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Cyclotron phase resonance in a t»n slab: The variational method
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The transmission of electromagnetic energy through a thin plasma slab in the anomalous-skin-eAect

regime is calculated using a new variational principle. The principle is shown to be closely related to
the iterative scheme used in the multiple-reflection method. Using this new technique, we show that,
for slabs even as thin as 1/10 of an electron mean free path, the higher-order multiple reflections are
negligible and the first-order multiple-reflection result provides an excellent approximation to the true
transmission. In a succeeding paper, this variational technique will be extended to include Fermi-liquid
correlation effects,

I. INTRODUCTION

This is the second of a series of three papers
devoted to the theoretical study of the phenomenon
of cyclotron phase resonance in a thin slab of met-

The first paper2 was concerned with the effect of
the Fermi-liquid-theory parameter A& on the fields
deep in the interior of a thick slab. The present
paper considers anew the problem of transmission
through a thin slab, one whose thickness is a frac-
tion of an electron mean free path, when there are
no Fermi-liquid effects. There are two reasons
for doing so. One is to investigate certain aspects
of the thin-slab problem which have received in-
adequate attention in the past. The second is to
introduce the variational technique which will make
it possible, in the third paper of the series, to
calculate the effect of Fermi-liquid-theory corre-
lations on the phenomenon of cyclotron phase reso-
nance.

The impetus for our study is provided by a re-
cent letter in which Phillips, Baraff, and Dunifer
(PBD) reported measurements of microwave
transmission through thin (approximately one-
tenth of an electron mean free path) slabs of sodi-
um and potassium at a microwave frequency of
116 GHz. The most striking feature of the experi-
ment mas a strong sharp peak in the intensity of
the transmitted signal when the ambient magnetic
field (which was directed normal to the face of the
slab) was swept through that value for which the
cyclotron frequency of the carriers was equal to
the microwave frequency.

Although there mere, and still are, strong rea-
sons for believing that many of the characteristic
features of the PBD measurement were dominated
by electron-correlation effects, there is seemingly
a possibility that the existence of the strong sharp
peak was more a consequence of the thinness of the
slab than of the correlations. This possibility ap-
pears viable because fully self-consistent evalua-

tions of the transmission of microwave field
through a metallic slab under cyclotron-phase-
resonance conditions have been carried out only
to first order in the multiple-internal-reflection
series. ' (in the multiple-reflection scheme, the
zeroth-order field is the microwave field which
would be found in the infinite medium. The first-
order term arises from the action of the emergent
surface which reflects fields back towards the in-
cident surface. The second-order term arises
from the action of the incident surface on the re-
flected field. This sends an additional field for-
ward towards the emergent surface, and so on. )
Thus, there remains the possibility that higher-
order internal reflections might, when the cyclo-
tron frequency and microwave frequency are equal,
add coherently, much as do the fields in a Fabry-
Perot interferometer on resonance, to produce the
strong sharp peak which is observed. This paper
is concerned with the evaluation of the contribution
of the higher-order multiple-reflection terms.

Although it would be perfectly possible to carry
through the iterative procedures (described in
Refs. 4 and 5) to generate the higher-order reflec-
tion terms sequentially, we have found another
procedure for evaluating these terms which is
much simpler to carry out. It is based on the use
of a variational principle to evaluate the transmis-
sion. The principle, mhich we shall derive and
use here, is apparently a new one. It can easily
be generalized to include the effects of electron
correlations, something which cannot readily be
included in the multiple-reflection-series formal-
ism.

In Sec. II of this paper, me shall derive the
variational principle to be used for the free-elec-
tron situation wherein correlations are ignored.

In Sec. III of this paper, we demonstrate that
when the transmission is evaluated using (as trial
fields) the fields which would exist in the semi-
infinite slab, i. e. , the zeroth-order fields, the
result is exactly the same as that obtained using
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, + ko e(z)= i+poj -(z) 0&z &Ll
d 2
dz'

where ko = ~/c and where the slab, which is nor-
mal to the z axis, has a thickness of L times the
electron mean free path l. It is convenient to take
f as the unit of length so that z = xl defines x as the
dimensionless distance coordinate, to let the elec-
tric field e(z) be denoted as $0(x&, and to introduce
a function g, (x) which is proportional to the cur-
rent. Then the wave equation becomes

(
d , ~ kg') i, t*)=~ ibi, t*), {2.1&

the first-order term of the multiple-reflection
series. By adding suitable terms to the zeroth-
order fields (terms which are to be varied so as
to render the calculated transmission stationary),
we can, at a single stroke, represent the effect
of all the higher terms in the multiple-reflection
series.

