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Charge-density-wave surface phase slips and noncontact nanofriction
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Bulk electrical dissipation caused by charge-density-wave (CDW) depinning and sliding is a classic subject.
We present a local, nanoscale mechanism describing the occurrence of mechanical dissipation peaks in the
dynamics of an atomic force microscope tip oscillating above the surface of a CDW material. Local surface 2π

slips of the CDW phase are predicted to take place, giving rise to mechanical hysteresis and large dissipation
at discrete tip surface distances. The results of our static and dynamic numerical simulations are believed to be
relevant to recent experiments on NbSe2; other candidate systems in which similar effects should be observable
are also discussed.
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Charge-density waves (CDWs) are static modulations of
small amplitude and generally incommensurate periodicities
that occur in the electron density distribution and in the lattice
positions of a variety of materials [1]. They may be generated
either by an exchange-driven instability of a metallic Fermi
surface [2], or by a lattice-dynamical instability leading to a
static periodic lattice distortion (PLD), which may equivalently
be driven by electrons near the Fermi [3,4] energy or just by
anharmonicity [5]. A CDW superstructure, characterized by
amplitude ρ0 and phase φ(x) relative to the underlying crystal
lattice, can be made to slide with transport of mass and charge
and with energy dissipation under external perturbations and
fields [1].

Phase slips in bulk CDWs/PLDs are involved in a variety
of phenomena, including switching [6], current conversion at
contacts [7], noise [8–10], and more. While these phenomena
are now basic knowledge, there is to date no parallel work
addressing the possibility to mechanically provoke CDW
phase slips at a chosen local point. In this paper, we describe a
two-dimensional model showing how a localized CDW/PLD
phase slip may be provoked by external action of an atomic
force microscope (AFM) tip outside a surface.

Experiments have for some time revealed the dissipative
and frictional effects experienced by nanoprobes in contact
with or near different surfaces, and considerable theoretical
effort is being devoted to their understanding [11]. The
development of ultrasensitive tools such as the “pendulum”
AFM [12,13] offers a chance to investigate more delicate and
intimate substrate properties. Near a CDW material, the tip
oscillations may actuate, through van der Waals or electrostatic
coupling, an electronic and atomic movement in the surface
right under the tip, amounting in this case to coupling to
the CDW order parameter. Due to the periodic nature of
the CDW state, the coupled tip-CDW system has multiple
solutions, characterized by a different winding number (a
topological property), which differ by a local phase slip, and
they correspond to different energy branches. At the precise
tip-surface distance where the two branches cross, the system
will jump from one to the other injecting a local 2π phase slip,
and the corresponding hysteresis cycle will reflect directly as
a mechanical dissipation, persisting even at low tip oscillation
frequencies. This scenario and these results are believed to

represent closely what is going on in recent experiments on
the CDW material NbSe2 [14].

I. THE MODEL

Irrespective of the microscopic mechanism that generated
it, we introduce the CDW as a periodic modulation of the ion
and electron density ρ, of the form �ρ(r) = ρ0 cos(Q · r + φ0),
where ρ0 is the amplitude, λ ∼ 2πQ−1 is the characteristic
wavelength, and φ0 is an initially constant phase, fixed by
some faraway agent. We wish to study the effect of a localized
perturbation represented by a weakly interacting and slowly
oscillating nano or mesoscopic-sized probe hovering above
the surface, acting on a length scale σ similar to the CDW
wavelength, σ ∼ λ. In the past, uniform perturbations such
as external electric fields, or pointlike perturbations such
as pinning defects, have been studied [1,15–17], describing
global CDW dynamical sliding or local static CDW pinning.
To address the problem of local CDW dynamics, we now go be-
yond the straight one-dimensional approximations commonly
used in the past.

