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Waiting time distributions of noninteracting fermions on a tight-binding chain
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(Received 25 February 2014; revised manuscript received 14 May 2014; published 13 June 2014)

We consider the distribution of waiting times between noninteracting fermions on a tight-binding chain. We
calculate the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson
statistics at full transmission to Poisson statistics close to pinch-off as predicted by scattering theory. In addition,
we consider several quantum dot structures for which we can associate oscillations in the waiting time distributions
with internal energy scales of the scatterers. A detailed comparison with scattering theory and generalized master
equations is provided. We focus on mesoscopic conductors, but our tight-binding models may also be realized in
cold-atomic gases.
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I. INTRODUCTION

Quantum electronics is a rapidly developing field of
research [1–7]. Experimental progress is currently being made
towards the detection of single electrons coherently traversing
a mesoscopic structure. With these advances, it may soon be
possible not only to measure mean currents, shot noise [8], and
the first few higher-order current correlation functions [9–12],
but even the full statistical distribution of transferred charge in
a quantum-coherent conductor may become accessible. With
this in mind, it is now the right moment to develop statistical
tools to analyze and interpret such experimental data.

In one approach, the full counting statistics (FCS) of
transferred charge is investigated [13–15]. Traditionally, the
charge fluctuations are integrated over a long period of time and
the zero-frequency current cumulants are measured. However,
electrical fluctuations at finite times have become of increasing
interest and the FCS of charge transfer in quantum dots
has now been measured in several single-electron counting
experiments [16–24]. In addition, to characterize short-time
fluctuations the distribution of waiting times between trans-
ferred charges has recently been proposed as an alternative
to FCS [25–32]. Waiting time distributions (WTDs) are
known in quantum optics [33,34] but are now also being
used in quantum transport. Methods have become available
for evaluating the WTDs of electronic systems described by
generalized master equations [25–27,29,30] (GMEs) or by
scattering theory [28,31].

In this work we consider the WTD of noninteracting
fermions on a finite-size tight-binding chain with a fixed
number of particles. A central task is to understand whether
such a system can mimic the quantum transport in a conductor
that is coupled to large particle reservoirs. We develop a
method to evaluate the WTD based on work by Schönhammer
who considered the FCS of noninteracting fermions in a
one-dimensional tight-binding system [35–37]. Similar tight-
binding approaches have been used to evaluate the FCS
in disordered free-fermion systems [38] as well as the
finite-frequency noise [39] of driven single-electron emitters
[40–42].

In the following, we begin by occupying states in the left
part of the tight-binding chain to establish a flow of particles
via the central scatterer to the right side of the chain. After a
transient behavior, a quasistationary regime is reached during

which the particle current through the scatterer is constant and
we can compute the WTD. We evaluate the WTD for a quantum
point contact (QPC) as well as a number of different quantum
dot structures. We compare our results with predictions based
on scattering theory and find excellent agreement [28]. This
is an important check of our method, which may thus serve
as a stepping stone towards a theory of WTDs for interacting
fermions, for example based on density matrix renormalization
group (DMRG) techniques [43–47]. Under appropriate con-
ditions, we also find good agreement with calculations using
generalized master equations (GMEs) [25,29]. We focus here
on electronic conductors, but our tight-binding models may
also be realized in cold-atomic gases [48,49].

Our paper is organized as follows: In Sec. II we introduce
the basic theory of WTDs. We describe our tight-binding
model as well as our method for calculating WTDs. In Sec. III
we illustrate the method with several applications. We first
calculate the WTD for a QPC and find a crossover from
Wigner-Dyson statistics at full transmission to Poisson statis-
tics close to pinch-off as predicted by scattering theory [28].
Next, we consider several quantum dot structures. We calculate
the WTD for a single as well as a double quantum dot,
which may enclose a magnetic flux if the quantum dots are
arranged in parallel. We show how oscillations in the WTD
may be associated with internal energy scales of the scatterer.
For the quantum dot systems we find good agreement with
GME calculations [25,29]. Finally, we consider the WTD for a
bipartite chain, where a gap opens in the transmission spectrum
as the chain becomes long. Our work is summarized in Sec. IV.
Several technical details of our calculations are described in
Appendices A–D.

II. WAITING TIME DISTRIBUTIONS

We consider the generic tight-binding model depicted in
Fig. 1(a). It consists of left and right tight-binding leads
connected to a central scatterer. We consider situations where
noninteracting fermions are transferred from the left to the
right lead via the scatterer. We are interested in the distribution
W(τ ) of waiting times τ between subsequent particles appear-
ing at a given site in the right lead once a stationary particle
flow through the scatterer has been established. Physically,
our model may represent a mesoscopic conductor coupled to
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FIG. 1. (Color online) Tight-binding model, physical realizations, and dispersion relation. (a) Left and right leads connected to a central
scatterer. The leads consist of tight-binding chains with Mα sites, α = L,R, and nearest-neighbor hopping amplitude t̄ . Each lead is coupled
with hopping amplitude tα to the scatterer consisting of Ms sites. (b) The tight-binding model may represent a mesoscopic conductor coupled
to electronic leads, for instance a QPC as shown here. (c) Cold atoms in an optical lattice are another possible realization of the tight-binding
model. (d) Cosine-dispersion εk of the leads (thick line); see Eq. (14). The dispersion relation is linear (thin line) around k = π/2. The horizontal
lines are the eigenenergies of the left (L) and right (R) leads. The states of the left lead marked with blue (in the shaded region) are initially
occupied.

electronic leads, for example the QPC in Fig. 1(b), which we
describe as a weak tunneling amplitude between the two leads.
Other realizations include cold fermionic atoms in an optical
lattice as depicted in Fig. 1(c).

