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The decay behavior of the one-pulse free-induction, two-pulse echo, and three-pulse stimulated-echo

signals is calculated for a system of A spins, isolated from each other, whose local field fluctuates

because of the uncorrelated flipping of a system of B spins randomly located. The decay behavior is

obtained in closed form and is valid for all time. We find that the dipolar line shape, which is the

Fourier transform of the free-induction decay, is always narrowed by the flipping of the B spins. The
two-pulse echo first decreases as the 8-spin-flip rate 8' increases and then increases as 8' is further

increased. Except for the free-induction decay our formulas coincide in the limits of very short and

very long times with those calculated by Klauder and Anderson and by Mims.

l. INTRODUCTlON

One of the most intriguing effects in the study of
both spin resonance and the transient excitation of
optical resonance is the relaxation behavior of the
signals generated. ' ' Although one speaks freely
of the decay in terms of a single-phase memory
time the decay is usually not characterized by a
simple exponential function. One important mech-
anism is the so-called spectral diffusion which is
caused by the fluctuation of the local field at the
site of the resonance ions. The local field at an
atomic site has many contributions of different
origin: strain fields, dipolar fields, hyperfine
fields, etc. For a material containing unpaired
atomic spins which interact strongly either wi'th

each other or with the lattice vibrations of the
sample, the source of the fluctuating local field
will be the flipping of those unpaired spins.

The problem of spectral diffusion decay in spin
resonance has been studied by many workers. '

For simplicity, the samples are usually classified
into two kinds. Those in which the flipping of the
neighboring ions is mainly caused by a spin-lattice
interaction are called T, samples (T, is the spin-
lattice relaxation time), and those in which the
flipping is caused by a spin-spin interaction are
called Tz samples (Tz is the spin-spin relaxation
time). Obviously a T, sample is simpler to treat
and this is the case that we restrict ourself to in
this paper.

Two models have been proposed. In the model
presented by Klauder and Anderson, 4 the fluctua-
tion of the local field is described Uy means of a
stochastic model, and wide classes of both Mark-
offian and non-Markoffian distributions are used
to predict the results of transient electron-spin-
resonance experiments. In the particular case
where the local field is due to neighboring mag-

netic dipoles, the conditional distribution for the
spin precessional frequency is argued to be
Lorentzian in the short-time limit, . This distribu-
tion function leads to a spin-echo behavior which is
in good agreement with experiment.

The other model, utilized by Nims, ' is called
the Gauss-Markoffian model. The echo amplitude
is obtained as a double average over (i) an ensemble
of A spins having identical spatial B-spin environ-
ments and (ii) all possible such environments (A
environments). The second average is calculated
assuming random placement, while it is argued
that the first average is effected by assuming that
the z component of the B-spin dipole moment is a
Gaussian random variable and its correlation func-
tion is Markoffian. The echo amplitude is calcu-
lated for arbitrary excitation pulse separation but
it is stressed that only the long-time results are
physically valid.

Our model is elementary. Our essential as-
sumptions are only the following.

(i) The spin placement is random.
(ii) The A spine, whose signal we observe, are

isolated from each other.
(iii) The fluctuating field at the A-spin sites is

due to the dipolar field of the B spins whi, ch are
flipping between two quantum states at rvn6om, ot
an average rate S'.

(iv) The A and 8 spine can be treated as spin-2
systems. By averaging first c~.: .

:.",'
.;or. —

figurations we express the free-induction or echo
amplitude in terms of a sum Aver all possible B-
spin-flip sequences which ~= evaluate to obtain a
result which is valid for all time. Our model is
such that it cc.. re~~~ric&- "'-~'"'~fff..~fly &~ »~ho' ~ ~:

would expect when using a T, sample. Our results
coincide exactly with those of Klauder and Ander-
son in the case of two- and three-pulse echoes in
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the short-time limit and with Nims for the two-
pulse echo in the long-time limit.

Our calculations involve isolated A spins inter-
acting with B spins which are flipping. In practice
the A-spin resonance is further broadened by other
spin species, crystal field strains, etc. As long
as the additional broadening is static (inhomoge-
neous) the effect on all our results is elementary.
For the free-induction decay, an additional static
inhomogeneity would have the effect of multiplying
our result by the Fourier transform of that inhomo-
geneity line shape. There is no effect of the addi-
tional inhomogeneity on the echo-amplitude calcu-
lations since we restrict ourselves to calculating
the amplitude of the echo at ~„ the time the echo
is expected under idealized conditions. The static
inhomogeneity modifies the shape of the echo by
attenuating it for times other than T,. The static
inhomogeneity thereby serves to sharpen and better
define the echo, it does not change its value at &,.

In Sec. II we begin by writing the expression for
the free-induction signal amplitude for a single A
spin interacting with a single 8 spin. The B spin
flips at random at an average rate W. A formal
expression for the general free-induction signal is
obtained by summing over all B spins and by aver-
aging over all possible A. environments. Our result
is expressed in terms of a sum over all possible
B-spin-flip sequences. The leading terms involv-
ing zero or just one spin flip are calculated ex-
plicitly and show that the initial effect of B-spin
flipping is to lengthen the free-induction decay.
We recast the general spin-flip term by a reorder-
ing procedure and reduce it to an elementary inte-
gral, enabling us to sum over all spin-flip terms.
Our result is in terms of modified Bessel functions
of zero and first order and shows that the effect of
the B-spin flips is always to lengthen the free-
induction decay.

In Sec. III we' calculate the two-pulse echo ampli-
tude. We proceed as in Sec. II and obtain our re-
sult in terms of a sum over all B-spin-flip se-
quences. By evaluating the leading term explicitly
we obtain a short-time result which is identical to
the result of Klauder and Anderson. We evaluate
the general spin-flip term for an odd number of
spin flips by demonstrating an equivalence with the

general spin-flip term evaluated in Sec. II. We

evaluate the long-time limit by recognizing that it
is only necessary to evaluate the term correspond-
ing to the average number of flips 2R'& that one
would expect in the time 2w between the first ex-
citation pulse and echo. Our result agrees with
the work of Nims. The general spin-flip term,
corresponding to an even number of spin flips, is
evaluated by obtaining a differential equation which
relates the even and odd spin-flip terms. This
differential equation is derived in Appendix A.

