulk i. e. , Eq. (38), can
be obtained easily using the rules given in Sec.
III A. The only modification occurs in rule {a),
in that the labels of the dots are restricted ex-
clusively to the sites of the substrate lattice. Be-
cause of the fact that all of the correlation func-
tions are unity, the wavy lines can be omitted and
the cross section can be written as proportional
to the square of the absolute value of the scattering
amplitude. The diagrammatic expression for the
substrate-scattering cross section is indicated in
Fig. 2. The fact that the multiple-scattering se-
ries of the bulk scattering amplitude [Eq. (31)] can
be expressed as a sum over interlayer scattering
matrices, T„„(k,E), suggests the use of a renor-
malized vertex diagram which represents the mul-
tiple scattering from all substrate sites, as de-

fined in Fig. 3(a) for the right-hand side of a
cross-section diagram. The cross section can be
related to this vertex diagram in a simple way, as
shown in Fig. 3(b). The diagram in Fig. 3(a) is
not equivalent to the scattering amplitude because
of the absence of external lines. Also, since it is
to be understood as the interior part of a full dia-
gram, no sums over lattice-site labels are asso-
ciated with it.

B. Multiple scattering from adsorbate

k;

d
(8)

dQ

R)

R) +

kf

kf

FIG. 2. Exact diagrammatic series for the cross
section in the case of multiple scattering from the sub-
strate, as given by Eq. (38). The labels of the dots de-
note substrate lattice sites exclusively.

In this subsection we examine multiple scatter-
ing from the adsorbed monolayer, disregarding,
for the moment, the presence of the substrate.
This special case serves to illustrate the applica-
tion of the quasicrystalline approximation. Since
the BQCA and the restricted HQCA introduced in
Sec. III differ only with regard to scattering pro-
cesses that involve both substrate and adsorbate,
they need not be considered separately in this case.

This subsection also provides a convenient in-
troduction to an essentially new complexity in the
theory of multiple scattering from a disordered
(rather than periodic) lattice: the preservation of
time-reversal invariance of the cross sections.
For scattering from an ordered system, the trans-
lational symmetry parallel to the surface guaran-
tees that kf (I

k' +g if g is a reciprocal-lattice
vector of the Bravais net for translations parallel
to the surface. In the presence of disorder, how-
ever, we must consider all values of k& „without
regard to this parallel momentum-conservation
law. This fact has the consequence that we must
use certain symm etrized forms in our expressions
for the correlation functions (ey ~ ~ ~ eyer intro-
duced in Sec. IGA, and that G~ „E does not
necessarily equal G~(kz, E). These new features
of the theory are introduced in this subsection.
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In C we extend our analysis to the more compli-
cated case of the combined system of adsorbate
and underlying substrate. As shown in Eq. (20),
the reduced ion-core scattering vertex of a given
site 5 in the adsorbed monolayer is proportional

to its occupation number ey. By restricting all
sums over lattice sites to the plane of the adsor-
bate, we obtain from Eqs. (20), (22), and (23) the
following expression for the cross section for the
adsorbate:

(
(~& 2 OO

(kz, k„E) =
~

Q Y*($&) P Q ey ~ ~ ~ ey exp[i(k, ~ Po —Q ~ 0', )]r l2s I.I, ' &=0 'y' ~ ~ y'

xbi(k(E)) G(PI i —0', , E)bi(b(E)) ~ ~ ~ bi(k(E)) G(I 0
—I I, E)bi(k(E)) Y(k()

xQ Y*(k&) Q g ey ~ ~ ~ ey exp[i(k, ~ 5o —k& ~ 5&)]b~(k(E)) G (5& ~
—0&, E)

)-0 $0e ~ op~

xb&(k(E)) ~ ~ ~ b&(k(E)) G(50 —5» E) b&(b(E)) Y(k&)
LL' T

(39)

(40)&ey. ey ey ey &,i 0 j Q

As indicated in Sec. IIIA, it is necessary to fac-
torize these correlations in order to be able to
perform the sums over lattice sites. This fac-
torization is performed in such a way that only
pair correlations between consecutive scattering
sites remain; i.e. , the correlation function given
by Eq. (40) is approximated by terms of the form

(ey; ey;, &rr ' (ey
~

ey ,&ry
'.~ ~ ~ r '

The sums over lattice sites are again restricted
by the condition P„vP„„, 0„'w 5„'„, as indicated
by the primes on the summation symbols. A typ-
ical correlation function appearing in the above
expression is of the form

mate the correlation function (40) by the sum of
all these possible combinations divided by i &&j.
The resulting expression for the cross section
can be written in the following form:

x &
~

R"(k~, k;, E),„~ &z, , (42)

where R"(Q, k;, E)~„represents a paytial thermo-
dynamical average over the scattering amplitude
R"(kz, k;, E) obtained through the above-outlined
procedure of taking the mean value of all possible
averages. The first few terms of R"(kz, k;, E),„
are given by

x&ey ey &rr
'

~ ~ ~ r '
&ey ey &„j-1 0

(41)
il Ro

0RO+ ii +

Ro

R +--
I

This factorization is exact if we are dealing with
a one-dimensional lattice and all sites are ar-
ranged in a sequential order. In expression (41),
the two sets of lattice vectors, Po ~ ~ ~ 5,.) and

{Po~ ~ ~ PI}, are linked by a single two-point cor-
relation, (ey ey, &r.

The selection of the two sites, Po and 0, , to be
linked together is entirely arbitrary, since all
sums range over all available sites within the
plane of the adsorbed layer. In order to give all
possible selections the same weight, we choose as
an appropriate approximation for the correlation
function the mean value of all possible selections.
To illustrate this procedure, let us consider a
particular term in Eq. (39) which contains j ad-
sorbate lattice sites in the scattering amplitude
at the right-hand side and i sites in the one at the
left. Obviously, each of the j sites at the right
can be linked to each of the i sites at the left, the
total number of selections being i &&j. We approxi-

il R

4& R

FIG. 3. (a) Diagrammatic definition of a renormalized
vertex representing multiple scattering from the sub-
strate. The vertex is to be understood as an interior
part of a full diagram. The labels of the dots denote
only substrate sites. (b) The scattering cross section,
Eq. {38) and Fig. 2, for the substrate expressed in
terms of the renormalized-vertex diagram defined in (a).
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(

R"(k, k;, E)„=Q Y'b(kz)e '~ 'g eye ' '
b, (k(E))+—Q b, {k(E))[e'"'' o 'y '(ef(ey )rG(50 P—, E)

LLI 0

+e'"&' 'y '(ey ey)rG(P —PobE)] b, (k(E))+— Z b&(k(E))[e'"" ' 'y '(eyey, )r
0 I

xG(P, —P, E)b~(k(E))e' "0 ~'y (ef(, efb)rG(Ão —P„E) +e'"~' ~'y '

x(ef( ey)rG(P —P„E)b,(k(E))e'"b' o 'y (eyey )rG(Po —P, E)+e'"f'~o ~i'y '

x(ey ey )rG(PO —P„E)b, (k(E))e' ~' o'y (ey ef()rG(g —5„E)]

xb, (b(E)l ) ('(b,.)
-LLe

(43)

