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Effect of contacts on spin lifetime measurements in graphene
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Injection, transmission, and detection of spins in a conducting channel are the basic ingredients of spintronic
devices. Long spin lifetimes during transit are an important ingredient in realizing this technology. An attractive
platform for this purpose is graphene, which has high mobilities and low spin-orbit coupling. Unfortunately,
measured spin lifetimes are orders of magnitude smaller than theoretically expected. A source of spin loss is the
resistance mismatch between the ferromagnetic electrodes and graphene. While this has been studied numerically,
here we provide a closed form expression for Hanle spin precession which is the standard method of measuring
spin lifetimes. This allows for a detailed characterization of the nonlocal spin valve device.
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I. INTRODUCTION

Spintronic devices rely on the ability to inject, transport,
manipulate, and detect spins [1,2]. The typical architecture
involves ferromagnetic electrodes deposited on a conducting
medium [3,4]. Driving a current across the junction of a
magnetic element and a nonmagnetic metal leads to spin
injection (also called spin accumulation) [4–7]. The injected
spins either diffuse in nonlocal spin valve geometry, or
are driven by applied fields across the conducting channel.
The former has the advantage that the observed spin signal
is not corrupted by accompanying charge current. During
this transit, scattering processes dephase the spins and thus
degrade the chemical potential imbalance between spins of
opposite orientation. The residual difference is detected by a
ferromagnetic electrode whose magnetization can be flipped
by applying external fields.

The performance of devices is determined by a number
of parameters associated with the basic processes described
above. The efficiency of spin injection, the diffusion length (or
equivalently the diffusion constant and spin relaxation time),
the distance between the injector and detector, and resistivities
of various components such as the electrodes, the junction,
and the conducting channel, are some of the ingredients that
contribute to the measured magnetoresistance. As such, having
good injection efficiency coupled with long spin lifetimes
is crucial for the viability of spintronic applications. The
discovery of graphene [8] has been of particular interest in
this regard because of its tunable conductivity, high mobility,
and low spin-orbit coupling. Moreover, the two-dimensional
nature allows for efficient device design and spin manipulation.
Theoretical estimates for spin lifetimes of a few microseconds
[9,10] are leading to a concerted effort in realizing spin based
transistors and spin valves [11–18].

Unfortunately, the best measured spin lifetimes via the
Hanle spin precession technique are in the 50 to 200 ps range
[11,18–20]. The large discrepancy is yet to be explained. The
linear scaling of spin and transport lifetimes [18] suggested
that the dominant scattering mechanism in the conducting
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channeling is of the Elliot-Yafet [21] type. Surprisingly, in the
regime of small spin lifetimes (∼100 ps), Coulomb scattering
was shown not to be the dominant mechanism [20]. The more
important determining factor of the lifetime was found to be
the nature of the interface between the magnetic electrode
and the conducting channel. Tunneling contacts suppress spin
relaxation, and lifetimes of 771 ps were reported at room
temperature, increasing to 1.2 ns at 4 K [22]. On the other
hand, low resistance barriers lead to considerable uncertainty
in the determination of the lifetimes.

Over the last few years, characterizing the nature of the
spin dynamics at the interface has garnered much attention.
A key contribution in this effort is the generalization of
the standard theoretical approach of calculating the nonlocal
magnetoresistance with and without the magnetic field. Recent
efforts study the effect of including the contact resistance
[19,23], and alternatively relaxing the normally infinite bound-
ary conditions in favor of a finite channel size [24]. The
approach relies on numerically solving the Bloch equation
to generate Hanle precession curves and then fitting observed
data.

In this paper we present the closed form expression for
the precession curves with finite contact resistance, and
analytically discuss the various parameters regimes that show
qualitatively different behaviors. The fits to data reproduce
the results in the literature and provide a means to understand
the effect of the contacts which were previously obtained by
numerical simulations.

