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We study Anderson localization in graphene with short-range disorder using the real-space Kubo-Greenwood
method implemented on graphics processing units. Two models of short-range disorder, namely, the Anderson
on-site disorder model and the vacancy defect model, are considered. For graphene with Anderson disorder, local-
ization lengths of quasi-one-dimensional systems with various disorder strengths, edge symmetries, and boundary
conditions are calculated using the real-space Kubo-Greenwood formalism, showing excellent agreement with
independent transfer matrix calculations and superior computational efficiency. Using these data, we demonstrate
the applicability of the one-parameter scaling theory of localization length and propose an analytical expression for
the scaling function, which provides a reliable method of computing the two-dimensional localization length. This
method is found to be consistent with another widely used method which relates the two-dimensional localization
length to the elastic mean free path and the semiclassical conductivity. Abnormal behavior at the charge neutrality
point is identified and interpreted to be caused by finite-size effects when the system width is comparable
to or smaller than the elastic mean free path. We also demonstrate the finite-size effect when calculating the
two-dimensional conductivity in the localized regime and show that a renormalization group β function consistent
with the one-parameter scaling theory can be extracted numerically. For graphene with vacancy disorder, we
show that the proposed scaling function of localization length also applies. Last, we discuss some ambiguities in
calculating the semiclassical conductivity around the charge neutrality point due to the presence of resonant states.
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I. INTRODUCTION

Graphene is an effectively two-dimensional (2D) material
consisting of a sheet of carbon atoms [1,2]. In its pristine form,
it exhibits many remarkable low-energy electronic transport
properties, such as the half-integer quantum Hall effect [3,4]
and Klein tunneling [5], due to the linear dispersion of the
charge carriers near two inequivalent valleys around the charge
neutrality point. However, disorder may dramatically alter both
the electronic structure [6] and transport properties [7–9] of
graphene. It is generally believed that both short-range [10–13]
and strong long-range [14] disorder can lead to intervalley
scattering and Anderson localization, while weak long-range
disorder only gives rise to intravalley scattering, which does
not lead to backscattering and Anderson localization [15–17].

Due to its intrinsic low-dimensionality, graphene provides
an ideal test bed of revisiting old ideas regarding Anderson
localization in low dimensions, as well as discovering new
ones. The most successful theory for Anderson localization
is one-parameter scaling [18], which predicts that all states
in disordered 1D and 2D systems are localized at zero
temperature if the system is sufficiently large, although
exceptions can occur when the disorder is correlated [19]
or electron-electron interaction cannot be neglected [20].
However, recent works regarding localization in graphene have
yielded results that conflict with one-parameter scaling, with
some studies supporting the existence of mobility edges even in
the presence of uncorrelated Anderson disorder [21,22]. Very
recent numerical results indicate the difficulty of associating
data for the finite-size localization length with a single scaling
curve [23], as well as the discrepancy between results of the
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2D localization length obtained from the finite-size scaling
approach and the self-consistent theory of localization [24]. On
the other hand, it has been suggested that the conductivity at
the charge neutrality point (CNP) saturates to a constant value
[25], or decays following a power law rather than exponentially
with increasing system size [26,27], in graphene with resonant
scatterers such as vacancy defects.

Since the typical length scales regarding localization
properties in 2D systems are generally very large, efficient
numerical methods are desirable. Although the standard
numerical method for studying quantum transport is the
Landauer-Büttiker approach combined with the recursive
Green’s-function technique, using it for realistically sized truly
2D graphene systems is still beyond current computational
ability, since the computational effort scales cubically with
the width of the system. In contrast, the linear-scaling real-
space Kubo-Greenwood (RSKG) method [28–31] is generally
much more efficient and has been used to study electronic
transport in realistically sized graphene with various kinds of
disorder [26,27,32–36]. In this method, the actual computa-
tional effort depends on the energy resolution, the required
statistical accuracy, and, most crucially, the transport regime.
Exploring the localization properties generally requires a large
simulation cell to eliminate possible finite-size effects and
a long correlation time (which can be thought of as the
evolution time of a wave packet) to actually reach the localized
regime, which can be very time consuming. Recently, we have
significantly accelerated the calculations by implementing [37]
this method on graphics processing units [38] and further
developed methods for obtaining the localization properties
of disordered systems. It has been established [39] through
comparisons with the standard Landauer-Büttiker approach
that (1) the average propagating length of electrons can serve
as a good definition of length before its saturation and (2)
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the saturated propagating length is directly proportional to the
localization length defined in terms of the exponential decay
of conductance in the strongly localized regime.

Armed with this efficient numerical method, we perform
an extensive numerical study of Anderson localization in
graphene with short-range disorder, including Anderson dis-
order and vacancies. We first calculate the localization lengths
for various quasi-1D (Q1D) systems using the RSKG method.
Since most of the previous works [12,23,24,40] have applied
the transfer matrix method (TMM) [41] (or, equivalently, the
recursive Green’s-function method; see Ref. [42]), we also
present a comparison between these two methods. Based on
our computational data, we are able to compare the results
against the one-parameter scaling theory of localization length
[42,43] and construct an analytical expression for the so-far-
undetermined scaling function. Our results are consistent with
those of Schreiber and Ottomeier [40] and Lee et al. [24],
but, compared to these works, we have considered a more
complete set of energy points and much wider systems. We also
discuss the finite-size effects for the scaling analyses of both
localization length and conductivity and some ambiguities in
determining the semiclassical conductivity in graphene with
resonant disorder using the RSKG method.

This paper is organized as follows. Section II defines the
physical models and introduces the TMM for the calculation of
localization length and the RSKG method for the calculation
of localization length, as well as other electronic and transport
properties. We then study Anderson localization of graphene
with Anderson disorder and vacancy-type disorder in Secs. III
and IV, respectively. Section V concludes.