A central quantity in our work is the idle time probability
(ITP) �(t0,τ ), i.e., the probability of detecting no transferred
particles during the time interval [t0,t0 + τ ] [28,33]. In general,
the ITP depends both on t0 and τ . However, for stationary
processes the ITP is a function only of the length τ of the time
interval, such that �(t0,τ ) = �(τ ). In this case, the WTD can
be expressed as [28,33]

W(τ ) = 〈τ 〉 d2

dτ 2
�(τ ), (1)

where

〈τ 〉 =
∫ ∞

0
dτW(τ )τ = − 1

�̇(0)
(2)

is the mean waiting time. In a conventional quantum transport
setup consisting of a mesoscopic conductor connected to
(infinitely large) external electronic reservoirs, the transport
is stationary in the absence of any explicit time dependence
and the relation above holds. In contrast, we consider here
a situation in which the external particle reservoirs are not
infinitely large and the number of particles in the isolated
system is fixed. However, as we will see, after a flow of
particles through the scatterer has been established, a period
of time exists where the transport is quasistationary and
�(t0,τ ) � �(τ ) is independent of t0. Under these conditions,
we may evaluate the WTD using Eq. (1).

A. Tight-binding Hamiltonian

The tight-binding Hamiltonians that we consider could
originate from a problem of noninteracting spinless fermions

governed by the single-particle Hamiltonian

Ĥ = − �
2

2me

d2

dx2
+ V (x). (3)

Here, the potential V (x) is only nonzero inside the scattering
region. This problem can be discretized on a lattice with lattice
spacing a [50]. The single-particle wave-function ψ(x) takes
the value

ψl = ψ(x = xl) (4)

on lattice site number l with xl = la. Similarly, for the potential
V (x) we define

Vl = V (x = xl). (5)

Finally, for the kinetic part of the Hamiltonian we use the
standard discretization [51]

− �
2

2me

d2

dx2
ψ(x)|x=xl

� − �
2

2mea2
(ψl+1 − 2ψl + ψl−1) (6)

from which we can identify

t̄ = �
2

2mea2
(7)

as the tunneling amplitude between neighboring sites. The
discretization in Eq. (6) introduces the constant on-site energy
2t̄ , which is absorbed into the potential by redefining it as
Vl + 2t̄ → Vl . We then arrive at a tight-binding Hamiltonian
of the form

Ĥtb = Ĥscat + Ĥleads + Ĥtun. (8)

The Hamiltonian of the scatterer reads

Ĥscat = −t̄

Ms−1∑
m=1

(|m〉〈m + 1| + H.c.) +
Ms∑

m=1

Vm|m〉〈m|, (9)

245420-2



WAITING TIME DISTRIBUTIONS OF NONINTERACTING . . . PHYSICAL REVIEW B 89, 245420 (2014)

having assumed that it consists of Ms sites, labeled as {|m〉}.
Specific expressions for the scatterer are given in the examples
below. The Hamiltonian of the leads

Ĥleads =
∑

α=L,R

Ĥα (10)

consists of the two parts

Ĥα = −t̄

Mα−1∑
m=1

|m,α〉〈m + 1,α| + H.c., (11)

where lead α = L,R contains Mα sites labeled as {|m,α〉}.
Finally, if not otherwise stated, tunneling between the scatterer
and the leads is described by the Hamiltonian

Ĥtun = −tL|ML,L〉〈1| − tR|1,R〉〈Ms | + H.c., (12)

which connects the rightmost (leftmost) site of the left (right)
lead to the leftmost (rightmost) site of the scatterer with
tunneling amplitude tL (tR). Below, we will in general allow
tL(R) to be different from t̄ .

B. Idle time probability

We are now ready to calculate the ITP. In what follows,
we start out by initializing the left lead with a fixed number of
particles. We consider the system at zero temperature, although
a finite temperature can be implemented following Ref. [37].
At time t = 0, we connect the scatterer to the leads as described
by the tunneling Hamiltonian in Eq. (12). Having established
the connection, particles start to flow from the left lead to
the right lead via the scatterer. After a transient behavior, the
flow of particles becomes quasistationary for a period of time,
limited by the finite number of particles and the finite size of
the leads. Still, in this quasistationary regime, we may calculate
the ITP together with the WTD using Eq. (1).

To evaluate the ITP we first analyze the Hamiltonian of
the leads given by Eq. (11). The eigenstates of each lead
Hamiltonian are the standing-wave solutions [35]

∣∣kj
α

〉=
√

2

Mα + 1

Mα∑
m=1

sin
(
kj
αm

)|m,α〉, kj
α = jπ

Mα + 1
, (13)

j = 1, . . . ,Mα , which vanish outside the leads. The corre-
sponding dispersion relation reads

ε
k

j
α

= −2t̄ cos
(
kj
α

)
, (14)

such that the group velocity becomes

vk = 1

�

∂εk

∂k
= 2t̄

�
sin(k). (15)

We take the same number of sites for the two leads:

ML = MR = M. (16)

Additionally, we occupy N0 states of the left lead in the linear
part of the dispersion relation centered around k = π/2; see
Fig. 1(d). Here the group velocity is approximately constant,
since it can be expanded as

vk = vF + O((k − π/2)2) (17)

close to k = π/2, where

vF = 2t̄

�
(18)

is the Fermi velocity. The constant group velocity is important
for our calculations of the ITP. For the rest of the paper, we set
� = 1.