The paper is organized as follows. In Sec. II we provide
the basic model, define the relevant parameters, and present an
expression for the nonlocal resistance RNL. The primary result
is given by Eq. (4). In Sec. III the solution for RNL is fitted
to data. In Sec. IV we analyze the various regimes which are
determined by the diffusion length, length of the device, and
the contact resistance. Section V ends with a summary of the
results and future directions.

II. MODEL

The assumed device geometry is shown in Fig. 1. Two
ferromagnetic contacts (F ) are deposited on the normal
semiconductor (N ). A spin-polarized current I is injected
through the contact at x = 0 and flows in the x � 0 region
of the semiconductor. The voltage difference V is measured
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FIG. 1. The geometry of the nonlocal spin valve analyzed in
this paper is shown. There are two ferromagnetic electrodes placed
on a conducting channel. Current I flows into the left electrode,
while the potential V is measured at the right electrode. The
nonlocal resistance is defined as the ratio V/I . For spin dependent
phenomena, the relevant quantity of interest is the difference between
the nonlocal resistance for the parallel and antiparallel orientations
of magnetization of the two electrodes.

at x = L between the contact and the semiconductor. The
nonlocal resistance is RNL = V/I [23].

Spin transport is modeled by identifying two spin channels
and their associated three-component spin electrochemical
potentials μ↑↓. The majority channel is labeled as up, while the
minority channel is labeled as down. The voltage difference
is proportional to the spin accumulation μs = (μ↑ − μ↓)/2
at x = L. The spin accumulation in the semiconductor is
assumed to satisfy the steady-state Bloch diffusion equation

D∇2μN
s − μN

s

τ
+ ω × μN

s = 0. (1)

The key parameters are the contact spacing L, the diffusion
constant D, the spin lifetime τ , the spin diffusion length λ =√

Dτ , and ω = (gμB/�) B which is proportional to the applied
magnetic field B and the gyromagnetic ratio g = 2.

For contacts which cover the width of the channel, the
transport is uniform along y. Since the channel is two
dimensional, μN

s will only vary along x. We enforce the
boundary condition μN

s → 0 at x → ±∞ and the continuity
of the current and spin current. A detailed derivation is given
in Appendix and reveals

R±
NL = ±p1p2RNf. (2)

The overall sign corresponds to parallel and antiparallel
ferromagnetic alignments. Specifically, we find a resistance
scale

RN = λ

WL

1

σN
, (3)

and the function

f = Re

({
2

[√
1 + iωτ + λ

2

(
1

r0
+ 1

rL

)]
e(L/λ)

√
1+iωτ

+ λ2

r0rL

sinh [(L/λ)
√

1 + iωτ ]√
1 + iωτ

}−1)
. (4)

Note that f is unitless and depends only on the scales L/λ,
ωτ , and λ/ri . The parameters ri with i either 0 for the left
contact or L for the right are

ri = RF + Ri
C

RSQ
W, (5)

where RF is the resistance of the ferromagnet and Ri
C are the

individual contact resistances, W is the graphene flake width,
and

RSQ = W/σN (6)

is the graphene square (sheet) resistance given in terms of the
semiconductor conductivity σN . The resistances RF and Ri

C

are the effective resistances of a unit cross sectional area. They
are defined in (A10) and (A15). To obtain an expression in
terms of the ohmic resistances, one must make the substitutions
RF →WF WRF and Ri

C→WF WRi
C , where WF is the contact

width, i.e., WF W is the contact area. We will use the same
symbols for either resistance type when the meaning is clear.
The polarizations p1 and p2, defined in Eq. (A36), model the
effective current injection. They depend on the resistances and
the spin polarizations of the semiconductor and the individual
contacts.

The expression �RNL = |R+
NL − R−

NL| measures the dif-
ference in signal between parallel and antiparallel field
alignments. We combine P 2 = |p1p2| [25], and write

�RNL = 2P 2RN |f |, (7)

with

RN = λ

W

1

σG

, (8)

where σG = σNL is the graphene conductance normally given
in units of mS = (m�)−1.

III. FITS

Data presented in Fig. 4 from [26] were fit to the model
presented here. Fits were done using Python and matplotlib
[27]. Links to the source code along with instructions on how
to create similar fits and figures are available online [28].

