
PHYSICAL REVIEW B 89, 245417 (2014)

Optical conductivity of the t2g two-dimensional electron gas
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Motivated by recent interest in perovskite surfaces and heterostructures, we present a theoretical analysis of the
optical conductivity of a two-dimensional electron gas (2DEG) formed in the t2g bands of an oxide with perovskite
structure based on the Kubo formula and a realistic electronic structure model. We find that, when the electric
field is polarized in the plane of the 2DEG, the optical conductivity is dominated by nearly independent Drude
contributions from all occupied two-dimensional subbands, whereas for perpendicular-to-plane polarization it
has strong intersubband features. For perpendicular-to-plane polarization, Coulomb interactions couple different
intersubband modes, transferring spectral weight to higher energy absorption features and inducing a strong
excitation that is collective in nature. Our analysis suggests that perpendicular-to-plane optical conductivity
studies may help advance understanding of the roles of lattice distortions and electron-electron interactions in
complex oxide 2DEG quantum confinement physics.
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I. INTRODUCTION

Heterostructures and multilayers based on the perovskite
lattice have recently been the focus of an enormous research
effort. The perovskite lattice structure is formed by compounds
containing elements across much of the periodic table [1]
and can be grown epitaxially with very high quality [2].
Perovskite heterointerfaces often have properties that are
drastically distinct from those of their parent bulk materials.
The most well known example of this tendency is the po-
lar/nonpolar interface [3] between the band insulators LaAlO3

and SrTiO3 which hosts a high mobility two-dimensional
electron gas (2DEG), formed mainly from the t2g orbitals of
SrTiO3, that can be magnetic [4] or superconducting [5] or
both [6]. There have by now been many studies of SrTiO3

t2g 2DEGs formed at various interfaces and surfaces [7–
11]. 2DEGs that are mostly similar in character but have
much stronger spin-orbit (SO) coupling can be formed at
KTaO3 interfaces and surfaces [12,13]. In both SrTiO3 and
KTaO3, it has been shown that, because of strong and
nonlinear dielectric response at low temperature, the 2DEGs
consist of a high electron density component containing
mostly electrons that are strongly confined near a surface
or interface, and a low-density tail component consisting of
weakly confined electrons that occupy closely spaced sub-
bands which extend ∼10–20 nm into the bulk of the material
[14,15].

Optical studies have played an important role in conven-
tional semiconductor 2DEGs [16,17]. Absorption of light with
electric fields polarized perpendicular to the 2DEG plane has
been especially valuable because it measures intersubband
optical transition energies and in this way characterizes 2DEG
quantum confinement. No intersubband optical response is
observed [18] when light is polarized with its electric field in
the 2DEG plane. Because optical spectra can probe intersub-
band transition energies, optical characterization also has the
potential to play an important role in sorting out the quantum
confinement physics in t2g 2DEGs. Experimental guidance
would be especially valuable because of the complicating
influence in the oxide case of nonlinear dielectric screening,

and because of the greater likelihood of structural distortions
and defects at interfaces.

In this article we explore the optical conductivity of t2g

2DEGs theoretically, with a view toward shedding light on the
information which can be garnered from future experimental
studies [19]. We find that the optical response of the t2g

2DEG is dominated by electrons within the first few layers
of the surface or interface. When light is polarized in the
2D plane, the conductivity is dominated by a Drude peak
to which all occupied t2g orbitals contribute. The integrated
strength of this peak provides information on the carrier
density which is complementary to that available from Hall
effect measurements. There are, however, weak intersubband
peaks which could be very revealing if they could be detected.
Measurements of the peak frequencies should be very valuable
in constraining confinement models. The corresponding peak
strengths are sensitive to hybridization between different
t2g orbitals, which is weak in the ideal cubic case, and
may therefore shed light on spin-orbit coupling strengths
and on structural distortions of the pseudocubic cell near
the interface. For light polarized perpendicular to plane, the
optical conductivity has strong intersubband features related
to hopping amplitudes perpendicular to the interface, and to
the confining potential. When a t2g 2DEG responds to an
ac field perpendicular to the interface, the charge density
and therefore the confinement potential also respond. These
Coulombic effects produce a depolarization effect which must
be accounted for self-consistently. We show that depolar-
ization effects shift spectral features and that, depending
on the 2DEG density, they can result in sharp plasmonic
excitations.