In Sec. IV of the paper, we carry out this evalu-
ation, again for the free-electron case. The re-
sults of the calculation, which are presented in
Sec. V, indicate that even for slabs as thin as
those used in the PBD experiments, higher-order
multiple reflections have slight effect on the trans-
mission. Therefore the first-order calculation
provides a reasonable description of the fields in
the slab. This first-order calculation does not
yield the strong sharp peak which is observed and
we can conclude, with some confidence, that this
feature is not a result of coherent internal reflec-
tions. In the third and concluding paper of the
series, we shall extend this variational principle
to include correlation effects and use it to evaluate
the transmission, this time when correlations are
present.

II. DERIVATION OF VARIATIONAL PRINCIPLE

Consider Maxwell's wave equation relating the
transverse circularly polarized microwave elec-
tric field e{z) to the transverse circularly polar-
ized current j{z). Supressing the e '"' time de-
pendence, we have

tially the ratio of the anomalous skin depth to the
mean free path.

The boundary conditions we apply to (2. 1) are
those appropriate to having a wave of amplitude A
incident on the slab at x=O:

L

i(~,(x) = A cia,r. + iaoilx-vip (y) dy
2kol

(2. 2)

The transmission amplitude f is defined as the ra-
tio between the microwave field go(L) at the emer-
gent face of the slab and A e'"o', the field which
would have been found at that same plane had the
slab been absent. Using (2. 3), we have

f= [Po(L)/Ae—"o'
] = 1+ (b/2Akol )

x j e "0
g (y)dy (2. 4)

Solving (2. 4) for A in terms of f, we use the value
of A so determined in (2. 3) to write8

[(f 1)-1 ikon (x-y)

+e"o"""]q,(y)dy

and, rearranging slightly, we have

I ~ Ie'"0"" "4,(y) dy = 4o(»+ — ~{y -x}

where

6(y -x)=1, y &x

=0, y&x

&& sinkof (x- y) g~( y) dy,

(2. 5)

(2. 6a)

(2. 6b)

1 d1+ . —q (x)=2A. x=o
idol dx

(1 —. ,
—q, (x)=0, x=L, .1 d

g Q
x

%e integrate (2. 1) subject to these boundary con-
ditions to obtain

b =- (uri, Vr/(uc)'((u&)' . (2. 2)
p, = —(b/2kol)[ f/(1 —f)] . (2. 'f)

Although the constant b could be chosen arbitrarily,
the choice here [where &u~= (4vnez/m) iz is the
plasma frequency, V+ is the Fermi speed, and
v =l/Vr is the mean free time of the conduction
electrons] has the consequence that no dimensional
constants appea, r in the equation which describes
the current as being driven by the electric field
via a nonlocal conductivity. The constant b is a
huge number, = 10' in the situation of interest
here, while b, a very small number, is essen-

For the free-electron gas with diffuse scattering
of electrons at the slab faces (at x=O a.nd x=L&
and a uniform magnetic field directed along the
direction normal to the slab, the nonlocal conduc-
tivity which relates the circularly polarized com-
ponent of current to the circularly polarized com-
ponent of field can be calculated by solving the
Boltzmann transport equation. That solution, ex-
pressed in the units we are using here, is '
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L
(()t(x)+ fo Ku(x -y)())0(y)dy = 0,

where

{2.8)
1

p. Z K „(x -y))()„(y)dy
n=Q Q

ff„= ,' f—"(1/( 1—/t') e-"'" "-d(
Q

(2. 9) Z „(x-y)g„(y)dy=0,
n=Q Q

(2. 11a)

a —= 1 —i((d - &u, )7, {2.10)

and where ((), = eHO/mc is the cyclotron frequency
of the carriers.

We regard ~2. 5& and ~2. 8& together as a pair of
coupled homogeneous integral equations for the
two fields gQ and g, . These two equations can be
written as

or symbolically, as

((,3((4 —2$ = 0,
where only

5g, (x —y)-=e"o"""

differs from zero and where

(2. 11b)

(2. 12)

2 „{x-y) =- 5~5(x -y) +

&gg(x -y)

ib—6(& -*)8( )',((*-v))
kQL

(2. 13)

Equation set (2. 11) defines an eigenvalue prob-
lem for p. . To extract the eigenvalue, multiply
the mth equation of the set by C (x) [where 4 is as
yet arbitrary], integrate over x and sum over m to
get

1 1 L L

Z E f o (*)(u,m tx-))
m=Q fI=Q Q Q

—2 „(x-y)](()„(y)dxdy=0,

or symbolically,

p, (CXy) -(eke&=0,
from which we have

p = (@&(()/(@%(()

(2. 14a)

(2. 14)

(2. 15)

5p, /5O (x)=0 . (2. 16a)

Suppose now that instead of being arbitrary, the
fields C (x) were to satisfy the variational conse-
quences of demanding that p. , as given by (2. 15),
be independent of the choice of („,

