
PHYSICAL REVIEW B 89, 245413 (2014)

Detection of a Majorana fermion zero mode by a T-shaped quantum-dot structure
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We investigate the electron transport through the T-shaped quantum-dot (QD) structure theoretically, by
coupling a Majorana zero mode to the terminal QD. It is found that in the double-QD configuration, the presence
of the Majorana zero mode can efficiently dissolve the antiresonance point in the conductance spectrum while
inducing a conductance peak to appear at the same energy position. In the case of asymmetric QD-lead coupling,
such a valley-to-peak transition induced by the Majorana zero mode still exists. Next, we observe in the multi-QD
case that at the zero-bias limit, the conductance values are always the same as the double-QD result, independent
of the parity of the QD number. We believe that all these results can be helpful for understanding the properties
of Majorana bound states.
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I. INTRODUCTION

Majorana fermions, exotic quasiparticles with non-Abelian
statistics, have attracted a great deal of attention due to both
their fundamental interest and the potential application for the
decoherence-free quantum computation. Different groups have
proposed various ways to realize unpaired Majorana fermions,
such as in a vortex core in a p-wave superconductor [1–6] or
superfluid [7,8]. Recently, it has been reported that Majorana
bound states (MBSs) can be realized at the ends of a one-
dimensional p-wave superconductor for which the proposed
system is a semiconductor nanowire with Rashba spin-orbit
interaction to which both a magnetic field and proximity-
induced s-wave pairing are added [9–12]. This means that
Majorana fermions can be constructed in solid states, and that
its application becomes more feasible. However, how to detect
and verify the existence of MBSs is a key issue and is rather
difficult. Various schemes have been suggested, including the
noise measurements [13,14], the resonant Andreev reflection
by a scanning tunneling microscope (STM) [15], and the 4π

periodic Majorana-Josephson currents [16].
More recently, some researchers demonstrated that the

MBS can be detected by coupling it laterally to a QD in one
closed circuit. The main reason arises from the quantifiable
change of the MBS on the electron transport through a QD
structure. For example, when the QD is noninteracting and
in the resonant-tunneling regime, the MBS influences the
conductance through the QD by inducing the sharp decrease
of the conductance by a factor of 1

2 , as reported by D. E. Liu
and H. U. Baranger [17]. If the QD is in the Kondo regime,
the QD-MBS coupling reduces the unitary-limit value of the
linear conductance by exactly a factor 3

4 [18]. These results
exactly illustrate that the QD structure is a good candidate for
the detection of MBSs. Motivated by these works, researchers
tried to clarify the other underlying transport properties of
the QD structure due to the QD-MBS coupling. Y. Cao et

al. discussed the current and shot noise properties of this
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system by tuning the structure parameters [19]. Besides, the
MBS-assisted transport properties have been investigated in
the double-QD structures, and a variety of interesting results
have been observed, such as the crossed Andreev reflection
[20] and nonlocal entanglement [21]. These works illustrated
that it can be feasible to detect Majorana fermions in QD
structures. However, MBS is not the necessary factor to
quantitatively change the resonant tunneling, because various
decoherence factors can suppress it. This means that it is less
convincing to detect the MBSs by observing the change of
resonant tunneling. Therefore, any new schemes to efficiently
detect the MBSs are desirable.

QDs have one important characteristic in that some QDs can
be coupled to form the coupled-QD systems. In comparison
with the single-QD and double-QD systems, multiple QDs
present more intricate quantum transport behaviors, because of
the tunable structure parameters and abundant quantum inter-
ference mechanisms. As a typical example, the antiresonance
in electronic transport through a T-shaped multi-QD structure
were extensively studied in previous works [22–28]. Such an
effect is tightly related to the parity of QD number. Namely,
in the odd-numbered QD case, resonant tunneling occurs at
the low-bias limit. Conversely, for the case of even-numbered
QDs, the electronic transport shows the antiresonance effect
which leads to one conductance zero [23,26]. In view of
these results, it is natural to think that if the MBSs could
efficiently modify the transport properties of the T-shaped QD
structure, e.g., the antiresonance effect, such a QD structure
will be a more promising candidate for the detection of MBSs.
Motivated by this idea, in the present paper we consider
a Majorana zero mode to side couple to the last QD of
the T-shaped QD structure. By calculating the conductance
spectrum, we found that the presence of the Majorana zero
mode completely modifies the electron transport properties
of the T-shaped QD structure. The conductance spectra
always exhibit the similar conductance peaks whose values
are equal to e2