We assume similar contacts, RC = R0
C = RL

C . The resis-
tance of the ferromagnet Co is computed as RF = ρF λF /AJ ,
where ρF is the Co resistivity, λF is the spin diffusion length
of Co, and AJ is the junction area estimated at AJ = Wd, with
d between 0.5 and 50 nm [26]. Hanle fits were done using a
simple least squares algorithm with nonnegative parameters τ ,
D, RC , and P . The polarization P was constrained between
zero and one.

Figure 2 shows fits of �RNL given by Eq. (7) for devices
with tunneling and transparent contacts, and R+

NL given by
Eq. (2) for a device with pinhole contacts [29]. Fits (a), (b),
and (c) with tunneling and pinhole contacts give large RC ∼
107 k� and lifetimes equivalent to fitting with RC → ∞, while
(d) with transparent contacts gives a reduced RC ∼ 3 k� and
a lifetime increased by at most a factor of 2 (compare to 78
ps for RC → ∞). For tunneling contacts, the polarization P

is 25% to 60% smaller than the lower bound given in [26],
while for transparent contacts, P is reduced by an order of
magnitude.
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(a) L = 2.1 µm, tunneling contacts

P = 0.19
RC = 2.03 × 107 kΩ

τ = 514.3ps
D = 0.02 m2 s−1
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(b) L = 5.5 µm, tunneling contacts

P = 0.1
RC = 6.70 × 106 kΩ
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(c) L = 2.0 µm, pinhole contacts

P = 0.23
RC = 1.31 × 107 kΩ

τ = 132.28ps
D = 0.02 m2 s−1
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(d) L = 3.0 µm, transparent contacts

P = 0.01
RC = 2.94 kΩ

τ = 130.36ps
D = 0.02 m2 s−1

FIG. 2. (Color online) Data in Fig. 4 from [26] fit to Eqs. (7) or
(2) with the following values: W = 2.2 μm, WF = 1.0 μm,
σG = 0.5 mS, ρF = 60 � nm, and RF = 3.27 � (d = 0.5 nm and
λF = 0.06 μm). The contact type (tunneling, pinhole, or transparent)
and the contact separation L varies.

Note that we have used RC as a fitting parameter. In most
devices, this quantity can be experimentally determined, thus
further constraining the fitting algorithm. As we will discuss
further in the next section, a fact that becomes apparent from
our analytic result is that the relevant scale is λ/r . Once r

becomes larger than λ, all of the corrections to the RC→∞
limit Hanle curves become very small. In other words, once
r 	 λ, the fit is insensitive to the actual value of the contact
resistance. The fact that we quote a resistance of order 107 k�

in fits (a), (b), and (c) in Fig. 2 results from the built-in accuracy
we demand of the fitting algorithm. A good fit can be obtained
for any r as long as it is larger than λ.

IV. REGIMES

In this section we discuss the various limits of the
expression describing the Hanle precession curve. First, we
show that the commonly used results for zero magnetic field
and tunneling contacts are correctly reproduced. Next, we
discuss regimes where appropriate scaling will give nonunique
Hanle fits. In the following we consider the case r = r0 = rL

of similar contacts.
In the limit of tunneling contacts R0

C,RL
C 	 RF . Putting

r0,rL → ∞ gives p1p2 → (P L
	 )2 and

f ∞ = Re
e−(L/λ)

√
1+iωτ

2
√

1 + iωτ
, (9)

which is of the same form as found in Appendix B of [30] (we
will denote this limit with the superscript ∞). Fitting with this
expression was found to give results equivalent to fitting with
the Hanle equation

R±
NL = ±SNL

∫ ∞

0

e−t/τ

√
4πDt

exp

[
− L2

4Dt

]
cos ωt dt. (10)

The agreement is expected as an explicit integration of Eq. (10)
yields the same analytic expression with the identification
SNL = p1p2D/WσG. In the additional limit of zero magnetic
field,