The value of (( calculated using (2. 15) will be ex-
act, even for arbitrary 4, provided that the fields
(()„satisfy (2. 11). Note that these equations (2. 11)
are, in fact, the variational consequences of de-
manding that p, , as given in (2. 15), be independent
of the choice of C, i.e. , that

even if the fields g„are completely arbitrary.
In practice, we shall have neither the exact

fields g satisfying (2. 11) nor the exact fields 4

satisfying (2. 17), but hopefully we can propose
trial fields ( and 4 which differ from the exact
fields by quantities which are first-order small.
Using these trial fields in (2. 15) to evaluate

=-(C Z(() )/(C 5R(() ) (2. 18)

Note that p, , as given by (2. 15), depends on four
fields, (()0, the electric field in tl, e slab, )()~, (pro-
portional to) the electric current in the slab, and

CQ and 4», fields which have no obvious physical
role but which are formally the mathematical ad-
joints. It turns out, however, that by comparing
(2. 11a) and (2. 17), and making use of the specific
forms (2. 12) and (2. 13), one can show that

gives a result which differs from the exact p, by a
second-order small quantity, which is why this
method is useful. The program of course is to
postulate functional forms for C and g, letting
these forms contain certain parameters which are
varied so as to satisfy (2. 16). The resulting fields
are used in (2. 18) to calculate p, . With p, evalu-
ated, the transmission amplitude f follows from
(2. '7).

Ill. RELATION TO MULTIPLE-REFLECTION SERIES

5((/5(()„(y) = 0,
namely

(2. 16b) @Q(/) = qy(L —x),

@i(x)= (()o{& —x) .

(3.1a)

(3.1b)
1

Z dx C (x)[p,% (x -y)
m=Q Q

—Z „(x-y)]=0 . (2. 17)

Then p, , calculated by (2.15), will again be exact

Furthermore, one can show that it is valid to make
use of (3. 1& before carrying out the variation, so
that as a practical matter, p, depends only on the
two g fields. In this section, we are going to let
gQ and |tz be the fields which would exist in the
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semi-infinite slab, and we are going to show that
the transmitted field calculated using (2. 15) is the
same as that calculated by using the multiple-re-
flection scheme to first order. That is, the vari-
ational integral itself automatically produces the
iteration which is at the heart of the multiple-re-
flection technique.

We denote the semi-infinite medium fields by a
superscript zero. Taking the L - ~ limit of (2. 5)
and (2. 8), and noting that the transmission ampli-
tude f (and therefore the eigenvalue p) must de-
crease exponentially with increasing slab thick-

ness we have

lfjg [x) + f Kg f (x —y )t)lp ( y ) dy = 0 (3.2a)

qp(x)+ e(y -x) sinkpl(x -y)p ib
kpl p

x (0(y) dy = 0 (3.2b)

as the equations governing the semi-infinite me-
dium field.

The numerator of (2. 15) consists of four terms,
namely,

f Cbp(x)t)lp(x)dx+ (ib/kpl) f f bfbp(x)e(y —x) sinkpl(x —y)gq(y) dxdy

+ f f Cs( Ãx, &( x-y)y (0y)d dxy+ f C, (x)y, (x)dx. (3. 3)

We use (3.1) to express this in terms of the P
fields only, and we choose, for the g fields, the
semi-infinite medium fields which satisfy (3.2).
As a result, the last two terms in (3.3) may be
combined as

f, yp(L x) dx-[q,'(x) + f, ff„(x -y)yp(y) dy]

= —f, qp(L -x)dx

~f +sr(x y)ko(-y)dy .

(3 4)

{3.5)

I

For later convenience, we substitute L -x=x',
y=L+y', so that, after dropping primes, this
term is

—f, yt( )xd fxK("n+xy)q' (y0L+) dy .
Next, consider the second term in {3.3&. An im-
mediate consequence of (3.2) is that

d
„~~ bib') b', l*)= 'b b,'l*l

so that the second term in (3. 3) can also be writ-
ten

dxgg(L -x& e(y —x) sinkpl(x —y) p +kpl g (y) dy .1 p 22 O

kpl 0 0 dy

Let the 8 function act to limit the y integration to the range x &y &L. Then, integrating by parts, we have

l
L 0

sinkpl(x-y) 2+kpl q (y0)=g (L0)k lcposkpl(L -x) — 2 sinkpl(L -x) -kplgp(x) .2 2 0 0 dIto 0

dy

Hence, combining the first and second term in (3.3) gives

gq(L —x) dx $0(L, ) coskpl(L —x) ——
I, sinkpl(L —x)p 0 d4o

kpl dy

To evaluate the integrals here, we again use (3.5), and again integrate by parts,
L

flip xy ( )d bbkpbx + k2l2 p ( ) dib 0 dx

zb L —go{L (+zkol e P — p+Oo(0 +ikpl

(3.6)

(3.'t)

The evaluation of (2. 15) is independent of how we
normalize the fields. Let us choose b)lp(0) = 1 and
let Z be the dimensionless surface admittance, so
that

I

To within an accuracy of b)bp(L)/Zb)lp(0) (which will
be of the order b ) we can ignore the terms in
(3.7) arising from the upper limit, and write

«~=—ikplZ .