As in the standard Fukuyama-Lee-Rice model [15,16], we
treat the CDW at the Ginzburg-Landau level as a classical
elastic medium, where the CDW modulation is described by
a static space-dependent (and, later, time-dependent) order
parameter �ρ(r) = A(r) cos[Q · r + φ(r)]. The unperturbed
CDW has constant A(r) = ρ0 and φ(r) = φ0, and the free
energy reads

F0[ψ(r)] =
∫

[−2f0|ψ(r)|2 + f0|ψ(r)|4 + κ|∇ψ(r)|2]dr,

(1)

where ψ(r) = A(r)eiφ(r), f0 and κ are nonlinearity and stiff-
ness real positive parameters, respectively, and a unidirectional
CDW modulation has been assumed (three superposed mod-
ulations could be treated equally well). Next, the perturbation
induced by an AFM tip is described as a potential V (r)
coupling to the order parameter

FV [ψ(r)] =
∫

V (r)Re[ψ(r)eiQ·r]dr. (2)
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Past studies of point impurities [17,18] assumed V (r) =∑
i δ(r − ri), one dimension, and coupling was restricted to

the CDW phase only, but all of that is inadequate here. Indeed,
if one considers a phase-only functional of the form

Fφ[φ(r)] =
∫

{κ|∇φ(r)|2 + V (r)ρ0 cos[Q · r + φ(r)]}dr

(3)

and minimizes it in one dimension, the result will be a
linear behavior of φ(x) away from the impurity, unphysical.
Therefore, it is mandatory to work in at least two dimensions,
where the Laplacian can accommodate solutions that decay
far from the perturbation. Moreover, the nature of the phase,
defined modulo 2π , implies that, given some boundary
conditions, the solution is not uniquely defined unless we also
specify the total variation of φ. Assuming the phase to have the
unperturbed value φ0 far from the perturbation, we can define
the winding number N

N = 1

2π

∫
∇φ(r)dx, (4)

taken along the CDW direction Q. The winding number N

is needed to fully specify a solution. However, this procedure
leads to a problem of the phase-only approximation (3): any
change in the winding number along the Q direction will reflect
itself in the whole perpendicular direction, thus unphysically
raising the energy of such a solution. For a physically sensible
result, we need to involve the amplitude degree of freedom,
which will allow for the presence of dislocations and for local
changes in the winding number. Lastly, we require an extended
perturbation since a point potential can only adjust the order
parameter at a single point, therefore missing the extended
information about the winding number and ultimately failing to
produce a localized phase slip in the absence of external strains
on the system. We will therefore consider V (r) with a finite
width σ of the order of the wavelength λ, and minimize the total
phase and amplitude-dependent free energy F = F0 + FV

given a specific shape of V (r). The final result is expected to be
similar to what was previously considered in the wider context
of phase slip [17] and more specifically in the case of localized
phase-slip centers [19,20]. Namely, the local strain induced by
the perturbation on the phase will reduce the order-parameter
amplitude, to the point where a local phase-slip event becomes
possible. In more than one dimension, the boundary between
areas with a different winding number will be marked by
structures such as vortices.

From this preliminary analysis, we can now anticipate that,
as the tip approaches the surface, increasing the strength of
V (r), it might reach points where the energies of solutions with
different winding numbers cross. At these points, the transition
between successive winding-number manifolds would not be
continuous, due to the barrier required to create the vortices. As
a result, time-dependent oscillations of the tip around these lo-
cations would generally occur with hysteresis and, ultimately,
mechanical dissipation despite low oscillation frequencies.

II. SIMULATIONS

To verify the proposed mechanism, we performed numer-
ical simulations of the tip-CDW surface model, restricted to

two dimensions assuming that all effects will heal out below
the surface (reasonable in a layer compound). To mimic the
tip potential, we integrate a van der Waals potential C/r6 over
a conical shape at distance d from the surface. The result can
be reasonably approximated in the main area under the tip as
a Lorentzian,

Vd (r) = V 0
d

r2 + σ 2
d

, (5)

where r is the in-plane distance from the tip central axis, and
the parameters scale like V 0

d = V̄ /d and σd = σ̄ d2. While this
shape and dependence are not exact, they are good enough for
our purposes, especially since the final qualitative results are
not strongly dependent on the exact perturbation.

