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Quantifying energetics of topological frustration in carbon nanostructures
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We develop a graph theoretical formalism to account for the fact that sp2 carbon can become spin ordered
or generate free radicals for purely topological reasons. While this phenomenon has been previously considered
a binary operator, we here show a quantification in discrete units of frustrations. The graph theory method is
combined with open density functional theory calculations to establish the existence of an energy of frustration
that is shown to greatly improve the description of carbon nanostructure energetics using classical force fields. The
methodology is illustrated for a number of systems and, owing to the small computational overhead associated
with its evaluation, is expected to be easily integrable into any modeling approach based on a structure’s adjacency
matrix.
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I. INTRODUCTION

The hybridization of one s orbital and two p orbitals of
carbon results in intriguing structures such as fullerenes,
graphite, graphene, and nanotubes [1–4] with many attractive
properties. These properties are consequences of the intrinsic
rules of sp2 hybridization, which impose that each carbon
atom must be σ bonded to precisely three neighbors, exactly
one of these necessarily possessing an additional π bond. This
relatively simple idea of drawing organic structures in terms
of one double and two single bonds per carbon is named after
August Kekulé, who proposed the concept in the 1800s [5].

The Kekulé structure, as a model, became outdated with
the development of quantum mechanics, which established a
more complex picture where knowledge of the localization
of an electron is expressed as a probability distribution.
However, the original model remains a valuable concept, but
its intrinsically quantum mechanical origins often make it
hard to incorporate into broadly used classical descriptions
of carbon physics. Due to its inherent power as a metric
for structural characterization, the Kekulé model’s untapped
potential can be brought to light using modern techniques
such as those provided by graph theory, the study of nodes
and connections. It follows that mathematical rigor can be
combined with well-established classical molecular dynamics
(MD) such that significant improvement can be reached by
incorporating Kekulé’s prescriptions. As a consequence, this
refined approach avoids unstable structures that classical force
fields cannot detect. Furthermore, the systematic inclusion of
these rules has the power to significantly accelerate the virtual
design of stable multifunctional structures.

The focus of this paper is to demonstrate the existence of a
formal link between quantum mechanics, Kekulé structure,
and graph theory, and to provide a means to identify and
assess the energetics of topological frustration. Topological
frustration, when viewed by quantum mechanics with regards
to sp2 carbon, refers to open and localized π orbital shells
leading to a nonsinglet state having the lowest ground-state
energy [6]. In reference to chemistry, a frustration corresponds

to a sp2 carbon atom being unable to link to any double
bond under any possible Kekulé structure (without creating
additional unlinked atoms). In the graph theory sense, starting
from a network made up of a structure’s adjacency matrix
(i.e., a listing of all neighboring atoms), a frustration appears
when the maximal matching of a graph leaves unmatched
nodes. In addition, topologically frustrated structures have
also been known as concealed structures and non-Kekuléan
structures [7]. An example of this phenomenon viewed
from different disciplines is illustrated in Fig. 1, using the
smallest triangular zigzag graphene nanoflake (TZ GNF) as a
demonstration structure.

The general approach presented here aims at classifying
these structures and moving beyond the current paradigm,
which is based on considering the presence of topological
frustrations as a binary operator: Either the structure is
frustrated or not [8]. Our method instead measures the number
of topological frustrations in quantized units by an original
application of the concept of maximal matching borrowed
from graph theory. We define the number of frustrations of
any given structure as nf and the energy penalty per frustration
as uf .