{3.8a)

(3.8b)

J
Ie"""*'(tt) xd= x— ~ (Z+1) .

p b

We have evaluated (3.6) as

(3.8)
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k l
Z 0(L)+

1 dna
b 40 'ikol dy

—~ Z+ . —qo(L) — qo(x)dx
u~ 1 d o Lo

b ikol dX

&& $0 (y + L ) dy . (3. 10a)

K11(x y}

so the four terms in the numerator of (2. 15) are

The single term in the denominator of (2. 15)
may also be evaluated using (3.9) as

f, fo dx C o(x) e'e"* "g (y) dy

= e*~"(k,i/b)'(Z+1)' (3.10b)

and thus p. , evaluated by using the semi-infinite
medium fields, is

(4', ~, q')V'-=(~ '~, '(0)

kl 1d OO

Z+.„—„q',(L)+ q', (x}dx K„(x+ y)q'0( y+L) dy
b 0 J

(Z 1)2 ~ (3.11)

For slabs appreciably thicker than the anomalous
skin depth, the transmission amplitude f will be
very small, say of order $0(L)/Z(0(0), so that to
the same accuracy as we retained in (3. 9), we can
write (2. 7) as

f= —2kolp/b
Furthermore, it follows from the definition of f
that the field e(L) at the emergent face of a slab on
which is incident a field of unit amplitude is
e(L) =fe' o' . Using (3.11) we then have

2 1 d 0 1
e (L)

(1 Z)2 Z+ .
k ) d lflo(L) + . $0(x}dx i bK&&(x+y}gt(y + L) dy1+Z ik()l dx ikpl 0

(s. 12)

This expression is identical to that for the field
given as Eq. (3.19) of Ref. 5 (apart from differ-
ences in notation and an obvious typographical er-
ror on the upper limit of the integral}, an expres-
sion obtained by evaluating the multiple-reflection
series up to and including the term which arises
from the first reflection at the emergent face.

Let us stress that this first reflection enhances
the transmission radically in the neighborhood of
the emergent face. The question at issue is how

much effect the higher reflections —i. e. , those be-
yond the first —will have.

IV. VARIATIONAL CALCULATION

The true fields in the finite slab, including all
the contributions of all the internal reflections,
differ from the semi-infinite medium fields by
functions which we shall parametrize in as simple
and reasonable way as possible —namely, by ex-
ponentials. We therefore choose trial fields of the
form

(Go+ 2G~B+ GaB } {4.2)

where F, and F, depend on p; F2, F„G„and G2

depend on q; and F4 depends on both P and q. The
techniques for evaluating these coefficients are the
same as those used inSec. III, andwe merely state
results here: F, and G, are given by (3. 10a) and

(3.10b), respectively,

G, = —(k,l/b)(Z+1)e"o' f e '"'""'"dx (4. 3a)

ikp/L( f -(q+ kpt)xd )2 (4. sb)

F, = —f e "dx f K,~(x+y) {lto(y+L) dy, (4. 3c)

f The four parameters are to be determined vari-
ationally: We use (3.1}for the adjoint fields, (4. 1)
for the trial fields, and evaluate the resulting p.

using (2. 15}. The result is of the form

p, = (Fo+ 2F)A+ 2F2B+ FSA + 2F4AB+FSB )/

q, (x) = goo(x) + Ae '"

q, (x) = q', (x) + Be-'"
(4. 1a)

(4. 1b)

L

F2 = e '"dx go(L) coskoEx
0

We surmise that by choosing the four parameters
A, B, P, and q correctly, these trial fields will
provide a reasonable representation of the actual
fields in the slab and therefore, that the value of
p, calculated using (4. 1) willbe more accurate than
the value of p, calculated using the zeroth-order
fields only.

L Sinkplx,
1 dq'0

p X

F, = f f e ~' "'K„(x—y)e "dxdy

(4. sd)

(4. Se)

{4.sf)
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I. I
Fq= e-ax(I-x) 6( x)

gaol o o

x sinkol(x —y)e "dxdy (4 3g)

obtain

A = —F~/F~

so that

The parameters A, B, P, and q are to be chosen
by the variational requirement that p, be stationary
From (4. 2), we obtain two of the variational equa-
tions Bp/BA=0 and Bp/BB=O in the form

Fq+FBA+FCB = 0

(F2 —gG~) + F4A+ (F~ —pG2)B = 0

p, = (Fo —Fq/F3) Go'

a form which depends on P. It is easy to show that
because we have satisfied the condition Bp/BA =0,
the remaining equation Bp/BP =0 is equivalent to
demanding that (4. 5) be stationary with respect to
P. Since F, and t o are independent of P, the equa-
tion determining P is

which gives

A = —[Eq(F~ —p G2) —F4(F2 -p, Gg)]/

[F (F —PG2) —
, E4 ]