II. MODELS AND METHODS

A. Models

For pristine graphene, we apply the widely used nearest-
neighbor pz orbital tight-binding Hamiltonian

H = −t
∑
〈i,j〉

|i〉〈j |, (1)

where t is the hopping parameter. The uncorrelated Anderson
disorder is modeled by adding random on-site potentials uni-
formly distributed within an energy interval of [−W/2,W/2],
W being a measure of the disorder strength. The more realistic
vacancy disorder is modeled by randomly removing carbon
atoms according to a prescribed defect concentration n, which
is defined to be the number of vacancies divided by the number
of carbon atoms in the pristine system. We consider the whole
energy spectrum for the Anderson model and thus take t as
the unit of energy, but only consider a small energy window
for the vacancy model and take eV as the unit of energy and
set t = 2.7 eV. When calculating the Q1D localization length,
we consider both zigzag and armchair graphene nanoribbons
(ZGNRs and AGNRs, correspondingly). To test the effect
of the boundary conditions in the transverse direction, we
also consider armchair carbon nanotubes (ACNTs) with
the transport direction along the zigzag edge and periodic
boundary conditions also along the transverse direction. We
use Nx and Ny to denote the number of dimer lines along the
zigzag edge and the number of zigzag-shaped chains across

the armchair edge, respectively. The total number of carbon
atoms in the computational cell is then Nx×Ny . The symbol M
defines the width of the system. For ZGNRs and ACNTs, we set
M to Ny and obtain the actual width LM using LM = 3Ma/2.
For AGNRs, we set M to Nx and obtain the actual width using
LM = √

3Ma/2. Here, a is the carbon-carbon distance, being
roughly 0.142 nm.

B. Methods

We define the localization length λM of a Q1D system
with a fixed width LM to be the characteristic length of the
exponential decay of typical conductance with the system
length L in the strongly localized regime [44]:

gtyp(L) ∼ exp(−2L/λM ), (2)

where the typical conductance gtyp ≡ exp(〈ln g〉) is obtained
from the ensemble average over individual realizations with
fixed system size and disorder strength [45].

In the literature, the most often used methods for computing
λM are the recursive Green’s-function method and the TMM,
which are essentially equivalent [42]. In Ref. [39], we have
suggested another method of finding λM using the RSKG
formalism, briefly explained below. In this work, we further
demonstrate its accuracy and efficiency by comparing it
against the TMM.

1. The transfer matrix method

In the TMM, the wave function ψn of the nth slice along
the transport direction of the Q1D geometry is calculated
iteratively using the transfer matrix equation (note that all
the matrix or vector elements here are M-by-M matrices) as(

ψn+1

ψn

)
=

(
E1 − Hn −1

1 0

) (
ψn

ψn−1

)
≡ Tn

(
ψn

ψn−1

)
, (3)

with the initial wave functions ψ1 = 1 and ψ0 = 0. We only
consider ZGNRs and ACNTs (both with the transport direction
along the zigzag edge) when using the TMM, where the matrix
Hn takes two alternative forms depending on whether n is even
or odd, as given in Ref. [40]. According to Oseledec’s theorem
[46], with increasing N , the eigenvalues of (�†

N�N )1/2N ,
where �N ≡ TNTN−1 · · · T1, converge to fixed values e±γm , the
γm(1 � m � M) being Lyapunov exponents. The localization
length is defined as the largest decaying length associated with
the minimum Lyapunov exponent [44]:

λM = 1

γmin
. (4)

Numerically, the minimum Lyapunov exponent can be com-
puted by combining Gram-Schmidt orthonormalization with
the above transfer matrix multiplication. Practically, only
sparse matrix-vector multiplication is required and one does
not need to perform Gram-Schmidt orthonormalization after
each multiplication. Usually, performing one Gram-Schmidt
orthonormalization every ten multiplications keeps a good
balance between speed and accuracy. The number of slices
required for achieving a relative accuracy of ε is approximately
[42] 2(λM/a)/ε2. In this work, we set ε = 1%.
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2. The real-space Kubo-Greenwood method

In the RSKG method [28–31], the zero-temperature dc
electrical conductivity at energy E and correlation time τ can
be expressed as

σ (E,τ ) = e2ρ(E)
d�X2(E,τ )

2dτ
, (5)

where

ρ(E) = 2Tr [δ(E − H )]


(6)

is the electronic density of states with the spin degeneracy
taken into account. Note that the factors of 2 in the above two
equations can cancel each other and are not presented in some
works, but we prefer to keep them for clarity. Here H is the
Hamiltonian and  is the volume, or, in our case, just the area
of the graphene sheet, and

�X2(E,τ ) = Tr{[X,U (τ )]†δ(E − H )[X,U (τ )]}
Tr[δ(E − H )]

(7)

is the mean square displacement. X is the position operator and
U (τ ) = e−iHτ/� is the time-evolution operator. What need to
be calculated are Tr[δ(E − H )] and Tr{[X,U (τ )]†δ(E − H )
[X,U (τ )]} at a chosen set of τ . The so-called linear-scaling
algorithm for calculating the latter (the calculation of the
former does not need the second technique below) can be
achieved by the following three techniques: (1) approximating
the trace by using one or a few random vectors |φ〉, Tr[A] ≈
〈φ|A|φ〉, A being an arbitrary operator, (2) calculating the
time-evolution of [X,U (τ )]|φ〉 iteratively using, e.g., the
Chebyshev polynomial expansion, and (3) approximating
the Dirac δ function δ(E − H ) using a linear-scaling technique
such as Fourier transform, Lanczos recursion, or kernel
polynomial. The relative error caused by the random-vector
approximation is proportional to [47] 1/

√
NrN , where N

is the Hamiltonian size (the total number of carbon atoms
in our problems) and Nr is the number of independent
random vectors used. In this work, we have used a few to
a few tens of random vectors for each simulated system, the
specific number depending on the specific system, the required
accuracy, and the specific quantities to be calculated. For the
approximation of the Dirac δ function, we have used the kernel
polynomial method [47]. The energy resolution δE achieved
using this method is inversely proportional to the number
of Chebyshev moments (which is the order the Chebyshev
polynomial expansion) Nm used. For most of the calculations,
we have chosen Nm to be 3000, which corresponds to an
energy resolution of a few meV. While this energy resolution
is sufficiently high for graphene with Anderson disorder, it
is not necessarily high enough to distinguish the resonant
state at the CNP in graphene with vacancy defects from other
states. In Sec. IV D, we discuss the effect of energy resolution
on the results for graphene with vacancy defects. Details of
the involved algorithms and the implementation on graphics
processing units can be found in Ref. [37].