Our paper is organized as follows. In Secs. II and III below
we briefly discuss the model we use for a t2g 2DEG and
comment on the Kubo formula expressions we use for the
conductivity. Our main results are presented and discussed in
Sec. IV. Section V explains our random-phase-approximation
treatment of the depolarization effect and discusses its influ-
ence on the response of the 2DEG to a perpendicular-to-plane
field. The paper concludes in Sec. VI with a brief summary
and conclusions.
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II. MODEL

In the perovskite ABO3 unit cell, the B cation is surrounded
by an octahedral oxygen cage which lifts its d-orbital degen-
eracy, pushing the eg = {x2 − y2, 3z2} levels up relative to the
t2g = {yz, zx, xy} levels. We focus on systems with conduction
bands that have t2g character and are well separated from oxy-
gen p-orbital derived valance bands. In a cubic environment,
the yz, zx, and xy members of the t2g manifold are very
weakly hybridized. Under most circumstances atomic-like SO
coupling is the dominant source of hybridization. When it is
neglected, the three orbitals therefore contribute essentially
independently to physical properties of the 2DEG, which we
assume forms in x-y planes. The symmetries which lead to this
circumstance can be understood by considering a two-center
approximation description in which an xy electron hops along
the x direction within a BO2 plane from a B atom xy orbital
to another B atom via π bonding to the py orbital of the
intermediate oxygen atom that is virtually occupied. We define
this and other symmetry equivalent metal to metal effective
hopping amplitudes as −t . For hopping in the y direction,
the B atom xy orbital hops through an oxygen px orbital to a
neighboring B atom xy orbital with the same effective hopping
amplitude. There is also a smaller but still important z-direction
hopping amplitude −t ′ for xy orbitals which connects one
BO2 layer to another that is closer to or further from the
interface. {yz,zx} orbitals, on the other hand, have strong
(−t) out-of-plane hopping and weak hopping (−t ′) in one
of two in-plane directions. These orbital conserving hopping
processes are responsible for most of the qualitative properties
of t2g 2DEGs and are readily expressed mathematically by the
system’s tight binding model Hamiltonian.

For a single BO2 layer, the tight-binding Hamiltonian
within the t2g subspace is

HSL =
∑
�k,γ,σ

εγ (�k)n̂�k,γ,σ , (1)

where �k is the in-plane crystal momentum, γ = {yz,zx,xy},
and σ is the spin index. The εγ (�k) are defined by

εyz(�k) = −2t ′ cos(kxa) − 2t cos(kya)

εzx(�k) = −2t cos(kxa) − 2t ′ cos(kya) (2)

εxy(�k) = −2t cos(kxa) − 2t cos(kya)

where a is the lattice constant. Similarly the interlayer coupling
Hamiltonian is

Hinter = −
∑

〈l,l′〉,γ,σ

tγ,z ĉ
†
�k,l,γ,σ

ĉ�k,l′,γ,σ , (3)

where 〈l,l′〉 are neighboring layers, tγ,z = t ′ for γ = xy,
and tγ,z = t for γ = {yz,zx} are hopping parameters in the
z direction. Spin-orbit coupling of the cation d orbitals is
mainly atomic in character. In the calculations described below
we have used a model [14] in which we project atomic
spin-orbit coupling onto the t2g space. The corresponding

Hamiltonian takes the form

HSO = �SO

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i 0 0 0 −1

−i 0 0 0 0 i

0 0 0 1 −i 0

0 0 1 0 −i 0

0 0 i i 0 0

−1 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yz,↑
zx,↑
xy,↑
yz,↓
zx,↓
xy,↓

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4)

where �SO is the interaction strength parameter. Note that,
although this model contains spin-orbit coupling, it does not
capture the processes which can lead to Rashba [13] spin-orbit
induced momentum-splitting of the Bloch band’s double spin
degeneracy.

Most t2g 2DEGs are formed near the surface of a sample and
sit on a grounded substrate. It follows that the the electric field
must vanish in the bulk of the substrate, far below the surface.
The Poisson equation then implies that the electric field above
the 2DEG is proportional to the electron density. The electric
field in the region occupied by the 2DEG is screened both by
the 2DEG electrons and by distortions of the ionic host lattice.
The extremely strong dielectric response of the host material
is related to its soft optical phonon modes, which involve
nearly rigid displacements of the central Ti atoms relative to
their oxygen octahedra. The strong response occurs only for
relatively weak electric fields and only at relatively long wave-
lengths exceeding several nanometers. A simple model which
qualitatively accounts for this complex physical situation has
been described previously in Ref. [14]. Specifically, the electric
field distribution is determined by solving coupled Poisson-
Schrodinger equations in which both electron densities and
anharmonic polar lattice displacements contribute to the
electrostatic potential. Our linear response calculations start
from a ground state with t2g subbands calculated using the con-
finement model explained in Ref. [14] and forcing the 2DEG
to lie within the first 60 metal layers. We are confident that
this model is realistic enough to capture qualitative features
of the linear response. Our goal is to provide a framework for
interpreting optical absorption measurements in order to gain
a more detailed understanding of 2DEG properties.