B= —[Fq(E2 —pGq) —E~F4]/

[FB(F,—p, G2) —F4 ]

(4. 4a)

(4. 4b)

d(E',/E, )/(dp) = 0 (4. 6)

and this we handle numerically. The variational
parameter P depends on the physical parameters
which describe the slab and the electron gas with-
in it. It turns out that an exceedingly good descrip-
tion of the solution to (4. 6) is provided by the equa-
tion

Consider the size of the various terms: In the ap-
pendix, we study (0(x) and discover that when x is
appreciably larger than the skin depth, g,'drops
rapidly from its value of 1 (at x=0) to b 't2. We
also show that the admittance Z is of the order
h I'. The quantity p will be of order p =F0/Go,
the value given in Sec. III. Using these estimates
of size, and the assumptions that P and q will be
of order unity, we obtain the following order-of-
magnitude estimates of the size of the terms in
(4. 2): Fo-Z; Fq& Fq Z; Ea, F4 1; F5 Z;

gives us A Z
p

B Z . We insert these size
estimates back into (4. 2) and learn that each of the
terms involving B could have been deleted from
(4. 2) without changing the size of p more than one
part in Z~.

Let us stress this point: The variational prin-
ciple here is rejecting (i e. , mai.ntaining exceed
ingly small values for) additions to the current gq.
This same conclusion will also be reached with
more sophisticated choices of trial function. Be-
cause of this, we shall be able to take the current
in the finite slab as a given quantity, namely, the
same as the current in the semi-infinite medium,
&which is exceedingly small everywhere except in
the anomalous skin depth at the incident face and
concentrate our efforts only on varying Po.

If we now drop B from the problem, assuming
that

tl, (x) =q', (x)+Ae ~"

t), (x) = q,'(x)

we obtain

p = (Eo+ 2F)A + F~A )/Go

and, from the variational condition Bp/BA =0, we

—(P + a)L = o. + P ln(a L + y) (4. 7)

In order to carry out the program of evaluating
the transmission amplitude, it is necessary to have
an explicit representation for the field g~(x). Such
a representation has been given elsewhere. How-
ever, that form, while useful for certain analytic
manipulations, is not the best form for carrying
out the numerical manipulations needed here.
In the two appendixes of this paper, we give an al-
ternative form for (0(x) which is more suited to
our use. The alternative form, like the original,
is obtained by evaluating the Wiener-Hopf solution
to lowest order in the parameter (a/b ') This.
number is essentially the ratio of the anomalous
skin depth to either the Gantmakher-Kaner wave-
length or the mean free path, whichever is shorter.
In the PBD experiments, this parameter ranges
from about 5&&10 at +geo =1 to about 5&&10 2 at
~J&u =0.65 or 1.35. Thus, the expansion of g',

we use here is virtually exact at cyclotron phase
resonance.

In Figs. 1 and 2, we have plotted the transmis-
sion amplitude as a function of magnetic field, ex-
pressed in terms of u, /&u, the ratio of cyclotron

where a is defined by (2. 10) and where n, P, and

y are real positive constants which depend only on
the two parameters h and &ur If we .use (4. 7) to
compute the piece added to the field, we find a field
which grows in the direction of the emergent face
and whose direction of twist in the magnetic field
is opposite to that of the field Pp(x).

Clearly, the variational principal is asking that
the added part of tt)o should represent those terms
which, from the multiple-reflection point of view,
are launched at the emergent face of the slab.

V. RESULTS AND DISCUSSION
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frequency to the microwave frequency. The pa-
rameters chosen are comparable to those encoun-
tered experimentally in the PBD letter. In Fig. 1,
the field is calculated to zeroth order in the mul-
tiple-reflection series, i.e. , as though the emer-
gent surface played no role in the physics beyond
defining the plane on which the field is observed.
In Fig. 2, the dashed curve is the field calculated
to first order in the multiple-reflection series
using the calculation described in Sec. III. Note
that the effect of the emergent surface is to enhance
the transmission over the zeroth-order result (Fig.
1), and that the enhancement is greatest at cyclo-
tron phase resonance, at &ups = 1.0. It is clear
that the emergent surface radically alters the field
within the slab. The solid curve is the field cal-
culated variationally, using the method described
in Sec. IV, which includes the effects of the higher-
order multiple reflections. Only a slight difference
is apparent between the variational calculation
(solid curve) and the first-order calculation
(dashed curve). This means, of course, that the
second- and higher-order terms in the multiple-
reflection series are small. It explains why the
variational principle forced the piece Ae~" to rep-
resent a field launched from the emergent face:
Because the multiple-reflection series converges

4 x IO

4 xIQ

-4xlO ~
0.7

)

0.8 0.9
I

1.0
)

1.2

FIG. 2 ~ Real (i. e. , in-phase) component of the elec-
tric field at the emergent surface of a slab whose thick-
ness is L = 0. 1 electron mean free paths but which is
otherwise identical to that used in Fig. 1. (Note the dif-
ference in scale between Figs. 1 and 2. ) The dashed
curve is the first-order multiple-reflection result. The
solid curve includes the effect of the higher-order re-

flectionsns.