As τ increases from zero, the running conductivity σ (E,τ )
first increases linearly, indicting a ballistic behavior, and
then gradually saturates to a fixed value, which can be
interpreted as the semiclassical conductivity σsc(E), and
finally decreases until it becomes zero if localization takes

place. In practice, especially when the disorder is strong, there
may be no apparent plateau to which the running conductivity
saturates, and σsc(E) is thus usually defined as the maximum
of σ (E,τ ). While this is generally a reasonable definition, it
can sometimes result in problems, as we show in Sec. IV C.
After obtaining σsc(E), one can calculate the elastic mean
free path le(E) through the Einstein relation for diffusive
transport [48],

σsc(E) = 1
2e2ρ(E)v(E)le(E), (8)

where v(E) is the Fermi velocity, which can be calculated
from the velocity autocorrelation at zero correlation time [37].

The usefulness of the RSKG method also depends crucially
on a definition of propagating length L(E,τ ) in terms of√

�X2(E,τ ). Indeed, in the original Kubo-Greenwood formal-
ism, there is no definition of length and no connection between
conductivity and conductance can be made. A definition of
length is required for the study of mesoscopic transport prop-
erties. A natural definition would be L(E,τ ) =

√
�X2(E,τ ),

but a more precise relation has been established [37,39]:

L(E,τ ) = 2
√

�X2(E,τ ). (9)

The factor of 2 in this equation can be justified from different
perspectives: (1) it results in [37] the textbook formula [49]
for the ballistic conductance,

g(E) = e2ρ(E)v(E)LM/2, (10)

and (2) it results in a Q1D conductance g(E,L) = LMσ (E,τ )/
L(E,τ ) which is consistent with independent Landauer-
Büttiker calculations in the localized regime [39]. This
definition of length is only valid up to about g ∼ 0.1e2/h,
after which the propagating length saturates to a fixed value
proportional to the localization length [39,44]:

λM (E) = lim
τ→∞

2
√

�X2(E,τ )

π
. (11)

The meaning of the factor of π in this equation is yet
to be found, but this expression yields results in a good
agreement with independent Landauer-Büttiker calculations
[39]. Although an infinite τ is indicated in the above equation,
in practice, we only simulate up to a finite τ and then fit
the mean square displacement data using a Padé approximant
of the form �X2(τ ) = (c1τ + c2)/(τ + c3). We found that as
long as the mean square displacement is almost converged,
this simple Padé approximant results in a very good fit to
the data and the saturated mean square displacement can
be extracted as c1. As in the case of the TMM, an error
estimation of the calculated data is useful to evaluate the
quality of the results. However, there seems to be no unique
way to define the errors for λM (E) calculated using the RSKG
method. We have estimated the error for λM (E) as the mean
of |L(E,τ ) − Lfit(E,τ )| over τ , where Lfit(E,τ ) is the fitted
propagating length using the Padé approximant. We further
validate this method by comparing with independent TMM
calculations in Sec. III A and discuss the finite-size effect
in this method caused by the finite simulation cell length in
Sec. IV A.
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FIG. 1. (Color online) Localization lengths as a function of energy for Q1D systems: (a) ZGNRs with W = 2t , (b) ACNTs with W = 2t ,
(c) ZGNRs with W = 1.4t , and (d) AGNRs with W = 1.4t . For (a) and (b), M = 8, 16, 32, 64, 128, 256, and 512; for (c), M = 32, 64,
128, 256, 512, 768, and 1024; for (d), M = 50, 98, 194, 386, 770, 1154, and 1538. The open circles [only in (a) and (b)] and the small solid
dots represent the results obtained by the TMM and the RSKG method, respectively. The shaded areas with bounding lines indicate the error
estimates of the data calculated by the RSKG method. The value of M increases monotonically from bottom to top in each subfigure. Note the
different relation between the width LM and M for AGNRs from other cases.

III. GRAPHENE WITH ANDERSON DISORDER

A. Localization lengths for quasi-one-dimensional systems

Figure 1 shows the calculated localization lengths for Q1D
systems with different widths, energies, disorder strengths,
edge types, and boundary conditions. The considered systems
are (a) ZGNRs with W = 2.0t , (b) ACNTs with W = 2.0t ,
(c) ZGNRs with W = 1.4t , and (d) AGNRs with W = 1.4t .
In Figs. 1(a) and 1(b), the open circles and small solid dots
correspond to the results obtained by the TMM and the RSKG
method, respectively. The errors estimates for the RSKG
results are indicated by the shaded areas with bounding
lines. The relative accuracy of the TMM results is set to 1%,
which would result in errors comparable to the corresponding
marker size, and we thus omit the error bars for the TMM
results for simplicity. Both methods give practically the same
results, but the RSKG method is much more efficient for
wider systems due to the use of linear-scaling techniques
and the intrinsic parallelism in energy of this method. The
parallelism in energy means that obtaining the results for all
the energy points does not require more computation time

than obtaining the result for a single energy value. In contrast,
the computation time for the TMM scales cubically with
respect to the width of the system and there is no parallelism
in energy. Therefore, using the TMM, we have only calculated
a limited number of energy points for M = 128 and 256 and
no points for M = 512. Even under these conditions, the
computation times for these two methods are roughly equal,
which demonstrates the accuracy and efficiency of the RSKG
method. We thus only used the RSKG method for weaker
disorder, as shown in Figs. 1(c) and 1(d).

There is an obvious difference between the results for
different boundary conditions and edge types. Figures 1(a)
and 1(b) correspond to transport in the direction of the zigzag
edge and differ only by the boundary conditions used in the
transverse direction, with Fig. 1(a) corresponding to free (hard
wall) boundary conditions (ZGNRs) and Fig. 1(b) to periodic
boundary conditions (ACNTs). We note that for ACNTs, the
CNP behaves rather differently from the other points: It evolves
from a local maximum for M < 128 to a local minimum for
M > 128. This observation is consistent with the finding by
Xiong et al. [12]. Figures 1(c) and 1(d) correspond to a weaker
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disorder with W = 1.4t , with Figs. 1(c) showing results for
ZGNRs and 1(d) for AGNRs. To avoid band gaps, only
metallic AGNRs are considered. We note that AGNRs
behave similarly as ACNTs, having a maximum of λM at the
CNP when the width of the system is small. However, with
increasing width, the differences between different boundary
conditions and edge types become smaller, and one may
expect that these differences become vanishingly small in the
limit of wide systems.