�RNL = (
P L

	

)2
RNe−L/λ, (11)

which agrees with Eq. (6) in [23].
Let f0 denote f at zero magnetic field,

f0 = [
2(1 + λ/r)eL/λ + (λ/r)2 sinh L/λ

]−1
, (12)

which agrees with Eq. (3) in [19].
To further explore the nature of the Hanle curves, we exploit

the fact that it only depends on the dimensionless ratios λ/r ,
L/λ, and ωτ . The only other parameter of the conducting
channel that enters the expression is the overall scale λ in RN .
The expression f contains three terms which are of zeroth,
first, and second order in λ/r . Thus, as the contact resistance
decreases, one goes from a device dominated by the first term
to one dominated by the last. But precisely how this comes
about depends on the value of ωτ .

For infinite contact resistance, it was pointed out that any
rescaling of g, τ , and D that leaves λ and ωτ unchanged leads
to the same Hanle precession curves [31]. Our result shows that
the same is also true when the contact resistance is taken into
account. In numerical simulations, interesting features were
observed when L/λ 
 1 and r/λ 
 1 [32].

To compare across regimes, we first normalize the data to
its value at zero magnetic field. In devices where λ/r 	 1, the
normalization factor is

f0 = 2e−L/λ

(λ/r)2
. (13)

In this regime, if D is not very different from the infinite contact
resistance value, then the lifetime can be large, i.e., τ 	 1 ns.
As one tunes the magnetic field

√
ωτ 	 1, for small values

of the field, and for much of the curve, we can approximate
1 + iωτ ≈ iωτ . An interesting consequence of this is that the
zero of the Hanle precession curve becomes independent of
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the scattering time. Note that the product

L

λ

√
ωτ = L

√
D

ω
, (14)

which appears in the exponential and oscillating factors below,
is independent of the lifetime. As one further tunes the
magnetic field, the Hanle curve is given by

f =
√

ωτ

(λ/r)2
e−(L/λ)

√
ωτ/2 sin

[
L

λ

√
ωτ

2
+ π

4

]
, (15)

as long as λ/r 	 √
ωτ 	 1. In this limit, the nonlocal

resistance scales as

�RNL ∝ λ
√

ωτ

(λ/r)2
= r2

√
ω

D
, (16)

and the normalized nonlocal resistance as

f/f0 ∝ √
ωτ. (17)

On further increasing the field,
√

ωτ 	 λ/r 	 1, we get

f = 1

2
√

ωτ
e−(L/λ)

√
ωτ/2 cos

[
L

λ

√
ωτ

2
+ π

4

]
. (18)

In this limit, the nonlocal resistance scales as

�RNL ∝ λ√
ωτ

=
√

D

ω
, (19)

and the normalized nonlocal resistance as

f/f0 ∝ (λ/r)2

√
ωτ

= D

√
τ

ωr4
. (20)

In the limits of Eqs. (15) and (18), the zeros of the Hanle
fit are independent of the lifetime and are determined by D

though the condition

L

√
D

2ω
+ π

4
= nπ

2
, (21)

where n = 0 for Eq. (15) and n = 1 for Eq. (18).
Note that fitting is insensitive to τ in the limit of Eq. (16) or

(19). As an example of this, Fig. 3 shows nearly identical fits
with lifetimes that differ by four orders of magnitude. These
fits were obtained by choosing large starting values for τ . For
Figs. 2(d) and 3, χ2 ∼ 7 × 10−8, but the χ2 for Fig. 2(d) is 2%
less than the χ2 for Fig. 3. In Fig. 2(d) λ/r 	 √

ωτ and ωτ ∼ 1
for most of the curve, so the approximation 1 + iωτ ≈ iωτ

does not hold. However, Fig. 3 is in the limit of Eq. (16) for
all points (save the origin). Thus, in limit of small r , the fitted
value of τ is unreliable unless one carefully controls the fitting
procedure.