To evaluate the ITP, we consider a particular site of the
right lead |Md,R〉 and calculate the probability of detecting no
particles at this site during the temporal interval [t0,t0 + τ ]. In
the quasistationary regime, the ITP depends only on the length
of the time interval τ and is independent of t0. Importantly,
since all particles move with the Fermi velocity vF from the
left lead towards site |Md,R〉 in the right lead, we may instead
consider the probability of detecting no particles in the spatial
interval between sites |�Md − vF τ�,R〉 and |Md,R〉, where
�·� denotes ceiling (or equivalently, due to the quasistationary
conditions, between sites |Md,R〉 and |	Md + vF τ
,R〉, where
	·
 denotes flooring).

The probability of finding a particular particle between sites
|1,R〉 and |	1 + vF τ
,R〉, taking Md = 1 from now on, is
given by the expectation value of the operator [24,28]

Q̂τ =
MR∑
m=1

|m,R〉〈m,R| 	(m − vF τ ). (19)

The probability of not observing the particle is then given
by the (single-particle) expectation value of 1 − Q̂τ . Below,
we consider N0 particles in the system (rather than a single
particle), and the operator 1 − Q̂τ must act on all particles in
the many-body state. The ITP therefore becomes

�(τ ) = 〈
S(t0)|
N0⊗
j=1

[1 − Q̂τ (τ )]|
S(t0)〉. (20)

Here we have evolved the initial many-body state |
S(0)〉 at
t = 0 with all particles in the left lead to a time t0, where the
transport has become quasistationary. Additionally, we have
defined

Q̂τ (τ ) = eiĤtbτ Q̂τ e
−iĤtbτ . (21)

Importantly, as we are dealing with noninteracting
fermions, the many-body state |
S(t0)〉 is a Slater determinant
(as indicated with the subscript S), which at t = 0 is con-
structed from the filled single-particle states of the left lead.
The expectation value of a product of single-particle operators
with respect to a Slater determinant can itself be written as a
determinant [24,28] and Eq. (20) thereby simplifies to

�(τ ) = det[1 − Qτ (τ )]. (22)

The matrix elements of Qτ (τ ) are taken with respect to the
initially filled states of the left lead,

[Qτ (τ )]km
L ,kn

L
= 〈

km
L (t0)

∣∣Q̂τ (τ )
∣∣kn

L(t0)
〉
, (23)

which have been evolved from t = 0 to t0; i.e.,∣∣kn
L(t0)

〉 = e−iĤtbt0
∣∣kn

L

〉
. (24)

With these expressions at hand, we are now in position
to state our final result for the WTD. To this end, we recall
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Jacobi’s formula for the derivative of a determinant:
d

dt
det[A(t)] = Tr[adj{A(t)}Ȧ(t)], (25)

where adj{A} is the adjugate of A and Ȧ(t) = d
dt

A(t). For
invertible matrices, the adjugate reads

adj{A} = det[A]A−1. (26)

For the mean waiting time, we then find

〈τ 〉 = 1

Tr[Q̇0(0)]
, (27)

having used Eq. (2). From Eq. (1), we moreover find

W(τ ) = �(τ )
Tr2[GQ̇τ (τ )] − Tr[{GQ̇τ (τ )}2 + GQ̈τ (τ )]

Tr[Q̇0(0)]
,

(28)
where we have defined

G = [1 − Qτ (τ )]−1. (29)

In addition, we have

Q̇τ (τ ) = i[Htb,Qτ (τ )] + eiHtbτ (∂τ Qτ )e−iHtbτ , (30)

where Htb is the matrix representation of Ĥtb. Using Eq. (28)
we may calculate the WTD for an arbitrary scatterer connect-
ing the left and right leads.

III. RESULTS

In this section we illustrate our method by calculating the
WTDs for a number of scatterers. First, we consider a QPC.
Special attention is paid to the time it takes the system to
reach the quasistationary regime. We discuss several technical
details related to our calculations. In the following examples
we consider a single-level quantum dot as well as a double
quantum dot. The two quantum dots can be arranged with the
levels either in series or in parallel, such that a magnetic flux
can be enclosed. We also consider a bipartite chain, where a
gap opens in the transmission spectrum as the chain becomes
long. We compare our numerical results to methods based on
scattering theory [28] or generalized master equations [25,29].

A. Quantum point contact

We first consider a QPC which directly couples the left and
right leads by the tunneling amplitude tQPC. The Hamiltonian
Ĥscat in Eq. (9) is then absent and the tunneling Hamiltonian
in Eq. (12) is simply

Ĥtun = −tQPC|ML,L〉〈1,R| + H.c. (31)

To begin with the two leads are unconnected and we prepare
the left lead with N0 = M/3 particles in the linear region
of the dispersion relation (recalling that M is the number of
sites in each lead). Specifically, we fill the states with energies
in the interval [−V/2,V/2], where V = 2t̄ . This value of V

is chosen as a trade-off between, on the one hand, staying
within the linear region of the dispersion relation and, on the
other hand, having a large energy window which reduces the
computation time.

At t = 0, the two leads are connected and particles begin
to flow from the left lead to the right lead. The number of

FIG. 2. (Color online) Time-dependent current through the QPC.
The QPC is opened at t = 0. Numerical results (solid lines) are shown
for three different tunneling amplitudes tQPC. The horizonal dashed
lines show the expected stationary current based on scattering theory.
The vertical dashed lines mark the “window of opportunity,” [t1,t2],
during which the transport is quasistationary and we can evaluate the
WTD. Initially, the left lead is occupied by N0 = 50 particles.

particles in the right lead can be expressed as

NR(t) =
∑

k
j

L occup.