The sum over all spin-flip terms is evaluated in

terms of modified Bessel and Struve functions and
it is demonstrated that in both the short- and long-
time limits it reduces to results previously ob-
tained.

In Sec. IV we evaluate the three-pulse stimu-
lated-echo decay amplitude. This calculation is
straightforward as we are able to utilize the re-
sults of Sec. II and III directly.

The last section (Sec. V) is the discussion. All
our results are expressed in terms of two gener-
alized dimensionless functions G(z) and K(z) with
dimensionless arguments z. We plot and tabulate
these functions and discuss all our results in terms
of their behavior. We explain why one should al-
ways expect line narrowing for our model. We
give a physical explanation for the dipping of the
two-pulse spin-echo relaxation time. '

We obtain a rather large signal amplitude (the
word echo might be misleading) at the normal
position of the stimulated echo, in the case where
8'T +& 1, when T is the time between the second
and third excitation pulses even when the only con-
tribution to the local field is due to the flipping B
spina. We explain how this arises in a natural
way.

+m = pw ps/~ —34~'r ps r/& (2. 1)

and we assume that their resonance frequencies
are so large and disparate that we need only use
the diagonal part of this interaction. We apply a
90' excitation pulse, the effect of which is to take
an A spin initially in the ground state P', "', and put

it into a linear superposition of the A-spin ground
P', "' and excited P', "' states. We write the result-
ing A-spin wave function in a frame of reference
at resonance with the average A-spin frequency,
l. e. ,

0'"'(r) = (I/v 2) (exp[- —' f ur(t) dt] ) 0',"'

where

+(1/v"2)(exp[~i f &o(t) dt] jg,'"', (2. 2)

co(t) =2p„ps(t)(1 —Scosa&)h '% (2. 3)

The angle between the static applied magnetic field
and r is given by 8. In the expression for v(t) the
magnetic moment p,„is constant in time while jL(.~
jumps between the values + p, ~, at random, at a
rate W'.

II. FREE-INDUCTION DECAY

We start by considering an A and a B spin, with
dipole moment operators p, & and p.~ and separated
by a distance r, which interact through the dipolar
interaction:
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The free-induction-decay amplitude is then the

matrix element of the dipole moment operator in
the state (I('"~(r) and is

f(r, r, 8, (o(t)) =exp[i f, u)(t) dt), (2 4)

where it is to be understood that we take the real
part of the exponential term. '

The many-spin solution is obtained from the two-
spin solution by averaging over all A- and B-spin
sites. We must also average ovex all B-spin-flip
histories. We incorporate these operations into
our notation by writing the free-induction ampli-
tude as

f l
1 —3 cos'8

l
d(cos8) = 6/3 v 3

to obtain5 ~ 9 "
F(r)=exp[- t(, ur, &2 g

l f h(t)dtl],

where"

(2. 11)

F(r) =exp{NB(l —exp[its ~ f h(t) dt])). (2. 10)

We complete the operations of averaging over
spin sites by using

f (1-e'")x-'dx=vlCI

T

p( )=s((exp iE .,f h(tldt

where

(d~ ((= 2tLgt(, e(1 —3 cos 8 (()h r ((

(2. 5)

(2. 6)

n&u, & =[16m /(9 ((3)]npp, ((, h '.
Here, n (=N/V) is the number density of B spine.

It will be convenient for what follows to use a
more compact notation. We define

p

T

F(r)=g a exp i~, ~ h(t)dt
0

(2 '7)

where

(Q ~) = (2v/V) f r ~dr ~f sin&„~d8 qQ

(2. 6)

N is the number of B spins in the sample, and V
is the volume of the sample.

We note that 8 ~ 1 represents the average of unity
over all spin-flip histories and therefore must it-
self be unity. We can therefore write

F(r) = [1 —(1/N)NQ

and the subscripts n and P refer to A- and B-spin
sites, respectively. The bracket (( )) represents
the operation of averaging over A-spin sites. We
have defined h(t) through ys(t) = t(eh(t), so that h(t)
has unity magnitude and changes sign every time
its representative 8 spin flips. The operator 8
performs the average over all B-spin-flip his-
tories.

The average over all spin sites is particularly
simple, as we assume that both the A and B spins
have equal probability of being located in any point
in space and that the A-spin environments are un-
correlated with each other. This average is ob-
tained by factoring the exponential into a product
of terms corresponding to a fixed A spin and all
the B spins in the system. We then average each
B-spin position over space. The result is inde-
pendent of which A spin we pick as a reference.
We indicate the above operation in the expression
for the free-induction decay as '

e("& (r) = a
l f, h(t) dt l,

then

F(r) = exp[- h(o, t, n'"'(v)] .

(2. 12)

(2. 13)

a =Z tt„,
r=0

(2. 14)

so that 8, gives the y-flip contribution to 8. In a
similar manner we define

tt(h)(7) Q tt((() (2. 15)

where we have suppressed the dependence of 8„'"'
on 7.