Empirically, topological frustrations are relatively seldom
observed in stable products, but they are generally needed to
account for transition states during structure formation and
chemical reactions in general. Further, a single frustration
corresponds to a doublet state. Finding stable multiplet states
is the bane of experimentalists working in many fields, such as
in the search for undoped, ferromagnetic carbon. One of the
most famous examples in this category is that of TZ GNFs,
of which triangulene is a notable member. TZ GNFs exhibit
ferromagnetism (FM) ordering with a magnetic moment that
scales with increasing flake size, a consequence of Lieb’s the-
orem [9,10]. While purely hydrocarbon ferromagnets would
have many applications in device fabrication, they have not
been brought to practical fruition. Early pioneers such as Clar
had difficulty synthesizing any such structure at all [11], and
modern attempts have only been partially successful at creating
metastable structures due to characteristic decay at ambient
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FIG. 1. (Color online) (a) Maximal matchings (red) enumerating
all the unique positions of the unmatched node (blue), or frustration,
in the graph of the smallest TZ GNF. Note that more maximal
matchings are possible, but have symmetry equivalent unmatched
node locations. (b) Kekulé representations of the matchings in (a). The
unmatched node corresponds to an unbounded π orbital electron, or
free radical. (c) After graph theoretical enumeration, some nodes can
be unmatched (blue circles) and others always matched (red squares).
We call the former “frustration resonant” and the latter “frustration
forbidden.”

conditions, destroying the desired properties [12]. Magnetism
and stability are intimately related in hydrocarbon structures
through topology of the adjacency matrix, and indeed in
this study we will demonstrate that hydrocarbon structures
possessing a FM character are frustrated.

Here we show, using large-scale quantum chemistry meth-
ods for high-multiplet structures, that each quantized unit of
frustration is characterized by a constant energy uf . The ease of
identifying frustration and the uniformity of the corresponding
energy penalty enable the straightforward integration of frus-
tration energy into existing MD codes based on classical force
fields. This advance can facilitate rapid quantification of the
energetics for topologically frustrated carbon nanostructures
and thus promote high-throughput materials discovery.

II. COMPUTATIONAL METHODS

We employ two distinct theoretical and computational
methods to address the energetics of frustrations, ranging from
first-principles (density functional theory, or DFT) to classical
(the Tersoff-Brenner parametrized reactive bond-order, or
REBO, model) computational approaches.

The higher fidelity calculations are based on all-electron
quantum DFT calculations and were performed using the
NWCHEM package [13]. The B3LYP exchange-correlation
functional was used with Dunning’s correlation consistent
basis set, cc-pVDZ [14], during the calculation of the open-
shell self-consistent solution (ODFT). The initial starting
geometries for the different all-carbon systems were based
on the structures obtained using REBO. Full ODFT geometry
optimization was performed to obtain the total energy of each
possible spin state in order to determine the lowest energy spin
configuration. In all cases, spin contamination was carefully
monitored (〈S2〉) for these open-shell calculations. In addition,
corroboration of the lowest energy spin state was obtained
using restricted open-shell Hartree-Fock (ROHF) calculations.

A hybrid approach was also used since standard DFT
methods for conjugated systems can fail due to significant
electronic delocalization [15]. At the heart of this failure is

the description of electron exchange, which is particularly
important at describing magnetic properties. ROHF, while
accurate for exchange does not include important correlation
effects. We therefore have also checked the presented results
using Perdew-Zunger correlation with 100% exact exchange.

The classical method employed to calculate energy is a
custom implementation of a MD function set for hydrocarbons.
Specifically, it is the second-generation reactive empirical
bond order (REBO) potential originally developed by Brenner
et al. [16]. Minor modifications were made to the original
potential in the interest of computational efficiency, taken from
an earlier paper on the same potential [17]. The potential itself
accounts for basic bond length and bond angle preferences,
changes in hybridization from bond formation or removal, and
π -bond conjugation effects up to the second-nearest neighbor.
However, in contrast to ODFT, it completely ignores the energy
contribution related to frustration, as it is a purely quantum
mechanical property.

III. MAXIMAL MATCHING AND ENERGY
OF FRUSTRATION

A. Graph theory, application

Graph theory is the mathematical study of networks, appli-
cable to many disciplines in science and technology. A graph
G is defined as a set of nodes V connected by a set of edges
E. A matching is any set of edges that do not share the same
node, i.e., do not overlap. If all the nodes can be matched by an
edge once and exactly once, the graph is said to have perfect
matching. If we correlate nodes to sp2 carbon atoms (and not
hydrogen or sp3 atoms) and matched edges to double bonds,
then we clearly see that the Kekulé structure is topologically
synonymous to the aforementioned perfect matching.