2h
at the zero-bias limit, accompanied by

the disappearance of the antiresonance effect. We therefore
propose this structure to be an appropriate candidate to detect
the MBSs.
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FIG. 1. (Color online) Sketch of a T-shaped QD system with
coupled MBSs. The two MBSs are defined as η1 and η2, respectively.
The chemical potentials of the two normal leads are μL = εF + eVb

2

and μL = εF − eVb

2 . (b) Schematic of the T-shaped double-QD
structure with coupled MBSs in the Majorana fermion representation.

II. MODEL

The electronic transport structure we propose to detect
the MBS is illustrated in Fig. 1(a). In such a structure, the
last QD of a noninteracting T-shaped QD system is coupled
to one MBS. With the current experimental technique, the
T-shaped QD structure can be readily fabricated. And it is also
actually possible to measure its electron transport spectrum.
For example, the antiresonance phenomenon in the electron
transport process has been successfully observed in a recent
experimental work [25,29]. As for the realization of the MBSs,
various schemes have been proposed. For instance, when a
semiconductor nanowire with strong Rashba interaction is
subjected to a strong magnetic field B and adheres to a
grounded proximity-induced s-wave superconductivity, a pair
of MBSs can form at the end of the nanowire [5,11], in the case
of Vz = gμBB/2 >

√
�2 + μ2 (� is the superconducting

order parameter and μ is the chemical potential of the
nanowire).

In Fig. 1, one MBS, defined by η1, is assumed to be coupled
to QD-N . Accordingly, the Hamiltonian of such a structure can
be written as

H = H0 + HM + HMD. (1)

The first term is the Hamiltonian for the T-shaped QD system
with the two connected normal metallic leads, which takes the
form

H0 =
∑
αk

εαkc
†
αkcαk +

N∑
j=1

εjd
†
j dj +

N−1∑
j=1

tj d
†
j dj+1

+
∑
αk

Vαd
†
1cαk + H.c. (2)

c
†
αk (cαk) is an operator to create (annihilate) an electron

of the continuous state |k〉 in the lead-α (α ∈ L,R). εαk

is the corresponding single-particle energy. d
†
j (dj ) is the

creation (annihilation) operator of the electron in QD-j . εj

denotes the electron level in the corresponding QD. tj denotes
the tunneling between the two neighboring QDs. Vα is the

tunneling element between QD-1 and lead-α. Note that since
the QD structure is noninteracting, we in this paper neglect
the spin index. Next, the low-energy effective Hamiltonian for
HM (i.e., the Majorana fermion) reads

HM = iεMη1η2. (3)

It describes the paired MBSs generated at the ends of the
nanowire and coupled to each other by an energy εM ∼ e−l/ξ ,
with l the wire length and ξ the superconducting coherent
length. The last term in Eq. (1) describes the tunnel coupling
between QD-N and the nearby MBS, which is given by

HMD = (λdN − λ∗d†
N )η1. (4)

λ is the coupling coefficient between QD-N and the MBS.
In Fig. 1(a), we know that μL = εF + eVb

2 and μR =
εF − eVb

2 (μα is the chemical potential of lead-α, and εF

is the Fermi level in the case of Vb = 0 which can be
assumed to be zero), and their difference will drive the
transport. In order to realize the robust MBSs, the following
condition must be satisfied: the Zeeman splitting Vz � |Vb|,
λ, and 
. 
 = 1