The quantity g„~ 1 is just the probability that
there will be a total of y B-spin flips and is

8„ l=e 'W" f dt, f dt's ~ ~ ~ f dt„

= e "(il'r)"/r!, (2. 16)

so that

The operator 8 averages over all B-spin-flip
histories, it is an average over the probability
that a B spin does not flip, that it flips only once,
that it flips only twice, etc. We call the B-spin
flip rate W' so that the probability that the B spin
does not flip in a time T is e '. The probability
that it flips just once in the time ~ and that the flip
occurs in the interval between t, and I;, +dt's is
e '8'dt, . The probability that it flips just twice
in the time ~, once in the time inverval t, to ty+6My

and then once again in the later time interval t~ to
I2+dt~, is e '8'dt, Wdta and so on. The operator
8 is therefore a sum of operators; accordingly we
define 8„ through the equation

&(1 —exp[i&@,(( $ h(t)dt]) t" (2. 9)

Since N(Q z) is independent of t(t [E(l. (2. 9)] for
large N, F(r) becomes as we argued earlier.
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The operator g, „on I f~h(t)dtl puts restrictions
on h(t) which we make explicit in writing

= e
I f, h(t)dtl

F(r) = exp[- ~~,~(no" +8',"')] (2. 18)

for 8'T«1.
We can calculate 8(')") and 8',"' directly. We

obtain

a,'"'=a,
l f h(t)dtl

'I f h, (t)dtl=e

where we have used ho{t) = 1 and

~I"'=~
lfO, »(t)«l=e "wg «

I
f', h (t)«l

From the definition of h, (t),

f h, (t)dt= t, —(r —t, ) =2t, —r,
so that

g (A) . O'T ~&2= g.e

and F(7') becomes

w" f'«, f'dt, " f «„I y h„(t)dtl,
'1 ty

2. 17)
where

h„(t) = (+) 1 for t, & t & t„ for w(; d,),
to= o

except that

e(h) g e WT
0 0

The problem of evaluating the free-induction-
decay amplitude [Eq. (2. 13)] comes first in evalu-
ating the general term 8„'"' and then from evaluat-
ing 8'"~(r} from the sum over all g:. For short
times such that WT«1 the problem is quite trivial
since we need only evaluate the leading nonzero
terms in the expansion of 6„'" . lf we restrict our-
selves to the first two terms, then

a„'"'=a„l f, h(t)dtl

=e 'w" f'dt, f dt2' ' f.. .dt
I f, h {t}dtl

(2. 21)
where h„(t) is defined in Eq. (2. 17).

For g = 5 we illustrate h„(t) in Fig. 1(a), counting
that part above the zero line as positive and the
other part as negative. The total shaded area
represents Jo»5(t) dt. We note that an integration
over the t 's is equivalent to an integration over
the spin-flip intervals. Consequently we can re-
order the t 's so that all the intervals in which
h„(t) is positive come first and the other intervals
come later just as shown in Fig. 1(b). This defines
a new h~(t) [see Fig. 1(b)] such that

h~(t) =+1, 0& t& t„

h,*(t)= —1, t„& t& ~

where v = p, if y = 2p or if y = 2p. + 1 (p. is an integer}
and me have relabeled the t variable. We do not
change notation with respect to the t variable since
it is a dummy variable.

But now

f h„*(t)dt = 2t„—r,
therefore

g'"& = e "'w f d-t f « "f dt„let„ —7 I. (2. 22)
t~

This integral is simple if we integrate over the
variable t„. last. Then,

8"'=e 'W f dt(f™dtf dt ~ ~ f" dt }
K 2

&(f, «- f, dt. "
f, dt, )12t. -rl (2 23)

or

F(r) = exp[ —h&u, &~
e '7'(1+ 2 Wr)], (2. 19}

or on expanding the exponential inside the brackets
(oj

F(~) = exp[- a(o, ~r(l ——.
'

Wr)] (2. 20}

for 8'7.-&- l.
In lowest order the free-induction-decay signal

behaves like a simple exponential, as is mell
known. The effect of the 8-spin flips is to lengthen
the free-induction decay. The correction term
~W-, in Eq. (2. 20') is new.

We now calculate the free-induction decay E(w)
without restrictions. We require 8'"'(r), which is
a sum over the ~„s. 7he term Cy" involves y
spin flips and is expressed through Eqs. (2. 12),
(2. 14), and {2.15) as

~ ~'.~~i'Y'A'i i i,
(b)

I'IG. 1. Reordering of spin-flip intervals to simplify
calculation of C~+: (a) illustration of h„(t) for p = 5 with
8-spin flips at t~, tq, . . . , ts., (b) reordering spin-flip
intervals of (a) to generate the simplified function h~(t).
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Pz„(t) = t"(& —t)"'/n! (r/ —I)!,

P,„„(t)= t"(r —t)"/'&!!q! .
(2. 24)

The evaluation of P„(t) is elementary; the result is where the function

s(t) =+1 if t& r,
s(t}= —1 if t &7. (3.2)

The remaining integration is just over t„. %e ob-
tain

+«& -w
81' ( t)Z

&t&a) -w (Wr/2) ""
8~& ~ t (~+ 1) &

(2.25)

The quantity of interest 8 "'(r) is the sum over
all g. These sums we recognize in terms of the
expansion of the modified Bessel functions I„(z):

I ( )
-er&v/( 2& er&/z)u Q (z ).~! '(t +&)'

for integral v. ' %e obtain

(2. 26}

&t&A) Q &t&/&) z-wvrI (Wr)
q=Q

(2. 27)

'rI&(»)
qwQ

and E(r) [Eq. (2. 13)] becomes

F(r) =exp{-t«d»re '[lo(Wr)+I&(Wr)]) .

(2. 26)

(2. 2S)

As a check we use Eq. (2, 26} in the limit Wr«1
to write

ID(Wr) +l,(Wr) = 1 + p Wr, (2. 30)

III. TWO-PULSE ECHO

The two-pulse echo is obtained by applying a
180' excitation pulse at a time 7 after a 90' excita-
tion pulse is applied. The effect of the second
180' pulse is to interchange the ground- and ex-
cited-state spin-wave functions so that at a time
2r the wave function, which was Eq. (2. 2) just
prior to the excitation pulse, is

&!/&"'(2r) = ( /vI2 ) {exp[-&If s(t)&d(t) dt] ] &!t&,
"'

so that we recover Eq. (2. 20). In the limit Wr»1
we can use

I„(z)= (2zz) '/ e [1 —(4vz —1)/Sz+ ~ ~ ~ ] (2. 31)

which is independent of v in lowest order and which
is good for z»1. %e obtain, in lowest order,

F(r) = exp[ —(2/z)'/zn, ~ W-&mr&/z] (2 32)

for 8'7'&& 1.