The use of-this symmetrized approximation pro-
cedure is demanded by the requirement that the
partially averaged scattering amplitude,

AR (k&, k;, E)„, exhibit time-reversal symmetry.
The sums over adsorbate lattice sites in the

expression for R"(kz, k„E)~, now can be performed.
This leads us to the following definition of the in-
tralayer electron propagators of the adsorbate:

Gqq(k, E)—= Gq (k, E) = Z e'"' y ~

0 58

x(ey. e &.Z)rG(0, E) . (44)
I

I

G»(k, E) is a matrix in the partial-wave represen-
tation similar to the propagators defined in Eq.
(32). The comparison between the intrasubplane
propagators of the adsorbate [Eq. (44)] and of the
bulk [Eq. (32b)] shows that the thermal disorder
among the adatoms causes damping of the elec-
tronic wave, in addition to that already existing in
both substrate and adsorbate due to electron-elec-
tron interactions. Using the definition [Eq. (44)],
the series for the scattering amplitude [Eq. (43))
can be written as

R (k&, k;, E),„=Zeye ' e ' ' 2 (Y"(kz)(b,{k(E))+-,'b, (k(E)) [ G»(k;, E) +G»(k&, E)]b,(k(E))
LL'

+ 3 bq(k(E)) [G»(k(, E) bq(k(E)) G,q(k;, E) + G), (ky, E)bq(k(E)) Gq, (k;, E)

+G~, (k~, E) b((k(E))Gqq(k~, E)]bq{k(E))+. . . ]Y(k;))~~ (45)

All factors 'y ' in Eq. (43) are absorbed in the in-
tralayer propagators defined in Eq. (44). For
values of kf associated with substrate beams, kf
and k; are related by conservation of momentum
parallel to the surface, i. e. , k&„=k,„+g. In this
case, G„(k„E)= G»(kz, E), so that the sums in
Eq. (45) assume a particularly simple form.
Scattering from the disordered overlayer is not
subject to this conservation law, however, so we
also must examine the general case in which k&f

4k;„+g. The summation of the logarithmic series
in Eq. (45) is performed in Appendix A. The re-
sult is given by the expression

R"(k, k;, E)„=5 ef( e '~ e +' '

—ln(g, (k' E))Q (kog kg E)] (kf((4k'((+g) (46c)

Qo(ky, k(, E) —= Z [Gqq(k~, E)bq(k(E))]"
n~0

or
x [Gqq(k(b E)bq{k(E))]", (46d)

Qo(ky, kgb E) =- -Q [G)q(k~, E)bq(k(E))) "
n=0

x [G, ,(k, , E)b &(k(E))]" (46e)

depending on which series converges. In the s-
wave model, the series in Eqs. (46d) and (46e)
can be summed and Q"(k, , k;, E) reduces to

where

xp [Y*(k~)Q (g, kq, E) Y(k, )]~~,
LLe

(46a)

Q "(k, k;, E) = [G „(k;,E) —G,(k, E)]

xin " (s-wave model). {46f)
4(, (k;, E)
41 fb

Q (k~, k„E)=—v, (k;, E)= vq(k~, E) (k~„=k(„+g)

(46b)

-=b, (k(E)) [Qo (k&, k, , E)ln((tb, (Q, E))

The quantity v, (k, E) in Eqs. (46c) and (46f) is the
subplane scattering matrix of the adsorbate and is
defined analogously to the subplane scattering ma-
trices of the substrate [Eq. (35)]:
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r, (k, E) =-b, (k(E))+b,(k(E))G„(k,E) v, (k, E)
(47)

p~(k, E) is the effective field of the monolayer de-
fined by

P,(k, E)= [1-—b, (k(E)) G„(k, E)] '

=b, (k(E)) vi(k, E) (48)

It is apparent that v, (k, E) may differ considerably
from the corresponding subplane scattering ma-
trices, r„(k, E), v~ 2, of the bulk due to the in-
corporation of the modified intra-adsorbate elec-
tron propagator [Eq. (44)]. In fact, as we will see
in our numerical analysis in the following paper,
v, (k, E) exhibits the characteristic features caused
by the thermal disorder among the adatoms.

Using Eqs. (42) and (46), we obtain the dynami-
cal scattering cross section for the adsorbate in
the QCA:

(A) ~ ~ 2

kyyk& E = @q

(
dv'"' - - o'"

m '
C(q)

(Q, k;, E) = 2 (4 )~ ~t~(k(, E)
~

(kyii = k;ii+ g) (49b)

2m 4m 2

In[&]&q(k;, E)/Pq(g, E)]
G~~(k&, E) -G ~LQ, E)

(otherwise) (49c)

By expanding the logarithm in Eq. (49c) and using
the definitions [Eqs. (47) and (48)], it is easily
shown that the expression (49c) leads to the correct
limit [(49b)] as kg, approaches k„, + g. Further-
more, the general expression [Eq. (49a) reduces
to the correct form in the kinematical limit [see
the last term of Eq. (26)]:

xQ (ky, k;, E) y(k()]1~.

(49a)
In the s-wave model this matrix expression re-
duces to the simple algebraic form

k)

kt k)

QCA, proportional to the autocorrelation function
of the lattice gas, just as in the kinematical limit.
The effect of multiple electron scattering is there-
fore to introduce a renormalization of the scatter-
ing vertex b, (k(E)), as shown in Eqs. (49). This
renormalization is described by the subplane scat-
tering matrix of the adsorbate, v, (k, E). It is com-
patible with the requirement that the partially
averaged scattering amplitudes [Eq. (46)] and,
consequently, the scattering cross sections con-
serve time-reversal symmetry. We will show in
C that the partially averaged scattering amplitude
for the adsorbate-substrate system is invariant
under time reversal. Since this more general
amplitude contains the adsorbate amplitude, it
follows that the latter also is invariant.

We conclude this subsection by presenting a dia-
grammatic representation of the thermal-scatter-
ing cross section in the QCA. W'e indicate the fact
that all higher correlation functions are factorized
into two-point functions by changing rules (b) and
(i) in Sec. IIIA in the following way.

(b ) Connect any dot on the right-hand side with
any dot on the left-hand side by a dashed line.
Connect, on both sides, neighboring dots by a
dashed line. Associate with each diagram the fac-
tor (f xj), where j(i) is the number of dots on the
right- (left-) hand side.