2 (
L + 
R) is the QD-lead coupling with

α ≡ 2π |Vα|2ρ and ρ the density of states of the leads. Note
that in the presence of MBSs, this structure is actually a
three-terminal system. Thus, the current of lead L and lead
R should be calculated, respectively, for completely clarifying
the transport properties. The current in lead α can be evaluated
by various methods, such as the scattering matrix method and
the nonequilibrium Green function technique [20,30]. We here
employ the latter to discuss the transport behaviors. Via a
straightforward derivation, we obtain the expression of the
current in one lead, e.g., lead L:

Jα = e

h

∫
dω

[
T αα′

ee (ω)
(
f α

e − f α′
e

) + T αα
eh (ω)

(
f α

e − f α
h

)]
.

(5)

In this formula, f α
e and f α

h are the Fermi distributions of
the electron and hole in lead α, respectively. T αα′

ee (ω) =
Tr[
α

e GR
α′
e GA] and T αα

eh (ω) = Tr[
α
e GR
α

h GA], where GR

and GA are the related and advanced Green functions.
In order to get the analytical form of the retarded Green

function, it is necessary to switch from the Majorana fermion
representation to the completely equivalent regular fermion
one by defining η1 = (f † + f )/

√
2 and η2 = i(f † − f )/

√
2

with {f,f †} = 1. Accordingly, we can write out HM and HD ,
respectively, as HM = εM (f †f − 1

2 ) and

HMD = 1√
2

(λdN − λ∗d†
N )(f † + f ). (6)

Then with the equation of motion method, the matrix form
of the retarded Green function can be written out, i.e.,
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GR(ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(z)−1 0 −t1 0 0 0 0 · · · 0

0 g̃1(z)−1 0 t1 0 0 0 · · · 0
−t∗1 0 g2(z)−1 0 −t2 0 0 · · · 0

0 t∗1 0 g̃2(z)−1 0
. . . 0 · · · ...

0 0 −t∗2 0
. . . 0 tN−1 · · · ...

0 0
. . . 0 gN (z)−1 0 λ∗√

2
λ∗√

2
... t∗N−1 0 g̃N (z)−1 − λ√

2
− λ√

2
0 0 · · · 0 0 λ√

2
− λ∗√

2
gM (z)−1 0

0 0 0 0 · · · λ√
2

− λ∗√
2

0 g̃M (z)−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (7)

In the above equation, gj (z)−1 = ω − εj + i
δj1 and
g̃j (z)−1 = ω + εj + i
δj1; gM (z)−1 = ω − εM + i0+ and
g̃M (z)−1 = ω + εM + i0+. Within the wide-band limit ap-
proximation, 
α

e = 
α
h = 
α . Moreover, in the symmetric-

coupling case where 
α = 
, we can simplify the current
formula in this structure as

J = e

h

∫
dωT (ω)

(
f L

e − f R
e

)
, (8)

in which T (ω) = −
ImGR
11.

III. NUMERICAL RESULTS AND DISCUSSIONS

With the formulation developed in the above section, we
perform the numerical calculation to investigate the electron
transport properties of the T-shaped QD structure. In the
context, temperature is fixed at kBT = 0. For the unit of
the structure parameters, it is reasonable to consider it to
be 10−2 meV according to the previous works [20]. In
the following, we ignore the unit of the parameters for
simplicity.

First of all, we investigate the electron transport properties
of the double-QD configuration with the finite coupling
between QD-2 and η1. The numerical results are shown in
Fig. 2, where εj is taken to be zero. In Fig. 2(a), we find that
in the case of λ = 0, the conductance exhibits two peaks at the
points of eVb = ±2.0, and at the point of eVb = 0 it becomes
equal to zero. These two results are easy to understand. In
the case of εj = 0, the molecular states of the double QDs
are located at the points of ω = ±t1. When eVb = ±2.0, the
Fermi levels of the leads will coincide with the energy levels
of the molecular states, respectively. On the other hand, many
groups have demonstrated that such a structure provides two
special transmission paths for the quantum interference. As a
result, when the energy of the incident electron is the same as
the energy level of the side-coupled QD, destructive quantum
interference will take place, leading to the well-known Fano
antiresonance effect. In the zero-bias limit, only the zero-
energy electron takes part in the quantum transport, so the
conductance zero comes into being.