Because t2g 2DEGs can be prepared over a very wide
density range, we have considered the three representative
areal density n regimes identified in Ref. [14], referred to
below as “low” (n = 2.3 × 1013 cm−2), “medium” (n = 2.0 ×
1014 cm−2), and “high” (n = 5.9 × 1014 cm−2) densities. In
all three cases the electrons are distributed across many layers.
A high density region emerges in the first few BO2 atomic
layers in the medium and high density cases. The extended
low-density tails, present because of SrTiO3’s extremely large
linear dielectric constant, are mostly {yz,zy} in character. In
the higher density cases, a substantial fraction of electrons
occupy the lowest energy subband which is also mostly xy in
character; xy electrons are more readily confined than {yz,zy}
electrons because of their weak hopping along the z direction.
The present calculations are motivated by the expectation that
quantitative comparisons between experiment and this simple
theoretical model can be used to refine approximations and
improve theoretical predictive power.

245417-2



OPTICAL CONDUCTIVITY OF THE t2g TWO- . . . PHYSICAL REVIEW B 89, 245417 (2014)

III. LINEAR RESPONSE THEORY

We consider the response of the 2DEG current to a
weak external electromagnetic field. In the random phase
approximation, the conductivity tensor is given by the well
known Kubo formula [20]

σαβ(ω) = i�
∑
m,n,�k

(
fn − fm

εm − εn

) 〈m,�k|ĵα|n,�k〉〈n,�k|ĵβ |m,�k〉
�ω − (εm − εn) + iη

(5)

where m,n are band and α,β Cartesian direction indices, �k
is the 2DEG crystal momentum, and ĵα is the paramagnetic
component of the current operator for which an explicit
expression is given below. The dependence of the Fermi
distribution function fn and the band energy εn on �k is left
implicit for notational simplicity. The ratio of Fermi factor
to energy differences should be understood as a derivative
in the m = n limit so that the intraband contribution to the
conductivity is

σ IB
αβ (ω) = i�

∑
n,�k

(
−∂f

∂ε

) 〈n,�k|ĵα|n,�k〉〈n,�k|ĵβ |n,�k〉
�ω + iη

. (6)

We treat η = �τ−1 as a phenomenological parameter which
accounts for the Bloch state lifetimes, assigning it a value that
is independent of band index.

In Eq. (5) we have taken the limit q → 0 because the
wavelengths of optical frequency electromagnetic waves are
long compared to Fermi wavelengths. The paramagnetic
current operator [21] is therefore given by the commutator
of the Hamiltonian with the polarization operator P̂ :

ĵα = − ie

�
[H,P̂α]. (7)

In the tight binding approximation, electrons are considered
to sit on lattice sites so position is discrete in real space. The
polarization operator therefore takes the form P̂ = ∑

i
�Rin̂i ,

where �Ri is the position operator and n̂i the total number
operator at site i. It follows that evaluating the commutator
of H with P̂ is essentially equivalent to differentiating it with
respect to wave vector. Therefore only the �k dependent part of
the Hamiltonian contributes to the in-plane current operator.
We find, from Eqs. (1) and (2), that the x-direction current
operator is spin independent, diagonal in layer, and given in a
{yz,zx,xy} representation by

ĵx = e

�

∂H

∂kx

= ea

�

⎛
⎜⎝

−2t ′ sin(kxa) 0 0

0 −2t sin(kxa) 0

0 0 −2t sin(kxa)

⎞
⎟⎠ .

(8)

Note that the in-plane current operator couples only
subbands with the same orbital character and that its action
is independent of position relative to the interface. In the
absence of orbital hybridization (due to SO coupling in the
model we considered) the bare Hamiltonian is also diagonal
in orbital. It follows that in this case there are no intersubband
transition contributions to the in-plane conductivity, either

from transitions between subbands with the same orbital
character or from transitions between subbands with different
orbital character. When hybridization is neglected the in-plane
orbital conductivity has only a Drude response centered on
ω → 0.