(i ) Associate with each dashed line the two-
point correlation (egey. )r, where K and 0 are the
labels of the dots connected by this line. Associ-
ate with each dashed line except the one connecting
both sides the factor 1/y. In addition, of course,
the labels of the dots are now restricted to adsor-
bate lattice sites, since at the moment we are ig-
noring the presence of the substrate. In Fig. 4 we

give the diagrammatic representation of the con-
tributions to the cross sections that are of third
order in the interaction. These diagrams illus-
trate the approximation to the corresponding exact

k, k;, Z = C(q

k)

kt

kl

k~

x Q [Y'*(k~)b, (k(E))
LL'

2

xy ($,)] (5o)

In comparing these two expressions, we notice an
important feature of the QCA: The dynamical equi-
librium cross section of the adsorbate is, in the

FIG. 4. Diagrams illustrating the first-order contri-
butions to the approximate equilibrium cross section in
the case of scattering from the disordered adsorbate.
The diagrams represent the quasicrystalline approxima-
tion of the corresponding exact diagrams shown in Fig.
1 (b). Dashed lines connecting two dots designate two-
point correlations between the sites that are represented
by the dots. The labels of the dots denote only adsorbate
sites.
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diagrams shown in Fig. 1(b).
Finally, the form of the expression for the cross

section [Eq. (42)] indicates that the partially aver-
aged adsorbate scattering amplitude R"(kz, k„E)„
[Eqs. (43) and (46)] can be represented directly by
a diagrammatic series (i. e. , we need not use the
diagrams for the cross section once the QCA has
been imposed). The definition of the individual

terms of this series follows from the rules given
above and in A. The first few contributions to
R"(Q, k», E}„areshown in Fig. 5.

C. Multiple scattering from adsorbate-substrate system

1. Renornralized quasierystalline approximation

In this subsection we determine the equilibrium
cross section for multiple electron scattering from
the combined adsorbate-substrate system by apply-
ing the renormaliz ed quasicrystalline approxima-
tion as outlined in Sec. IIIB. The motivation for
introducing the ESCA lies in the fact that the re-
normalization permits an adequate description of
short- and long-range-order effects on scattering
processes involving both substrate and adsorbate.
A less generally valid version of the RQCA is de-
scribed in C 2. We proceed in four steps. First,
we decompose the scattering amplitude, R(kz, k„E)
[Eqs. (12) and (13)] into five contributions, each
of which describes a certain class of scattering
events. Second, we perform in these terms all
sums over intermediate scattering processes that
take place in the substrate between two scattering
events in the overlayer. This summation leads to
the definition of a renormalized intra-adsorbate
electron propagator. Using these propagators in
the third step, we cast the various contributions
to the unaveraged scattering amplitude into such
a form that the formalism developed in Sec. IVB
can be applied directly to obtain the corresponding
partially averaged contributions. We conclude by
deriving the expressions for the partially averaged
scattering amplitude and for the equilibrium cross
section.

S»(k&, k», Z): scattering starts and ends in
adsorbate, (51b)

S2(k&, k„E): scattering starts in adsorbate
and ends in substrate, (51c)

Sz(kz, k», E): scattering starts in substrate
and ends in adsorbate, (51d)

S4(k&, k„Z): scattering starts and ends in
substrate involving intermediate
scattering sites in the adsorbate.

(51e}
The first of these terms represents the amplitude
for dynamical scattering from the bulk. It is given
by Eq. (37). According to the above definitions,
Eq. (12) may be written as

R(k», k;, E)=R (ky, k», E)+ ZS»(k~, k», E) . (52)

Let us next consider those contributions to the
quantity S,$&, k„E) which involve only two sites
in the absorbate. It is easily seen that these are
given by the expression

F»'(I'»&) exp( —iq ~ B») P exp[i(k» ~ 50 —k& ~ 5»)
LL' &0&t

xey b»(k(E))G(50 —15», E)ei)of))(k(E))

x('(),
))

. . (53)

Here we have used Eqs. (20), and Po, 0) denote
lattice sites in the adsorbate. The propagator
G(5o —5„E)describes the propagation of the elec-
tronic wave between the two overlayer sites Po
and P„either directly or via multiple scattering
from the substrate. It is defined as

G(Po —5») E) —= (1 - 5yp, ) G(50 —5», E)

+g(PO —5„E) (54a)

It is useful to separate the contributions to the
unaveraged scattering amplitude [Eqs. (12) and

(13)]of the adsorbate-substrate system into five
classes of scattering processes. These are de-
fined as follows:

R (kz, k„E): scattering only from substrate,
(51a)

k) ki

(
) p

I $

kf

')l I»

+ Cp( +"
)(()

kf (54b)

g(50 —P), E) —= Z G(RO —5„E)ba (k(E))G(PO —Kp, E)
0

+ Z G(%» —5), E)bn (k(E))
Io&i

x G(RO - 5», E) by) (k(E))

x G(5O —go, E) +. . .

FIG. 5. Diagrammatic series for the proper partially
averaged scattering amplitude R+~~ defined by Eq. (46) of

the adsorbate. The factors that are associated with each
diagram because of the arithmetic averaging procedure
described in Sec. IV B are indicated explicitly.

The 5» denote lattice sites in the substrate.
The utilization of the propagator G(5, —5„E)

constitutes the essential feature of the renormal-
ized quasicrystalline approximation. Formally,
it reduces the problem of dynamical scattering



C. B. DUKE AND A. LIEBSCH

from the entire adsorbate-substrate system to
that of multiple scattering from the adsorbed over-
layer alone. Therefore, this reduction represents
a significant conceptual simplification of the mul-tiplee-scattering

analysis.
The infinite series designated by g(Pp- 5„E)

[Eq. (54b)] can be summed by performing a two-
dimensional Fourier transf ormation:

or (56)

and the G„,(k, E), pp» 2, are defined in Eq. (32).
Using now the definitions of the subplane scatter-
ing matrices, ~,(k, E) [Eq. (35)], and of the inter-
layer scattering matrices, T„,(k, E) [Eq. (36)], for
the substrate, we obtain for the series in Eq. (55)
the following simple expression:

g(k) E) = Z Gg„(k, E) T„„(k,E)G g(k) E) . (57)
Vg&2

g(k, E) = 2 exp[ik ~ (Pp —15,)]g(Pp —Il„E)
0

= Z G i„(k, E) b „(k( E) }G„i(k, E) + 2 G g, (k, E)
VA V ~ ii, C

xb, (k{E))G„„{k,E) b „(k(E))G „,{k,E)+. . . ,

(55}
in which

G„,(k, E) = P exp[ik ~ (0+d, —d„)]G(5+d„—d„)

in which (60a)

Q(ky) k() E) 7y(k~)) E) T((kf) E) (k~ (( k( ((+ g) (60b)

= b, (k(E)) [Qp(g, k;, E)ln ((f),(k, , E)}
—ln((f)g(kg, E))Qp(ky) k;, E)]

(ky „+kj ()+ g)

x), ()' (Z) ) G ()' —p„E) ),() (E)) )'((:,.))
(59)