Next, when the coupling between QD-2 and η1 is incor-
porated, we can clearly find that the conductance peaks are
first suppressed and then split. What is interesting is that in

the presence of nonzero λ, the conductance at the zero-bias
point shows a peak. By a further observation, we know that
the conductance value at the energy zero point is exactly
equal to e2/2h. With the enhancement of such a coupling,
this conductance peak is widened, leaving its peak height
unchanged. To explain this result, we should first solve the
value of the conductance peak mathematically. Based on the
expression of GR in Eq. (7), we get the analytical form of GR

11
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FIG. 2. (Color online) The conductance spectra of the T-shaped
double-QD structure. The QD-lead coupling is fixed with 
 = 0.5.
(a) The conductance as functions of eVb with the increase of the
coupling between QD-N and η1. The interdot coupling is taken to be
t1 = 1.0. (b) The conductance as functions changed by the decrease
of the interdot coupling. λ = 1.0. (c) The conductance influenced by
the shift of ε2 with t1 = 0.5 and λ = 1.0.
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in the finite-λ case, i.e.,

GR
11 = 1/[ω − ε1 + i


− |t1|2�(ω) − |t1λ|2ω(ω + ε1 + i
)

(ω − ε2)�(ω) + |t1λ|2ω − 2|λ|2ω2(ω + ε1 + i
)
],

(9)

where �(ω) = [(ω + ε1 + i
)(ω + ε2) − |t1|2](ω2 − ε2
M ).

Such a result shows that the nonzero λ indeed complicates
the self energy of GR

11, hence to modify its properties. It is
known that in the case of Vb → 0, the electron transport is in
the linear regime where J = G · Vb. Here G is the so-called
linear conductance defined by G= e2

h
T (ω)|ω=0. Surely, in such

a case, the characteristic of GR
11 in the region of ω → 0 plays

a dominant role in contributing to the linear conductance.
We can readily find that in the case of ω → 0, GR

11 can be
simplified, i.e., GR

11 ≈ 1
ω+2i


. Accordingly, the conductance

is equal to e2

2h
in the zero-bias limit.

In order to further analyze the results shown in Fig. 2(a),
we should clarify the underlying physics mechanism in such a
structure. For this purpose, we rewrite the Hamiltonian in Eq.
(1) in the Majorana representation. To be specific, the two leads
should be first rewritten into two semi-infinite tight-binding
fermionic chains, i.e.,

∑
k εLkc

†
LkcLk = ∑−1

j=−∞ τ (c†j cj−1 +
H.c.) and

∑
k εRkc

†
RkcRk = ∑∞

j=1 τ (c†j cj+1 + H.c.) (εαk and τ

are confined by the relation of εαk = 2τ cos k). Suppose d1 =
c0 (d†

1 = c
†
0), i.e., the two leads with their connected QD-1

just becomes a one-dimensional chain. Next, by defining βj =
(c†j + cj )/

√
2 and γj = i(c†j − cj )/

√
2, the one-dimensional

chain reduces to two decoupled Majorana chains. By the same
token, the side-coupled QD can be transformed into MBSs
by defining β̃1 = (d†

2 + d2)/
√

2 and γ̃1 = i(d†
2 − d2)/

√
2. One

can find that the T-shaped double-QD structure can exactly
be divided into two isolated T-shaped Majorana chains, as
shown in Fig. 1(b). The difference between these two chains
is that in the lower branch two MBSs couple to each other
serially, whereas in the upper branch only one MBS exists.
For each branch, the Majorana fermion transport can be
evaluated by means of the nonequilibrium Green function
technique. Since the calculation is simple, we would not like
to present the detailed derivation precess. As a result, we find
that the T-shaped Majorana chain exhibits the same transport
properties as the regular fermionic one. Namely, when the
number of the side-coupled MBSs is odd, the transport spectra
show up as an antiresonance point at the point of ω = 0;
instead, the transport will be resonant if the MBS number
is even. Therefore, in the T-shaped double-QD structure with
the side-coupled MBSs, the transport is only contributed by
the lower branch, which causes the value of the conductance
to be equal to e2

2h
in the zero-bias limit.