However, what if all nodes cannot be matched exactly once,
for purely topological reasons? We can still attempt to match
as many nodes as possible without overlap: This set of edges
is known as the maximal matching. By taking the total number
of nodes in the graph and subtracting the number of nodes in
the maximal matching, we analogously arrive at the number of
atoms that do not have their π bonds satisfied, consequentially
raising the energy of formation. Thus, we arrive at a way to
measure the severity of topological frustration, by counting
the number of unmatched nodes, which we will simply call
frustrations. The number of topological frustrations in an sp2

carbon structure will produce an exactly equal number of free
radicals, by definition of unbound π electrons.

The application of maximal matching to large-scale sim-
ulation is fairly straightforward. Many fast algorithms have
been developed to compute the maximal matching in a number
of areas of network theory. Current algorithms are based on
variations of Edmond’s blossoming algorithm, which has a
runtime proportional to O[V E log(V )] [18]. This scaling is
valid for an arbitrary graph and even faster algorithms exist
for bipartite graphs, which can be applied to all benzoid
structures (note that in this case the A and B sublattices are
their own partitions). For bipartite graphs, run times can reach
O(E

√
V ) [19]. However, we want to insist on the fact that

the structures do not have to be benzoidal for the concept of
maximal matching to be applied. These computational times
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are much faster than many other operations performed in
electronic structure and MD calculations. Thus, calculating the
number of frustrations, and their contribution to the formation
energy, adds negligible processing time, provided an estimate
of an energy penalty can be made.

To calculate nf , Edmund’s blossoming algorithm is suffi-
cient, as it will quickly find a maximal matching. However,
to find and enumerate over all possible maximal matchings
to find frustration-resonant and -forbidden nodes (as shown
in Fig. 1), algorithms such as those developed by Uno are
required [20,21]. Uno’s enumeration algorithms have runtimes
of O(|V |N ) or O(|V | + |E| + �N ) (where V , E, and N

are the numbers of vertices, edges, and maximal matchings,
respectively, and � is the degree of the graph), depending
on if the graph is bipartite or not, respectively [20,21].
For more discussion on enumeration of matchings and the
relation between frustrations and Pauling bond order, see the
Supplemental Material [22].

B. Locating free radicals and resonances

We have established a number of rules that allow us to
calculate the Kekuléan nature of a structure from its base
building blocks and some elementary transformations, which
we call the rules of frustration annihilation. Using TZ GNFs
as an example, we observe that in no enumeration of the
maximal matching does a free radical ever exist at any of
the three extreme tips (Fig. 1). This remains true for all sizes
of TZ GNFs, for purely topological reasons, i.e., there is an
imbalance in the A and B sublattices of the bipartite network,
and the frustration will exist on the surplus sublattice. Thus, TZ
GNF side atoms can be considered as nodes with frustration
resonance, and the tip atoms can be considered as nodes that
are frustration forbidden.

If two TZ GNFs are connected at their tips (or a tip
to a side), the combined structure merely has the sum of
their frustrations, leaving the total number of free radicals
unchanged. However, if two side nodes are connected by one
edge, two frustrations can annihilate and leave a matching
on the added edge. It follows that this effect is equivalent
to two free radicals recombining into a π bond. A simple
demonstration of these rules in action is illustrated in Fig. 2
by observing how the number of frustrations, nf , changes by
simply choosing different locations of the connecting edge.

There are more ways to control nf than just connecting
subunits. Bringing two resonant nodes into contact via a Stone-
Thrower-Wales (STW) defect will have a similar effect (see
Fig. 3). STW defects also destroy the bipartite nature of ben-
zoid structures. Our methodology is unaffected by this loss of
ordering, displaying a significant advantage over other models
that only work for bipartite graphs, such as Lieb’s theorem [9].

It is important to mention that simply bringing frustration-
resonant nodes into contact with each other is not sufficient
for annihilation: At least two frustrations must exist in the
structure to annihilate. This is a consequence of the fact that
two neighboring unmatched nodes are required to match an
edge by definition; a single frustration, however resonant, will
not be able to find another to pair up. Physically, this can be
thought of as two electrons being required to form a bond, a
lone free radical is not enough.