This expression is formally identical to that for
the unaveraged scattering amplitude of the dsor-
bate, except that the intra-adsorbate propagators
G(Pp —P„E) are replaced by their renormalized
counterparts, G(5p —g„E). [The unaveraged ad-
sorbate amplitude may be obtained from Eqs. (12)
and (13) by restricting all site summations to the
overlayer. ] This similarity allows us to take ad-
vantage of the entire formalism developed in Sec.
IVB for the quasicrystalline approximation of dy-
namical scattering from the disordered overlayer.
Thus, in analogy to the partial averaging of the ad-
sorbate scattering amplitude, the above expression
(59) is replaced by a partial average which we de-
note by S,(k&, k;, E),„. Using the results given in
Sec. IVB [Eqs. (46)] we obtain for this average the
following expressions:

S,(kz, k;, E)„-=Pe f)e" e 'P' '

x Q [Y*(k~)Q(k~, k„E)Y(k,.)]zz,
LL'

By Fourier inverting this equation, we arrive at
an alternative expression for the quantity g(%, E)
in terms of real-space coordinates:

= (;(kx, Z) —G(k, , t))'( —' '

)
(s -wave model) (60d)

g(P, E)= p d ke ' ' P Gi„(k, E)2v' ., vlf, ) 2

xT„„(k,E)G„)(k)E) (58)

This Fourier integral may be simplified by utiliz-
ing the symmetry properties for the propagators
and scattering matrices which are derived in Ap-
pendix B. Thus the renormalized intra-adsorbate
propagator G(5p —5„E) [Eq. (54)] can be evaluated
by using either the series expansion, Eq. (54b),
or the integral representation, Eq. (58), for the
qua, ntity g (T p Py E).

If we now bring the contributions to S~(k&, k, , E)
that involve three, four, etc. , overlayer sites in-
to a form analogous to the one given in (53), we
obtain the following series:

S&(kz, k&, E)= Z Y*(kz)exp(-iq ~ d&)Z
LL' &=0

x g exp[i(k; ~ P() —R( ~ P))]
$0P ~ 0$)

xey ~ ~ ~ ey b, (k(E))G(p~, —P~, E) ~ ~ ~

and

Qp(ky, k;, E) =—P G(Q, E) bi(k(E))]"
n~0

x [G(k, , E) bi(k(E))] " ' (60e)

or

Q p(kf, k„E)—= —Z [G (kf, E) b, (k (E)})"
n~0

x [G(k, , E)b,(k(E))]", (60f)

depending on which series converges.
The propagator G(k, Z) is defined in analogy to Eq.
(44) as

G(k, E) —= pe'"' l' ' (ei), ey, ,y)rG(P, E) . (61)

The quantity V, (k, E) represents the renormalized
subplane scattering matrix of the adsorbate and is
defined similarly to Eq. (47):

7~(k) E)=—b, (k(E))+b~(k(E)) G {k,E)T, (k, E) . (62)

Finally, the renormalized effective field of the
overlayer is given by [see Eq. (48)]
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i( R)

+ liRi + &f +
if i& R2

I(
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FIG. 6. (a) Diagrammatic equation for the quantity

Sf %f k;, &)a„as specified by Eqs. (60) in the text. The
labels of the dots denote adsorbate sites. The factors
resulting from the averaging procedure are shown ex-
plicitly. The double line symbolizes the intra-adsorbate
electron propagator, which is renormalized to account
for intermediate dynamical scattering from the sub-
strate. It is defined in panel (b).

y, (k, E) —= 5,'(k(E)) V, (k, E) (63)

The formal similarity between R "(kz, k„E)„[Eqs.
(46)] and S,(Q, k;, E)„[Eqs. (60)] allows us to use
the prescription given in Sec. IVB to construct a
diagrammatic representation for the latter quan-
tity. This prescription is altered only in that the
renormalized intra-adsorbate propagators,
G(50 —5„E), rather than unmodified propagators,
G(50 —5„E), are used to construct Si(Q, k„E),
Figure 6(a) shows the diagrammatic series repre-
senting S,(Q, k„E)„. The internal double line
symboliz s the renormalized intra-adsorbate prop-
agator [Eq. (54)], which is defined diagrammati-
cally in panel (b) of Fig. 6. The series in panel
(a} is formally identical to that shown in Fig. 5

for the partially averaged overlayer scattering
amplitude.

We next discuss briefly how the partial averages
of the remaining terms S,(k&, k„E), i = 2, . . . , 4 in

Eq. (52) can be derived from the results for S,
(Q, k„E)„obtained above. According to the defi-
nition (51c), the quantity S2(k, k, , E), describes
all scattering processes that start in the adsorbate
and end in the substrate. These scattering pro-
cesses consist of three stages: multiple scattering
between adsorbate sites, either directly or via
multiple scattering from the bulk, then propagation
from adsorbate to substrate; and, finally, multiple
scattering from the bulk. Using the diagrams
shown in Figs. 3(a) and (6), we obtain for Sz(k&, k„
E)„the diagram shown in Fig. 7(a). Its contri-
bution to the partial average, R(Q, k;, E)„, of the
total scattering amplitude [Eq. (52)] is given by

k)

k)

(a) (b) (c)

FIG. 7. Diagrammatic representation of various con-
tributions to the partially averaged scattering amplitude
[Eqs. (65)]. Panel (a) illustrates the quantity S2(K&, k;,
E)~, Eq. (64a). Panel (b) illustrates the quantity S&(k&,

f&, E)~~, Eq. (64b). Panel (c) represents the quantity

S4 (Rf kj, E)~„, Eq. (64c). The circular vertex is de-
fined in Fig. 3 and the rectangular vertex is obtained
from Fig. 6(a) by omitting the two solid external lines.

x Y (k,.)) (64b)

According to the definition (51d), the scattering
processes described by S4(Q, k„E}„consist of
five stages: multiple scattering in the bulk, prop-
agation from bulk to adsorbate; multiple scattering
from adsorbate to adsorbate, either directly or via
multiple scattering from the bulk; then propagation
from adsorbate to substrate; and, finally, multiple
scattering within the bulk. The diagrammatic rep-
resentation of this term is shown in Fig. 7(c). Its
contribution to R(Q, k„E)„is given by

S4(k&, k&, E)„=Key e 't' e @' ' Z Y*(k&)
LL'

x Q T„(k~,E)G„i(k,E) Q(k, k(, E)
vg&2

x Z Gi„.(k;, E) T,. ~ (k;, E)
vs', '&2

x Y(kq)
LLi

(64c)

S2(kz, k, , E),„=P e y e '~'~ e ' ' i 2 i Y*($~)
LL'

x P T„„(ky,E)G „,(Q, E) Q(k~, kq, E)
v g&2

x Y(k, ) (64a)
LL'

in which Q(kz, k„E) is defined in Eq. (60b). The
quantity Ss(k&, k, , E)„is obtained in an analogous
fashion. Its diagrammatic representation is shown
in Fig. 7(b) and its contribution to R(k, k„E)„is
given by

S3(k&, k„E)„=Z. ey e @' e +' ' Z Y*(k&)
LL'

x Q (ky, k(, E) Q G,„(k(,E) T„„(kq, E)
v p. &2
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Using Eqs. (37), (53), (60), and (64), we obtain
the following expression for the partially averaged
scattering amplitude for the combined absorbate-
substrate system:

R(kg, k(k E)„=R (ky, k;, E)+ AS((Q, k(, E)„(65a)
i=1

= Pe '
[A(g, k(, E)

+eyB(ky, k(, E)]
where

A(k~, k))E)= QY-~(k~) Z e ' "T„„(k;,E)
I L' v g&2

x Y(k,.)
LL'

(65b)

(66)

B(k~, k;, E)= PY*'(—k~)e '~' ' l+ Z. T„„(Q,E)
LL' V kkk&2

x G„(kx ))E(Gkxk„)k(1 Z G,„(k„k)
v p&2

x E„„(k,, E)) Y($, )
LL'

(67)

and Q(k&, k„E) is defined in Eq. (60b). The deri-
vation of Eqs. (65)-(67) completes our discussion
of the scattering amplitude. That it is indeed in-
variant under time reversal is shown in Appendix
B. We note, however, that R(Q, k„E)„depends
explicitly on both the initial- and final-state wave
vectors in a more complex fashion than the sub-
strate-scattering amplitude R (kz, k„E) [Eq. (37)]
[i.e. , the first term in Eq. (65)].

The dynamical scattering cross section in the
RICA for the complete adsorbate-substrate sys-
tem may now be written in the following way:

(
RQCA—(ky, k(, E) = ~ {~R(k~, k(, E)E

~ )r
(68a)

e '~' A kf, k,-, E

+ef)B(k~, k, , E)] . (68b)
T

The diagrammatic representation of the cross
section in the RQCA is shown in Fig. 8.

Equations (68) specify our results for the re-
normalized quasicrystalline approximation of the
dynamical scattering cross section for the com-
plete system consisting of the disordered adsor-
bate and the underlying periodic substrate. In

Eqs. (68) the only statistical quantities describing
the thermodynamic features of the adsorbed mono-
layer are the coverage p and the two-point corre-
lations, (ef) ey. )r. For the derivation of our final
results presented in Eqs. (68), it is immaterial
how these two statistical quantities are determined.
We have taken in Sec. H a microscopic (i. e. , sta-
tistical-mechanical) approach by applying the lat-
tice-gas model to the disordered adsorbate in or-
der to evaluate these quantities. Our theoretical
analysis of the multiple-electron-diffraction prob-
lem presented in this section is also valid, how-
ever, in the context of a statistical approach in
which the coverage and the two-point functions are
determined phenomenologically.

The BECCA described above exhibits the impor-
tant feature that it represents an appropriate de-
scription of the effects of short- and long-range
order within the overlayer on contributions to the
cross section due to dynamical scattering not only
from the adsorbate, but also between substrate
and adsorbate. In particular, as demonstrated in
Appendix C, the RQCA leads to the correct T =0
limit of the expressions for the dynamical scatter-
ing cross sections. This result is specifically
significant since it permits an exact multiple-scat-
tering analysis for ordered superlattices adsorbed
on periodic substrates entirely in terms of intra. -
and inter/ayer scattering matrices, thereby

k)

k-
I

kf kg kf

FIG. 8. Figure shows, for the adsorbate-substrate system, the dynamical equilibrium-scattering cross section
[Eqs. 68] in the renormalized quasicrystalline approximation BECCA. The circular vertex denotes multiple scattering
from the ordered substrate. It is defined in Fig. 3. The rectangular vertex symbolizes scattering processes that
start and end in the disordered adsorbate but may involve intermediate scattering events in the substrate. It is defined
in Fig. 6.
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Let us write down the two contributions to the
renormalized electron propagator G (k, E) [Eq.
(61)]by using Eqs. (44) and (54a),

G(k, E)=Gq'(k, E)+Re' 'Y '(ef ey, y)TR(~ E)

(69)
If we approximate the second term in this equation
by replacing the pair correlation {ey.ey.,y)r by its
random limit y, the summation over the lattice
sites 0 can be performed [see Eq. (57)]:

G'(k, E)=—G i (k, E) + yg(k, E)

= G q (k, E) +'y Q G~„(k, E) T„~{R,E)
v ff,&2

xG i(k, E) .

(70a)

(7Ob)

The above approximation implies that pair corre-
lations between overlayer sites are replaced by
their random limits whenever intermediate scat-
tering from the substrate occurs.

The expressions for the scattering cross section
in this restricted version of the RICA are identi-
cal to the ones derived in C 1 for the RQCA, except
that the renormalized electron propagator G(k, E)
is replaced by the corresponding approximate
propagator, G'(k, E). The fact that this latter
quantity can be written entirely in terms of the
known substrate-layer scattering matrices, T„„
(k, E), constitutes a specifically useful aspect of
this approximation. The substitution of the ran-
dom (i. e. , infinite-temperature) limit for the cor-
relation in Eq. (69) indicates, however, that the
restricted HQCA is applicable only in the high-
temperature region.

avoiding the more complex sublattice formalism'
employed in the present literature.

At finite temperatures, the renormalization pro-
cedure outlined above requires the explicit knowl-
edge of the propagator g{5,E), which describes the
indirect electron propagation via the substrate be-
tween two overlayer sites separated by the vector

The numerical evaluation of the quantity of
g(P, E) through either the series expansion [Eq.
(54b)] or the integral representation [Eq. (56))
will, in practice, imply an approximate treatment
of contributions to the cross section due to dynami-
cal scattering between adsorbate and substrate.
Recently proposed perturbation schemes in dynam-
ical theories of ELEED such as the renormalized
forward-scattering technique, ' however, might
allow an accurate and practical approximate pro-
cedure for performing the renormalization. The
explicit determination of the propagator g(5, E)
can be avoided if an additional approximation is
imposed on the BQCA. This approximation is the
subject of C2.

2. Restricted renormalized quasicrystalline approximation

We conclude by pointing out how the diagrammat-
ic representation of the cross sections given in
C1 has to be modified in the present ca,se. Since
the distinction between the two approximations lies
entirely in the treatment of the pair correlatio~ in
the second term in Eq. (69)„we only need to
change in all diagrams the dashed line that accom-
panies each renormalized propagator C(P, E), as
indicated in Fig. 9. The factor y in front of the
second contribution to the diagram in this figure
is analogous to the one in the second term of Eqs.
(70).

Having presented a detailed analysis of the BQCA
and the restricted RQCA, we proceed in Sec. V to
a discussion of the limitations that are inherent in
both approxi mations.

V. ASSESSMENT OF QUASICRYSTALLINE
APPROXIMATION

In Sec. IV we derived detailed expressions for
the electron-solid scattering cross section in the
renormalized quasicrystalline approximation
(BQCA) and in a more restricted version of this
approximation. The only statistical correlations
incorporated in the multiple-scattering theory are
those between pairs of sites involved in consecutive
sca,ttering events. Nor cover, with some effort we
were able to cast the approximations into a form
consistent with the known conservation laws obeyed
by the scattering process (neglecting specifically
spin-dependent interactions). Therefore, we have
constructed a sensible, historically motivated if
approximate theory of multiple scattering from an
overlayer exhibiting both long- and short-range
order on a periodic substrate. We give in this
section a critique of both approximations by as-
sessing which aspects of the present problem are
not dealt with correctly because of the application
of the quasicrystalline description. We begin by
considering the case of- multiple scattering from
the disordered adsorbate for which both approxi-
mations are identical.