O
tD

-4xIQ l (

0.7 0.8 0-9
I

I.Q

chic/c0

I

I.2 l.2

FIG. l. Imaginary (i. e. , out-of-phase) component of
the electric field at a depth L =0. 1 electron mean free
paths from the incident surface of a conducting slab ir-
radiated by a microwave field of unit amplitude. The
parameters describing the material of the slab are ~&
=3O0, b=9. 45&10'.

very rapidly, there is only a negligible second-or-
der field launched from the incident face, the
zeroth-order term launched at the incident face
and the first-order term launched from the emer-
gent face provides an adequate description of the
field in the slab.

As the thickness L of the slab is made greater,
the very slight difference between the first-order
calculation (dashed curve) and the variational one
(solid curve) decreases still further.

It is especially interesting to notice that the ef-
fect of higher-order terms included in the varia-
tional calculation is actually to decxease slightly,
rather than to enhance, the transmitted amplitude
near &u Ju =1. This certainly means that there is
no possibility of multiple reflection being respon-
sible for the sharp peak in the experimentally mea-
sured transmission. We have repeated these vari-
ational calculations with more flexible trial func-
tions for $0 (that is, with more parameters to vary
and more labor required) but the results for the
calculated transmission differ imperceptibly from
those we have reported here.

It seems fairly certain that the calculations we
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have reported accurately represent the transmis-
sion amplitude for the model of the slab in which
the electrons are treated as a degenerate gas of
free fermions which suffer diffuse reflection at the
faces of the slab. In Fig. 3 we have reproduced
the data from the PBD letter. It is clear that
there are many features of the data which are not
correctly described by this model.

In the third and final paper of this series, we
shall include the effects of Fermi-liquid correla-
tions on the transmission and we shall show that
some, but not all, of the features of the transmis-
sion can be ascribed to the correlation effects.
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(})oo(x) = f (C)(u)e '""'"du (Al)

where a = I —i{(o —(d,)~ and where a specific form
for (t)(u) will be developed in Appendix B. Because
the form (Al) is not valid for x comparable to the
skin depth, this representation is not immediately
useful for the term appearing in (3.4). It turns
out, however, that the Wiener-Hopf method pro-
vides us, as a by-product of the calculation of
(t, (x), with Z(k), the Fourier transform of a func-
tion j(x),

Z(k) =—f j(x)"e '""dx (A2)

which is defined as

od, give such a representation in a form which is
especially useful for the numerical calculations we
have to perform. The essential result is that, at
distances x which are large compared to an anom-
alous skin depth, we can write

APPENDIX A:

GENERAL COMMENT ON SOME INTEGRALS INVOLVING Qo
j(x) = f Kll(x+y)$0~(y) dy (A3a)

In order to be able to carry out the calculations
described in the body of the paper, it is necessary
to have a numerical or analytic representation of

(t)o(x), the semi-infinite medium electric field. In
Appendix B, we shall, using the Wiener-Hopf meth-

I

=-0, x&0 (Asb)

A specific representation of J(k}, valid for k
smaller than the reciprocal of the anomalous skin
depth, is also given in Appendix B.

Now consider (3.4). Using (A3), we have

(A5)

(A5)

f q' (o)xdx j"K»(x+ y) qo{y+ L) dy

—f qo(x) dx $ K»(x+y)(})oo(y + L) dy —f (})o(x)dx f K»(x+y)tl)o( y + L) dy

= f' j(y)(t)o(y+I)dy —f f dxdy(t()(x+L)K»(x+y+L)$()(y+L) ~ (A4)

The thickness L of the slab is a]ways much greater than an anomalous skin depth, and so we can use (Al)

to evaluate the integrals on the right-hand side of (A4). The first of these is
)

f "j(y)dy f dug(u)e ("""~ '=e ' f d[k=(u+a)/ij(}(u)e)" du

The second integral in (A4) can be evaluated using (Al) and (2. 9),

f f dxdy g()(x+L)K»(xyy+L)qo(y iL) = ~ f dt(l/t —I/to)e "~C(t)o
0 p 0

where

4(t)=-e ' f P(u)e" du/(u+a+at)
0

(AS)

2

~+kol (t(')(x)+it) K„(lx-y )qo{y)dy=O,
0

The integral F„defi ednin (4. 3c), is also readily
evaluated using {Al) and (2. 9) as

(B1a)

which is to be solved to the boundary conditions

(}) (x=0) = I,
&0(x-~) =0 .