Because the system is finite in the z direction, the com-
mutator in Eq. (7) is best evaluated in position space for this
current component. We find that

ĵz = − ie

�

∑
�k,l,γ

atγ,z(ĉ
†
�k,l+1,γ

ĉ�k,l,γ − ĉ
†
�k,l−1,γ

ĉ�k,l,γ ), (9)

where tγ,z = {t,t,t ′} for hopping in the z direction in the
{yz,zx,xy} basis. Because jz is off-diagonal in layer index,
optical transitions between different subbands with the same
orbital character are allowed even in the absence of interorbital
hybridization. Although orbital hybridization can weakly
allow additional optical transitions, intraorbital contributions
dominate the perpendicular-to-plane optical response, espe-
cially so when the Fermi energy is much larger than the SO
splitting. For the calculations presented below this criterion is
satisfied at medium and high densities.

The real part of the longitudinal conductivity tensor
satisfies certain sum rules which are useful for verifying
numerical results and also potentially useful in interpreting
experiments. These sum rules limit conductivity contributions
from intersubband transitions. By employing the commutation
relation (7), we obtain the following sum rules for in-plane and
perpendicular-to-plane conductivity tensors:

∫ ∞

−∞
dω Re[σxx(ω)] = πe2

�2

∑
n,�k

〈n�k|∂
2H

∂k2
x

|n�k〉fn

≈ πe2
∑

n

nn

m∗
xx,n

(10)

and∫ ∞

−∞
dω Re[σzz(ω)] = − iπe

�

∑
n,�k

〈n�k|[ĵz,P̂z]|n�k〉fn. (11)

In Eq. (10), the second form for the right-hand side becomes
exact when the largest Fermi wave vector is far from the
BZ boundary so that the parabolic approximation for band
dispersion is accurate. Here nn corresponds to the density of
the nth band. In this limit we therefore recover the standard
result that, when integrated over frequency, the contribution of
a band to the optical conductivity is proportional to the density
of electrons in that band scaled by the inverse effective mass.
In cases when orbital hybridization effects are weak, that is,
SO coupling and structural distortions are small, the second
form for Eq. (10) may be simplified to

2πe2a2

�2

∑
γ

tγ,xnγ , (12)

where nγ is the total density associated with electrons of orbital
character γ and corresponding hopping parameters in the
x direction, tγ,x .
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The commutator in Eq. (11) is

iea2

�

∑
�k,l,γ

tγ,z(ĉ
†
�k,l+1,γ

ĉ�k,l,γ + ĉ
†
�k,l−1,γ

ĉ�k,l,γ ). (13)

Contributions to Eq. (11) are therefore directly proportional to
the amplitude for an electron in layer l to hop to a neighboring
layer, l ± 1.

IV. RESULT AND DISCUSSION

In this section, we report on and discuss results for the
optical conductivity of the SrTiO3 surface 2DEG models
described in Sec. II. The hopping parameters t and t ′ were
taken to have the values [22] 236 meV and 35 meV respectively
and the lattice constant a was set to 3.904 Å. Figure 1 shows
the real part of the in-plane optical conductivity for �ω up
to 200 meV, including both the Drude conductivity and the
intersubband part of the conductivity, calculated with a phe-
nomenological energy uncertainty η = 10 meV to account for
disorder scattering. This value of η yields Drude peak heights
consistent with recent dc resistivity measurements [23]. The
Drude conductivity increases monotonically with the density
of the 2DEG as expected on the basis of the sum rules discussed
above. The in-plane optical conductivity is dominated by the
Drude contribution at all densities.

From Eq. (2) the xy and zx band masses along the
x direction are smaller than the yz mass (by a factor ∼10). This
suggests that, in this limit, the Drude weight will typically be
dominated by the xy and zx pocket contributions. It is common
in experiment to infer carrier density on the basis of sum
rules and assumed values for the effective mass. By evaluating
the total sum rule in our calculation as a function of carrier
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FIG. 1. (Color online) In-plane optical conductivity of a SrTiO3

2DEG in e2/h units for light polarized in the plane of the t2g 2DEG at
high (5.9 × 10−14 cm−2), medium (2 × 10−14 cm−2), and low (2.3 ×
10−13 cm−2) carrier densities as defined in Ref. [14]. The strength
of the spin-orbit coupling �SO is set to 18 meV. The shaded region
in the figure highlights the frequency region in which the electronic
conductivity is expected to be obscured by optical phonons. η has
been set to 10 meV in order to yield ω → 0 limits that are similar
to those observed experimentally. The inset shows the intersubband
contribution to the conductivity, due mainly to optical transitions from
the low-density tail.

