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The dielectric constant of sodium chlorate has been analyzed on the basis of a Mason-Debye-type
relaxation formula. A consistent description of the temperature dependence of the phonon structure and
the dielectric-constant behavior as a function of frequency and temperature is obtained for this
nonferroelectric order-disorder crystal. The fluctuation meccan»nm responsible for the dielectric relaxation
behavior is identified as that of the apex reversal of the chlorate ion as one approaches the transition
temperature.

INTRODUCTION

Recently, ' the behavior of the dielectric con-
stant of NaNO& at low frequencies has been ex-
plained by using the Mason theory of the relaxa-
tion process of dipolar polarization in the order-
disorder crystals. In Ref. 1 it has also been es-
tablished that the time-dependent statistics de-
scribing a self-diffusion process defined by a cor-
relation time v, can account for dielectric-constant
behavior at the ferroelectric-paraelectric phase
transition. Mason's dipolar relaxation process is
a simple Debye-type relaxation with a single di-
electric relaxation time which is proportional to
the static dielectric constant. In this model Mason
essentially considers the jumping of the hydrogen
nucleus in a "hydrogen bond" to be responsible for
the ferroelectric effect of a rochelle salt. He as-
sumes that the hydrogen nucleus is under a self-
diffusion mechanism over a potential barrier 4 U
between two minima separated by a distance 6, and
the correlation time of jumping from one potential
well to the other is given by 7 = Tpe, which
defines the random character of the statistical be-
havior for the jumping particle. If there are par-
ticles jumping from one side to another, there is
a population of particles in the potential well plus"
and there is a population in potential well "minus, "
being N, and N, respectively, the net dipole polar-
ization being proportional to the difference between
these two populations. The time-dependent statis-
tical behavior of these particles depends on 4U
and on the temperature. This model describes the
fluctuation mechanism essentially by the fact that
a particle has a probability to take two equivalent
positions along a direction. Mason's expressions
for the dielectric constant (which is given in the
next section) compared to one deduced by Debye'
has two additional parameters that are "micro-
scopic'*: a factor which is a function of the dis-
t3nce 5, the separation between the potential wells,
and b, U, the activation energy. In his approach,
Mason also considers that the dielectric-constant

behavior depends mainly on the variation of 5 and
4U as a function of temperature, and neglects the
variation of all remaining lattice parameters.

The dielectric-constant behavior of NaC1O3 at
low frequencies shows a Debye-type relaxation.
This certainly is strong evidence that some dis-
order mechanism is involved in this crystal. So
it seems very interesting to make an attempt to
explain the dielectric-constant behavior of sodium
chlorate using an approach similar to that used for
NaNO2. Taking Mason's approach as a frame-
work, in this paper we try to give a consistent de-
scription for the temperature dependence of the
phonon structure and for the dielectric-constant
behavior of NaC1Q, at low frequencies by assuming
a "correct" balance between the Lyddane-Sachs-
Teller (LST) and Mason relaxation contributions to
the dielectric constant. Under our assumptions
for the thermal expansion of 4 U, it is possible to
define NaC103 as an order-disorder crystal, though
not a ferroelectric. Based on our assumptions, we
suggest that the jumping particle in the double-well
potential is the chlorine atom in the chlorate mol-
ecule and we predict the behavior of the dielectric
constant of NaC103 as a function of frequency and
temperature.

PREVIOUS VfORK ON NaC103

The dielectric constant of sodium chlorate has
been measured at 1 kHz, 1.6 MHz, and 10 GHz

by Mason, Narayana Rao, ' and Rasmasastry
and Ramaiah, respectively. At room tempera-
ture the reported values are 5. 6, 5. 7 and 4. 6,
respectively. Mason, and Ramasastry and Ram-
aiah have also studied the temperature dependence
of the dielectric constant of this crystal. The ex-
perimental data of the dielectric constant are
shown as a function of temperature in Fig. 1. The
difference between the low-frequency values and
the high-frequency values of the dielectric con-
stant in this crystal may not be attributed to its
piezoelectric nature, since the piezoelectric reso-
nances occurring at 100 kHz do not appreciably
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FIG. 1. Measured values
of the dielectric constant
of sodium chlorate at 1 kHz
and 10 GHz from Ref. 5
and 7, respectively.
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contribute to the dielectric constant because of the
nature of the change of sign of &' at resonance. '
This anomalous dispersion is usually found to be
superimposed on a constant "background" value of
the dielectric constant.