(B1b)

(8lc)

{Aa) This defines gp only for x =0, and, following the
usual Wiener-Hopf prescription, ' we take

APPENDIX B: WIENER-HOPF SOLUTION FOR

yo, AND J(k)

Our starting point is the integrodifferential equa-
tion for the field (t)oo(x). Combining (3.2a) and (3. 5)
into a single equation, we have

q', (~)=-0, x&0

h(x) =-0, x &0

»(lx-yl)so(y) dy,
so that

(B2)

(B3a)

(Bsb)
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d2 OO

+O',I' q,'(x)+ib K„(~x-y~)
w 40

E(k) =agf (k)

H(k) = aJf '(k)+ ike(0)+ e'(0)

(88a)

(Bsb)

x qo(y} dy + h(x) = 0 (B4}

is an equation which coincides with (81) for x & 0
and, unlike (Bl), is both valid for all x and Fourier
transformable. Its transform is

[ —k +kzof + ibK(k)]E(k)+ H(k)

= ike (0) + e'(0)

where

(85)

f '(k) is analytic and free from zeros in the
upper half plane

they both exhibit algebraic, rather than ex-
ponential growth as k- ~

Equation (85) now becomes

f (k)E(k) =f'(k)[H(k) —ike(0) —e'(0)]

(87c)

and, using the standard analyticity arguments,
each side of the above equation is equal to some
polynomial which, in this case, can be shown to be
a constant ao. Hence, we have

x
C9

D
UJ

CESR

z
cK
RI-

E(k) = J dx g (x)e
' " (86)

and where H and K are the transforms of h and K fg,
respectively. e(0) and e'(0) are the initial value
and derivative of $0(x) as x-0+.

At this point, one uses the Wiener-Hopf factori-
zation. That is, denoting the coefficient of E(k}
as —Q(k), one constructs two functions f'(k) and

f (k) with the following four properties:

f '(k)/f (k)= Q(k)=-k —kol'- ibK(k); (87a)

f (k) is analytic for k in the lower half plane
(87b)

1/f (k)= 1/k+C/k + ~ ~ ~

gives us

ao= e(0)/i = —i

e '(0) = -ace: = i C

(810)

(81 la)

(81 lb)

where C' is a constant we can compute as soon as
we have f (k).

Specific forms for f'(k) and f (k) follow from a
straightforward application of the Wiener- Hopf
technique. Q(k) is an even function of k which is
analytic except for branch points at

k = + ia = + [(&u —&u, ) r + i]
We choose the branch cuts to run from the branch
points outward to infinity, parallel to the imaginary
axis. We shall displace the branch cuts slightly
in the neighborhood of

k = iK, = i(,' vb)"'-- (813)

in such a way that the special points k = aiKO are
always to the right-hand side of the cut as one
faces away from the origin of the k plane (Fig. 4).
This choice of cuts has two effects, one of which
is to produce the form (Al), and the other of which
is to assure that the equation Q(k) = 0 has only one
pair of roots, namely, at k=+k, . To the accuracy
which we shall be working,

k )
——Koe" (813)

The Wiener-Hopf factorization is then accomplished
by having

f (k ) = (k —k q) e s (814a)

f '(k ) = (k + k, ) ie s (814b)

Usually, one is concerned only with E(k) and not
with H(k), the Fourier transform of a function in-
troduced to make the Wiener-Hopf method work.
In our case, however, comparing (A3) and (83) re-
veals that j(x)= ih(- x)/b so that the function Z(k)
needed for the integrals in Appendix A is given by

J(k) = iH(- k)/b

Using the large-k expansion of (86),

E(k —~)= e (0)/(ik)+ e'(0)/(ik) + ~ ~ ~

our knowledge that at large k, the expansion of
f (k) will take the form

WAVES

09 l2 l.3

where

s'(k) = . (z —k) 'dz ln[Q(z)/(z —k2)] . (815)
2lTZ»ooy j

FIG. 3. Transmission data from the PBD 1etter. Note also that
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f'(k)= —1/f ( k)- (816)

We consider S (k): Sweep the contour upward to
surround the branch cut in the upper half-plane.
If we let k, denote a value of z along the cut, and
we let g(k, ) denote boundary values of Q(z) on the
outgoing (+) and the incoming (-) side of the cut,
then the integral in (815) becomes

ja
S (k) =

2
. . (k, —k) 'dk lnG(k, ),

tC

G(k, ) =- q'(k, )/q (k, ) .

(81')

(818)

This form arises because the integrand does not
contribute to the tiny semicircle around the branch
points and because Q(z) is the only part of the inte-
grand which is different on the incoming and out-
going sides of the cut.