TABLE I. Estimates of averaged inverse effective masses from
the integrated Drude weight. The hopping parameters t and t ′ could be
converted to inverse effective masses me/mL = 0.94 and me/mH =
0.14, respectively. The averaged inverse effective masses fall between
these values corresponding to the limiting cases when only the light
mass (mL) bands or the heavy mass (mH) bands are populated. me is
the bare electron mass.

Integrated Drude weight Inverse effective
Density (cm−2) (e2cm−2/me) mass (me/m∗

xx)

5.9 × 1014 1.15 × 1015 0.62
2.0 × 1014 4.65 × 1014 0.69
2.3 × 1013 5.16 × 1013 0.71

density, we can express our theoretical results for the Drude
weight as a function of density in terms of a density-dependent
sum-rule effective mass. In Table I we see that this mass drops
as the carrier density increases and the contribution of the
lowest xy subband becomes more dominant. Experimentally
the carrier density can be estimated on the basis of Hall effect
measurements, although interpretation may be complicated by
the presence of the complicated band structure in these material
systems. Simultaneous measurements of Drude weight and
Hall conductivity, combined with these sum-rule effective
masses could be helpful in checking the consistency of carrier
density estimates.

As shown in the inset in Fig. 1 there is a small inter-
subband contribution to the conductivity which originates
from the low-density tail states. For these states, subband
separations are comparable to spin-orbit coupling strengths
(�SO = 18 meV) allowing for considerable orbital hybridiza-
tion. The intersubband contribution will likely be difficult to
isolate experimentally because it is weak in a relative sense.
Additionally, because of the small band separations of tail
states it will be difficult to separate spectrally from the Drude
peak at typical values of η because it is also peaked close to
ω = 0. Intersubband features might be observable in systems
with spin-orbit coupling strengths that are larger than those
of SrTiO3 (�SO = 18 meV) or in systems with substantially
smaller lifetime broadening than is currently achievable (see
below). We also note that, in absence of spin orbit coupling,
the matrix elements remain diagonal in the orbital basis as well
as the subband basis. In this case the intersubband contribution
vanishes.

We remark that the utility of optical conductivity measure-
ments as a probe of electronic properties is mitigated by the
presence of strong optical phonon contributions. In Fig. 1 we
have shaded the frequency ranges expected [24] to be obscured
by the three optical phonon modes which overlap with 2DEG
energy scales. The frequency of the low-energy phonon at the
�q = 0 is strongly dependent on temperature. To represent this
we have included a shaded region spanning its temperature
dependence.

In t2g 2DEG systems with strong spin-orbit coupling,
spectral features associated with transitions between strongly
confined orbitals may become visible. A promising candidate
of such systems is the 2DEG formed at the gated surface of
the 5d transition-metal oxide KTaO3 [12] which has the same
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FIG. 2. (Color online) In-plane optical conductivity of a t2g

2DEG with strong atomic spin-orbit coupling with strength �SO =
400 meV. The inset plots the intersubband part only. η has been set
to 10 meV.

orbital makeup except there the spin-orbit split energy has been
observed to be as large as 400 meV. To illustrate this effect,
we have artificially set the atomic spin-orbit coupling strength
parameter �SO = 400 meV in the SrTiO3 2DEG model and
repeated the in-plane optical response calculation. In Fig. 2
we see that transitions within the weakly confined subbands
are again obscured because of the Bloch state lifetime. Now,
however, the spin-orbit coupling strength is strong enough
to induce appreciable hybridization of the strongly confined
subbands. The inset of Fig. 2 again shows the intersubband
optical response features are most prominent at high carrier
densities. The strongest feature is a broad peak centered
at ∼400 meV associated with transitions to bulk spin-orbit
split bands near the bottom of the conduction band. It is
present at all carrier densities, but stronger at higher carrier
densities. A second feature associated with the confinement
energy scale is now allowed because of orbital hybridization

within the t2g manifold. Even in the high density case, the
400 meV SO coupling is larger than the confinement energy
of the lowest subband. This suggests that all bands have
strongly hybridized t2g character. We emphasize that, since
the SO coupling is local, it does not contribute to the current
operator. Therefore, the matrix elements of the current operator
in the optical conductivity still favor xy and zx orbitals
due to their strong bonding in the x direction. The peak
at ∼80 meV is dominated by a peak in the zx projected
density of states related to the confinement energy of the most
confined {yz,zx} bands. Because the energy scales associated
with structural deformations (of the parent material or induced
by the interface) are not expected to be this large [25], we
conclude that in the absence of large SO coupling in plane
conductivity measurements are unlikely to provide useful
information.