FIG. 9. How the renormalized propagator defined in
Fig. 6 (b) and the pair correlation that accompanies it
have to be modified in the case of the restricted RQCA.
In the first term, representing propagation within the
overlayer, the pair correlation is unchanged. In the
second term, which accounts for indirect propagation
between overlayer sites via the substrate, however, the
correlation p '

{,'epep )g is replaced by its random limit
[See Eqs. (69) and (70). ]
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Any theory of short-range order must incorpo-
rate two characteristic features of a disordered
system: the possibility of repeated scattering with-

in a finite cluster of atoms and the finite range of

the pair-distribution function. The quasicrystal-
line approximation describes both features in an

approximate manner. The effects of short-range
order and clustering are most easily demonstrat-
ed in the contribution to the equilibrium cross sec-
tion which is of third order in the reduced inter-
action. (The term of second order represents the
Born approximation and is treated exactly in the

QCA. ) This contribution is obtained from Eq. (28)

by restricting all summations to adsorbate sites.
Indicating only the relevant site dependent quanti-
ties, Eq. (28) canbe written as

(A)

(~ k ~) P equi! '0 &5(4"Q4'&
dn ' "

T yO~yo~y14 0

5$e50)T' ~

+Ref'o&(e e)
y y

~0 1T'
0" 1

+ Z e'"o (e50e5)r ~ . . +c.c. , (71)
0 1

where the dots refer to all remaining quantities
appearing in Eq. (28). In the first term in the
above equation, all three sites are distinct. The
second and third term are obtained by setting 5t
= ~, and ~,'= P„respectively. These two terms
represent the interference between double scatter-
ing from the two sites Po and P~ and single scat-
tering from site Po or P„respectively. To obtain
an estimate of the accuracy of the @CA, let us
compare the above exact expression with its ap-
proximate form. According to the description out-
lined in Sec. IVB, this is given by

(— (ki, k„Ei)

Q e@ oe' i''o~ "—;((eyey)ry'(ey ey)r+(ey ey)rr'(ey ey)r) ~ ~ ~ +c.c
PO PO~P1

e'~ oe'i"''o"' "&((ey'ey)ry '(ey ey )r+(ey ey )rr '(eS ey )r)
0~ 0~ 1~ 0

+ Q e' ~' 0 "—:(y '(ey ey )r+(eS eS )r) ~ ~ ~ + P e' i" ii &'-', ((ey ey )r

+y '(ey ey, )r) ~ ~ ~ +c.c.

The dots represent the remaining terms of Eq.
(28). Using the fact that (ey ey, )r=y, we find

l~-,'(1+r-'(ey, es, )r) —2 . (73)

This relation implies that the clustering terms in
Eq. (Vl) (i.e. , the second and third term) are un-
derestimated in the application of the QCA [Eq.
(72)j. The two clustering terms of Eqs. (Vl) and

(V2) represent the contributions to the cross sec-
tion of the adsorbate which are of third order in
the interaction and of second order in the atomic
density of the adsorbate. In a similar way it is
possible to separate in all higher-order contribu-
tions to the exact as well as the approximate cross
section the terms that are of second order in the
adatom coverage. It is easily verified that all
approximate terms are smaller than the corre-
sponding exact contributions. If we carry out an
analogous procedure for the terms of the cross
section that are of higher order in the adatom den-
sity, it is in principle possible to construct a new

perturbation series for the cross section in which
the nth correction is given by the difference be-
tween the exact and the approximate contributions
of order ~". The quasicrystalline approximation

represents then the first term in this series since
it is correct to first order in y. (This is a conse-
quence of the fact that we use reduced ion-core
vertices rather than bare interactions. ) In an en-
tirely analogous fashion it is also possible to con-
struct a similar perturbation series for the cross
section of the combined substrate-adsorbate sys-
tem.

At the present moment, all theories of multiple
scattering from disordered systems include the
contributions to the cross section that contain cor-
relations of higher than second order in y which
are approximated by expressing them in terms of
two-site correlations. The factorization of all
higher correlation functions is required in order
to be able to perform the summations over lattice
sites analytically.

The clustering terms, however, appear to be
described more accurately by self-consistent theo-
ries of multiple scattering from disorder systems
than by their non-self-consistent counterparts. 27'49

Improvements of the present approximation by in-
troducing self-consistency are presently underway.
Because of the strong inelastic-collision damping,
however, we do not expect the self-consistency re-
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quirement to be of the same importance as in the-
ories of the electronic structure of binary al-
loys. ' Moreover, "realistic" models for atom-
ic potentials' do not result in strong electron-
scattering resonances in the energy region that is
characteristic for studies of LEED.

In order to incorporate the presence of the sub-
strate in an appropriate fashion, we introduced in
Sec. IVC 1 the RQCA. In this description, it is
necessary to sum in the multiple-scattering series
over all terms representing intermediate dynami-
cal scattering from the substrate. The summation
led us to the definition of new intra-adsorbate elec-
tron propagators which are renormalized to ac-
count for multiple intermediate substrate scatter-
ing. The RQCA as applied to the substrate-ad-
sorbate system represents a description of short-
and long-range order in the overlayer which is
equivalent to that of the QCA applied only to the
adsorbate. Thus the RQCA is appropriate also in
the low-temperature region. In particular, it re-
produces the exact zero-temperature limit of the
scattering cross section, as shown in Appendix C.

By further approximating the substrate-overlay-
er interference terms, we were able to cast the
renormalization into a particularly attractive form.
In this restricted version of the RQCA, the final
expressions for the cross sections are entirely
specified in terms of the known substrate-layer-
scattering matrices. In contrast to the RQCA, the
explicit evaluation of the propagator g(5, E) [Eqs.
(54b) and (58)] is in this approximation eliminated.
Because of the underlying assumptions, however,
the restricted RQCA is useful only in the high-
temperature region.

Given the fact that the consequences of self-con-
sistency requirements are likely to be minor, it
appears that the renormalized quasicrystalline ap-
proximation provides an adequate basis for mul-
tiple-scattering models of LEED from disordered
overlayers. Due to the circumstance that sub-
strate-adsorbate interference contributions to the
cross section are of fourth or higher order in the
interaction, and because of the absence of long-
range order in one-dimensional systems, it ap-
pears furthermore that the restricted RQCA suf-
fices for the study of dynamical scattering from
one-dimensional overlayers adsorbed on two-di-
mensional substrates. The numerical conse-

quences of this analysis are examined in the fol-
lowing paper.
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APPENDIX A: MONOLAYER MULTIPLE-SCATTERING
SUMS

In this section we perform the summation of the
logarithmic series in the expression for the par-
tially averaged adsorbate scattering amplitude
R"(Q, k, , E)„, given by Eq. (45).