Figure 2(b) shows the influence of changing t1 on the
conductance properties. In this figure, we see that with the
decrease of t1, the conductance peaks in the vicinities of
eVb = ±1.5 enhance and shift to the zero-bias direction.
However, the conductance value at the zero-bias point is robust
with G ≡ e2

2h
. Thereby, at such a point the original conductance

peak vanishes and a conductance valley forms. In addition,
it can be seen that during the process of decreasing t1, the

conductance peaks around the points of eVb = ±3.0 disappear.
These results can be understood as follows. When t1 deceases,
QD-2 tends to decouple from QD-1. In such a case, the strong
coupling between QD-2 and η1 will construct a new MBS
which couples to QD-1 weakly. Just due to this reason, we can
find that the result of t1 = 0.1 is consistent with that of the
small λ in Ref. [17].

In Fig. 2(c) we investigate the contribution of the shifted
ε2 to the conductance result. We find that the conductance
spectrum is nearly independent of the shift of ε2. Especially in
the zero-bias limit, the conductance value is always equal to e2

2h
.

This result is completely opposite to that in the zero-MBS case
where the antiresonance position is related to ε2. We would like
to analyze this result as follows. To start with, we can observe
from Eq.(9) that in the case of ω → 0, the terms that include
ε2 disappear. This means the trivial role of ε2 in the low-bias
region. For the underlying physical picture, we can also clarify
it in the Majorana representation. Surely, the nonzero ε2

contributes to the coupling between the two Majorana chains
because a new term iε2β̃1γ̃1 will be involved in the Hamiltonian
if ε2 = 0. Such a coupling will drive the finite transport
between the two chains. According to the Landauer-Büttiker
formula, the interchain transport ability is proportional to
|〈〈β̃0|γ̃0〉〉|2 (〈〈β̃0|γ̃0〉〉, the Green function between sites β̃0 and
γ̃0, reflects the interchain motion of the quasiparticle). By

calculation, we see that 〈〈β̃0|γ̃0〉〉 = i
(ω+i0+)ε2t

2
1

det[G−1] is dependent on
ε2, ω, and t1 (G is the Green function matrix). It is obvious that
in the low-bias limit, 〈〈β̃0|γ̃0〉〉 will be equal to zero, irrelevant to
the nonzero ε2. As a result, the interchain transport vanish. The
underlying physics can be clarified by analyzing the expression
of 〈〈β̃0|γ̃0〉〉. We can readily find that ω + i0+ is exactly the
reciprocal of the Green function of the Majorana zero mode
when λ = 0. This result means that η1 is a dangling state in the
Majorana Fermion chain even in the case that the inter-chain
coupling is established. The dangling η1 state plays the same
role as a QD side coupling to an electronic transport structure
to give rise to the conductance zero point when the incident
electronic energy is equal to the energy level of the dangling
state [22,24]. Based on this result, we readily know that in
the presence of MBSs, the fluctuation of QD levels can not
influence the electron transport in the low-bias limit, which is
helpful for the relevant experiment.