E(27) = exp[- d &u, /z a
~ J s(t)h(t) dt

~ ],

8""'(2r)= 8
~ f s(t)h(t) dt ~,

E(27}= exp {-t&(u, /z 8""'(2r)),

(3.4)

(3.5)

(3.6)

and a.s in Eq. (2. 15) we define

&t&sh)(2r) Q &t&s/&) (3.7)
ym0

where again we suppress the 7 dependence of 8„""'.
For short times such that 8'«& 1 we can evaluate

E(27) directly. We need only calculate the first
nonzero term in the expansion of 8' '(2v'). As we
will see, the leading term is 8", "' so that

E(2v} = exp(- d, &d, ~ 6,""&)

for WT«1.
The fact that eQ ' is zero is evident from

(3. S)

&to&'"'=&t,
( f s«)h(t}dt[=e-'

)
j's(t)dt(=0,

where we have used the condition ho(t) = 1.
Ne evaluate 8", "' explicitly

&t&
"' = 8, ( f s(t)h(t) dt

~

=e 'i f dt,
i f s(t)h(t)dt's.

From the definition of s(t) and h, (t) [see Eqs.
(3.2) and (2. 1V)],

f '
s(h)h(t) dt = f h, (t) dt —f h, (t)dt

2t for t~ 7

so that

=2(2r —t) for t~ 7,

(3. O)

The echo amplitude is then the matrix element
of the dipole moment operator for the state g&"'(2r)
and 1s '

e(2r, r, 8, &d(t)}=exp[tf s(t)&o(t)dt]; (3.3)

again it is understood that we are to take the real
part of Eq. (3.3).

The many-spin solution is obtained as in Sec. II.
The equations corresponding to Eqs. (2. 11)-(2.13)
are

+(I/&2){exp[zt f s(t)~(t) dt])0', '
(3.1}

E(2r) = exp(- 2 Whar, /zr )

for 8'v'«1.
(3. 10)
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The quantity 2%' corresponds to the R=T1 of
Klauder and Anderson and Nims. Setting R = 2%'

we recover the Klauder-Anderson result.
In the limit W7» 1 the expression for E(2) }

simplifies inasmuch as it is sufficient to regard
each B spin as flipping exactly 2%'w times. The
expression for E(2~) then involves only one term
in the expansion of n"")(2r). We write the echo
amplitude in )his limit as

E(2v') =exp(-4u& n""'/ n„""' 1), (3. 11)

The general formula for 8„""'is obtained from
(3. 5) and (3. V) and is

n„' '=n„~ f s(t)h(t}dt~. (3.12)

The essential difference between 8„""'and the
term n„'"' [Eq. (2. 1V)] is the function s(t). Whereas
8„'"' was readily evaluated for y, even or odd, we
are only able to obtain a simple derivation for
8„""~when y is odd.

Consider ) =7. We show in Fig. 2(a) the possi-
ble function h(t) = h7(t}. We have chosen to illus-
trate the case in which four spin flips take place
before the time ~ and three spin flips take place
after ~. The integrand we must consider is
s(t}h,(t), which we show in Fig. 2(b). The value of
the integrand is the sum of the shaded area (area
is positive or negative depending whether it is
above or below the zero reference line). But we
must perform an integration over all possible spin-
flip times which correspond to four spin flips on
the left and three flips on the right. This is equiv-
alent to integrating over all possible intervals in-
dicated by the circled numbers in Fig. 2(a). This
being so we can reorder to obtain the sequence
shown in Fig. 2(b), which is equivalent to a new
function hf*(t) [see Fig. 2(c)] for which the time 7

occurs between the fourth and fifth spin flip, and
there are a total of seven spin flips. Our point is
that the function hf*(t) of Fig. 2(d), constructed as
we have indicated and used in Eq. (3.12) with the
function s(t) replaced by unity, is equivalent to
using the function h7(t) of Fig. 2(a) in Eq. (3. 12).
A parallel argument holds if there are an odd
number of spin flips before T and an even number
after. We can now, when y is odd, reexpress
n„""' of Eq. (3. 12) in the form

n,"„".), =n,„., ~ J,
'

h(t)dti, (3.13)

with y = 2%'~.
The term 8„""'~ 1 provides the proper normaliza-

tion since the number of spin flips is fixed at
y = 2W'7 and 8„'~' ~ 1 is the probability that there are
just ) = 2W7' spin flips. From Eq. (2. 16) of See.
II we have, on replacing & with 27,

n (sh), 1 s-sly (2W

which corresponds to Eq. (2. 1V) of Sec. II. From
Eq. (2. 25) of Sec. II we obtain on replacing ~ with
2T

n(s))) 2 -sw. ~
(W&)'""

2@+1 (3.14)

The parallel argument for 8„""'when y is even
does not work because it fails when there are an
even number of flips before and after v'.

We now evaluate E(2r) [Eq. (3. 11)] using Eqs.
(3. 12) and (3.14):

2 ""jr+1) tel

with the conditions that 2g+ 1 = 2R'7 and T4'7'» 1.
Since the arguments of the factorials are large

we can use Stirling's approximation to simplify.
Stirling's approximation is'

I'(z) =—(2v)'~'exp[(z ——,') lnz —z]

for z»1. We use I'(z+1)=z! for integral z) 0.
It follows that

', =—~ exp[(2)!+ 2) ln 2 —z ln(2)! + 2)]
1

2zq+2(20 2 }-1/z1
v2~

On setting 2%'7 =2@+1we obtain

E(2) ) = exp[- 2(I/v)'t'W )~a(o„,T)&] (3. 16)

for 5'~» 1, which for 2S'=R recovers the result
first obtained by Mims. '

To go beyond the limiting expressions for E(2) )
it is necessary to sum the 8„""'over all y. Part
of this sum we can do directly, as it corresponds
to a sum we performed in Sec. II.