B. One-parameter scaling of localization length

As our results indicate that the differences of localization
lengths between different boundary conditions and edge types
become smaller with increasing width, a natural question is
whether the conventional one-parameter scaling theory of
localization length applies to our simulation data. MacKinnon
and Kramer [42,43] have proposed a scaling law for the Q1D
localization length,

λM

LM

= f

(
ξ

LM

)
, (12)

where ξ = ξ (W,E) is the 2D localization length for a given W

and E and f = f (x) is an unknown function. The construction
of the scaling function for graphene (or honeycomb lattice)
was considered by Schreiber and Ottomeier [40] as early as
1992, although they only considered relatively strong disorder
(W � 4t) due to the limited computational power available
at that time. Recently, Lee et al. [24] constructed a scaling
curve for systems with W down to 1.2t , although not all
the energy points (especially some points at and around the
CNP) were considered uniformly. An inspection of the scaling
curves presented in Refs. [40] and [24] reveals that the scaling
function f (x) may be universal. Thus, it is natural to attempt
to construct an analytical expression for this scaling function.

To find such a universal function, we note that when
LM is in the Q1D limit, where LM 
 ξ (i.e., x � 1) (but
LM should be large enough to ensure that λM/LM enters
the scaling regime), λM/LM decays nearly linearly with
increasing ln(LM ) (not shown here). This indicates that
f (x) = a1 ln(x) + a2, where a1 and a2 are constants. This
kind of asymptotic behavior was, in fact, noticed very early
by MacKinnon and Kramer [42]. On the other hand, they
also noted that when LM � ξ (i.e., x 
 1), ξ ≈ λM and the
scaling function should behave as f (x) ∼ x. A natural choice
for the scaling function which meets these two conditions
simultaneously is thus f (x) = ln(1 + kx)/k, or equivalently,

λM

LM

= ln (1 + kξ/LM )

k
, (13)

where k is a constant which needs to be determined numeri-
cally. Before testing this function against our data, we point out
that finding a parametrized analytical expression for the scaling
function is not in sharp contrast with previous works. On the
one hand, it is conventional to assume an analytical form for the
scaling function when studying Anderson localization in 3D
systems [50,51], and following this approach, different func-
tions have been tested for simulation data for graphene flakes
[23]. On the other hand, it has been assumed that in the limit of
x 
 1 the scaling function takes a parametrized form [24,42],

f (x) = x − bx2 + O(x3), (14)

where b is a fitting parameter. It is clear that Eq. (13) automati-
cally results in this kind of asymptotic behavior when b = k/2.

We have fitted the data of Fig. 1 against Eq. (13), treating
the 2D localization lengths ξ (E,W ) for every E and W as
independent fitting parameters. The results are shown in Fig. 2.
We have only used the data for the three systems having the
largest localization lengths in each of the Figs. 1(a)–1(d), since
data for relatively narrow systems apparently do not follow
any scaling curve. Nevertheless, our data already spread over
a broader range of system widths compared to previous works
[24,40]. Accidentally or not, we estimate that the value of the
parameter k in Eq. (13) is very close to π . As can be seen from
Fig. 2, all the data points project well onto the scaling curve,
except for the CNP in the two weakly disordered (W = 1.4t)
systems. The reason why the CNP experiences the largest
finite-size effect will be discussed later. The scaling function,
Eq. (13) with k = π , also gives an excellent description for
the data in Refs. [24,52], as well as for the data for a square
lattice with uncorrelated Anderson disorder, as shown in the
Appendix, and for the data for graphene with vacancy-type
disorder, as discussed in Sec. IV C. While the simulation data
agree well with the proposed scaling function, in the next
section we further explore its connection to another widely
used method of computing the 2D localization length.

C. Comparing two methods of computing
the 2D localization length

According to the scaling theory of Anderson localization
[53–56], ξ can also be estimated exclusively based on the
diffusive transport properties [44]:

ξ (E) = 2le(E) exp

[
πσsc(E)

G0

]
. (15)

It is thus important to ask whether this expression is consistent
with the scaling approach based on the Q1D localization
length. To answer this question, we first calculate the diffusive
transport properties for systems with W = 1.4t and 2.0t .
The results are shown in Fig. 3. Note that the results are
not sensitive to the edge type or boundary conditions, since
the relevant transport length scale, the mean free path le, is
relatively small (compared to ξ ), and we can use a sufficiently
large simulation cell size to eliminate any finite-size effects
affecting the diffusive transport properties. An examination
of Fig. 3 reveals why the CNP behaves very differently from
other states regarding the localization properties. At the CNP,
the density of states is vanishingly small but the semiclassical
conductivity and the group velocity are of the same order
as for other states. This results in a very large le at the
CNP, as has also been found by Lherbier et al. [32]. With
a disorder strength of W = 1.4t , le ≈ 200a at the CNP, which
is comparable to the simulation widths used for calculating the
Q1D localization lengths. One cannot expect that the scaling
function applies when LM ∼ le, because le sets up a lower limit
of the scaling behavior [42]. More quantitatively, LM should
be at least several times larger than le to make the scaling
function fully applicable. However, with decreasing disorder
strength, le for the CNP diverges and it becomes formidable to
reach the scaling regime computationally.
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indicated in Fig. 1.