We have to notice that in experiment, the QD-lead coupling
may not be the same. It is necessary to investigate the
case of asymmetric QD-lead coupling. Some previous works
have discussed the transport behaviors in the single-QD
structure when 
L = 
R . They found that in such a case,
the currents in the two normal leads are different, because of
the different-strength Andreev reflections from the MBS to the
two normal leads. Also, by connecting the three terminals
in one closed circuit, the current in the terminal with MBSs
can be investigated [19]. However, even when 
L = 
R , it
is feasible to use Eq. (5) to evaluate the current in lead-α.
This can be proved by the scattering matrix method [20]. The
reason is that the role of the third terminal in Fig. 1(a) is only
to provide a pair of MBSs to affect the quantum transport.
In Fig. 3, we take 
R = 0.5 and calculate the conductance
spectra. It can be found that in the absence of MBSs, the
conductance magnitudes in the two terminals are the same,
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FIG. 3. (Color online) The conductances in lead L and lead R in
the cases of asymmetric QD-lead coupling. The parameters are taken
to be εj = 0, 
R = 0.5, and t1 = 1.0.

which decrease with the decrease of 
L. What is important is
that the antiresonance point at the zero-bias limit is robust,
irrelevant to the change of conductance magnitude. When
the MBS is introduced, the conductance results in the two
terminals become different from each other. Namely, in lead L

the zero-bias conductance peak weakens with the decrease of

L, but for dJR

dVb
, such a peak is obviously enhanced. This result

is easy to understand. Decreasing 
L weakens the Andreev
reflection in lead-L but strengthens that in lead-R, leading
to the different conductances in the two terminals. In spite
of the conductance difference, the valley-to-peak transition
induced by the MBSs can still be observed in the case of
asymmetric QD-lead coupling. Up to now, we know that in
this structure, the detection of the MBS is independent of the
QD-lead coupling manner.

If the MBS wire is not long enough, the two MBSs will be
coupled to each other. In Fig. 4 we present the conductance
spectra in the case of nonzero coupling between the two MBSs.
It can be found that different from the results of εM = 0, the
nonzero εM induces the appearance of the conductance dip in
the zero-bias limit. When εM = 0.02, the conductance dip is
relatively weak, and the conductance spectrum is consistent
with that in the case of εM = 0 in principle. Next, with
the increase of εM , the conductance dip becomes apparent.
Especially in the case of εM = 0.3, it exactly becomes an
antiresonance with the wide antiresonance valley. Similar
results can be observed in the case of asymmetric QD-lead
coupling [see Fig. 4(b)]. These results indicate that in the
case of εM = 0, the conductance spectrum will exhibit an
antiresonance point at the zero-bias limit, similar to the zero-
MBS result. Regardless of the splitting of the conductance peak
at the zero-bias case, the height of the two new conductance
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FIG. 4. (Color online) The conductance spectra of the T-shaped
double-QD structure in the case of nonzero coupling between η1 and
η2.

peaks near the point of Vb = 0 is the same as that in the case
of εM = 0. Therefore, even not in the zero mode, the effect of
the QD-MBS coupling on the conductance is distinct.

We next calculate the electron transport by writing
the MBS into a one-dimensional semi-infinite topologi-
cal superconductor to check the robustness of the MBS
signature in the real physical system [31]. For sim-
plicity, we write HM as a semi-infinite p-wave super-
conducting chain, i.e., HM = −μ

∑
j c

†
j cj + ∑

j [tc†j cj+1 +
�eiφc

†
j c

†
j+1 + H.c.]. Meanwhile, HMD has its new expression:

HMD = td (d†
2c1 + H.c.). By iteratively solving the end states

of the chain, the MBS-assisted electron transport can be
evaluated, and the influence of the structure parameters of
HM can be clarified, as shown in Fig. 5. In Fig. 5(a),
we see that in the case of � = 0, the conductance spectra
are still characterized by the apparent valleys, despite the
disappearance of the antiresonance. The reason is that in such
a case, the superconductor just becomes a normal electron
reservoir and introduces the inelastic scattering for electron
transmission, hence to weaken the antiresonance effect. In the
case of td = 0.2, the coupling between QD-2 and the chain is
relatively weak, so the conductance minimum is almost equal
to zero. In Fig. 5(b) when � = 0.3, one conductance peak
with its value equal to e2