We define

7 (sh)
~pdd = @a~.i

g=o

(3. 17)

n, ~= 2e s~'rf, (2%7') . (3. 18)

The corresponding expansion for 8, is not as
easily identified. However, as is shown in Appen-
dix A there is a simple relationship between Cp~~

and 8 yy4imi y which is

—e 'C~,I1 = 2S'e 8 Pdd.d7' (3.19)

(sh)@:e.= -' ~a~~
gaO

so now

"n" (2)r) =n, , +n,s~.

Just as in See. II, Eqs. (3. 17), (3. 14}, and (2. 26)
lead to
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hI{&) 27

P+2tl+ 1

L.(z) = 3' 3„o I'(rl+ —,)r(v+q+ —, )
' (3. 24)

so that after rearrangement we obtain the useful
expression

5(t) h, ({)

+{

CQH

(0)

E(2r) =exp —t&ur, &e
z 'r Z C„~ (2Wr)"

(3.25)
where the C„'s can be deduced from the recurrence
relationship

5{t)h,"(t)

g+1 C„
2&7+4 (&7+I) ——,

' [1+(-1}"] (3.26)

with C, = l. In lowest order, the above expression
recovers Eq. (3.10) for Wr« l.

For large z we use Eq. (2. 31) for I„(z); for the
modified Struve functions we use'

h7 (t)

(d)

Lo(z)=Io(z) -(2/&)z ',

L&(z) = I&(z) —(2/«)
(3.27)

FIG. 2. Reordering of spin-flip intervals to demon-
strate an equivalence between the C~+' and Q~~ terms
for p odd: (a) illustration of h„(t) for &= 7 with four B
spin flips before v and three B spin flips after v; (b) il-
lustration of s(t)h„(t) for case (a); (c) reordering in
second interval to generate an h„*(t) which is equivalent
to h„(t); (d) illustration of k„* (t) obtained from (c) which
is equivalent to h„(t) when s(t} is replaced by unity.

From this we obtain

8~~ =4e 'W t uI, (2u) du.

This integral is standard and given by'

(3.20}

f"m, (u) du= .'zv[I, (v)L-, (v) —L,(v)IO(v)], (3 21)

where I„(v) and L,(v) are the modified Bessel and

Struve functions of order v. The value of 8 is
then

&t~en = &&z
' r[I&(2Wr}LO(2Wr)

—L &(2Wr) Io(2Wr)] . (3.22)

The expression for the echo amplitude for arbitrary
Wr is now obtained using Eq. (3.6) with Eqs. (3.20)
and (3.22):

The echo amplitude E(2r) [Eq. (3.23)] then be-
comes identical, in lowest order, with Eq. (3. 16).

&t'""'(2r, T) =&1
l f, h(t)dt —f' 'h(t) dtl,

E,(2&, T) =exp[-t&&d&~&t&""'(2r, T)].
We define a term 8„'""' according to

(4. 3)

(4. 4)

IV. THREE-PULSE STIMULATED ECHO

The stimulated echo is generated by applying
three 90' excitation pulses separated by &, T.
We assume that there is either a large enough static
inhomogeneity or that & is long enough so that
there is appreciable dephasing when the second ex-
citation pulse is applied. If that is the case then
the contribution to the stimulated echo amplitude
from a pair of A and 8 spins is given by'

e,(2r, T, r, 8, &d(t)) =exp[- ft&d(t)dt

+t f &d(t) dt] . (4. 1)

We proceed as in Sec. II and list the equations
for the many-spin system corresponding to Eqs.
(2. 11)-(2.13):

E.(» T) = exp[- ~&d&yan I f h(t) dt —f h(t) dt
(4 2)

E(2r) = exp(- 2t&, &d, + e z~' rf I&(2Wr)
&t&&&&&)(2r T) Q 8&&&&&)

ywo

(4. 5}

+ z &&[I&(2Wr)I 0(2Wr) —L&(2Wr) Io(2Wr)])).
(3.23}

As a check on our work we evaluate E(2r) [Eq.
(3.23)] for the limiting conditions using the ap-
propriate expansions for I„(2Wr) and L„(2Wr).

For small z we represent I„(z) by its expansion
in z [Eq. (2. 26)] and I.,(z) by its expansion in z:

which is to mean that y is the total number of spin
flips in the intervals 0 to 7 and T+~ to T+27. We
are to assume that a sum over all possible number
of spin flips in the interval between 7 and T+7. has
been included. If the number of spin flips in the
time interval T is even then h(r)=h( Tr),+whereas
if the number is odd then h(7') = —h(r+ T). It fol-
lows then that
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T+T TOT 7+7

tt "t=tt, h(t)« t 'ftt' "' dt, ch ttt „)„
tlaO ty ta

2T TO T+T T+T T+T, tt, tttthttt« t "r tt'" «, ««.).
0 T t1 t2n- j. (4. 8)

E,(2T', T) =exp[-25&uL/Gr(WT + WT}] (4. 8)

for 8'7 «1 and 8'T«1.
This corresponds exactly to the result of Klauder

and Anderson.
In the limit WT» 1 we use Eqs. (2. 31}and (3.29}

to obtain

E,(2T', T) =exp[-2(l/TT)»W»n, &o»r'+] =E(2r ) .
(4. 9)

V. DISCUSSION

A. Free-induction decay

The behavior of the free-induction-decay signal
E(r) [Eq. (2. 29)] is conveniently analyzed by ex-
pressing it in terms of the universal function

The quantity e„l f h(t)dtl corresponds to 8„' [Eq.
(2. 17)] with r replaced by 2r, whereas
{t„I f~'s(f)h(t) df l is exactly {t{~) [Eq. (3.12}]. The

integral factors on the right-hand side of Eq.
(4. 8) correspond to the functions 2(l —e Gvr) and