Typical perpendicular-to-plane response is illustrated in
Fig. 3. In this case the current operator is diagonal in orbital,
but not diagonal in subband. We therefore see a number of
strong spectral features as summarized in Fig. 3(a). At low
carrier density, the subband splittings are not much larger
than the lifetime broadening η and features associated with
allowed transitions are therefore obscured in Fig. 3(a). In
practice, however, low carrier density t2g 2DEGs tend to have
higher mobilities, and therefore smaller values of η, so the
situation depicted in Fig. 3(a) may be too pessimistic. At
our medium density, a peak emerges at ∼40 meV (labeled
M1) that is associated with an optical transition from the
lowest occupied {yz,zx} subband to the second lowest {yz,zx}
subband. The transitions to the many nearby unoccupied
subbands of {yz,zx} character give the peak a broad line shape.
In Fig. 3(b) we show the electronic structure which yields
these conductivities. The {yz,zx} transitions are prominent
because these bands have a large mass in one direction and
therefore a larger density of states than the xy bands, and also
because the z-direction current operator is proportional to their
larger interlayer hopping amplitudes. We have highlighted
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FIG. 3. (Color online) (a) Perpendicular-to-plane optical conductivities for low, medium, and high densities. (b) Self-consistent band
structure for a density of 2 × 1014 cm−2. (c) Self-consistent 2DEG subband structure for a density of 5.9 × 1014 cm−2. The main optical
transitions for perpendicular-to-plane polarization are indicated by color-coordinated arrows in the conductivity and band-structure plots. The
subbands contributing to the feature labeled H2 are too close to be seen easily in (c) and have been denoted with two arrows for clarity. The
disorder-broadening η has been set to 10 meV.
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the transitions responsible for the ∼40 meV peak with green
arrows in Fig. 3(b).

For high densities, we see two features at ∼16 and
∼100 meV. We identify the higher energy features as orig-
inating from the {yz,zx} transitions labeled H1 in Fig. 3(c).
The H2 feature corresponds to a transition from the second
lowest {yz,zx} bands to the higher energy {yz,zx} bands. The
peak labeled H3 has frequency 240 meV and corresponds to
the transition from the lowest xy band to the second lowest xy

band. It is barely visible because of the weak xy hopping t ′
in the z direction. These calculations also reveal many small
features at higher energies that we associate with transitions
between the most strongly confined t2g subbands and the large
number of bulk-like bands that are occupied in the 60 layer
simulations [14]. These features would become sharper if we
performed our calculations with a smaller phenomenological
scattering rate η. We expect, however, that in typical systems
(which are much larger than 60 unit cells) they will yield a
smooth tail in the optical response.

V. DEPOLARIZATION EFFECT

We remark that optical spectroscopy features in conven-
tional semiconductor 2DEGs are shifted from the subband
splittings by depolarization effects [16,26]. When electrons
transition to unoccupied states, the charge distribution along
the z direction is altered, which in turn alters the time-
dependent electric field. Similar shifts will occur in oxide
2DEGs. In a two-level system with only the ground level
occupied, the peak shift is [26] 2e2nES/ε where n is the
density per area of the electrons involved in the transition,
E is the subband splitting and S is an effective Coulomb
interaction length [26] for the corresponding transition. In
the conventional case, intersubband transition energies are
small enough that ε can be taken to be the static dielectric
constant of the host semiconductor material. In the present case
many of the transitions of interest involve strongly confined
t2g electrons, and have frequencies larger than many of the
important optical phonons [see Fig. 3(a) for example]. In
our medium-density case, the transition energy falls between
optical phonon modes at around 20 and 70 meV. The effective
dielectric constant in bulk SrTiO3 in this frequency range is
ε ∼ 10. If we assumed that 1014 cm−2 {yz,zx} electrons are
involved in the transition and that the Coulomb interaction
length is ∼1 lattice constant, we would estimate that the
peak shift is on the order of 190 meV. This simple estimate
shows that the depolarization shifts are potentially large.
In a system in which several subbands are occupied, the
problem becomes more complex because of coupling between
different intersubband transitions. In order to account in a
complete manner for the depolarization effect, we examine
the layer-dependent density-density response function.