NaC10, is cubic, belongs to the T4(P2&3) space
group, and has four formula units per primitive
unit cell. The Raman spectrum of sodium chlo-
rate has been studied by several workers and a re-
view of this work can be found in Ref. 8. Sodium
chlorate belongs to a noncentrosymmetric class.
Hence, there are modes which are simultaneously
Raman and infrared active. These polar modes
split into longitudinal and transverse optic modes.
The dielectric constant calculated from the gen-
eralized I.ydanne-Sachs-Teller relation, by taking
into account all the proper LO and TO phonons,
explains the dielectric constant measured at op-
tical frequencies but not the one at low frequencies.
Recently, Dawson concluded from Raman mea-
surements that there is no significant dielectric
mechanism between the microwave and infrared
regions. Apparently though, he has overlooked
the low-frequency dielectric-constant measure-
ments and the &j,„ in his paper corresponds to the
10-GHz measurements. Hence the deviation of
& at low frequencies cannot be explained by phonons
alone and there is an additional contribution to the
dielectric constant.

The temperature dependence of the static di-
electric constant is typical of that of a ferroelec-
tric with an extrapolated Curie temperature of T
= 593 K. Mason has expressed the dielectric

constant of sodium chlorate at a frequency of 1 kHz
as a function of temperature by the empirical relation

310 6750
(320 —8) (320 —8)~ '

245
(375 —8)

' (2)

In all of the above studies the actual microscopic
mechanism responsible for the dielectric behavior
has not been revealed. It is only known that as
the temperature increases, the crystal becomes
highly ionized, with the chlorate ions separating
from the sodium ions for a large number of mole-
cules. This would explain the melting of the crys-
tal, but the actual mechanism causing the ferro-
electriclike behavior with an extrapolated Curie
temperature is not known. The present study is
an attempt to provide such an additional insight into
the fluctuation mechanism responsible for the di-
electric behavior and the dipolar polarization.

where 8 is the temperature in degrees centigrade.
The temperature-independent part is due to the
electronic and ionic polarizabilities and the tem-
perature-dependent part is due to changes in the
orientation of the chlorate dipoles. Mason resorted
to the above empirical equation for the dielectric
constant because there was no treatment of the di-
electric constant for temperatures below the tran-
sition temperature. For temperatures above room
temperature, the dielectric constant can also be
fitted to an equation of the type
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(3)

I

The frequency- dependent dielectric constant
e(Id) is due mainly to the excitation of bound elec-
trons, lattice vibrations, and dipolar orientations.
At very low frequencies contributions from each
of these three processes may be considerable.
The manner of variation of the dielectric constant
with frequency indicates which contributions are
present. All three types of polarizations can be
correlated to "oscillators" with specific eigenfre-
quencies and damping, and the eigenfrequencies of
these oscillators play the essential role. The vi-
brational contribution can be more or less than
the electronic contribution depending on the rel-
ative strengths of these oscillators.

The frequency dependence of the dielectric con-
stant has been treated before based on molecular
approach. ' ' The earliest and simplest cor-
relation between dielectric constant and frequency
is given by the Debye equation for the dielectric
relaxation in polar liquids,

~0- ~
f((d)= e —xe = f~+ 1+l~

where E„ is the high-frequency dielectric constant,
&0 is the static dielectric constant, and v is the re-
laxation time characteristic of the dielectric and
is a function of temperature. By separating the
real and imaginary parts, we get the well-known
Debye equations, which describe the relaxation
spectrum. The exponential decay factor, i. e. ,
the relaxation time, is given by

[h U/kT1 (4)

where v2= h/kT (according to Eyring's reaction-
rate theory) and 4U is the activation energy. This
kind of behavior of r is based on a model of a dou-
ble-well potential for a dipole with two equilibrium
positions, each corresponding to the axis being
parallel or antiparallel to a specified direction.
The activation energy 4 U corresponds roughly to
the height of the potential barrier.