Figure 4 compares the localization lengths calculated by
Eq. (13) (with k = π ) and Eq. (15). We can see that the 2D
localization lengths are much larger than the Q1D values,
making a direct computation nearly impossible. They also
depend sensitively on the disorder strength, with the values for
W = 1.4t being several orders of magnitude larger than those
for W = 2.0t . With a given disorder strength, the values of
ξ obtained using Eq. (13) with different boundary conditions
and edge types are very close to each other, only exhibiting
some discrepancies around the CNP, which, as have been noted
before, should be originated from the finite-size effect. It can
be seen that the two methods for computing ξ agree well with
each other. Lee et al. [24] also compared these two methods,
but in contrast to our results, observed that Eq. (15) results
in a significant underestimation. Our interpretation is that
their method of computing σsc is based on the semiclassical
self-consistent Born approximation, which may be not as
accurate as the fully quantum mechanical RSKG method.

The fact that Eqs. (13) and (15) give consistent results
for ξ can be understood in the following way. We know that
in the Q1D limit, the localization length and the mean free
path are related by the Thouless relation [57–60] (for the
orthogonal universality class, which is the case for graphene
with intervalley scattering) [44],

λM (E) ≈ Nc(E)le(E), (16)

where Nc(E) is the number of transport channels. In other
words, Nc(E) equals the “hypothetical” ballistic conductance
as given by Eq. (10) divided by the conductance quantum
G0 ≡ 2e2/h:

Nc(E) ≡ g(E)

G0
= LMe2ρ(E)v(E)

2G0
. (17)

By “hypothetical”, we mean that g(E) is the conductance of the
disordered system in the zero length limit, where no scattering
starts to play a role. By combining the above two equations
and using the relation between σsc(E) and le(E) in Eq. (8),
we arrive at the following modified version of the Thouless
relation:

λM (E) = LMσsc(E)

G0
. (18)

In the Q1D limit, the scaling function given by Eq. (13) (with
a = π ) can be written as λM (E)/LM = ln [πξ (E)/LM ] /π ,
which, combined with the above Thouless relation, gives

ξ (E) = LM

π
exp

[
πσsc(E)

G0

]
. (19)

Choosing LM = 2πle(E) gives exactly Eq. (15). This heuristic
derivation is consistent with the intuition that the scaling
regime starts from a width several times larger than the mean
free path.

245422-6



ANDERSON LOCALIZATION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 245422 (2014)

−3 −2 −1 0 1 2 3

10
−2

10
−1

E (t)

D
O

S
 (

1/
t/a

2 )

(a)

−3 −2 −1 0 1 2 3
0

5

10

E (t)

σ sc
 (

e2 /h
)

(b)

−3 −2 −1 0 1 2 3

0.4

0.6

0.8

1

E (t)

v 
(v

0)

(c)

−3 −2 −1 0 1 2 3
10

0

10
1

10
2

E (t)

l e (
a)

(d)

FIG. 3. (Color online) (a) Density of states, (b) semiclassical
conductivity, (c) group velocity (v0 = 3at/2�), and (d) mean free
path as functions of energy. The solid and dashed lines represent the
results for W = 1.4t and W = 2.0t , respectively. Sufficiently large
simulation cell sizes are used to eliminate the finite-size effects.

D. One-parameter scaling of conductivity

The one-parameter scaling of localization length is, in fact,
intimately connected [42] to the one-parameter scaling of
conductivity. Equation (15) has been derived from the scaling
behavior of the 2D conductivity in the weak-localization
regime, where the conductivity σ (E,L) decays logarithmically
with increasing L:

σ (E,L) = σsc(E) − G0

π
ln

[
L

l0(E)

]
. (20)
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FIG. 5. (Color online) Conductivity for 2D graphene with
W = 2.0t . (a) Conductivity as a function of the propagating length
of electrons for different simulation sizes Nx ∗ Ny (markers). The
prediction from the weak-localization formula given by Eq. (20)
is also shown (line). The energy considered here is E = 1.8t . (b)
Conductivity as a function of the reduced length L/ξ for a set of
energy points. The 2D localization length ξ is taken to be the average
over the results obtained shown in Fig. 4. The inset in (b) shows
the renormalization group β function (solid line) calculated by using
Eq. (21) after fitting σ as a smooth function of L/ξ . The dashed line
in the inset represents β = ln(σ/G0). Periodic boundary conditions
are applied in both the transport and the transverse directions. The
transport direction is taken to be along the zigzag edge; taking the
transport direction to be along the armchair edge yields similar results.

Here l0(E) is a length scale, conventionally set to le(E).
Assuming that L reaches ξ (E) when the weak-localization
correction becomes comparable to σsc(E) gives Eq. (15)
apart from a factor of 2 resulting from the use of different
conventions [44].

The validity of the weak-localization formula, Eq. (20),
can also be confirmed numerically. Figure 5(a) shows the
calculated conductivity as a function of the propagating length,
as defined by Eq. (9), for the state with E = 1.8t and W = 2.0t .
The calculated conductivities are ensemble averaged over
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several disorder realizations and the tracing operation in Eq. (7)
has been approximated using several random vectors, resulting
in relatively smooth curves. Due to the large localization length
in 2D, significant finite-size effects arise when calculating
the conductivity in the localized regime. When the simulation
size Nx×Ny increases from 1000×1000 to 4000×4000, the
calculated data get closer to the line predicted by Eq. (20),
with l0(E) being set to the “diffusion length” ldiff (which is
generally larger than the mean free path) beyond which the
conductivity starts to decay. ldiff is defined as the length at
which the running conductivity reaches its maximum value
[33,34]. Although periodic boundary conditions are applied in
both the transport and the transverse directions, we see that a
simulation size of 1000×1000 is not large enough to eliminate
the finite-size effect, resulting in an artificial fast decay of
conductivity when L > 1000a.

The transition from the weak to the strong localization
regime is smooth and universal. Figure 5(b) shows the con-
ductivity as a function of the propagating length normalized
by the 2D localization length. The data for different energy
states project onto a single curve, which agrees with the
scaling theory of localization. This indicates the existence of
a universal renormalization group β function,

β = d ln(σ/G0)

d ln(L/ξ )
, (21)

as shown in the inset of Fig. 5(b). The scaling function
behaves as β ∼ ln (σ/G0) when σ 
 G0, which is consistent
with the exponential decay of conductivity in the strongly
localized regime. Similar results have been obtained [61] for
hydrogenated graphene using the Landauer-Büttiker approach.
One may note that different renormalization group β functions,
either with [15] or without [16] an unstable fixed point, have
been obtained for graphene with long-range disorder. While
the positive sign of the β functions (in the large conductivity
limit) in the previous works signifies antilocalization in the
absence of intervalley scattering, the negative sign of the β

function in our work is associated with localization caused by
intervalley scattering.