FIG. 2. (Color online) All combinations of frustration-resonant
and -forbidden node connections between two of the smallest TZ
GNFs. Each TZ GNF subunit has number of frustrations, nf , equal
to one when unconnected. The subunits are connected by dimers to
avoid regions of high hydrogen-hydrogen repulsion [22], but this has
no effect on topological properties such as frustration resonance or
Kekuléan nature. (a) Two resonant nodes are connected, allowing the
free radicals (unmatched nodes) to combine (match), reducing the
total system nf to zero. (b) With two forbidden nodes connected,
the free radicals cannot be satisfied, and nf = 2. (c) Even when
connecting a forbidden and a resonant node, two radicals are required
to recombine; thus, the total number of frustrations remains nf = 2.

In summary, bringing nodes with frustration resonance
to connect with one another will lower the total number of
frustrations by two if there are two frustrations available.
This can be considered frustration annihilation, or free radical
combination. In contrast, edges between frustration-forbidden
nodes, or a frustration-forbidden and a resonant node, will not
result in any change in number of frustrations. In total, these
can be considered the rules of frustration annihilation.

In addition to having charted frustration resonance loca-
tions, the number of frustrations can be easily deduced for TZ
GNFs as well. The smallest flake has exactly one topological
frustration, and every additional row adds exactly one more
frustration. For instance, a TZ GNF with a side length of 2
benzene rings has one frustration (Fig. 1), a TZ GNF with a
side of 3 rings has two frustrations [triangulene, Fig. 4, row
(b), leftmost panel], and a TZ GNF with a side of 100 rings

FIG. 3. (Color online) Annihilation of free radicals (matching of
previously unmatched nodes) via STW defect. The bond rotation
forces two resonant nodes into contact, reducing the number of
frustrations from three to one (the lattice is also no longer bipartite).
However, if another STW defect is introduced elsewhere, nf will
remain 1, as frustrations annihilate in pairs.
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FIG. 4. Collection of all structures presented for analysis in this study. Edge carbon atoms are saturated with hydrogen atoms (not shown).
nf is the number of frustrations in each system. Every structure in a given row has the exact same number of interior and edge atoms. Row (a):
The simplest structures demonstrating the rules of frustration annihilation. By connecting the TZ GNF subunits with a dimer, we avoid strong
hydrogen-hydrogen repulsion from “coves.” Many more variants can be created by connecting TZ GNFs of various sizes in differing ways.
Rows (b) and (c): A comparison of GNFs having zigzag and armchair edge types. Rows (d) and (e): Similar to row (a), but linking in a wheel-
or gearlike fashion. The nf values below row (e) are for the wheel structures that have a single STW defect on a single tip (as the subimage
shows) while the values above are for the pristine structures.

has 99 frustrations. Clearly, from these simple rules and their
predictable topological behavior, TZ GNFs make for great
building blocks for constructing Kekuléan and non-Kekuléan
allotropes. It must be stressed that all the concepts discussed
in this paper, from frustration resonance nodes to the rules of
frustration annihilation, can be applied to any arbitrary sp2

hybridized hydrocarbon, not just those cut from graphene.
The established rules of frustration annihilation allow us to

manipulate the number of frustrations in a structure while pre-
serving the number of bonds and atoms. Thus, a non-Kekuléan
structure can become Kekuléan with the appropriate topologi-
cal changes. In the rest of this study we only present molecular
structures, but the rules of frustration annihilation can be used
to create one-dimensional (1D), 2D, and 3D analogs as well.

C. Quantifying frustration: u f

Moving beyond the simple TZ-GNF family, we now
present a methodology that will allow us to quantify the
energetics of frustration in a predictive manner. To this end, we
have employed open-shell DFT, which, in principle, includes
frustration and other quantum mechanical properties, and
the well-tested Tersoff-Brenner parametrized REBO classical
force field for hydrocarbons which faithfully reproduces most
structural properties while ignoring quantum mechanical
effects beyond the possibility of bonding. The number of frus-
trations is calculated using the maximal matching technique
presented above. By carefully constructing sterically similar
but topologically different structures and comparing DFT to
REBO energies, we can isolate the structural effects from the
Kekuléan ones. This is done by contrasting allotropes with
the same number and type of bonds. For instance, structures
in every row in Fig. 4 have the same number of interior
and edge carbons, preserving the number of carbon-carbon
and carbon-hydrogen bonds. Careful consideration of edge

and aromatic effects must be made, but we posit that the
majority of the energy difference within each row must
be attributed to the Kekuléan character, and is therefore a
measure of frustration.