2(1+e ' r). We can therefore obtain 8{44)(2r, T)
directly from Eqs. (2. 27), (2. 28), (3. 18), and

(3.22). Thus,

{AD{44)(2& T)

= e Gv'
T ([IG(2WT') + I,(2Wr}](I —e )

+ {I)(2WT ) + 2 TT [ I,(2 WT )IG(2 Wr)

—L,(2WT ) IG(2WT )] ] (1+e )), (4. 7)

which yields E,(2T', T) through Eq. (4. 4)
Using the limiting expressions from Secs. II and

III we find that

E(r) —e"4ttt1/2~ (5.4}

E(r) = exp[- (2/TT)L/'d. {d,~W »GTL/']-

for all values of b, (d»T above that at which W7»1.
The accuracy of the asymptotic form may be seen

since G(z) is constant. The rate of decay of E(T')

decreases as W/n&o, /2 increases. This is always
true since G(z) is a monotonically decreasing func-
tion of z. As W/ILG)L/2 is increased, the free-in-
duction-decay signal is always lengthened. This

behavior is to be expected on the grounds that any

spin precessing at some frequency other than exact-
ly at the central resonance frequency is more likely
to be shifted, when a B spin flips, toward the cen-
tral resonance frequency rather than to be shifted
in the other direction. This argument is trans-
parent in the artificial situation where each A spin
interacts with a single isolated B spin. Then when

a B spin flips, the associated A-spin resonance
frequency jumps to its symmetric position on the
other side of the resonance line and narrows it.
But we can argue precisely. If a 8 spin flips, its
effect on the free-induction amplitude at any in-
stant is the same as if it had not flipped but had its
moment reduced to its time-average value up to
that instant. This obviously lengthens the free-
induction-decay signal and reduces the effective
linewidth. This is a kind of motional narrowing. '

For larger W/tL)dL/2 the free-induction decay fol-
lows the asymptotic form of Eq. (2. 32), i.e. ,

G(z) = e '[III(z)+I,(z)],

so that

E(T) = exp[- d ur»GT G(Wr)] .

(5. 1)

(5. 2)

We plot and tabulate G(z) in Fig. 3 and Table I,
respectively. It approaches unity at small z as
1 —Gz. As z increases G(z) decreases and ap-
proaches the function (2/TT)~z + for large z. From
the form of Eq. (5.2) we can regard E(T) as a func-
tion of the two variables W/d{d, /2 and h)d, /Gr, i.e. ,

tttt

—0.)-

G{GM4LL t LIMIT) I I/2

a{GII4LL 2 LIMI T) * I
I/2 - I/2

4{L4)TGT 2 LIMIT) G{L4462 2 LIMIT) ««2I

I

)0,0

E(T') = exp —n. {t/»rG n, )d, /Gr
4(dying

(5 3)

In Fig. 4 we plot E(r) as a function of Ii Id»zr for
several values of W/n, {d,/2. In the limit W/n(oL/2
= 0 the decay of E(T') is a simple exponential,

FIG. 3. Generalized functions E(z) and G(z) are plot-
ted as a function of their dimensionless argument z.
Asymptotic limits are shown as a dashed and dotted line.
The limit of 6(z) at small z is unity.
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TABLE I. Generalized functions G(z) and E(z).

0.04
0. 05
0.06
0.08
0.10
0.13
0.16
0. 20
0.25
0.30

0.980
0.976
0.971
0, 962
0.952
0.939
0.926
0.909
0.888
0.870

0.0195
0.0242
0.0288
0.0379
0.0468
0.0597
0.0720
0.0878
0, 106)
0.1236

0.4
0. 5
0.6
0.8

1.0
1.3
1.6
2. 0
2. 5
3.0

0.834
0.801
0.772
0.719
0.674
0.618
0.572
0. 524
0.477
0.440

0.155
0.182
0.206
0.245
0. 274
0.304
0.323
0.336
0.340
0.338

5
6
8

10
13
16
20
25
30

0.386
0.348
0.319
0. 278
0. 249
0.219
0.198
0.177
0.159
0.145

0.323
0.305
0.287
0. 258
0.236
0.210
0.191
0.173
0.156
0.143

in Fig. 4 where we have plotted Eq. (5. 5) as a
dotted curve.

B. Resonant contribution from nonresonant B spins

The analysis presented above is valid until

(do„W ', where coo~ is the resonance frequency of
the A. spins, becomes less than or of the order of
unity. After +O~W

'~ 1, then, there wiQ be ap-
preciable poise power at coo„generated by the
flipping B spins. It has been shown, however,
under the conditions studied in this paper, where
the A system is so dilute that the A spins do not
interact, that the effect is to cause a spin-lattice
relaxation where the approach to equilibrium is of
the same form as Eq. (5.5). ' To obtain the exact
form of spin-lattice relaxation function we use Eq.
(12) of Tse and Hartmann' but with their r, ' ob-
tained from the noise field in the laboratory frame
rather than in the rotating frame. From Eqs.
(A27) and (A28) of Lowe and Tse" we note that this
means a reduction of 7', 3 by the factor

(-')'i' J' I 1 —3x'I dx 20
(3)'+ l', (1 —d)x'« =

3 ~3

with the result that the spin-lattice-relaxation func-
tion [Eq. (12) of Ref. 17] becomes (in our notation)

We plot and tabulate K(z) in Fig. 3 and Table I,
respectively; it falls off as (2/v)'~'z '~' at large z
and as &z at small z and has a maximum value of
approximately 2v '~ . The form of K(z) complicates
the behavior of E(2&) somewhat. For ease of anal-
ysis it is customary to define a relaxation time
2r = Tz for which E(27') is down by a factor of e. 5

This occurs at

n ur, ),T„K(WT„)= 1

or

l.O,

O. l

S(t) = exp[- (5/3v 3)(2/v)' 'her, ~W '+&' '] .