IV. GRAPHENE WITH VACANCY DISORDER

Although the Anderson disorder model is of general
theoretical interest, more realistic short-range scatterers in
graphene are atomically sharp defects, such as vacancies and
adatoms, which are believed to cause intervalley scattering and
Anderson localization around the CNP in irradiated graphene
[62] and hydrogenated graphene [63]. Here we focus on the
vacancy-type disorder, which also approximates the effect of
hydrogen adatoms [64].

A. Finite-size effect resulting from the finiteness
of the simulation length

Before presenting the results for graphene with vacancy
defects, we first discuss the finite-size effect for the calculation
of the Q1D localization length using the RSKG method.
This finite-size effect is different from that which causes
the deviations of the data for the CNP from the scaling
function in Fig. 2. It is a finite-size effect caused by the
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FIG. 6. (Color online) Demonstration of the finite-size effect for
the calculation of the Q1D localization length using the RSKG
method. The Q1D localization length is plotted as a function
of energy. The systems correspond to graphene (in the ACNTs
geometry) with 1% vacancies. The width of the systems corresponds
to a value of M = Ny = 512 (which gives LM = 768a) and the
simulation lengths are indicated by the Nx (corresponding to a
simulation cell length of

√
3Nxa/2) values in the legend. Error bars

are omitted, since their magnitudes are comparable to the marker size.

use of a finite simulation length in practical calculations. In
the RSKG method, the propagating length L(E,τ ), defined
by Eq. (9), serves as a measure of the actual length of the
physical system at a specific correlation time. In contrast, the
simulation cell length, which is proportional to Nx (or Ny ,
depending on the transport direction) has no direct connection
to L(E,τ ). Usually, periodic boundary conditions are applied
along the transport direction to alleviate the finite-size effect
caused by the finiteness of Nx . Whether or not a given Nx

is large enough to eliminate the finite-size effect depends
on the involved transport length scales. Figure 6 shows the
finite-size effect when calculating the Q1D localization lengths
for ACNTs of width LM = 768a with 1% vacancies. As the
simulation cell length increases from Nx = 103 to Nx = 104,
the calculated Q1D localization lengths converge, which
reflects the alleviation of the finite-size effect by increasing the
simulation cell length. It is clear to see that states with larger
saturated localization lengths require larger simulation cell
lengths to eliminate the finite-size effect. More quantitatively,
to completely eliminate the finite-size effect, the simulation
cell length should be a few times larger than the maximum
localization length for a given simulated system. In this paper,
we have used as large as possible simulation cell lengths, and
the finite-size effects resulting from the finiteness of Nx have
been practically eliminated.

B. One-parameter scaling of localization length

We have calculated the localization lengths for Q1D
graphene systems in the ACNT geometry with M = 128, 256,
and 512 with the vacancy concentration fixed to n = 1%. The
results are shown in the inset of Fig. 7. The main frame of
Fig. 7 shows that the scaling function given by Eq. (13),
with k ≈ π , also applies here. A striking difference between
vacancy disorder and Anderson disorder is that the Van Hove

245422-8



ANDERSON LOCALIZATION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 245422 (2014)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

ξ/L
M

λ M
/L

M

M=128
M=256
M=512

0 0.1 0.2 0.3 0.4 0.5

10
2

10
3

E (eV)

λ M
 (

a)

FIG. 7. (Color online) One-parameter scaling of localization
length for graphene with 1% vacancy disorder. The localization length
divided by the width, λM/LM , is plotted as a function of ξ/LM , where
ξ is the 2D localization length obtained by fitting the data in the inset
against the scaling function. The solid line represents the scaling
function given by Eq. (13) with k = π and the dashed line represents
the identity function f (x) = x. The inset shows the Q1D localization
lengths as a function of energy. The transport direction is along the
zigzag edge and periodic boundary conditions are applied along the
transverse direction for the Q1D systems. The Q1D systems have a
fixed vacancy concentration of 1%.

singularities at E = ±t are much more strongly affected
by Anderson disorder (manifested in the local minimum of
the mean free path at E = ±t in Fig. 3), while vacancies
mostly affect low-energy charge carriers around the CNP.
This is because vacancies serve as high potential barriers
which result in large scattering cross sections and small mean
free paths for low-energy charge carriers [60]. In contrast,
high-energy charge carriers experience small scattering cross
sections and have large mean free paths, which, combined
with higher densities of states (larger number of transport
channels), gives rise to large Q1D localization lengths ac-
cording to the Thouless relation. For the selected defect
concentration, our numerical calculations are only able to
explore a small energy range |E| � 0.5 eV around the CNP.
Within this energy range, all the data agree well with Eq. (13),
and the corresponding 2D localization length can thus be
extracted.

C. Connecting diffusive and localized transport regimes

As in the case of graphene with Anderson disorder, one may
ask whether the 2D localization lengths obtained by fitting the
Q1D data against Eq. (13) are consistent with those obtained
by using Eq. (15). It turns out that there is some ambiguity in
the calculation of the semiclassical conductivity at the CNP, as
shown in Fig. 8(a), where the running conductivity obtained
by using Eq. (5) is compared with that obtained by substituting
the time derivative in Eq. (5) with a time division. The latter
may be well described by a power-law length dependence in
an appropriate regime [26,27] and is thus associated with an
infinite localization length, as suggested in the previous works.
However, the correct derivative-based definition of σ does
not support the power-law length dependence. The calculated
σ (L) develops more than one peak, which may just reflect
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FIG. 8. (Color online) Conductivity as a function of propagating
length in (a) the ballistic-to-diffusive transition regime and (b) the
localized regime. “derivative” in the legend means that the data
are obtained by using the derivative-based definition of the running
conductivity, as given by Eq. (5), while “division” means that the data
are obtained by substituting the time derivative with a time division.
The markers and lines in (b) represent raw data and exponential
fits using σ (L) ∼ exp(−2L/ξ ), respectively. The simulated system
corresponds to 2D graphene (using a sufficiently large simulation cell
size) with a vacancy concentration of 1%.

the radial distribution profile of the local density of states,
which has large magnitude in the vicinity of the vacancies [65].
In the RSKG method, as the wave packets (associated with
individual sites) propagate, they can “feel” a large local density
of states associated with the conductivity peak before reaching
the diffusive regime. Unfortunately, there does not seem to be
any completely unambiguous method in the RSKG formalism
for determining a diffusive regime where a well-defined value
of σsc(E) can be extracted. When moving away from the CNP,
the effect of the local density of states diminishes, and there
is no such local peaks of conductivity, as shown by the results
for E = 0.1 eV in Fig. 8(a).