As to be expected, raw REBO and DFT results have
mediocre agreement, unless the structures to be compared
have the same number of frustrations as the reference structure

TABLE I. Table that correlates the structures from Fig. 4 to
the energies (in eV) of Fig. 5. The labels used in the first column
correspond to a structure in Fig. 4. Every structure in a row has
the same number of bonds, as well as interior and exterior sp2

carbon atoms. All energies are shifted to a baseline structure in
each row, and the baseline structure energies are not shown, as they
would lie on the origin of Fig. 5. �nf is the number of frustrations
in surplus of the base line’s �nf , EDFT is the formation energy
acquired from DFT, and EREBO is the formation energy from REBO.
E∗

REBO is the frustration corrected REBO energy and is expressed as
E∗

REBO = EREBO + �nf × uf .

Structure �nf EDFT EREBO E∗
REBO

(a) 2 2 0.316 0 0.3
(a) 3 2 0.279 − 0.01 0.29
(b) 1 2 − 1.18 − 1.928 − 1.628
(c) 1 2 − 1.34 − 1.71 − 1.41
(d) 2 0 − 0.297 − 0.0587 − 0.0587
(d) 3 6 0.685 − 0.117 0.783
(d) 4 6 0.497 − 0.059 0.31
(e) 2, top 12 1.67 − 0.13 1.67
(e) 3, top 12 1.32 − 0.07 1.73
(e) 4, top 6 0.792 − 0.065 0.835
(e) 1, bottom 0 1.57 1.71 1.71
(e) 2, bottom 10 3.03 1.65 3.15
(e) 3, bottom 10 2.73 1.68 3.18
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FIG. 5. (Color online) Plot of ODFT versus Tersoff-Brenner
parametrized REBO energies with and without correction for frustra-
tion added to REBO. Crosses represent the uncorrected energies for
all structures shown in Fig. 4. Explicit values are listed in Table I. A
perfect correlation between the structures would yield a coefficient of
determination (CD) of 1.0 (i.e., all the data points would fall on the
bisector of the plot). Without correction, the CD is found to be 0.64.
The dots represent the REBO energies corrected by nf × uf , where
nf is provided on by the color of each data point and uf = 150
meV is a fitting constant. nf is the number of frustrations present
in surplus of those of the reference structure (usually the reference
has zero frustrations). The resulting CD is found to be 0.98, thereby
highlighting a strong correlation. Note that the structures with nf = 0
(Kekuléan) have overlapping crosses and dots, and lie very close to
the bisector, confirming the known validity of REBO to accurately
model Kekuléan structures.

(black dots and crosses on Fig. 5). While REBO predicts
very similar energies between allotropes, ODFT detects
deviations that grow as a function of the difference of nf .
By parametrizing a single value of energy of frustration uf

and multiplying it by nf for each individual structure we see
that the corrected REBO energy allows an excellent alignment
with the DFT energy values, thereby validating our initial
hypothesis for the cross-structural nature of the energy of
frustration. A perfect fit would place all the points of Fig. 5 on
the bisector (coefficient of determination CD = 1.0). Explicit
values for the data presented in Fig. 5 are presented in Table I.
Here, the linear fit for the actual data for all structures in Fig. 2
corresponds to CD = 0.98, with uf = 150 meV. This fitting
constant was derived for planar sp2 hydrocarbons; while the
energy of frustration will certainly penalize 3D structures as
it is a topological and electronic effect, some variation in uf

should be expected.
This is a remarkable improvement in accuracy, considering

that the learning set of structures is mediated by a broad array
of Kekuléan and non-Kekuléan transition methods, namely,
by benzene arrangements, dimer links, and STW defects.
An example of a benzene arrangement-mediated Kekuléan
transition is found in Fig. 4, row (b): The first two structures