〈
k

j

L

∣∣P̂R(t)
∣∣kj

L

〉
, t � 0, (32)

where the sum runs over the initially occupied states of the left
lead and we have introduced the projection operator onto the
right lead:

P̂R(t) = eiĤtbt

[
MR∑
m=1

|m,R〉〈m,R|
]

e−iĤtbt . (33)

The time-dependent particle current running into the right lead
is then

IR(t) = d

dt
NR(t) = i

∑
k

j

L occup.

〈
k

j

L

∣∣[Ĥtb,P̂R(t)]
∣∣kj

L

〉
, (34)

which can be evaluated in a straightforward manner.
In Fig. 2 we show the time-dependent particle current

for three different values of the QPC tunneling amplitude.
After the connection is established at t = 0, the current goes
through a transient behavior before reaching a quasistationary
value around the time t1 (marked with a vertical dashed line);
see also Refs. [35,52,53]. The value of the quasistationary
current is consistent with predictions based on scattering
theory (horizontal dashed lines) as we discuss below. The
current stays constant until the time t2, when finite-size effects
become visible. However, the quasistationary regime [t1,t2]
provides us with a “window of opportunity” during which we
may evaluate the WTD using Eq. (28).

In the following, all results are obtained by averaging
over at least three calculations with different choices of
starting times t0 ∈ [t1,t2] for evaluating the WTD. The WTD
is calculated for discrete times τm = m/vF , 0 � m � M , due
to the discretization of the leads. The length of the leads,
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FIG. 3. (Color online) WTD for the QPC. Numerical results
(symbols) for three different tunneling amplitudes tQPC. For all three
curves, the waiting time is given in units of the mean waiting time
〈τ 〉. The numerical results agree well with predictions based on
scattering theory (solid lines), showing a crossover from Wigner-
Dyson statistics at full transmission (blue curve) to Poissonian
statistics with an approximately exponential WTD (green curve) at
low transmissions.

determining the length of the quasistationary regime [t1,t2],
must be chosen such that the WTD approaches zero before t2
is reached. Typical values are t1 ≈ M/3vF and t2 � M/vF .

In Fig. 3 we show WTDs for the three different values of
the tunneling amplitude tQPC. We have rescaled the horizontal
axis by the mean waiting time 〈τ 〉 such that the mean waiting
time of each (rescaled) distribution is unity. In the linear part of
the dispersion relation, the size of the energy window V only
determines the mean waiting time τ̄ = h/V of the particles
in the incoming many-particle state as shown in Ref. [28].
We have checked that the results in Fig. 3 do not depend on
the value of V . The suppression of the WTDs at short times
reflects the fermionic statistics of the particles, which prevents
two particles from being detected at the same time.

The calculations in Ref. [28] are based on scattering
theory with semi-infinite leads connected to the scatterer.
One important prediction is that the WTD for a QPC should
exhibit a crossover from a Wigner-Dyson distribution at full
transmission to Poisson statistics close to pinch-off. This
prediction is confirmed by our numerical results. Remarkably,
at low transmissions the tight-binding results reproduce the
small oscillatory features in the WTD with period τ̄ , also
found in Ref. [28].

To make the comparison with scattering theory quantitative,
we calculate the scattering amplitude of our setup and evaluate
the WTD using the method developed in Ref. [28] (see also
Appendix A). As we show in Appendix B, the transmission
amplitude reads

tk = 2it̄ t∗QPC sin k

|tQPC|2 − t̄2e−2ik
. (35)

At full transmission, tQPC = t̄ , the transmission probability
T = |tk|2 = 1 is independent of k. For the stationary current,

FIG. 4. (Color online) WTD for a single-level quantum dot. Nu-
merical results (symbols) are shown for varying level positions εD and
offset vertically for clarity. Calculations based on scattering theory
are shown with full lines. The inset shows a comparison between
the tight-binding approach (with εD = 0 and tL = tR = 0.15t̄) and
Eq. (41) obtained from a generalized master equation (GME) derived
in the high-bias limit.

we then expect

〈I 〉 = GQV, (36)

where GQ is the conductance quantum (= 1/2π in our units).
This result is shown with a horizontal dashed line in Fig. 2 and
agrees well with the quasistationary current obtained from our
tight-binding calculations. For lower transmission amplitudes,
the stationary current reads

〈I 〉 = GQ

∫ V/2

−V/2
dε |tk(ε)|2, (37)

which is also confirmed by Fig. 2. Additionally, we see
that our tight-binding calculations of the WTD in Fig. 3
are in excellent agreement with scattering theory using the
transmission amplitudes in Eq. (35).

B. Single-level quantum dot

As our next application, we consider a single-level quantum
dot. The quantum dot level is denoted as |D〉 and the
corresponding energy is εD . In this case, the Hamiltonian of
the scatterer reads

Ĥscat = εD|D〉〈D|, (38)

whereas the tunneling Hamiltonian takes on the form given by
Eq. (12).

Figure 4 shows the WTD for a quantum dot with varying
level position εD . Again our results agree very well with those
obtained from scattering theory. The transmission amplitude
is found following the procedure described in Appendix B and
reads

tk = 2itLtR sin k

(εk − εD)t̄ + (
t2
L + t2

R

)
eik

. (39)
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FIG. 5. (Color online) WTD for a serial double quantum dot.
Numerical results (symbols) are shown for different interdot coupling
strengths tD . Calculations based on scattering theory are shown with
full lines.