The evolution of the expression for the Hanle curve is an
interesting insight into the behavior of the device. Fitting data
on devices with small contact resistances with the functional
form applicable to infinite contact resistance yields unreliable
parameters. In particular, they were numerically shown to
severely underestimate the spin lifetime [32].

Further analytic progress can be made if one assumes that
lifetimes as estimated with infinite contact resistance are long
enough that the approximation of

√
ωτ 	 λ/r 	 1 is still

valid for much of the data being analyzed. For this case, at
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FIG. 3. (Color online) Data in Fig. 4(d) from [26] fit to Eq. (2)
with the same values as in Fig. 2(d). Fits with lifetimes that differ by
four orders of magnitude were obtained by using different starting
values for τ . These fits are otherwise similar with the exception of the
lifetime, demonstrating the τ -independent scaling in Eq. (16). The
χ 2 for Fig. 2(d) is 2% less than the χ 2 for Fig. 3.

infinite contact resistance, the normalized nonlocal resistance
is given by

f ∞

f ∞
0

= 1√
ωτ

e−(L/λ)
√

ωτ/2 cos

[
L

λ

√
ωτ

2
+ π

4

]
. (22)

Provided D remains constant, this will yield the same curve
with finite contact resistance if

1

τ∞ = D2 τ

r4
. (23)
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In other words, if we fix τ and ask what happens to the fitted
value assuming infinite contact resistance as a function of
decreasing r , Eq. (23) shows that it will decrease as well. For D

fixed, τ∞ ∝ r4. While the general trend is consistent with [32],
the quantitative agreement is limited by the approximations
made for analytic convenience.

V. SUMMARY

In this paper we have analyzed the effect of contact
resistance on spin lifetimes determined via the Hanle spin
precession technique in nonlocal spin valves. The general
expression for the precession curves given in Eq. (4) is the
main new result. While aspects of the discussed phenomena
have been addressed numerically before, an analytic solution
is obtained here which allows for detailed characterization of
the device. In particular, general features of scaling as well
as various limits and regimes can be analyzed. In addition,
the solution allows for fitting data using standard curve fitting
algorithms.
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APPENDIX: COMPUTATION

In this Appendix we derive an expression for the nonlocal
resistance for finite contact resistance. We first present the
key definitions and critical boundary conditions. We then
derive the relation between the nonlocal resistance and the
spin chemical potential at the far contact μN

s (L). Finally, we
solve the diffusion equation inside the semiconductor to find
μN

s (L).

1. Definitions

Many of the definitions and results in this section are taken
from [33]. The chemical potential and spin chemical potential
are defined in terms of the spin-up and spin-down chemical
potentials,

μ = 1
2 (μ↑ + μ↓), (A1a)

μs = 1
2 (μ↑ − μ↓). (A1b)

The material conductances and polarization are defined in
terms of the spin-up and spin-down conductances,

σ = σ↑ + σ↓, (A2a)

σs = σ↑ − σ↓, (A2b)

Pσ = σs

σ
. (A2c)

The gradient of the chemical potentials drives a current and
spin current,

J↑↓ = σ↑↓∇μ↑↓, (A3a)

J = J↑ + J↓ = σ∇μ + σs∇μs, (A3b)

Js = J↑ − J↓ = σs∇μ + σ∇μs. (A3c)

To indicate the material, any of the above can have a superscript
N (normal semiconductor) or F (ferromagnet).

The contact conductances and polarization are defined in
terms of the spin-up and spin-down contact conductances,

	 = 	↑ + 	↓, (A4a)

	s = 	↑ − 	↓, (A4b)

P	 = 	s

	
. (A4c)

The mismatch of the chemical potentials across the contact
drives a current and spin current,

JC
↑↓ = 	↑↓

(
μN

↑↓ − μF
↑↓

)
c
, (A5a)

JC = JC
↑ + JC

↓ , (A5b)

JC
s = JC

↑ − JC
↓ . (A5c)

The subscript c will always denote the function evaluated at
the contact.