are constructed completely with benzenes, and yet one is
non-Kekuléan (nf = 1) and the other is not (nf = 0). Notably,
the edge nature transitions from zigzag to partially armchair.
A demonstration of a dimer link-mediated Kekuléan transition
is found across row (a) of Fig. 4; nf is being controlled
across substructures connected by dimer links via the rules
of frustration annihilation (as explicitly discussed in Fig. 2).
Finally, the STW defect-mediated Kekuléan transition is seen
in Fig. 4, row (b), between the first and third structures. The
STW creates a nonbenzoid structure, but the rules of frustration
annihilation are still valid, and there is a predicted reduction
of nf by two. By comparing the structures in each row of
Fig. 4, combinations of these transitions can be seen, and thus
uf provides for a robust correction despite many independent
topological variables.

uf takes into account all aspects of the creation of the free
radical, including having a nonsinglet state as the ground state
and related spin effects. For instance, for the frustrated wheel
structures of Fig. 4, row (e), nf = 12, the ground-state energy
state is a tredecuplet. This is important to note, as while a little
energy is recouped compared to the paramagnetic state, overall
the energy of frustration overpowers and destabilizes any
beneficial effect from spin ordering. Additionally, theoretical
calculations beyond the triplet states are often difficult to
execute, but neglecting them would lead to incorrect ground-
state energies in highly frustrated structures.

Graph theory has been used previously to calculate energy
in the form of aromaticity, such as the method of conjugated
circuits by Randic [23]. However, aromatic energy is ill-
defined for non-Kekuléan structures [23], and we can consider
these effects built into uf . We should also note the rare cases
where maximizing Clar sextets can lead to the formation
of free radicals where normally there would be a perfect
matching Kekulé configuration [24]. In that case, free radicals
are created due the the favorable aromatic energy associated
with the single and double bond arrangements. An additional
benefit of graph theory is that while many methods (such
as Clar’s sextant) require benzoid structures, the concept of
topological frustration is versatile enough to be applied to
arbitrary nonbenzoid hydrocarbons, including, but not limited
to, those with a STW defect.

IV. APPLICATIONS

A. Spintronics

At this point, we are ready to make an important statement
about spintronics in hydrocarbons as a direct consequence of
the duality between graph theory and frustration: The prospect
of FM hydrocarbons is untenable without additional chemical
variations such as doping.

Graphene-type structures (also known as benzoid struc-
tures) can be seen as having two hexagonal sublattices of
nearest neighbors, often denoted by A and B [25]. Structures
with unequal sublattices can exhibit spin ordering, as posited
by Lieb’s theorem [9]. For a bipartite system, this theorem can
generally be stated as

S = 1
2 |NA − NB |, (1)

where S is the total spin, and NA and NB are the number of
atoms on the A and B sublattices. The connection between S

and the number of frustrations is straightforward: Mismatched
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bipartite structures with a net total spin are also guaranteed to
have topological frustration, with the number of frustrations
equaling 2S at the very least. This relation can be seen as
the consequence that every sublattice atom in excess of its
opposing sublattice will be missing a nearest neighbor for
matching, by definition. Thus, when S > 0, an FM state will
ensue with at least 2S frustrations (as seen in TZ GNFs).
When S = 0, either a paramagnetic (PM) or antiferromagnetic
(AFM) state will ensue, and the number of frustrations is
entirely dependent on topology.

To differentiate between structures that have an FM or AFM
ground state, Wang et al. proposed labeling structures that have
S > 0 as class I GNFs, while structures that have S = 0 in
total but have S > 0 for arbitrarily delineated substructures are
called class II GNFs [26]. Class I GNFs are FM, with TZ GNFs
as paragons. Class II GNFs have an AFM ground state, for
example Clar’s goblet (Fig. 6). However, in this classification
scheme the differentiation of substructures for class II GNFs
can be ambiguous; while it is obvious that the substructures
for Clar’s goblet are TZ GNFs, the division line placement is
still a qualitative matter, and claims of AFM or PM properties
must be supported by additional spin-ordering considerations.

More all-hydrocarbon AFM structure variants exist than are
presented here, such as graphene nanoislands [27]. Spintronic
structures provide for exciting avenues of research; Clar’s
goblet, and modifications of it, have been proposed for usage
in various spin-based devices, such as logic gates [26].