To minimize the total free energy F = F0 + FV , we
discretize the complex order parameter ψ on a square grid
of points with a spacing much smaller than the characteristic
wavelength of the CDW (and fine enough to avoid discretiza-
tion artifacts), and we impose a constant boundary condition
ψ0 on the sides perpendicular to Q, while setting periodic
boundary conditions in the direction parallel to Q to allow
for possible phase jumps [21]. The minimization is carried
out with a standard conjugated gradients algorithm [22].
Without aiming at a numerically realistic representation
of any experimental system, we use reasonable order-of-
magnitude estimates of the system parameters, which help
us build a clear if qualitative portrait of the tip-induced
CDW phase slip.

Figure 1 shows the charge density ρ, order parameter
amplitude A, and phase φ for minima with different winding
number N , for a noncontact (attractive) tip at different
distances d. The winding number is calculated along the line
passing through the point right below the tip (center of the
simulation cell) according to Eq. (4), with N = 0 being the
unperturbed case. As predicted, we see upon decreasing d

through the first and successive critical distances d01, d12, etc.
the appearance of a pair of vortices (with opposite rotation)
for every unit increase of the winding number. These vortices
are characterized by a suppression of the amplitude and a total
change of the phase by 2π on a path around them, since they
separate the phase-slippage center from the unaffected area far
from the tip.

Since the solution with a given winding number lies in a lo-
cal minimum, it is possible to use the minimization algorithm,
for example by starting from a reasonable configuration, to
find solutions in a certain subspace, even when that is not
the global minimum for that given distance. This allows us
to extend the calculation of the local free-energy minima in a
given N subspace well beyond their crossing points, generating
a family of free-energy curves of definite N as a function of the
distance d. In Fig. 2 (solid lines), we show an example of two
successive crossing points. We expect each crossing to give
rise to a first-order transition, and thus to a hysteretic peak in
the experimental dissipation trace. Of course, a more complex
CDW configuration or different parameters could give rise to
more and different peaks.

To demonstrate the phenomenon in full, we now extend our
study to the tip-CDW dynamics. Toward that end, we carry
out a simulated evolution generated by the time-dependent
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FIG. 1. (Color online) Charge density ρ, order parameter ampli-
tude A, and phase φ portraits for minimal free-energy solutions with
different winding number N and tip-surface distance d (in nm).
Results from simulations on a 201×201 grid with parameters (see
text) f0 = 2 eV/nm, κ = 0.2 eV, Q = 2.5 nm−1, V̄ = −9.4 eV nm,
σ̄ = 1.2 nm−1, and boundary conditions ψ0 = i (right and left sides).

Ginzburg-Landau equation [20],

− �
∂ψ

∂t
= δF

δψ∗ , (6)

which can be interpreted as an overdamped evolution of the
order parameter toward the equilibrium position, with a damp-
ing coefficient �. The use of this equation is justified since
the perturbation time scales are much longer than the ones
typical of CDW motion, rendering inertial effects negligible.
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FIG. 2. (Color online) Minimal free energy F as a function of
tip distance d for subspaces with different winding number N (full
lines) and evolution of F during an oscillation with d0 = 1.8 nm,
d̄ = 0.4 nm, and ω = 6×104 Hz (other parameters are the same as
Fig. 1). Inset: same data rescaled with respect to the N = 1 value to
highlight their difference.

Integrating this equation (through a standard Runge-Kutta
algorithm [22]), we compute the time evolution of the free
energy, as shown by the dotted line in Fig. 2, for a tip
performing a full oscillation perpendicular to the surface of
the form d(t) = d0 + d̄ cos(ωt). The result [23] shows that
in this effectively adiabatic evolution, the system is stuck in
its winding-number manifold well beyond the crossing point,
effectively realizing a hysteresis cycle. Figure 3 shows the
force hysteresis for oscillations at different frequencies ω: the
area of the cycles directly represents the dissipated energy
per cycle W , given in the inset. It should be stressed here that
what we calculated is in effect only a maximal hysteresis cycle.
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FIG. 3. (Color online) Force as a function of distance for evolu-
tions with d0 = 1.8 nm, d̄ = 0.4 nm, and different values of ω with
a coefficient � = 10−7 eV s. Inset: total work W as a function of
oscillation frequency ω.
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The actual size of the cycle, and thus of the total dissipated tip
mechanical energy, is in principle smaller (and should in effect
vanish in the limit of vanishing oscillation frequency) due
to thermal fluctuations, which our treatment omits. However,
as known in other cases, the large, mesoscopic size of the
tip-surface mechanics generally makes the simple adiabatic
description rather accurate, and the effective hysteresis only
modestly frequency- and temperature-dependent. Moreover,
considering that the experimental dissipation per cycle is of
the order of half an eV, while the temperature is in the tens of
K, even accounting for the barrier being smaller than the state
separation, we estimate the probability of relevant thermal
excitations spoiling all hysteretic effects in the ms span of a
cycle to be negligible.