2h
appears in the conductance spectra

at the zero-bias limit. The decrease of td can only narrow
the conductance peak but can not suppress its height. Similar
results can be found in the process of increasing t , as shown in
Fig. 5(c). In Fig. 5(d), we introduce the fluctuation of t and �

to check the conductance change. As reported by previous
literature, structural disorder can modify the properties of
MBSs [32]. It can be seen that the increase of fluctuation
only narrows the width of the conductance peak, whereas the
conductance value at the zero-bias limit does not change. The
reason is that in the semi-infinite chain, the fluctuation of
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FIG. 5. (Color online) The influence of the Majorana zero mode
on the electron transport in the double-QD case when the Majorana
zero mode is mimicked by a semi-infinite chain. The structure
parameters are taken as follows: (a) t = 1.0 and � = 0; (b) t = 1.0
and � = 0.3; (c) td = 0.5 and � = 0.3. (d)-(e) The conductance in
the cases of fluctuated parameters and asymmetric QD-lead coupling.
The parameters are taken to be t = 1.0, � = 0.3, and td = 0.5.

the structure parameters can only narrow the energy gap for the
occurrence of MBS but can not remove it. In the following, the
results in Fig. 5(e) can examine the results in Fig. 3. Namely, in
the case of asymmetric QD-lead coupling, the valley-to-peak
transition induced by the MBS holds. Note that when � = 0,
the semi-infinite chain is just a normal terminal. In such a case,
we assume this terminal to be a floating lead (i.e., a voltage
probe) with zero net current in it [33].

Motivated by the results of the double-QD structure, we
next investigate the multi-QD case. According to the previous
works, the antiresonance is tightly related to the QD number
in the T-shaped multi-QD structure. Concretely, when the QD
number is even, antiresonance always appear at the zero-bias
point; the resonant tunneling will be observed at such a point
otherwise [26,28]. In Fig. 6 we take the cases of N = 3 and
N = 4 to compare the electron transport properties modified
by the MBS in the T-shaped multi-QD structure. The relevant
parameters are taken to be εj = 0 and tj = 1.0. From Fig. 6(a),
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FIG. 6. (Color online) The conductance spectra of the T-shaped
multi-QD structure. In (a) N = 3, and N = 4 in (b). The relevant
parameters are the same as those in Fig. 2.

we readily find that in the case of N = 3, the conductance is
equal to e2

h
around the point of eVb = 0 when λ = 0. When

λ = 0.1, despite the weak coupling between QD-3 and η1, the
conductance gradually decreases to e2

2h
at the zero-bias point.

Consequently, the conductance exhibits a valley around the
zero-bias point. With the increase of λ, such a valley becomes
widened. When λ further increases to λ = 0.5, the conductance
magnitude is suppressed apparently, leading to the formation
of the conductance peak at the zero-bias point. Such a change
process is similar to that in the single-QD case [17]. As for
the results in Fig. 6(b) where N = 4, we see that they are
similar to those in the double-QD case. The only difference
is the increase of the conductance peaks. These results can
be understood by following our analysis about the double-QD
case. In the Majorana fermion representation, the T-shaped
QD structure transforms into two isolated branches, and the
side-coupled MBSs in the two branches just differ by one. Thus
when the transport in one branch is resonant, the antiresonant
transport certainly happens in the other. Therefore, in the low-
bias limit, the conductance is certainly equal to e2

2h
, independent

of the size of the side-coupled QD chain.
In the multi-QD structure, the nonuniformity of the QD

levels and interdot couplings may be unavoidable in exper-
iment. It is necessary to investigate the influences of the
fluctuated QD levels or interdot couplings on the conductance.
The corresponding results are shown in Figs. 7(a) and 7(b)
for the triple-QD case and Figs. 7(c) and 7(d) for the
four-QD structure. Here we choose 
α = 0.5 and λ = 0.5.
It is not difficult to find that the change of the conductance
spectra is not sensitive to the parameter disorder, though
it almost reaches 20% [e.g., Fig. 7(d)]. Moreover, at the
zero-bias limit, the conductance values are always equal to
e2