B. Possible zigzag carbon nanotube growth suppression

The applications of assisting the design of carbon spintron-
ics and increasing MD accuracy are immediate and obvious.
However, keeping tabs of topological frustrations can lead to

FIG. 6. Clar’s goblet. This pure hydrocarbon exhibits antiferro-
magnetism, which can be seen as arising from topological reasons.
However, it is also destabilized by topological frustration [26]. Using
a quantified approach, this presented structure has two topological
frustrations.

other surprising discoveries as well, since the Kekuléan nature
of graphs is often not obvious, especially in large structures.

In the course of applying the prescriptions of graph theory
to many carbon structures, zigzag carbon nanotubes (CNTs)
of odd chirality [such as (7,0), (9,0), etc.] were built with
a single capped end and a single open end [28] and ana-
lyzed. We serendipitously discovered that structures of these
specifications possess exactly one topological frustration. This
observation can have key consequences in the understanding of
root growth mechanism of CNTs. Note that in the experimental
synthesis of CNTs using methods like metal-assisted arc-
discharge and laser irradiation, it is observed that the formation
of armchair CNTs is preferred over others, and that zigzag
CNTs (ZZ CNTs) are somewhat scarce [29,30]. While these
growth processes are more complex and have more interactions
than a single-capped CNT in a vacuum, the principle still
stands that the intermediate growth structures of odd chiraled
ZZ CNTs are at an energetic disadvantage from frustration,
perhaps biasing them to not be formed.

V. CONCLUSIONS

By providing an unambiguous connection to link structure
and configuration of double bonds using the concept of maxi-
mal matching, we managed to isolate the energy of frustration
from other energy terms. With the use of maximal matching,
structure manipulation, and the rules of frustration annihila-
tion, it has been demonstrated that each individual topological
frustration increases a sp2 carbon system’s energy of formation
by approximately 150 meV, as obtained by ODFT (B3LYP).
This trend holds true over multiple size scales and allotropes.

Variations in this energy can be seen as a consequence
of edge-edge interactions and aromatic energies. While it
remains difficult to completely isolate the effects of topological
frustration from all other quantum mechanical phenomena,
the magnitude of the energy shift suggests that the change
in energy of such structures mainly arises from frustration. It
should be noted that because classical MD does not detect any
quantum mechanical-based topological effect, it ignores topo-
logical frustration altogether. However, the findings presented
herein provide a simple and numerically tractable way to add
energy penalties related to the frustration to the overall energy
function. This approach allows an important improvement of
quantitative validity for classical MD systems.

By measuring discrete frustrations, not only can the
stability be measured in terms of Kekuléan vs non-Kekuléan,
but also within non-Kekuléan vs non-Kekuléan by comparing
number of frustrations. With this tool, the feasibility of virtual
design of nanostructures and transformation pathways can
be quickly gauged, and the accuracy of MD simulations
improved. Even if an arbitrary structure is non-Kekuléan,
careful consideration of graph theory can yield alternate,
yet similar, structures that greatly reduce the number of
frustrations. Applications to many fields are possible,
especially when modeling structure growth and reactivity.
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[13] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska,
M. Dupuis, G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols,
J. Nieplocha et al., Comput. Phys. Commun. 128, 260 (2000).

[14] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
[15] S. Hirata, H. Torii, and M. Tasumi, Phys. Rev. B 57, 11994

(1998).

[16] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart,
B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783
(2002).

[17] S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys.
112, 6472 (2000).

[18] J. Edmonds, Can. J. Math. 17, 449 (1965).
[19] J. Hopcroft and R. Karp, Siam J. Sci. Comput. 2, 225 (1973).
[20] T. Uno, Lecture Notes in Computer Science (Springer, Berlin,

1997), pp. 92–101.
[21] T. Uno, Nat. Instrum. Inf. 3, 89 (2001).
[22] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.89.245425 for more discussion on the effect
of frustrations on Pauling bond order and avoiding the steric
effects of cove formations.

[23] M. Randic, Chem. Rev. 103, 3449 (2003).
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