But (5/3 W3) =1 so that the effect of spin-lattice
relaxation is identical to the effect of spectral dif-
fusion when Eq. (5. 5) applies.

O.OI

C. Two-pulse echo

As an aid in analyzing the two-pulse echo be-
havior we define the universal function

K(z) = e '{f,(z) +-,'v[I, (z)IO(z)

-f,(.)f.( )]], (5. 6)

whereupon the echo amplitude [Eq. (3.23)] becomes

E(2r) = exp[ —2n, &u»zTK(2Wr)] . (5 7)

O.OOI ——
0

FIG. 4. Free-induction amplitude F (~) is plotted as a
function of 4cu~~g for several values of 8'/4~~~2. The
asymptotic limit, valid for large values of 8'~, is shown
as a dotted line.
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I
CV

3

-I/2
{dIIII/2')ssRLI fLI{e - 2{2w/da'IQ

RITE LIIIIT

—- —- - {d{s,/f Tg) LRRQf f L P
-. {7r/4)

{2W/de}�/2}

{Rarf L{iIIT '

in their respective limits, will accurately repre-
sent E(2r). They have been obtained earlier: in

the lower limit [Eq. (3. 10)] by Klauder and Ander-
son, and in the higher limit [Eq. (3.16}]by Nims.

The lower limit to the correct E(2r) is obtained
by either Eq. (5. 11) or Eq. (5. 12), whichever is
largest. In Fig. 6 we give this plot. The locus of
points for which the two asymptotic forms intersect
occurs [equating Eqs. (3. 10) and (3. 16)] for

0.{
0.02

I

0.2

~W, R

du}I/2 daII/2

2.0 20$

and is represented by the function

EI = exp( —2R d(eeI/2Y),

FIG. 5. Behavior of the relaxation time T& is illustrat-
ed by plotting Afd~/2T„as a function of 2%'/d~t/2

2W'
Q QP j /2 T~K — 6co )/2 Tg = 1 .

2 6(Apg p
(5. 8)

In Fig 5we. plot /Ltd, &3T„as a function of 2W/d{d»2.
When the 8-spin flip rate 5' is approximately equal
to d ~«we have a "resonance" and the relaxation
time T„ is a minimum. ' For higher spin flip
rates the effect of the B-spin flips averages out. '
At lower spin flip rates the echo is not much at-
tenuated, as the time-averaged A-spin local field
does not change much in the time intervals +T cen-
tered about the time of the second excitation pulse.
In these limits we obtain

(re{d»zT„) = 2(2W/&&a, /3) (small-flip rate limit)
(5. {})

which we plot as a dotted line in Fig. 6.
We next plot in Fig. 7 the exact decay behavior

[Eq. (5. 7)] for the same set of parameters as in

Fig. 6, using the same scale. We note the corre-
spondence between the two figures and close agree-
ment for values of 4e, /3~ far away from the cusps
in Fig. 6. For example, for large values of h~, /~~
the curves corresponding to 2W/«d«2 = 5 are
identical, whereas for 2W/fL&o, + = 0. 25 the curves
become identical at the lower values of hco»z~. In
the intermediate regions there is a significant de-
parture from the asymptotic behavior.

A lower limit to E(27) is obtained by replacing
K(2'}with its maximum value. We calculate

I.O

O. I

(«d«, TI/) = eII(2W/du&, +) (high-flip-rate limit) .
(5. 10)

We next consider the form of E(2r). The echo
decay behavior is readily appreciated if we first
plot the asymptotic form of E(27'}. The asymptotic
forms of E(27} are Eqs. (3. 10}and (3.16), which
we rewrite as

I

La

O.OI—

efP {-re"'{{~„,~j

E(2r) = exp [-2W/4{d, /3(d{d, I 2m)2 )

for S'~«1 and

(5. 11)
0.00t-

2P 1/2
E(27') = exp —2(2/v)'+ &)1/8

&&g/2

(5. 12)
for Wv» 1. The exact E(2r) is always larger than
either of the two asymptotic forms. One may say
that Eq. (5. 11) underestimates the tendency for the
effect of the flipping B spins to average out, while
Eq. (5. 12) underestimates the correlation between
local-field values in the rephasing interval and

those in the dephasing interval. Both of these ex-
pressions are valuable as estimates of E(2r) and,

0.000{—

FIG. 6. Asymptotic limits to the echo amplitude is
plotted as a function of 4~~/g for several values of 2W//

&~&/2 ~
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I.Q

O. I

O.Q I

O.OQ I„
O IQ

FIG. 7. Echo amplitude E(2v) is plotted as a function
of b(dqg2v for several values of 2W j4(d~g2. A simple
lower limit to E(2v') is plotted as a dashed line.

that E =~pm '~' with g=0. 998=1. A useful
limit is therefore

EII Ig(?T)=exp(-7r n, III'/2T),

which we plot as a dashed curve in Fig. '7.

(5. 14}

D. Stimulated echo

E,(2T, T) = exp[ —2n, &d, &T(WT+ WT)], (4 8)

%e express the stimulated-echo decay function
[see Eqs. (4. 4) and (4. 7)] in terms of G(z) and

K(z) as

E,(2T, T) = exp(- AId, pT [(1—e )G(2WT)

+(1+e ~r)K(2WT)] ], (5. 15)

which on rearranging becomes

E,(2T, T) = exp[- 2n Id, ST K(2WT)]

x exp (-g Id»zT [G(2WT) —K(2WT)]

x (1 —e z" r)) (5. 16)

But, the first factor is exactly the two-pulse-echo
decay amplitude E(2T); therefore

E,(2T, T) = E(2T) exp [-n, (o,~T[G(2WT) —K(2WT)]

x(l e- )) . (5. 1V)

The stimulated-echo amplitude is just the product
of (i) the two-pulse decay amplitude and (ii) a factor
which depends in an instructive way on ~ and on T,
the time separation between the second and third
excitation pulses.