To obtain the density-density response function, we first
decompose the zz component of the conductivity tensor, σzz,
into contributions from links connecting neighboring layers:

σLL′(ω) = i�
∑
m,n,�k

(
fn − fm

εm − εn

) 〈n,�k|ĵL|m,�k〉〈m,�k|ĵL′ |n,�k〉
�ω − (εm − εn) + iη

(14)

where the uppercase L labels the link between layer l and
l + 1 and L′ the link between layer l′ and l′ + 1. The
current operator jz is decomposed into currents on each link
using

ĵL = − ie

�

∑
�k,γ

atγ (ĉ†�k,l,γ
ĉ�k,l+1,γ − ĉ

†
�k,l+1,γ

ĉ�k,l,γ ). (15)

It follows that σzz = ∑
LL′ σLL′ and that ĵz = ∑

L ĵL.
Assuming the system is driven by a monochromatic electric

field perpendicular to the surface, the charge density in layer l

obeys the continuity equation

−ieaωρl = JL−1 − JL. (16)

Here JL is the expectation value of the current operator on link
L and is related to the electric fields on the links by

JL =
∑
L′

σLL′EL′ , (17)

where EL′ is the electric field on link L′. The density-density
response function is defined as

ρl ≡
∑

l′
χ0

ll′Vl′ , (18)

where Vl′ is the electric potential on layer l′. Combining
Eq. (14) and Eqs. (16)–(18), we arrive at a relation con-
necting the conductivity and the density-density response
function:

χ0
ll′ = 1

ie2a2ω
(σL,L′−1 − σL−1,L′−1 − σL,L′ + σL−1,L′ ).

(19)

The superscript “0” indicates it is the response to the total
scalar field. The response to the external scalar field is related
to χ0 by the Dyson equation,

χ = (1 − χ0U )−1χ0, (20)

where U is the two-dimensional Fourier transform of the
Coulomb potential in the limit that the 2D momentum q → 0:

Ull′ = lim
q→0

1

4πε0

2πe2

ε∞q
e−qa|l−l′ | = 2πe2a|l − l′|

4πε0ε∞
. (21)

The results for the bare response function χ0 are illustrated
in Fig. 4 where we plot the trace of its imaginary part,
which is proportional to spatially integrated absorption in the
2DEG. The spectrum consists of resonances corresponding
to transitions between strongly confined t2g subbands, and
also resonances which correspond to transitions from confined
subbands to the large number of nearly 3D subbands. The
main spectral features in this figure can be related to those
in the perpendicular-to-plane conductivity plot [Fig. 3(a)],
except that the relative strengths of the intersubband transitions
are altered. For the high-density case, the first to the second
{yz,zx} subband transition (labeled H1) continues to be
dominant. However, the strength of the first to the second
xy subband transition (labeled H3) increases relative to the
H1 feature. The transition from the second to the third xy

subband is hidden in Fig. 3(a) but becomes visible at 45 meV
(between H2 and H1). This trend becomes more significant in
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FIG. 4. (Color online) Trace of the imaginary part of the “bare”
density-density response function χ 0 for low, medium, and high
densities. The features are identified with the transitions labeled in
Fig. 3(a). The peaks next to M1 in medium density and next to H1 in
high density which are not labeled correspond to xy transitions not
visible in Fig. 3(a).

the medium-density case where the {yz,zx} transition M1 can
still be identified but has relatively small strength compared
to two features at 73 and 103 meV which are not visible
in the perpendicular-to-plane conductivity [Fig. 3(a)]. They
correspond to transitions from the lowest xy subband to
the second and third xy subbands, respectively. Because the
current operator in the Kubo formula is proportional to the
out-of-plane hopping amplitude tγ,z, which is much smaller
for xy manifold compared to {yz,zx} manifold, xy transitions
have weaker strength in the optical conductivity spectrum.
The densely spaced peaks in the high-frequency part of Fig. 4
correspond to transitions from the most strongly confined
t2g subbands to the large number of bulk-like t2g subbands.
For subbands of orbital character γ , the upper bound of
the intersubband excitations, i.e., the distance between the
band edges of the lowest and highest subbands, is 4tγ,z, the
width of the dispersion −2tγ,z cos(kza) in the bulk, plus the
confinement energy, the amount which the lowest subband
is pulled down in energy relative to the 3D-like bands. The
{yz,zx} transitions therefore tend to have a larger upper bound
∼1 eV.