By moving εD away from the center of the energy window,
the overall transmission is lowered and the peak of the WTD
shifts to larger times.

In a complementary approach, we can calculate the WTD
using a GME derived in the high-bias limit following Gurvitz
and Prager [54]. In this approach, the (broadened) energy level
is assumed to be positioned well within the energy window
[−V/2,V/2]. This implies that the rates for tunneling in
and out of the level are much slower than the inverse mean
waiting time between incoming particles τ̄ = h/V . We can
then effectively set τ̄ to zero. The tunneling rates from the left
lead to the QD (α = L) and from the QD to the right lead
(α = R) are

�α ≈ 4|tα|2
vF

(40)

as shown in Appendix C. With these tunneling rates, the WTD
becomes [25]

W(τ ) = �R�L

�R − �L

(e−�Lτ − e−�Rτ )

= �2τe−�τ , �L = �R = �, (41)

obtained using the GME approach described in Appendix D.
The GME calculations agree very well with our tight-

binding results; see inset of Fig. 4. There are only small
deviations at short waiting times (hardly visible). This is due
to the GME approach, which predicts a linear dependence
on τ for τ � 1/� according to Eq. (41). In contrast, for
the tight-binding calculations and from scattering theory, we
expect a quadratic dependence on τ for τ � τ̄ [28].

C. Serial double quantum dot

We now consider a system consisting of two single-level
quantum dots in series. The left (right) level |L〉 (|R〉) at energy

FIG. 6. (Color online) WTD for a serial double quantum dot.
Numerical results (symbols) are shown for different level separations
ε = |εL − εR|. The levels are shifted symmetrically with respect to
zero such that εL = −εR . Calculations based on scattering theory are
shown with full lines.

εL (εR) is coupled to the left (right) lead and the levels are
connected by the interdot tunnel coupling tD . The Hamiltonian
of the scatterer reads

Ĥscat = εL|L〉〈L| + εR|R〉〈R| − tD(|L〉〈R| + H.c.) (42)

and the tunneling Hamiltonian is given by Eq. (12).
In Fig. 5 we show the WTD with different interdot couplings

tD and equal energy levels εL = εR . For tD > tL,tR , the
curves exhibit an oscillatory behavior. As tD is decreased,
the oscillations are damped and the WTD is shifted toward
larger times.

To understand the oscillatory behavior we note that the
eigenenergies of the Hamiltonian in Eq. (42) are

ε± = (εL + εR)/2 ±
√

(εL − εR)2/4 + t2
D. (43)

The difference of the eigenenergies is thus

�ε = 2
√

ε2/4 + t2
D, (44)

having defined ε = |εL − εR|. The energy splitting gives
rise to coherent oscillations in the WTD with frequency
ωosc = �ε [25,29]. The oscillations can be understood by
noting that when tD > tR , a particle is likely to oscillate back
and forth between the left and right levels before exiting
to the right lead. The decay of the WTD at long times
is controlled by the tunneling rate to the right lead. To
further corroborate this picture, we consider in Fig. 6 the
WTDs with an increasing detuning of the levels. As expected
from Eq. (44), the frequency increases as the two levels are
dealigned.

For the transmission amplitude, we find in this case

tk = 2it̄ tLtDtR sin k∏
α=L,R

[
(εk − εα)t̄ e−ik + t2

α

] + t2
Dt̄2e−2ik

. (45)
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FIG. 7. (Color online) WTD for a parallel double quantum dot
enclosing a magnetic flux. The inset shows the setup schematically.
A blue (red) arrow implies a phase change of eiφ/4 (e−iφ/4), where φ =
2π (�/�0) is given by the magnetic flux �. Direct tunneling between
the dots is phase-neutral (green arrows). Tight-binding calculations
corresponding to different magnetic fluxes are shown as symbols,
results based on scattering theory as solid lines.

Calculations based on scattering theory are in good agreement
with our tight-binding calculations as illustrated in Figs. 5
and 6. We note that the results can also be reproduced (not
shown) with high accuracy using the GME approach; see
Refs. [25,29].

D. Double quantum dot enclosing a magnetic flux

We now place the two quantum dots in parallel such that
each one of them is coupled to both leads. In this setup,
a magnetic flux can be enclosed, inducing a variable phase
for different paths through the system. The setup is shown
schematically in the inset of Fig. 7. The two levels with
energies ε1(2) are coupled to the left (right) lead by the
tunnel couplings tLi (tRi), i = 1,2. In addition, there is a
direct link with tunneling amplitude � between the quantum
dots. The magnetic flux � through the central area causes a
(charged) particle to acquire a phase factor of e±iφ/4 during
each hopping event where φ = 2π (�/�0) and �0 = h/e is

FIG. 8. (Color online) WTD for a parallel double quantum dot
enclosing a magnetic flux. The destructive interference between
the upper and lower paths is maximal with φ = 2π (�/�0) = π .
By increasing the interdot tunneling amplitude �, the destructive
interference is reduced and the oscillations in the WTD are restored.
Tight-binding calculations corresponding to different interdot tun-
neling amplitudes are shown as symbols, results based on scattering
theory as solid lines.

the magnetic flux quantum [26]. The plus (minus) sign in
the exponential applies if the tunneling event occurs in the
clockwise (counterclockwise) direction around �.

The Hamiltonian of the double quantum dot now reads

Ĥscat = ε1|1〉〈1| + ε2|2〉〈2| − �(|1〉〈2| + |2〉〈1|). (46)

In addition, the tunneling Hamiltonian is

Ĥtun = −tL1(eiφ/4|1〉〈ML,L| + H.c.)