By assuming such a model, the dielectric con-
stant in Mason's dielectric relaxation theory is
given by

(4 IIA/P) [1 —(P,/NiI. ) ]

1-A[1-(P,/Np, ) ]+ (itdh/kT) e2u~ r
[ cohs(AP, /Ni)] 2I

(6)

Recently, Andrade and Porto' have restudied the above expression, by taking the phonon contribution to
the dielectric constant explicitly. Their equation is

SI (42A/P) [1-(P,/N i2)']
uI2 —&u2 1-A[1—(P,/Ni2)']+(iIdh/kT)e 2 ~' [cosh(AP, /Np)] '

where e„=n, the square of the index of refraction.
P, is the spontaneous polarization, p= 4w/3 for iso-
tropic materials, p, is the dipole moment, and A.

is the parameter defined by

(e *)'O'NP" (1-W)»'
where 5 is the separation between the potential min-

ima, N is tl'e number of dipoles per cm, y is the
polarizability per unit volume due to all dipoles,
and e* is the effective charge. The first two terms
on the right-hand side are the contribution of the
ordered system to the dielectric constant and the
last term represents the effect of the internal ran-
dom motion of particles. 4 U, the activation en-

ergy, approaches zero as the separation between
the potential minima goes to zero and hence A
tends to zero. In this situation, the contribution
from the third term in Eq. (6) is negligible and we
have a perfect harmonic lattice which can be de-
scribed by the LST relation. So, whenever a self-
diffusion process describing a double-well disorder
mechanism is present, one needs to consider the

correct balance between the LST relation and the
relaxation contributions to the dielectric constant.

In the absence of spontaneous polarization, i. e. ,
in the nonferroelectric state, we have

e (&d) = f„+~j (dy —R

(4II Alibi)

(1 -A) + (iIdh/JrT) e'~~ 2

(4IIA/P)(1 —A)
+

(1 A)2 (~2h2/f 2T2) e2 U/ T22 (9)

The three terms in Eq. (9) arise from the elec-
tronic, phonon, and relaxation contributions to the
dielectric constant.

since for P, =0, cosh [AP,/Ny]=1. Hence the. con-
tribution from the internal random motion of par-
ticles is evident even in the absence of sponta-
neous polarization. The real part of Eq. (8) is
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FIG. 2. Raman spectrum
of sodium chlorate in the
external-mode region at
T=20'K for the geometry
Z(YZ) Y. The asterisk in-
dicates change of scale and
scanning speed
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RESULTS

In order to fit the dielectric constant to Eq. (9),
one has to know all the frequencies of the longitu-
dinal and transverse optic modes and also b U, the
activation energy. The room-temperature Raman
spectrum of sodium chlorate has been intensively
studied by Hartwig et a/. However, all the ex-
pected 14 modes with I" symmetry could not be ob-
served at room temperature. Miller and Khanna
have examined the spectrum at 77'K and could
identify the missing modes. However, the previ-
ously unobserved modes at 143, 178, and 202 cm '
were still very weak even at liquid-nitrogen tem-
perature. They have not reported any extensive
measurements at other temperatures. We have
examined the spectrum at 20'K and resolved the
spectrum completely. The F(TO) spectrum of
sodium chlorate at 20'K for the geometry Z(YZ)Y
is given in Fig. 2. The temperature behavior of
the missing mode region is shown in Fig. 3; this
figure indicates that the modes which are well re-
solved at low temperature become broader and

merge together at higher temperatures. We be-
lieve that these modes become so broad at about
250'K that our instruments cannot resolve them.
The temperature behavior of all the modes is given
in Fig. 4.