For convenience we define the following abbre-
viations:

a —= G„(g,E)bi(k(E))

b =—G|,(k;, E)b, (k(E))

c -=b, (k(E))

R "(Q, k;, E),„can then be written as

R "(g, k, , E)„=~Fey e '~' e '~'~'

(A1)

(A2)

(A3)

We note first that a=b if G»(kf, E)=G»(k;, E).
This is the situation for the substrate beams. In
this case, the right-hand side of Eq. (A5) then be-
comes a geometric series with the result

Q"(Q, k, , E) = v, (k, , E) = rg(ky, E), k~ ii
= k, „+g

(A6)
In Eq. (A6), ~, (k, E) is the subplane scattering ma-
trix of the adsorbate. It is defined in analogy to
the subplane scattering matrices of the bulk:

r, (k, E) = b, (k(E))+b, (k(E))G„(k, E) r, (k, E) . (A7)

For kz, ck, , + g, we rearrange the terms in Eq.
(A5) in the following way:

x P [Y*(hz) Q"(k~, k, , E) Y(k,.)]ii,II'
(A4)

with

Q "(kz, k;, E) =- c [1+—,
' (a + b ) + —,

' (a + ab + b )

+ —', (a'+a'b+ab'+b')+. . . ] . (A5)

Q"(k&, k;, E) = c (1 + —,
' a + —,a + —,

' a +. . . ) + c (—,
' + —,a ~ —,

' a +. . . ) + c, (—,
'

+ —,', a +. . . ) +. . .

=c ln(1 —a) ' a '+cln(1 —a) ' a b —ca 'b+c ln(1 —a) 'a ~b —ca b ——ca 'b +

= c ln(1 —a) 2 a "
b "—c 2 a " 'b" ln(1 —b) '

n~0 n ~0
(A8a)
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Instead of grouping together all powers of a, how-
ever, we can form a logarithmic series in b. This
leads to the result

Q"(k&, k;, E) =c Za"b "~ ln(1 —b) '
n~0

G„„(k,z}=G„„(-k,E), v, V, ~1 (BI)

This implies for the subplane scattering matrices
[Eqs. (35) and (47)] the identity

v„(k, E ) = v„(-k, E ), v ~ 1 (B2)
—c ln(1 - a)-~ Q a "b -"-'

n~p
(A8b)

Let us now define the following matrices (v, p ~ 2):

or

Qo(ky, k;, E) —= Z[G„(ki, E) b, (k(z))]"

x [G„(lq, E) b, (k(E)}7" ' (Agb)

Q."(k,, ~, z) =-Z IG„(g,z) b, (k(z))7-
n=P

x [G»(k;, E) b(k(E))]", (Agc)

depending on which series converges. In the s-
wave model, the sums in Eqs. (Agb) and (Agc)
can be performed because the summands in the
series commute. We obtain the simple and sug-
gestive result

Q"(k~, k(, E) = [Gu(k(, E) —G)q(k, E)] ~

It is evident that only one of the infinite series in
Eqs. (A8) is converging. The criterion of con-
vergence determines the choice of either (A8a) or
(A8b) as expression for Q"(k, k„E) Su. bstituting
the definitions (Al)-(A3) into Eqs. (A8) we obtain

Q"(kq, lq, E) = b, (k(E)) {Qo'(kq, g, E )Inl b, ''(k(z))

x ~g(k;, Z)1 —»[b)'(k(Z))~)(&~, Z}]

x Qo (Q, g, E)) (Aga. )

T(k, Z)= ffT-„„(k,Z) [[

i(k, z)-=[i~„(k,z) 5„„[[

G(k, z)=- /[G„, (k, E) (I-5„„)f[

(B4)

(B5)

l. e. ,

= [(v '(k, E ) —G (- k, E ))'] '

= T'( k, E)- (B6)

T„„(k,E)= T„~(-k, E) (B7)

We show now the invariance of the quantity A(k&,
k„z). Instead of evaluating the substrate scat-
tering amplitude [Eq. (31)]by summing first over
50, then %„etc., it can also be reduced by first
summing over 0&, then 0, ~, and so forth. In this
way we derive the relation

The T„~(k,E) are the scattering matrices given by
Eq. (36). Denoting the transpose of a matrix by
the superscript t and using the relations (Bl) and

(B2), we can derive a symmetry property for
T(k, E):

T(k, E)= [v' (k, E) —G(k, E)]

7,()q, E)'l
xln (A10)

Z e ' " T„(k„z)= Z e ' '
T„(gy, z) . (B8}

v gga vg&2

Equations (A6), (A7), and (Ag) specify our general
results for the adsorbate scattering amplitude
R"(ky, k, , E),

APPENDIX B: SATISFACTION OF TIME-REVERSAL
INVARIANCE BY SYMMETRIZED APPROXIMATIONS

FOR CORRELATION FUNCTIONS

In this Appendix we prove the time-reversal in-
variance of the partially averaged scattering am-
plitude, R(k~, R„z)~, given by Eq. (65). In par-
ticular, we show that the quantities A(kz, k&, E) and
B(kz, k„z), defined in Eqs. (66) and (67) conserve
time-reversal symmetry.

It is useful first to derive some symmetry prop-
erties for the electron proyagators and the scatter-
ing matrices. Using the definitions of the propa-
gators [Eqs. (32), (44), and (56)] together with
Eqs. (16) and (18), we easily find the relation

We note here that all scattering vertices and elec-
tronic propagators become symmetric matrices
in the partial-wave representation if one uses an
expansion in terms of real spherical harmonics.
The time-reversal invariance of the quantity
A(k&, k&, E) is then easily shown by using this fact
as well as relations (B7) and (B8).

To prove the invariance of the quantity B(kf, k;,
E), we note first that Q(kz, k;, E) defined in Eqs.
(60b)-(60d} is invariant. This is a consequence
of Eqs. (B7), (60e) and (60f). We use then the
same argument as above together with Eqs. (Bl)
and (B7).

APPENDIX C* ZERO-TEMPERATURE LIMIT OF CROSS
SECTION IN RENORMALIZED QUASICRYSTALLINE

APPROXIMATION

We demonstrate in this Appendix that the re-
normalized quasicrystalline approximation (RQCA)
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:G gg(k, E)r o+g (k, E) (C3b)

The superscript s indicates that we sum over su-
perlattice sites. The first term in this equation
represents (in momentum space) the subplane
propagator of the superlattice. The sum in the
second term can be performed by using the inte-
gral representation, Eq. (58}, for g($, E):

described in Secs. IDB and IVC1 leads in the T
=-0 limit to the exact expressions for the scatter-
ing cross section of the substrate-overlayer sys-
tem. An important consequence of this feature of
the RICA is the description of dynamical scatter-
ing from ordered superlattices adsorbed on peri-
odic substrates in terms of layer-scattering ampli-
tudes without reference to a sublattice formal-
ism.