We will use the term current to refer to J , when in fact
this is a particle current density. For constant J , the physical
charge current I will be related to J by a relation I = −AJ/e

for some characteristic area A.
To reduce the number of subscripts and superscripts in the

following, we adopt the notation for the potentials

u = μN
s , ϕ = μF

s ,
(A6a)

v = μN, ψ = μF ,

and currents

j = Js, Jc = JC, jc = JC
s . (A6b)

We rewrite Eq. (A5) as

Jc = 	(vc − ψc) + 	s(uc − ϕc), (A7a)

jc = 	s(vc − ψc) + 	(uc − ϕc), (A7b)

and Eqs. (A2) and (A3) as

j = PσJ + 4
σ↑σ↓

σ
∇μs. (A8)

Using Eqs. (A4) and (A7),

jc = P i
	Jc + Ri

C

−1
(uc − ϕc) , (A9)

where the contact resistance is

Ri
C = 	i

4	i
↑	i

↓
. (A10)

The superscript i allows for contacts with difference conduc-
tances.

2. Boundary conditions

In this section we derive the relations between the potentials
and the currents This corresponds to the needed boundary
conditions.

245436-5



EVAN SOSENKO, HUAZHOU WEI, AND VIVEK AJI PHYSICAL REVIEW B 89, 245436 (2014)

a. Semiconductor

For the semiconductor, σN
↑ = σN

↓ = σN/2, so P N
σ = 0.

Evaluating Eq. (A8) at the contact gives

jN
c = σN (∇u)c. (A11)

b. Ferromagnet

For the ferromagnet, one assumes μF
s satisfies the one-

dimensional diffusion equation. We choose the z′ coordinate
antiparallel to z with origin at the contact. The equation

ϕ′′(z′) − k2
F ϕ(z′) = 0, (A12)

with the boundary condition limz′→−∞ ϕ(z′) = 0 has solution

ϕ(z′) = ϕce
kF z′

, (A13)

where ϕc = ϕ(0) is a yet undetermined constant. Putting this
into Eq. (A8) and evaluating it at the contact gives

jF
c = P F

σ J F
c + R−1

F ϕc, (A14)

where the ferromagnet resistance is

RF = σF

4σF
↑ σF

↓ kF

. (A15)

Here λF = 1/kF is the spin diffusion length in the
ferromagnet.

c. Continuity assumptions

At the contact, the current and spin current are assumed
continuous,

Jc = JF
c = JN

c , (A16a)

jc = jF
c = jN

c . (A16b)

Using Eqs. (A9), (A14), and (A16) we find the relation(
P F

σ RF + P i
	Ri

C

)
Jc = (

RF + Ri
C

)
jc − uc, (A17a)

and that ϕc is determined by

R−1
F ϕc =

(
P i

	 − P F
σ

)
Ri

Cjc + P F
σ uc

P F
σ RF + P i

	Ri
C

. (A17b)

In the special case of zero current at the contact (Jc = 0),
Eq. (A17) reduces to

jc = 1

RF + Ri
C

uc, (A18a)

ϕc = RF

RF + Ri
C

uc. (A18b)

3. Nonlocal resistance

In this section we derive the precise relation between RNL

and μN
s (L). Note that we may write in general, for some μ̄,

μ = μ̄ + Pσμs, (A19)

and, following [23], define the voltage due to the difference in
the chemical potentials across the contacts by

Vc = (
μ̄N

c − μ̄F
c

)
/e. (A20)

We assume a fixed current J0 = |J0| > 0 flows down
through the contact at x = 0 and to the left in the semi-
conductor for x � 0, and no current flows for x > 0. The
experimentally measured quantity is the nonlocal resistance
RNL = VL/I0, where I0 = −WLJ0/e is the current through
the contact at x = 0. It is convenient to introduce the effective
nonlocal resistance R

SQ
NL defined by

R
SQ
NL = WLRNL = −eVL/J0 = μ̄F

c − μ̄N
c

J0
. (A21)

To determine RNL, we must express the difference of these
chemical potentials in terms of μN

s (L).
Since there are two ferromagnetic contacts, we have

separate functions ψ and ϕ for each contact which we will
denote by ψ0, ϕ0 and ψL, ϕL. From Eq. (A13) we have