The large local density of states at the CNP affects the
conductivity significantly only in the ballistic-to-diffusive
regime. In the strongly localized regime, we expect that the
conductivity decays exponentially with increasing length. This
is confirmed by the results shown in Fig. 8(b). Here the
simulation data can be well described by the exponential fitting
[44]: σ (L) ∼ exp(−2L/ξ ). Even the conductivity at the CNP
obtained by approximating the time derivative with a time
division follows the exponential law in the strongly localized
regime, although this approximation results in a much larger
value of conductivity at a given length.
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FIG. 9. (Color online) 2D Localization length as a function of
energy obtained by using Eq. (15) (dashed line) and Eq. (13) (solid
line). When using Eq. (15), a sufficiently large simulation cell size
is used to obtain the diffusive transport properties. When using
Eq. (13), Q1D localization length data from the inset of Fig. 7 are
used. The diamond and circle correspond to the results obtained by
the exponential fitting as shown in Fig. 8(b) for the CNP (using
the derivative-based definition for the running conductivity) and
E = 0.1 eV, respectively. The studied system corresponds to 2D
graphene with a vacancy concentration of 1%.

Figure 9 shows the 2D localization lengths calculated by
Eqs. (15) and (13), along with those for E = 0 and 0.1 eV
extracted using the exponential fitting. Here the semiclassical
conductivity is taken to be the maximum of the running
conductivity when applying Eq. (15). The agreement between
Eqs. (15) and (13) is good only at higher energies. At the CNP,
the prediction of Eq. (15) is far too large compared to that
given by Eq. (13). In contrast, the exponential fitting gives rise
to results consistent with Eq. (13). We thus conclude that the
discrepancy between Eqs. (15) and (13) is largely resulted
from the ambiguity in the calculation of the semiclassical
conductivity.

D. Effects of energy resolution and vacancy concentration

Due to the large density of states around the CNP, one may
expect that the energy resolution δE used in the numerical

calculations would affect the results. To see how the energy
resolution affects the results, we first calculate the density
of states and running conductivity for graphene with 1%
vacancy defects using different values of Nm, the number
of Chebyshev moments in the kernel polynomial method.
Although there may be no exact relationship between δE and
Nm, it is generally believed [47] that δE ∝ 1/Nm. Therefore,
one can increase the energy resolution, i.e., decrease δE, by
increasing Nm.

Figure 10 presents the results for the density of states ρ(E)
and the maximum conductivity σmax(E) (over the correlation
time), the latter being conventionally taken as the definition of
σsc(E) in the RSKG method. It can be seen that with increasing
energy resolution, both ρ(E) and σmax(E) develop increasingly
high values at the CNP. In contrast, the results for the other
energy points do not depend on the energy resolution. Inter-
estingly, σmax(E = 0) is proportional to ρ(E = 0), as shown
in Fig. 10(c). Then, one may ask if the length dependence
of the conductivity at the CNP also depends crucially on the
energy resolution. To answer this question, we have plotted the
running conductivity as a function of the propagating length L

at the CNP, obtained by using different energy resolutions, in
Fig. 11(a). It can be seen that when L < 30a, i.e., roughly in
the ballistic-to-diffusive regime, the results depend strongly on
the energy resolution. Outside this regime, the dependence dis-
appears with increasing Nm, with the results being converged
when Nm > 10 000. Moreover, it can be seen that the energy
resolution does not affect the obtained localization length.
Figure 11(b) shows the running conductivity at E = 0.2 eV,
also obtained using different energy resolutions. The energy
resolution does not seem to significantly affect the results at
any length scale away from the CNP.

So far, we have only considered a relatively large vacancy
concentration of n = 1%. We now study how the defect
concentration affects the scaling of conductivity at the CNP,
by additionally considering systems with lower vacancy con-
centrations: n = 0.1% and n = 0.01%. The results are shown
in Fig. 12. In the main frame, we have plotted the running
conductivity as a function of the normalized propagating
length L/L0, where L0 is the average distance between an atom
and its nearest vacancy. From simple geometric considerations,
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FIG. 10. (Color online) (a) Density of states and (b) maximum conductivity (over correlation time) as a function of energy for 2D graphene
with 1% vacancy defects calculated by using different energy resolutions corresponding to different numbers of Chebyshev moments (Nm) used
in the kernel polynomial method. The dashed line in (b) indicates the “minimum conductivity” σmin = 4e2/(πh). (c) Maximum conductivity
at the CNP as a function of the density of states ρ at the CNP. The line in (c) represents the linear dependence σmax = 44ρ. To achieve high
statistical accuracy, Nr = 50 random vectors were used for each energy resolution.
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which can also be confirmed by numerical calculations. One
can make several observations based on Fig. 12.

(1) The maximum values σmax of the running conductivity
are different for different vacancy concentrations n; a higher n

gives a higher σmax. This indicates that the peak of the running
conductivity is related to the local density of states around the
vacancies.

(2) For all the considered vacancy concentrations, the
running conductivity takes its maximum at L = L0 (L/L0 = 1
in Fig. 12). This further supports our suggestion that the peak of
the running conductivity is directly related to the local density
of states around the vacancies, since L0 is also the distance at
which the radial distribution function of the local density of
states attains its peak value.