We can now take the Fourier inverse of (86),
using (88a), (Blla), and (814a) as

contribution will be exponentially negligible.
The branch cut contribution consists only of the

integrals along the outgoing and incoming sides
of the cut, again because the integral around the
semicircle surrounding the branch point vanishes.
Thus,

to(~) = . ' e*""(e' '"' —e' '"') . (820)
1 '" dk, . - +

27Ti;, k, —kg

Points on the outgoing (+) and incoming (-) sides
of the cut can be designated as

k,'= k, (1 v iq), ri —0+

so that

1 '" dk, lnG(k, )

2wi, . k, —(k, + iq)

1 '" dk, lnG(k, ) v QnG(k, ) (821a)
27t i jg kg kQ

go(x) = — E(k)e' dk
27t

s (a)+'~e
2mi „k—kg

(819) We define

= S (k, )w —,'lnG(k, ) . (821b)

We also evaluate this integral by sweeping the con-
tour upwards, letting it surround the pole of this
integrand and the branch cut. The pole contrib-
utes a residue with spatial dependence e "~", a
quantity which is essentially e" ', where 5 is the
anomalous skin depth. We shall always work with

x much larger than the skin depth, so the residue

I(k, ) = 2. inG(k,-)
1

27TS

and choose the branch cuts such that

kc —I+ suy o'u
dk, = idu .

Then (820) takes the form (Al), with

(822)

(823)

P(u) = e '"~'sin[xi(k, )] .
v(k, —k, )

(824)

iKO
r
r
r

~'

r

r

~'

r
r

r
r

+(~-~c)T

Now, to return to (89): We use (Blla), and (816)
to obtain

J(k) =(i/b)[i(k —k, )e '"' —ike(0)+e (0)] . (825)

All that remains is to get specific evaluations for
S(k), and e (0). Using the definitions of K(k) and
of Kg),

IC(k;)= (k ~ —,) (k
' / i ) ~

-I-(cu-co~) v.

Then

-=A(k, )+ ia(k, ) . (826)

~ ~ ~

///p
iKO where

)
1 1 —iC(k )

= ——tan C(k )
1

jj C

8(k, )
A(k, ) —i(k' g fz)/b '—

(82Va)

(827b)

(828)

FIG. 4. Location of the branch cuts. We can perform some of the integrals we need
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analytically if we use approximate forms for I(k ).
The approximate forms below are, with the excep-
tion of (B29a) below, valid to an accuracy I al/K, .
The approximation (B29a) is a purely numerical
one, and it is based on the power series expansion:

&&10 ' at kgia = l. 1. That error drops to 8&&10

at k,/ia = l. 01 and l. 2, and is still less for other
values of k, /ia between l. 0 and l. 01 and between

k, /ia = 1.2 and infinity:
range 2:

range 1:

k, &
I aK0l'/

C(k, )= ' = ~(1+a'/k.'a(k. )

C

a
l

k +i@ 2ia

~
aKO~ & k, & ~)nI K

f(k.) = ——,'+ A, (ia/k, );
range 3:

iai'"K"'&k &K

(B29b)

f(k, ) = —,'+ A, (—in/k, ) +A, (in/k, )'

+Ai(ia/k, ) +A()(ia/k, ) (B29a)
(B29c)

where

A, = 4/)) = 0. 405 285,

Ai=8/3)) —64/3w = 0. 051182,

Aq = 12/5v —128/3)) +1024/5v = 0.018181,

As =
~

—As A3 —A5 = 0.025 352 .

The maximum numerical error in f(k, ) is 1.6

range 4:

k, Ko,

These approximations give us

(B29d)

-1 iQ 'LCl ZCl iQ
1/P

S (k)= idi(kc k) A — +Aq — +A() — + idt(k, —k) —~+A)—
0

( 1)(tt-~) ii ro
+

n odd&0 0
'dt(k, —k) '( )

—f tdt(k, —k)'(~) (B30)

For k smaller than I aKOI
'i (and we shall never

need k larger than this), we can, to within the
I a/KOI accuracy, expand (k, —k)

' in the integrand
of the infinite series term as 1/k, + k/k„carry
out the indicated integrations, and sum the resul-
tant series to obtain, for the entire infinite series
term, the value —~in —k/(2Ko&). The other

terms may be evaluated with no particular diffi-
culty.

The only other moderately subtle point involves
the evaluation of Z, the dimensionless surface im-
pedance. From (B14a), (B17), and (B22), we

have, as k- ~,

1/f (k) = (k —k)) 'e ' ' = (1/k) [1 + k,/k —(1/k) f,, dk, 1(k, )] (B31)

and the integral here is

lore i'/~
dkc I kc = t'dt A3 +A5 +As + l dt —2+Ay

(-()'" ""'f "„(k
) f'„(t~t)"

The infinite series may be integrated term by term and summed to give KJ(2v 3). Then the coefficient of
1/k in (B31) (or the constant C in (B10) is

C=KO(e" i + ~i —1/2v 3) —A, iain(K()/a) =2Koe" i /v 3 —(4ia/)) ) 1n(KO/a) .
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This means that the dimensionless surface impedance, using (3.8) and (Bllb), is

Z- ' ——~e""———' ln~ (Hs2)
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