Figure 5 shows the results for the response function χ .
When the depolarization effect is considered, we see that most
of the spectral weight is shifted to higher energies, leaving
smooth and weak features at lower energies where intersub-
band transitions would occur. This behavior is characteristic of
systems in which Coulomb interactions couple intersubband
transitions, and has been identified previously in 2DEGs with
two [27,28] or more [29] intersubband transitions. In systems
with many occupied subbands, Coulomb interactions can
induce coherence between multiple intersubband resonances,
leading to a high-energy collective mode that concentrates
most of the spectral weight. Indeed, in the high-density case in
Fig. 5, we see a sharp peak arises at the energy 1.1 eV beyond
the upper bound of the intersubband splittings. This is an
excitation of plasmonic character which arises from Coulomb
coupling of a large number of intersubband transitions into a
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FIG. 5. (Color online) Trace of the imaginary part of the density-
density response function χ for low, medium, and high densities.

single collective mode. At medium density, the collective mode
is just beginning to emerge from the coupled intersubband
transitions, but is not fully separated. At low density, the
spectrum is only slightly shifted towards higher energy. The
peaks centered at low frequencies are strongly suppressed at
all densities.

VI. SUMMARY AND CONCLUSIONS

We report on a theoretical model study of the optical con-
ductivity of t2g 2DEGs formed at perovskite oxide surfaces and
interfaces. The detailed properties of these low-dimensional
electron systems are difficult to predict theoretically because
of the important role played in their properties by nonlocal
and nonlinear dielectric screening and by structural distortions
and defects. This study is motivated by the potential value of
spectral and sum-rule information from optical characteriza-
tion for verification and refinement of models of t2g 2DEG
properties.

We find that the in-plane optical conductivity is very
strongly dominated by approximately independent Drude peak
contributions coming from all bands, irrespective of their
t2g-orbital character and of the degree to which they are
confined at the interface. Unlike the dc conductivity, the
Drude weight, obtained by integrating the Drude peak over
frequency, is independent of the unknown scattering times
of the various bands. Measuring the Drude weight of the
t2g 2DEG can provide an estimate of the total 2D carrier
density that is complementary to the one provided by Hall
effect measurements. Neither measurement is definitive on its
own, since the Hall effect is simply related to carrier density
only in single-band systems, and the Drude weight of a band
depends both on its carrier density and its effective mass. We
have calculated the effective masses which should be used
in combination with Drude weight measurements to infer the
carrier density.

The in-plane conductivity also has features associated with
intersubband transitions. These are weak unless spin-orbit
interactions significantly hybridize t2g electrons with different
orbital character, but would be very valuable in characterizing
the subband structure if they could be detected. In the
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model calculations we have performed, the primary source
of hybridization is atomic-like spin-orbit interactions which
will normally have the strongest impact. Because Rashba [13]
spin-orbit interactions, which we have not specifically included
in the present calculations, are necessarily momentum and
gate-voltage dependent, they could provide a gate-tunable
source of spin-orbit coupling. By providing weight to inter-
subband features in the in-plane conductivity, tunable Rashba
interactions could enhance the value of in-plane current
response measurements.

Unlike its in-plane counterpart, perpendicular-to-plane
optical conductivity measurements should reveal valuable
spectroscopic information. Their interpretation is, however,
complicated by depolarization effect which implies that
spectral features cannot be immediately identified with inter-
subband transition energies. The coupling between different
intersubband transitions shifts spectral features to higher
energies and suppresses low-energy transition features. In
2DEGs with a large enough 2D density we predict that
a plasmon-like collective mode, resulting from Coulomb-
coupling induced in-phase oscillation of a large number of

intersubband transitions, appears above the highest transition
energies and carries most of the spectral weight.

Based on our study we also conclude that the influence of
gates, particularly the influence of back gates on ellipsometry,
might be helpful in assigning features to particular transitions
in the t2g 2DEG. When the t2g carrier density is reduced by a
back gate [14] it has the effect of increasing the electric field
deep in the substrate, which has a particularly strong influence
on the weakly confined states which are otherwise present,
sharply increasing the smallest subband splittings, decreasing
the number of partially occupied subbands, and increasing
spatial overlap between occupied and empty subbands. We
can expect that broad tails in optical response will sharpen into
discrete features which can be assigned on the basis of their
spectral response to back-gate voltages, and that the plasmon-
like collective mode will be suppressed.
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