The activation energy A, U was calculated on the
assumption that 4U changes with the temperature
in the same way as the Raman frequency of libra-
tion of the chlorate dipoles does. This is consis-
tent with the calculations of Yamada et a/. ,

'6 who

assumed that 4U for NaNO& changes with temper-
ature in the same way as the Raman frequency co,

of the libration of the NO~ dipole does between
437 and 473'K, which was later extended to tem-
peratures below the transition temperatures also
by Andrade et a/. ' The reorientational frequency

of the chlorate dipoles is identified as 131 cm ' at
room temperature.

The temperature dependence of the phonon fre-
quency can be fitted to an equation of the- type

&oz=[1+y' (T„—T)] &uo, (10)

Z(YZ)Y

F TO

I I I I I

220 80 200 I0 180 170 160
Cm-~

FIG. 3. Temperature dependence of the modes at 174,
201, 211, and 218 cm '.

where y' = 2. 98 x 10, coo = 113 cm ', and T„=520 'K.
vo and T~ were chosen as the limiting experimental
values for (d and T which are close to the melting
temperature of the crystal (T„=537 'K). With
these two arbitrary values the parameter y' is
fitted.
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If the rate of molecular transition is given by a
correlation time r, described by Eq. (4), one ex-
pects that the linewidth I' of the mode associated
with the jumping particle is also a function of w, .
Typical expressions for spectral densities which
describe relaxation processes can be found in Refs.
17 and 18; the experimental data for the linewidth
I' suggest that the linewidth for the mode v, can be
fitted to an expression similar to that of the line-
width of the J3, mode of NaNO, :

I' = (a + 5T) + c
1+(02 e

where &, =7o e"" and a=1.98 cm ', b=2. 3x10
'K, g = 2. 9x 104, d = 177.5 J cm sec. The

experimental values of ~3 and I' at various tem-
peratures fitted to Eqs. (10) and (11), respectively,
are shown in Fig. 5.

By assuming that the activation energy 4U
changes in the same way as the libration mode roz

(AU=durz), the dielectric-constant values of sodium
chlorate have been fitted to Eq. (9) for frequencies
u= 1 kHz and 10 Ghz, with A as a variable. There
will be one value of A for a given temperature. So,
all through the temperature range a set of values
of A can be generated. From these values of A,
the separation between the potential minima can
be calculated from Eq. (I}, where for NaC10„

E
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3
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The values of A and 5 thus obtained are plotted
in Fig. 6 as a function of temperature. The room-
temperature value of 5/2, 0. 55 A, agrees well with
the value, 0. 48 A, from the x-ray data, which
corresponds to the distance of a chlorine atom
above the plane of the oxygen atoms. In Fig. 7 the
activation energy & U and the inverse of the relax-
ation time &,' are plotted as a function of tempera-
ture. The behavior of &U and 7,' are consistent
with Eqs. (10) and (11}. For low enough tempera-
tures, we expect that the linewidth of this libration
mode ~~ to be proportional to temperature and at
a certain temperature, when the disorder mecha-
nism becomes predominant, we expect the line-
width to increase exponentially in the same way as
the inverse of the correlation time. For sodium

N= 1.424x10 dipoles/cm,

V= 2. 808x10 ~~ cm',

y can be calculated from the equation, and
20 IOO 200 500 400

TEMPERATURE ( KI
500

4sy (&o- 1)
3 3+ 3P(eo- 1}/4v

(12) FIG. 5. Frequency and the linewidth of the libration
mode coq as a function of temperature.
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FIG. 6. Parameter A and the potential-well separa-
tion 5 as a function of temperature.

chlorate this disorder sets in at around 250 K.
This will explain the merging of the three modes
in Fig. 3. In Fig. 8 the dielectric constant calcu-
lated from Eq. (9) for various frequencies is plot-
ted as a function of temperature (curves 2 to 6).
The experimental values of curves 2 and 6 agree
very well with the theoretical curve. Knowing the
variation of A with temperature, the variation of
dielectric constant with frequency can be predicted.
In Figs. 9 and 10 the real and imaginary values of
the dielectric constant as functions of frequency
are plotted for various temperatures.