− tL2(e−iφ/4|2〉〈ML,L| + H.c.)

− tR1(e−iφ/4|1〉〈1,R| + H.c.)

− tR2(eiφ/4|2〉〈1,R| + H.c.). (47)

For comparison with scattering theory we find for the trans-
mission amplitude

tk = 2it̄ sin k
[
tL2tR2(εk − ε1)eiφ/2 + tL1tR1(εk − ε2)e−iφ/2 − (tR1tL2 + tL1tR2)�

]
|tL1tR2 − tL2tR1e−iφ|2 + t̄ e−ik

[∑
σ

(
t2
Lσ + t2

Rσ

)
(εk − εσ̄ ) − 2� cos(φ/2)

∑
α tα1tα2

] + t̄2e−2ik
[∏

σ (εk − εσ ) − �2
] ,

where α (= L,R) is the lead index and σ (= 1,2) refers to the
quantum dot levels.

In Fig. 7 we show WTDs for three different phase shifts
φ = 0, π/2, and π , without direct tunneling between the
quantum dots, � = 0. By varying the phase, we may modify
the interference between the two paths leading from the left
to the right lead, so that it changes from being constructive
(φ = 0) to being destructive (φ = π ). A particle coming

from the left lead propagates through both quantum dots
and interferes with itself in the right lead. For φ = 0, the
interference is constructive and particles may perform coherent
oscillations as seen in the WTD. At φ = π , the interference is
maximally destructive and particle transfers through the DQD
become increasingly rare. However, because the two paths
have different amplitudes (since ε1 �= ε2), the transmission
remains nonzero. The reduced transmission decreases the

245420-7



KONRAD H. THOMAS AND CHRISTIAN FLINDT PHYSICAL REVIEW B 89, 245420 (2014)

FIG. 9. (Color online) Transmission probability for a bipartite
chain of length 2MD . As the number of dimers MD increases, the
gap around ε = 0 becomes clearly defined and the two brands around
±v become rectangular as indicated with a black line.

oscillations in the WTD as it approaches an exponential
distribution corresponding to a Poisson process.

This picture changes qualitatively with a finite tunneling
amplitude between the quantum dots, � �= 0, as shown in
Fig. 8, where φ = π . Several paths through the systems
are now possible so that the interference blockade is lifted
and coherent oscillations are restored. In both figures, our
tight-binding calculations are in excellent agreement with
scattering theory.

E. Bipartite chain

As a last example we consider transport through a bipartite
chain of variable length. This could be a simple model of an
extended molecule suspended between two leads [55,56]. The
system Hamiltonian

Ĥsys = −
MD−1∑
m=1

{v|2m − 1〉〈2m| + w|2m〉〈2m + 1| + H.c.}

− {v|2MD − 1〉〈2MD| + H.c.} (48)

describes MD dimers consisting of two sites that are coupled
by the tunneling amplitude v. Each dimer is in addition coupled
to its neighbors with tunneling amplitude w < v and the
outermost sites are connected to the leads by the tunneling
Hamiltonian in Eq. (12).

The transmission amplitudes are obtained numerically for
different lengths of the chain using the method described in Ap-
pendix B. In Fig. 9 we show the energy-dependent transmission
obtained for different values of MS . The transmission shows
two bands around ±v with a gap around ε = 0 that becomes
increasingly pronounced as the length of the chain 2MD is
increased. Adding a dimer to the chain increases the number
of peaks in the lower and upper bands by 1. For MD → ∞ the
peaks become dense within ±v − w � ε � ±v + w and the

FIG. 10. (Color online) WTD for a bipartite chain of length 2MD .
Results obtained with the tight-binding method are shown with
symbols. Results obtained from scattering theory are indicated with
full lines. The curves are offset vertically. As the length of the chain
is increased, the results converge towards the universal curve shown
with a dashed line. The universal curve is obtained from scattering
theory, taking very long chains, where the gap in the spectrum is fully
developed.

transmission peaks become rectangular as shown by the black
curve.

In Fig. 10 we show results for the WTDs for different
lengths of the chain. In the case MD = 1, we recover the result
for a serial double quantum dot with ε = 0 and tD = v; cf.
Sec. III C. Interestingly, as more dimers are added, the WTDs
eventually converge to a universal curve (shown with a dashed
line), which is independent of the length 2MD .

IV. CONCLUSIONS

We have presented a method for calculating the waiting time
distributions (WTDs) of noninteracting fermions on a finite-
size tight-binding chain. As applications of our method, we
have calculated the WTDs for a quantum point contact (QPC)
and several different quantum dot structures. Our tight-binding
approach reproduces the Wigner-Dyson distribution expected
for a fully transmitting QPC and it agrees well with predictions
based on scattering theory at transmissions below unity. In
addition, we can associate oscillations in the WTDs to internal
energy scales of quantum dot structures. For quantum dots in
series, the oscillations are clearly related to the energy splitting
of the hybridized states. For quantum dot structures enclosing
a magnetic flux, we find that the WTD carries signatures of
the interference between different traversal paths. Finally, for a
bipartite chain, the WTDs converge towards a universal curve
as the length of the chain is increased. In the high-bias limit, we
find good agreement with calculations based on generalized
master equations.