ϕ0(z′) = ϕ0e
kF z′

, (A22a)

ϕL(z′) = ϕLekF z′
. (A22b)

The physical restriction on the current flow in the semi-
conductor is imposed by noting that since σN

s = 0, Eq. (A3b)
gives JN = σN∇v, so we must have

vx(x) =
{
vx(0) − (J0/σ

N )x for x � 0,

vx(0) for x > 0,
(A23)

vy(x) = vy(0), and vz(x) = vz(0).
Using Eq. (A3b) the restriction on the current flow in each

ferromagnet gives

∇ψ0 = (J0/σ
F ) − P F

σ ∇ϕ0, (A24a)

∇ψL = −P F
σ ∇ϕL. (A24b)

Integrating and enforcing eVc = vx(0) − (ψc − P F
σ ϕc),

ψ0(z′) = −eV0 + P F
σ ϕ0(2 − ekF z′

) + vx(0) + (J0/σ
F )z′,

(A25a)

ψL(z′) = −eVL + P F
σ ϕL(2 − ekF z′

) + vx(0). (A25b)

There is no current at the contact at x = 0, thus Eq. (A7a)
gives

ψL − vL = P L
	 (uL − ϕL) , (A26)

and with Eq. (A18b) we find

R
SQ
NL = (ψL − vL) − P F

σ ϕL

=
[
P L

	

(
1 − RF

RF + RL
C

)
− P F

σ RF

RF + RL
C

]
ux(L)

J0
. (A27)

4. Diffusion equation

In this section we show how to solve for μN
s (L). This

method is based on the one described in [19]. Inside the
semiconductor, u satisfies the diffusion equation

D∇2u − u

τ
+ ω × u = 0. (A28)

Here D is the diffusion constant, τ is the spin lifetime, and
ω = (gμB/�) B is proportional to the applied magnetic field
(with g the gyromagnetic ratio and μB the Bohr magneton).
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The spin diffusion length in the semiconductor is λ = 1/k =√
Dτ .
The function u = u(x) only varies along x, and we

introduce the notation

ux(x) =
⎧⎨
⎩

ux−(x) for x < 0,

ux0(x) for 0 � x � L,

ux+(x) for L < x,

(A29)

with similar expressions for uy and uz. The most general
solution to Eq. (A28) decouples uz from ux and uy . The
requirement limx→±∞ u(x) = 0 yields

uz±(x) = A∓e∓kx, (A30a)

uz0(x) = A+
0 ekx + A−

0 e−kx, (A30b)

and

ux±(x) = B∓e∓κx + C∓e∓κ̄x , (A31a)

uy±(x) = B∓e∓κx − iC∓e∓κ̄x , (A31b)

ux0(x) = B+
0 eκx + B−

0 e−κx + C+
0 eκ̄x + C−

0 e−κ̄x , (A31c)

uy0(x) = iB+
0 eκx + iB−

0 e−κx − iC+
0 eκ̄x − iC−

0 e−κ̄x ,

(A31d)

where κ = k
√

1 + iωτ . The 12 constants A, B, and C (with
their various subscripts and superscripts) must be determined
by imposing the appropriate boundary conditions.

We first require u be continuous at x = 0 and x = L; this
gives six equations. We now require a boundary condition on
∇u, but ∇u cannot be assumed continuous at the contact. We
make the assumption that the total spin current at the contact
is the sum of the spin currents on either side, i.e.,

j0 = σN [−u′
−(0) + u′

0(0)], (A32a)

jL = σN [−u′
0(L) + u′

+(L)]. (A32b)

The signs have been chosen to be consistent with the physical
geometry. The only nonzero component of the current at the
contacts inside the semiconductor is the x component at x = 0,
so we use Eq. (A17a). For all other components there is zero

current at the contact, and we use Eq. (A18a). Together with
Eq. (A32) this gives the other six equations,