The stimulated-echo amplitude E (2T, T) never
increases as T increases since G(z) &K(z) for all
z, as can be seen from Fig. 3.

For W7'«1 and WT«1 we use G(z)=1 —zz and
K(z)=zz and write Eq. (5. 15) as

I.Q

0.1

I

CL

Ck

0.01

2, Iff T ~Ic L1M1T

0.001
0 0.5 I.Q

WT

1.5 2.0

FIG. 8. Behavior of the stimulated-echo amplitude for
fixed separation between the first and second excitation
pulses is illustrated by its amplitude variation as a func-
tion of WT for several values of the parameter A.

which is identical to the result of Klauder and
Anderson.

For large values of S'T the stimulated echo
amplitude E,(2T, f) becomes independent of T. In
this limit the B-spin orientation configuration is
completely rerandomized when the third excitation
pulse is applied.

It might seem surprising that one would obtain
an "echo" (i.e. , appreciable signal at T+ 2T) in

this limit for the case in which the 8 spins alone
provide the inhomogeneous field at the A-spin
sites. But consider the case with the additional
condition Wv'«1, so that no 8-spins flip in the time

It is just as probable that a particular B-spin
orientation in the dephasing interval 0& t& w is
parallel to its orientation in the rephasing interval
T+ T & t & T+ 27, as that it is antiparallel. But all
8 spins whose orientation remains parallel will not
contribute to the degradation of the echo. Thus,
the echo amplitude will be equal to the free-induc-
tion amplitude measured at f = 2T (recall that WT

«1) and generated in a A-spin environment consist-
ing onEy of 8 spins whose number density is one-
half the actual 8-spin density. This is precisely
the result one obtains from Eq. (5. 15) on setting
G = 1 and K = 0.

The factor multiplying E(2T} in Eq. (5. 17) repre-
sents the ratios E,(27, T)/E, (2T, 0), i. e. ,

E,(2T, T)/E (2T, 0)

= exp(- n, III«T [G(2WT) -K(2WT)](1 —e z~r) )
= p[-~(I- '")], (5. 18)

which we have plotted as a function of S'T in Fig.
8 for several values of A. In the limiting cases
we have



P. HU AND S. R. HARTMANN

A = n(())~r(1 —2Wr)

21IV
= 6(dygi 1— +4)gpi

he)/2

for W'i«1, while for Wi»1 we use

1 1
G(z)=,~ 2 ——

(5. 19}

(5. 20)

Nims studying the behavior of two- and three-
pulse-stimulated echoes using the Ce resonance on

CaWO, : Ca, Ce, Er [see Figs. 5, 6, and 7 or Ref.
5] is supportive of this present work. However, in

order to obtain a significant cheek of the theory
developed, herein, it will be necessary to repeat
these experiments over an extended range using
more lightly doped samples whose A spins are less
tightly coupled to the lattice vibrations.

so that

A. = (2w) '~ 6(d v(2Wr) 2+

2W1 ~-1/2 (dk(0(~r}6co)/2

for 8'i»1.

(5. 21)

E. Closing remark

We have presented a theory valid for all time
which is strictly correct only for the idealized T,
sample (AA- and BB-spin interactions are unim-
portant). Although considerable experimental
work has been performed, this limiting ease has
not yet been realized fully. The excellent work of
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APPENDIX A

We present a proof of the identity:

e '8„„=2' 8,~d.di (A 1)

Following the argument which leads from E(1. (2. 21}to (2. 23) and taking into account that we now have two

time intervals 0 to 7 and i to 2i, we then have

e 'n, , = Z W' ~ du t dvP „(u)P„(v)~(2u —r) —(2v —7)
~

m=o o

q Q W2 '2"'2 d(( dvP, „(g)P~„(v)~(2((-r)+(2v —&) ~,
@tao o

(A2)

where the first (second) term in E(l. (A2) arises from the cases where there are even (odd) number of flips

in both the time intervals 0 to i and i to 2i. Furthermore just for convenience we have changed the dummy

variables in the integration from t„ to u, etc.
We now change the variables (( to r —u and v to T —v in the first term of (A2), but only v to T —v in the

second term. Furthermore we shall use the following relation:

"'"
dp ehP(Q f2) + e~'cP(Q t))

2$$ f~ p

where y &0. Using the explicit expressions for P„(u), as given by E(l. (2. 24), we then have

(AS)

f (0 / X8L ~i T+4~ de"'n, , =2 dv iv i
Z W'"' ' + ~ du ( dv(e'2' '"+e " '"')

dO }m fft i ( }+ n1 T
( )W2eg() & —8 (( r —v v (" ~ ( ~ I i2(2(( 2y) -(P(2((-2u))+e
m! (m —1)! n!()2 —1)!
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gpam+Sr+2 + ~ I 7 V V

m=0 m 0 m0m0 1
(A4)

We now take derivative of (A4) with respect to r. After some straightforward manipulation, we have

+ W'~'"" t du dvj2u 2

"('- )
' ""('- )")

ma0 ~() m! (m —1)! n!n!
n 0

T T

Z W' "' du d~ j2u 2v-jP,„(u)P„„(u) . (A5)

We note that an expression similar to (A2) can be easily written down for e~'a, «, namely,

e '6,«= 2 W "
j du I dvj(2 u-r) —(2v —7') lP2 (u)Pz „(v)

ftl& ~o

'f ))'" 'J & )I & I(2 —~) (2 — 'Ilp, „( )p,„(v). (A6)

The first (second) term arises from the case where there are even (odd) number of flips in the time interval
0 to ~ and odd (even) number of flips in the time interval v to 2r: Changing the variable u to 7' —u and then
interchanging both the variables u and v and the indices n and m, me have

T

e '8, =2 du
J d+l2u 2„jP, („)P,(„) (A7)

Comparing Eq. (AV) with Eq. (A5), we then have the identity (Al).
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