The agreement with existing approaches is an important
check of our method. In particular, it raises the hope that similar
tight-binding calculations may be generalized to include
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interactions, for example using density matrix renormaliza-
tion group (DMRG) techniques [43–47]. It would also be
interesting to investigate the WTDs for tight-binding chains
with periodic drivings in the spirit of Refs. [27,31,32,39,41].
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APPENDIX A: SCATTERING APPROACH TO WTDS

For the sake of completeness, we provide here the essential
steps in calculating WTDs within scattering theory following
Ref. [28]. In this approach, the WTD is calculated in the basis
of the scattering states,

ϕk(x) =
{
eikx + rke

−ikx, x < 0,

tke
ikx, x > xs > 0,

(A1)

where the interval [0,xs] contains the scatterer with transmis-
sion (reflection) amplitudes tk (rk). The dispersion relation is
linearized in the transport window [εF ,εF + eV ], where V is
the applied voltage, such that

εk = �
2k2

2m
� εF + �vF k′. (A2)

Here vF = �kF /m is the Fermi velocity and we have defined
k′ = k − kF , which is much smaller than the Fermi momen-
tum, k′ � kF .

The momentum interval [kF ,kF + eV/�vF ] is split into
N intervals of size κ = eV/N�vF . The many-body Slater
determinant is constructed from the time-dependent single-
particle wave functions

φm(x,t) = e−iεF t/�

√
2πκ

∫ κm

κ(m−1)
dk′e−ivF k′tϕkF +k′(x). (A3)

We moreover define the single-particle operator

Q̂τ =
∫ x0+vF τ

x0

dx|x〉〈x|, (A4)

where x0 > xs is located on the right side of the scatterer. The
matrix elements of Qτ are

[Qτ ]m,n = 〈φm(τ )|Q̂τ |φn(τ )〉, (A5)

which in the limit N → ∞ become

[Qτ ]m,n = t∗κmtκn

2πi

1 − eivF τκ(n−m)

n − m
, (A6)

having redefined tkF +κn → tκn. Finally, the ITP is [28]

�(τ ) = det(1 − Qτ ) (A7)

from which the WTD follows using Eq. (1). We note that only
the transmission amplitude tk of the scatterer is required to
calculate the WTD.

APPENDIX B: TRANSMISSION AMPLITUDES FOR
TIGHT-BINDING SYSTEMS

To obtain the transmission of a given scatterer we consider
an incoming plane wave that is transmitted with amplitude tk
and reflected with amplitude rk; cf. Eq. (A1).

The Schrödinger equation for the eigenstates of the tight-
binding Hamiltonian reads

Ĥtb|φk〉 = εk|φk〉. (B1)

We expand the eigenstates on the lattice sites as

|φk〉 =
∑

α=L,R

Mα∑
m=1

ck
αm|m,α〉 +

Ms∑
m=1

ck
m|m〉, (B2)

where the first sum runs over the sites in the leads and the
second sum over the sites of the scatterer.

We evaluate the Schrödinger equation on the last site of the
left lead and on the first site of the right lead [57],

〈ML,L|Ĥ |φk〉 = εkc
k
LML

= −t̄ ck
L(ML−1) − tLck

1,

〈1,R|Ĥ |φk〉 = εkc
k
R1 = −t̄ ck

R2 − tRck
Ms

,
(B3)

assuming that the scatterer is coupled to the left (right) lead
with hopping amplitude tL (tR). Similar equations can be
formulated for each site of the scatterer, giving us a total of
2 + Ms equations. Next, we make the ansatz

ck
Lm = eik(m−ML) + rke

−ik(m−ML),

ck
Rm = tke

ik(m−1)
(B4)

for the lead coefficients. Inserting the ansatz into the 2 + Ms

(linear) equations above, we can solve for the amplitudes tk
and rk .

For the QPC considered in Sec. III A, Eqs. (B3) and (B4)
become

εk(1 + rk) = −t̄(e−ik + rke
ik) − tQPCtk,

εktk = −t̄ tke
ik − t∗QPC(1 + rk),

(B5)

since the leads are directly coupled via the hopping amplitude
tQPC. Solving this system of equations, we find

tk = 2it̄ t∗QPC sin k

|tQPC|2 − (εk + t̄ eik)2
(B6)

and

rk = 2t̄ εk cos k + ε2
k + t̄ 2 − |tQPC|2

|tQPC|2 − (εk + t̄ eik)2
. (B7)

It can be verified that |tk|2 + |rk|2 = 1. Moreover, assuming
that the dispersion relation εk = −2t̄ cos k still approximately
holds, we obtain Eq. (35) from Eq. (B6). The transmission
amplitudes in Eqs. (39), (45), and (48) as well as in Fig. 9 are
found in a similar way.

The mean QPC current is now

〈I 〉 = GQ

∫ V/2

−V/2
dε|tε(k)|2, (B8)
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where GQ is the conductance quantum (= 1/2π in our units).
Taking V = 2t̄ combined with Eq. (35), we find for the QPC

〈I 〉 = GQV

{
1 − (1 − θ2)2

θ (1 + θ2)
artanh

[
θ

1 + θ2

]}
, (B9)

where θ = tQPC/t̄ .

APPENDIX C: GENERALIZED MASTER
EQUATION APPROACH

WTDs can be calculated from GMEs using a method
developed by Brandes [25]. Here we present a derivation of
the WTD for a GME describing unidirectional transport using
the language of full counting statistics (FCS).