−u′
z−(0) + u′

z0(0) + η0uz(0) = 0, (A33a)

u′
z+(L) − u′

z0(L) + ηLuz(L) = 0, (A33b)

−u′
x−(0) + u′

x0(0) + η0ux(0) = �, (A33c)

u′
x+(L) − u′

x0(L) + ηLux(L) = 0, (A33d)

−u′
y−(0) + u′

y0(0) + η0uy(0) = 0, (A33e)

u′
y+(L) − u′

y0(L) + ηLuy(L) = 0, (A33f)

where

η−1
i = −σN

(
RF + Ri

C

)
, (A34a)

� = −(−J0)
(
P F

σ RF + P 0
	R0

C

)
η0. (A34b)

We define the r-parameter ri = −η−1
i , introduced in Eq. (5).

These equations can be organized into a matrix equation
and solved algebraically. A solution for uz corresponds to a
condition of vanishing determinant,

e−2L/λ =
(

1 + 2r0

λ

) (
1 + 2rL

λ

)
, (A35)

which can never be satisfied [34], thus uz = 0 is the only
allowed solution. The other two components form an eight-
dimensional linear system. Solving this gives the remaining
constants, and thus ux(L) = e−κLB− + e−κ̄LC−.

Finally, by using p1 = −σN�/J0 along with Eq. (A27),
we can introduce RSQ from Eq. (6) and the polarizations

p1 = P F
σ RF + P L

	 RL
C

RF + RL
C

, (A36a)

p2/p1 =
(

1 − P F
σ RF

P L
	 RL

C

)/(
1 + P F

σ RF

P L
	 RL

C

)
, (A36b)

to write

R
SQ
NL

RSQ
= p1p2

W/λ

[
−kux(L)

�

]
. (A37)

The factor in brackets is the function f given in Eq. (4).
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I. Žutić, Acta Phys. Slov. 57, 565 (2007).
[34] Except at the nonphysical point L/λ = ri/λ = 0.

245436-8

http://dx.doi.org/10.1021/nl301567n
http://dx.doi.org/10.1021/nl301567n
http://dx.doi.org/10.1021/nl301567n
http://dx.doi.org/10.1021/nl301567n
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
http://dx.doi.org/10.1103/PhysRevB.80.241403
http://dx.doi.org/10.1103/PhysRevB.80.241403
http://dx.doi.org/10.1103/PhysRevB.80.241403
http://dx.doi.org/10.1103/PhysRevB.80.241403
http://dx.doi.org/10.1103/PhysRevB.80.214427
http://dx.doi.org/10.1103/PhysRevB.80.214427
http://dx.doi.org/10.1103/PhysRevB.80.214427
http://dx.doi.org/10.1103/PhysRevB.80.214427
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRevLett.107.047207
http://dx.doi.org/10.1103/PhysRevLett.107.047207
http://dx.doi.org/10.1103/PhysRevLett.107.047207
http://dx.doi.org/10.1103/PhysRevLett.107.047207
http://dx.doi.org/10.1103/PhysRevB.67.052409
http://dx.doi.org/10.1103/PhysRevB.67.052409
http://dx.doi.org/10.1103/PhysRevB.67.052409
http://dx.doi.org/10.1103/PhysRevB.67.052409
http://dx.doi.org/10.1103/PhysRevB.89.245427
http://dx.doi.org/10.1103/PhysRevB.89.245427
http://dx.doi.org/10.1103/PhysRevB.89.245427
http://dx.doi.org/10.1103/PhysRevB.89.245427
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1103/PhysRevB.37.5312
http://dx.doi.org/10.1103/PhysRevB.37.5312
http://dx.doi.org/10.1103/PhysRevB.37.5312
http://dx.doi.org/10.1103/PhysRevB.37.5312
http://dx.doi.org/10.1103/PhysRevB.86.235408
http://dx.doi.org/10.1103/PhysRevB.86.235408
http://dx.doi.org/10.1103/PhysRevB.86.235408
http://dx.doi.org/10.1103/PhysRevB.86.235408