DISCUSSION AND CONCLUSION

NaClO, is usually not considered to be an order-
disorder crystal. However a Debye-like shape on
the experimental data of the dielectric constant at
low frequency strongly indicates that there is some
disorder mechanism present. Our principal aim
using Mason's approach concerning dielectric re-
laxation in solids was to obtain a possible identifi-
cation of the particle which is under a self-diffu-
sion process in sodium chlorate. We have at-
tempted it by assuming a "correct" balance between
Lyddane-Sachs- Teller and Mason- Debye contri-
butions to the dielectric constant. A relaxation
process implies the existence of an "off-resonance
phenomenon" whose contribution to the dielectric
constant is given by the third term of Eq. (8).
Further, if b U00, the A factor and consequently
the distance 6 are nonzero.

If the crystal is ordered (in the sense that there
are no random particles present) it is expected
that the phonon contribution can account fully for
the behavior of the dielectric constant as a function
of frequency and temperature. However, for a
disordered crystal the thermal expansion of the
activation energy affects the statistical behavior
of the jumping particles. If the height of the po-
tential well does not go to zero, one expects that
the vibration frequency of this random particle

Oo35
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20' o
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300 400 500
0

600

TEMPERATURE ('K)

FIG. 7. Activation energy AU and the inverse of the
relaxation time as a function of temperature.

does not go to zero either. We have labeled the
limiting value of this frequency at a temperature
where 4 Uo reaches roughly its nonzero lowest val-
ue as the hard-core frequency.

Under our assumption that the activation energy
follows the behavior of the frequency of the libra-
tion mode it was possible to fit the experimental
data of the dielectric constant of NaC103 with Eq.
(9). We have taken the libration mode because, as
is well known, a libration can be described by a
Langevin equation"'" which is in fact a definition
for a random force. So, a libration inherently
has a random process involved which favors it to
be naturally" connected with the behavior of ran-
dom particles under a relaxation process. In this
way it was possibIe to predict the behavior of the
dielectric constant as a function of frequency and
temperature for a large range of temperatures.
Assuming our approach is legitimate, we have
identified the chlorine atom in the chlorate mole-
cule as the particle under a self-diffusion process
in a double-well potential. This may be responsi-
ble for the relaxation behavior of the dielectric
constant of sodium chlorate. From the fitting be-
tween the experimental data with Eq. (9), we were
able to determine the disorder distance 5. In this
way this method can be a complementary tool to
the crystallographic techniques. Depending on the
correlation times involved, it is possible that
sometimes crystallographic techniques give only
an average structure for a crystal. From these
fittings, we were also able to predict the behavior
of the dielectric relaxation time as a function of
temperature (Fig. I).

Essentially, our approach' implies that the be-
havior of the frequency and of the linewidth of the
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Equations (10) and (11) define a consistent depen-
dence between the second and third terms of Eq.
(8).

Our measurements of the linewidth of the libra-
tion mode as a function of temperature seem to in-
dicate that for order-disorder crystals one must
measure those linewidths always for a large range
of temperatures. The l.inewidth shows a slight
bend around room temperature that would not be
observed if the temperature range was short. Be-
sides, the shape of the linewidth as a function of
temperature will tell us which phonon is associated
with the disorder mechanism [Eq. (11)].

It is interesting to note that the behavior of the
dielectric constant of NaC10~ as a function of tem-
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I I I I I

4 6
FREQUENCY G %

298'K

10

0.4

0.2

I 2 3 4 5 6 7 8 9 10
m(6Hz)

FIG. 9. Predicted values of the real part of the di-
electric constant as a function of frequency, for various
temperatures. The circles correspond to the experi-
mental data referred to in the text.

FIG. 10. Predicted values of the imaginary part of the
dielectric constant as a function of frequency, for various
temperatures.
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perature follows very closely the behavior of the
dielectric constant of rochelle salt for tempera-
tures before the first transition temperature at
—18 'C. ~ Both behaviors can be explained by Eq.
(8).
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