III. DISCUSSION AND CONCLUSIONS

We have shown that local surface CDW phase slips and
vortex pairs can be introduced by the external potential of
an approaching tip. In the context of macroscopic CDW
conduction noise [1,9,10], the creation and movement of
vortices has been invoked earlier in connection with phase
slips near the CDW boundaries. In a broader context, our
system can be placed in between these macroscopic situations
and the simple models of defect pinning and phase slip [17]
by a localized perturbation.

Experimentally, Langer et al. [14] recently reported AFM
dissipation peaks appearing at discrete tip-surface distances
above the CDW material 2H -NbSe2, qualitatively suggesting

in a 1D model the injection of 2π phase slips. The present
results describe at the minimal level a theory that can explain
this type of phenomenon, connecting the phase slip to a vortex
pair formation, and providing the time-dependent portrait of
the injection process.

It would be of considerable interest in the future to explore
this effect further in other systems with different characteris-
tics. In insulating, quasi-one-dimensional CDW systems, the
injected phase slip should also amount to the injection of a
quantized, possibly fractional pairs of opposite charges [24].
In a spin density wave system, such as the chromium surface,
a nonmagnetic tip would still couple to the accompanying
CDW [25], where surface phase slips could be injected. In
superconductors, the induction of single vortices over Pb
thin film islands has been experimentally verified [26], and
the feasibility of controlling single vortices through magnetic
force microscopy (MFM) tips has been demonstrated [27]: it
would be interesting to probe for dissipation peaks, as we have
addressed above, induced by the MFM tip creation of vortex
pairs in thin superconducting films.
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[18] I. Tüttö and A. Zawadowski, Phys. Rev. B 32, 2449 (1985).
[19] K. Maki, Phys. Lett. A 202, 313 (1995).
[20] L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 86, 1818 (1984)

[Sov. Phys. JETP 59, 1057 (1984)].
[21] These overall boundary conditions are meant to effectively

represent the situation of a real system such as NbSe2, to be
addressed later, exhibiting large regions of clean incommen-
surate CDW, whose phase is fixed by pinning agents such as
defects at infinity.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed.
(Cambridge University Press, Cambridge, 2007).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.89.245416 for a short movie represent-
ing the evolution of the charge density during a tip
oscillation.

[24] This feature is not expected in NbSe2, which is metallic and in
reality an anharmonicity-driven PLD [5]. Better candidates for
these effects would be NbSe3 or TaS3.

[25] H. C. Kim, J. M. Logan, O. G. Shpyrko, P. B. Littlewood, and
E. D. Isaacs, Phys. Rev. B 88, 140101(R) (2013).

[26] T. Nishio, S. Lin, T. An, T. Eguchi, and Y. Hasegawa,
Nanotechnology 21, 465704 (2010).

[27] O. M. Auslaender, L. Luan, E. W. J. Straver et al., Nat. Phys. 5,
35 (2009).