The scatterer is described by its density matrix ρ̂S which
evolves according to a Markovian GME of the form

d

dt
ρ̂S(t) = Lρ̂S(t). (C1)

The Liouvillian L describes the coherent evolution of particles
inside the scatterer as well as particle transfers between the
scatterer and the leads. To evaluate the FCS we resolve the
density matrix with respect to the number of particles n that
have been transferred through the scatterer during the time
interval [0,t] [58,59]. From the n-resolved density matrix
ρ̂

(n)
S (t) we obtain the FCS as

P (n,t) = Tr
[
ρ̂

(n)
S (t)

]
. (C2)

Since the transport is assumed to be unidirectional, we have
P (n < 0,t) = 0. Additionally, if only one particle at a time can
be transferred from the scatterer to the right lead, the GME for
the n-resolved density matrix reads

d

dt
ρ̂

(n)
S (t) = L0ρ̂

(n)
S (t) + J ρ̂

(n−1)
S (t), (C3)

having partitioned the Liouvillian as L = L0 + J , where the
superoperator J describes individual particle transfers from
the scatterer to the lead.

To find the WTD, we use that the idle time probability is
simply

�(τ ) = P (n = 0,τ ) = Tr
[
ρ̂

(0)
S (τ )

]
. (C4)

We find ρ̂
(0)
S (τ ) by noting that ρ̂

(−1)
S (τ ) = 0, such that Eq. (C3)

for n = 0 reduces to

d

dt
ρ̂

(0)
S (t) = L0ρ̂

(0)
S (t). (C5)

The formal solution for ρ̂
(0)
S (t) is then

ρ̂
(0)
S (t) = eL0t ρ̂stat

S , (C6)

assuming that the system (prepared in an arbitrary state in the
distant past) has reached the stationary state ρ̂stat

S at t = 0. The
stationary state is obtained as the normalized solution to

Lρ̂stat
S = 0. (C7)

The idle time probability is now

�(τ ) = Tr
[
eL0τ ρ̂stat

S

]
. (C8)

From the idle time probability we first obtain the mean waiting
time using Eq. (2):

〈τ 〉 = − 1

�̇(τ = 0)
= − 1

Tr
[
L0ρ

stat
S

] = 1

Tr
[
J ρ̂stat

S

] . (C9)

Here we have used that L0ρ
stat
S = (L − J )ρstat

S = −J ρstat
S ,

since Lρstat
S = 0 according to Eq. (C7). The mean waiting

time is simply the inverse average particle current.
Finally, the WTD follows from Eq. (1) as

W(τ ) = 〈τ 〉∂2
τ �(τ ) = Tr

[
J eL0τJ ρ̂stat

S

]
Tr[J ρ̂stat

S ]
, (C10)

in agreement with the result by Brandes [25]. Here we
have used that Tr[L0•] = Tr[(L − J )•] = −Tr[J •], since
Tr[L•] = 0 due to probability conservation.

As an illustration, we consider the single-level quantum
dot from Sec. III B. Here, it suffices to consider the diagonal
elements of the density matrix, which we denote by ρ̂0 (empty
level) and ρ̂1 (full level). Combining the elements into the
vector ρ̂S = (ρ̂0,ρ̂1)T , the two parts of the Liouvillian L =
L0 + J take the matrix forms

L0 =
(−�L 0

�L −�R

)
, J =

(
0 �R

0 0

)
. (C11)

The rates �L and �R can be expressed in terms of the
tight-binding parameters as described in Appendix D. From
Eq. (C10) then follows the WTD in Eq. (41).

APPENDIX D: DERIVATION OF TRANSITION RATES

We evaluate the rates entering the GME from our tight-
binding model. The Hamiltonians of the leads in Eq. (11) can
be diagonalized by the transformation

|m,α〉 =
√

2

Mα + 1

Mα∑
j=1

sin
(
kj
αm

)∣∣kj
α

〉
, kj

α = jπ

Mα + 1
,

(D1)
with j = 1, . . . ,Mα , leading to the eigenenergies

ε
k

j
α

= −2t̄ cos
(
kj
α

)
. (D2)

We take a generic tunneling Hamiltonian

ĤT = −
∑

α=L,R

Ns∑
μ=1

(tαμ|μ〉〈mα,α| + t∗αμ|mα,α〉〈μ|) (D3)

with mL = ML and mR = 1, connecting the outermost sites
of the leads to the Ns sites of the scatterer. Applying the
transformation in Eq. (D1) to the tunneling Hamiltonian then
yields

ĤT = −
∑

α=L,R

Mα∑
j=1

Ns∑
μ=1

(
t jαμ|μ〉〈kj

α

∣∣ + (
t jαμ

)∗∣∣kj
α

〉〈μ|) (D4)

with the hopping amplitudes

t jαμ =
√

2

Mα + 1
sin

(
kj
α

)
tαμ. (D5)

With the level of the scatterer well inside the energy window
[−V/2,V/2], the particle transport is unidirectional and the
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transition rates between the leads and the scatterer are

�αμ(ε) = 2π

Mα∑
j=1

∣∣t jαμ

∣∣2
δ
(
ε − εj

α

)
. (D6)

From Eq. (D5) we then get

�αμ(ε) = 4π |tαμ|2
Mα + 1

Mα∑
j=1

sin2
(
kj
α

)
δ
(
ε − εj

α

)

≈ 4π |tαμ|2
Mα + 1

Mα

π

∫ π

0
dkα sin2(kα)δ(ε − εkα

). (D7)

Moreover, using Eq. (D2) and taking Mα � 1, we find

�αμ(ε) = 2|tαμ|2
t̄

√
1 −

(
ε

2t̄

)2

. (D8)

Around the center of the band (ε � 0), this gives

�αμ(ε � 0) ≈ 2|tαμ|2
t̄

= 4|tαμ|2
vF

. (D9)
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Mech. (2004) P04005.

[44] D. Bohr, P. Schmitteckert, and P. Wölfle, Europhys. Lett. 73,
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