(3) Beyond the ballistic-to-diffusive regime, i.e., when
σ < e2/h, the running conductivities for different vacancy
concentrations are well correlated and decay exponentially
with increasing length. This is strong evidence for the
validity of the one-parameter scaling. Since L0 ∝ n−1/2, the
running conductivities are also correlated when plotted as
a function of n(L/a)2, as shown in the inset of Fig. 12.
Our results are qualitatively different from those by Ostro-
vsky et al. [25]. Using a different numerical method, they
found that the running conductivity saturates to a constant
on the order of σmin with increasing n(L/a)2, without
localization even up to n(L/a)2 = 300. We are not sure
about the origin of the different results, but we note that
Ostrovsky et al. have remarked that [25] the systems will
eventually enter the localized regime with increasing vacancy
concentration.

(4) Based on the correlation in the main panel of Fig. 12,
we can infer that the localization length is proportional to
L0, which is, in turn, proportional to the average distance
between the vacancies. Based on the analysis of the effective
cross sections [60], we know that the mean free path is also
proportional to L0. Therefore, the (2D) localization length
at the CNP is directly proportional to the mean free path,
indicating [according to Eq. (15)] that σsc at the CNP does not
depend on the vacancy concentration. Taking the mean free
path as L0, we estimate that σsc ≈ e2/h at the CNP. Using this
value for σsc, the discrepancy between Eqs. (15) and (13) at
the CNP disappears.

Although the CNP has a very large density of states
coming from the resonant states (midgap states), it is the most
localized state, exhibiting the smallest localization length.
The state at the CNP is a quasilocalized state [65] and also
exhibits a peak value of the inverse participation ratio [66].
Therefore, Anderson localization can be observed around the
CNP, manifesting itself as conductivities smaller than the
minimum conductivity σmin = 2G0/π of pristine graphene.
However, when moving away from the CNP, the localization
length increases quickly, even up to values much larger than
realistic sample sizes or coherence lengths. For a fixed sample
size, the localization effect is only significant around the
CNP and disappears rapidly with increasing energy (or carrier
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concentration), which may result in an effective mobility edge
and metal-insulator transition.

V. CONCLUSIONS

In summary, we have presented a systematic numerical
study of Anderson localization in graphene with short-range
disorder, using the RSKG formalism and simulating uncor-
related Anderson disorder and vacancy defects. For graphene
with Anderson disorder, the localization lengths for various
Q1D systems with different widths LM , disorder strengths,
energies, edge types, and boundary conditions were calculated,
and results for smaller systems were checked against the
standard TMM with good agreement. We have found that the
localization lengths λM can be well described by a simple
scaling function, λM/LM = ln(1 + kξ/LM )/k, with k being
close or equal to π . Deviations from this scaling law occur due
to finite-size effects, which manifest themselves when LM is
comparable to or even smaller than the mean free path le. The
2D localization lengths ξ obtained using this scaling function
are found to be consistent with the approximation based on
diffusive transport properties: ξ = 2le exp[πσsc/G0], where
σsc is the semiclassical conductivity and G0 = 2e2/h is the
conductance quantum. By calculating the 2D conductivity in
the weak and strong localized regimes, with the finite-size
effects identified and eliminated by using sufficiently large
simulation domain size, we also obtained a universal renor-
malization group β function for 2D conductivity. For graphene
with vacancy disorder, we have demonstrated another finite-
size effect in the RSKG method, which occurs when the
simulation cell length is not sufficiently large compared with
λM . Surprisingly, the same scaling function proposed based
on the results for Anderson disorder also applies to graphene
with vacancy defects. The CNP in graphene with vacancy
defects, however, exhibits an abnormally large peak value for
the running conductivity in the ballistic-to-diffusive regime.
We have suggested that this abnormal behavior may be resulted
form the local density of states caused by the resonant states
located around the vacancy sites and presented evidence that
the CNP is exponentially localized. Our work thus suggests
that the localization behavior of graphene with short-range
disorder is to a large extent similar to conventional 2D systems
(such as the square lattice studied in the Appendix).
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APPENDIX: SQUARE LATTICE
WITH ANDERSON DISORDER

In this appendix, we show that the scaling function in
Eq. (13) with k = π also applies to a square lattice with
uncorrelated Anderson disorder, i.e., random on-site potentials
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FIG. 13. (Color online) Q1D Localization length as a function
of energy for square lattices with W = 3t (a) and W = 5t (b). The
diamonds, squares, circles, upward triangles, and downward triangles
correspond to M = 32, 64, 128, 256, and 512, respectively. Free
boundary conditions are applied along the transverse direction for
the Q1D systems. Error bars are comparable to the marker sizes and
thus omitted.

uniformly distributed in an interval of [−W/2,W/2]. To this
end, we first calculate the Q1D localization lengths using
Eq. (11). Figures 13(a) and 13(b) show the results for W = 3t

and W = 5t , respectively. As can be seen from Fig. 14, all the
data with 32 � M � 512 are correlated by the scaling function
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FIG. 14. (Color online) One-parameter scaling of localization
length for square lattices with W = 3t and W = 5t . The localization
length divided by the width, λM/LM , is plotted as a function of ξ/LM ,
where ξ is the 2D localization length obtained by fitting the data in
Fig. 13 against the scaling function. The solid line represents the
scaling function given by Eq. (13) with k = π and the dashed line
represents the identity function f (x) = x. Note that LM = Ma for
square lattice, where a is the lattice constant. The inset shows the 2D
localization length as a function of energy for W = 3t (dashed line)
and W = 5t (solid line), with the triangle and diamond denoting the
corresponding results for E = 0 by Schreiber and Ottomeier [40].
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very well, without any abnormal behavior resulting from the
finite-size effect. Even the maximum mean free path for the
square lattice with the weaker disorder strength, W = 3t , is
less than 10a, which is well below the smallest value of M

considered. Therefore, all the data are in the scaling regime
and follow the scaling curve. The obtained 2D localization

lengths are shown in the inset, from which we see that the
results for the band center are consistent with previous results
by Schreiber and Ottomeier [40]. The results for other points
away from the band center with W = 5t are also consistent
with those by Zdetsis et al. [67], exhibiting maximum values
of ξ around E = ±2t .
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