For y= & and repulsive nearest-neighbor inter-
actions, the adatoms tend to occupy alternating
lattice sites as the temperature decreases. The
pair- and autocorrelation functions reflect this
thermal behavior by reducing to the following T
=- 0 limits:

(e5 e0,.5, )~o=& (& ~o=&,)
= 0 (otherwise) (cl)

(C2)
S

The vector 0 designates a lattice site in the over-
layer, i. e. , %=a(n, m), where a denotes the spac-
ing of the square lattice and n, m are integers.
The sites of the superlattice are given by 5„ i.e. ,
5, —= a(n, m), with n+ m even. We will use this no-
tation throughout this Appendix.

The renormalized intra-adsorbate propagator
G(k, E) [Eqs. (54) and (61)] assumes at T= 0 the
form

G(k, E)r o= Q e' 'G(p„E)+ pe'" ~g(p E')
OB AQ &s

(C3a)

G(k+ g„E)r=o= G(k, E)r=o (CS)

2

+y Qe 'o 2Re[A*(kv, k, , E)B(k&, kg~ E)r=o]

with

2, Z "" $a(i, , i„z&, , $')
~s

(c8)

B(k~, k;, E)r o= Z Y*(~y)e "
I Lo

x 1+ T„„kyE V)kE zo
vg&2

x 1+ Gs„k;,E T„„k],E
vg&2

(c9)x Y(k,. )
LL'

whereA(k&, k;, E) is defined in Eq. (66). In Eq.
(CS) we have used Eq. (C2). By employing now
the identity '

lPT.P g -lc %~ Qe-ia'5
y.
'

2 0' (C10)

and using the definition of the substrate scattering
amplitude, R (kf, k&, E}[Eq. (37)] the zero-tem-
perature limit of the cross section [Kq. (CS)] may
finally be written as

Since at T = 0 only substrate and superlattice beams
exist (see below}, we have k&, , =k& „+g,. Equation
(CS}then implies that the renormalized scattering
amplitude, Eq. (C5), obeys the relation

r, (kf, E)r o=r f(kg, E)r o (C7)

Using Eqs. (68), we obtain for the dynamical
scattering cross section of the adsorbate-substrate
system at T = 0 the expression

("—'„(i,, i„zj)
'*

e
'

A krak, E

g'(k, E)=, d'k' g (k', E)Q e ' u " ' ~
(2v)o, '

y

= 2 [g(k, E)+ g(k+g„E)] (C4)
k~, k), E) = 2 R ky, k], E)

r1(k~ E)r=o= [b & (k(E)) —Gz~(k, E)r=o

—
& (g (k, E)+g(k+ g„E))] ' (c5)

Moreover, from Eq. (C3}we obtain

where g~=- (o/a} (I, 1) denotes the new reciprocal-
lattice vector of the superlattice. The above re-
sult clearly indicates that the indirect intra-ad-
sorbate scattering via the substrate also contrib-
utes to the overlayer beams. The renormalized
subplane scattering amplitude of the adsorbate,
Eq. (62), may then be written as

,

2

+ Q e '~' 3 B(ky, k„E)r~
&s

(C»)
The interesting feature of this limit is that the
quantity B(K&,K„E)r.o depends only, via Eqs. (C4),
(C5), (C9), and (57), on the intra- and interlayer
scattering matrices of the bulk. Furthermore,
the above expression reflects, via Eqs. (C5) and
(CQ), in a very explicit manner the mutual influ-
ence of the substrate and overlayer beams upon
each other.

It remains to be verified that the expression giv-
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en by Eq. (Cl 1) represents the exact dynamical
cross section for scattering from the ordered
superlattice absorbed on the periodic substrate.
In order to prove this identity, we utilize the so-
called sublattice formulation, " in which each sub-
strate layer is formally decomposed into two sub-
lattices both having the geometry of the superlat-
tice. Writing an arbitrary lattice vector as R= P,
+5~ where 5„denotes the position of the vector
5,—= 0 in sublattice v and 5, specifies the sites with-

in this sublattice, we are able to evaluate the quan-
tityg'(k, E) in Eq. (C3) [see Eq. (54b)]:

g'(k, E) = Q G f„(k,E)b„(P(E))G'„, (k, E)

+ Q G', „(k,E)b„(k(E))G'„„(k,E)
Vyg lli

x b„(k(E))G'„,(k, E)+.. . (C12)

in which the G„'„(k,E}, v, iL & 1, represent the intra-
and intersublattice electron propagators (the ad-
sorbed superlattice has the indes v = 1):

G„'„(k,E)= p e' ' G(P„E) (v=P-1)
p S

(C13a.)

-=Pexp[fk (II,+D„-D„)]
P~

x G(P, + D„—D„,E) (v e p; v, p ~ 1).
(C13b)

In analogy to Eq. (57), expression (C12) for
g'(K, E) may be written as

g'(k, E)= r G;„(k,E) T.'.(k, E)G: (k, E) (C14)
V Jk&2

The T„'„(K,E) are the intersublattice scattering
matrices of the bulk. Using Eq. (C14) and the fact
that G„(k,E)r.o= Gf, (k, E), [se-e Eqs. (C3) and

(C13), we notice that thequantityG(k, E)~0 of Eq.
(C3) represents the propagation within the
superlattice either directly or via multiple scatter-
ing from the substrate sublattices. Consequently,

V, (k, E)no in Eq. (C5) represents scattering pro-
cesses that start and end in the superlattice but
may involve dynamical scattering from the sublat-
tices of the bulk. Finally, by using the definitions
(36) and (56), we eh, sily find the relations

Q T„~(k~, E ) G ~ q(ky, E )
—= Q T'„„(k~,E ) G'„q(k~, E )

vu&2 vg&3

(C15a)

2 G q„(kg, E ) T„~(k;, E ) = Z G'~(k;, E ) T„„(k;,E )
VII &2 VII &3

(C15b)

Thus, we have been able to express all contri-
butions to the quantity B(k~, k;, E)r 0 [Eq. (C9)] in

the exact two-sublattice formulation. This deriva-
tion proves that the cross section given by Eq.
(Cl) is indeed identical to the exact cross section
for the ordered substrate-superlattice system.

We conclude this Appendix by pointing out that
the above result can be easily generalized. The
dynamial scattering cross section for a superlat-
tice of arbitrary geometry adsorbed on a periodic
substrate is obtained from the expression given by
Eq. (Cll) through the following modification: The
sums over lattice sites in the second term of Eq.
(Cl1) and in both terms of Eq. (C3a, ) have to be
taken over the new site vectors of the superlattice.
The sum in the second term of Eq. (Cll) then
causes the occurrence of the new superlattice
beams. The first term of Eq. (C3a) represents
the new intrasuperlattice propagator. The sum in
the second term of Eq. (C3a) can be performed as
in Eq. (C4}, leading to the expression

S

8(i,&)=, ~(i, &)~ +~(i~ i,&)), (n6)s+1
where s is the number of the new nonequivalent
superlattice beams in the first shell and the g&,
i = 1, . . . , s, are the corresponding reciprocal-
lattice vectors.
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