245416-4

http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/10.1103/PhysRev.167.691
http://dx.doi.org/10.1103/PhysRev.167.691
http://dx.doi.org/10.1103/PhysRev.167.691
http://dx.doi.org/10.1103/PhysRev.167.691
http://dx.doi.org/10.1103/PhysRev.126.1693
http://dx.doi.org/10.1103/PhysRev.126.1693
http://dx.doi.org/10.1103/PhysRev.126.1693
http://dx.doi.org/10.1103/PhysRev.126.1693
http://dx.doi.org/10.1103/PhysRevLett.107.107403
http://dx.doi.org/10.1103/PhysRevLett.107.107403
http://dx.doi.org/10.1103/PhysRevLett.107.107403
http://dx.doi.org/10.1103/PhysRevLett.107.107403
http://dx.doi.org/10.1103/PhysRevB.38.13047
http://dx.doi.org/10.1103/PhysRevB.38.13047
http://dx.doi.org/10.1103/PhysRevB.38.13047
http://dx.doi.org/10.1103/PhysRevB.38.13047
http://dx.doi.org/10.1103/PhysRevLett.68.3084
http://dx.doi.org/10.1103/PhysRevLett.68.3084
http://dx.doi.org/10.1103/PhysRevLett.68.3084
http://dx.doi.org/10.1103/PhysRevLett.68.3084
http://dx.doi.org/10.1103/PhysRevLett.65.1044
http://dx.doi.org/10.1103/PhysRevLett.65.1044
http://dx.doi.org/10.1103/PhysRevLett.65.1044
http://dx.doi.org/10.1103/PhysRevLett.65.1044
http://dx.doi.org/10.1103/PhysRevLett.52.663
http://dx.doi.org/10.1103/PhysRevLett.52.663
http://dx.doi.org/10.1103/PhysRevLett.52.663
http://dx.doi.org/10.1103/PhysRevLett.52.663
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/PhysRevLett.46.511
http://dx.doi.org/10.1103/RevModPhys.85.529
http://dx.doi.org/10.1103/RevModPhys.85.529
http://dx.doi.org/10.1103/RevModPhys.85.529
http://dx.doi.org/10.1103/RevModPhys.85.529
http://dx.doi.org/10.1103/PhysRevLett.87.096801
http://dx.doi.org/10.1103/PhysRevLett.87.096801
http://dx.doi.org/10.1103/PhysRevLett.87.096801
http://dx.doi.org/10.1103/PhysRevLett.87.096801
http://dx.doi.org/10.1063/1.3551603
http://dx.doi.org/10.1063/1.3551603
http://dx.doi.org/10.1063/1.3551603
http://dx.doi.org/10.1063/1.3551603
http://dx.doi.org/10.1038/nmat3836
http://dx.doi.org/10.1038/nmat3836
http://dx.doi.org/10.1038/nmat3836
http://dx.doi.org/10.1038/nmat3836
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/10.1103/PhysRevB.19.3970
http://dx.doi.org/10.1103/PhysRevB.19.3970
http://dx.doi.org/10.1103/PhysRevB.19.3970
http://dx.doi.org/10.1103/PhysRevB.19.3970
http://dx.doi.org/10.1103/PhysRevB.40.5447
http://dx.doi.org/10.1103/PhysRevB.40.5447
http://dx.doi.org/10.1103/PhysRevB.40.5447
http://dx.doi.org/10.1103/PhysRevB.40.5447
http://dx.doi.org/10.1103/PhysRevB.32.2449
http://dx.doi.org/10.1103/PhysRevB.32.2449
http://dx.doi.org/10.1103/PhysRevB.32.2449
http://dx.doi.org/10.1103/PhysRevB.32.2449
http://dx.doi.org/10.1016/0375-9601(95)00306-N
http://dx.doi.org/10.1016/0375-9601(95)00306-N
http://dx.doi.org/10.1016/0375-9601(95)00306-N
http://dx.doi.org/10.1016/0375-9601(95)00306-N
http://link.aps.org/supplemental/10.1103/PhysRevB.89.245416
http://dx.doi.org/10.1103/PhysRevB.88.140101
http://dx.doi.org/10.1103/PhysRevB.88.140101
http://dx.doi.org/10.1103/PhysRevB.88.140101
http://dx.doi.org/10.1103/PhysRevB.88.140101
http://dx.doi.org/10.1088/0957-4484/21/46/465704
http://dx.doi.org/10.1088/0957-4484/21/46/465704
http://dx.doi.org/10.1088/0957-4484/21/46/465704
http://dx.doi.org/10.1088/0957-4484/21/46/465704
http://dx.doi.org/10.1038/nphys1127
http://dx.doi.org/10.1038/nphys1127
http://dx.doi.org/10.1038/nphys1127
http://dx.doi.org/10.1038/nphys1127