2h
. We would like to analyze this result in the Majorana

representation, similar to that about Fig. 2(c). We notice
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FIG. 7. (Color online) (a) The triple-QD conductance spectra in
the case of the fluctuated QD levels. (b) The triple-QD conductance
when the fluctuated interdot couplings is taken into account. (c),(d)
The conductance spectra of the four-QD structure with the fluctuated
QD levels and interdot couplings.

that the fluctuation of εj can cause the interchain coupling,
and the strength of such a coupling can be described by the
value of |〈〈β̃0|γ̃0〉〉|2. Our calculation shows that in the limit of
ω → 0, 〈〈β̃0|γ̃0〉〉 is proportional to (ω + i0+), independent of
the change of the QD number. Thus, in the zero-bias limit, the
interchain transmission is always suppressed, whereas only
the intrachain transmissions contribute to the conductance.
For the fluctuation of tj , it only changes the intersite hopping
within one Majorana chain without destroying the structure
of the two isolated Majorana chains. Therefore, in the
presence of parameter disorder, the transports in two isolated
Majorana chains remain and the zero-bias conductance value is
unchanged. It should be emphasized that the above two results
are actually irrelevant to the fluctuation strength. Namely, the
uniform structural parameters of the QD chain are not the
necessary condition for detecting the Majorana zero mode in
experiment. This increases the feasibility of this scheme in
experiment. In addition to the above results, we observe that
in the four-QD case, the profile of the conductance peak around
the zero-bias point is weakly dependent on the fluctuation of
the QD levels or interdot couplings. The reason is that in the
four-QD case, the conductance peak induced by the MBS-QD
coupling appears in the conductance valley of the MBS-absent
structure. When the MBS-QD coupling is relatively weak,
the MBS couples weakly to the QD molecule states, so the
zero-bias peak is unsensitive to the fluctuation of the QD
parameters. Such a result further proves the advantage of the
valley-to-peak transition in detecting the Majorana zero mode.
Except the above results, we find in Figs. 7(a) and 7(c) that
the conductance spectra present the electron-hole asymmetry.
This result is exactly induced by the fluctuation of the QD
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FIG. 8. (Color online) The Fano-factor spectra of the T-shaped
QD structure. (a) N = 2; (b) N = 3; (c) N = 4. The relevant
parameters are the same as those in Fig. 2(a). (d) The Fano factor
in the N = 2 case of asymmetric QD-lead coupling.

levels, and it can be explained as follows. The conductance is
contributed by the local Andreev reflection and the interlead
tunneling. When QD levels depart from the energy zero point,
the electron-hole asymmetry appears in the process of the
interlead tunneling [34]. Therefore, the conductance spectra
show the electron-hole asymmetry.

Due to the presence of the MBSs, the noise properties will
be changed. We would like to investigate the noise of such a
kind of structure based on the theory in the previous works
[12,20]. The results of the Fano factor of the configuration of
N = 2, 3, and 4 are displayed in Fig. 8. In Fig. 8(a) where
N = 2, we plot the spectra of the Fano factor by increasing
the coupling between QD-2 and η1. It is easy to find that in the
zero-bias limit, when λ = 0, γ0 is equal to 1, but a nonzero λ

can efficiently suppress the value of γ0 to be 1
2 . Next, the further

increase of λ can not change this result. Such a phenomenon
can be explained as follows. In the case of symmetric QD-lead
coupling, the noise formula can be simplified substantially,
i.e., S(0) = 2e2

h

∫
dωT (ω)[1 − T (ω)](f L

e − f R
e ), which is the

same as that in the two-terminal case. The Fano factor can
then be defined as γ0 = S(0)

2eJ
. At the zero-bias limit, γ0 can be

simplified as γ0 = 1 − T (ω = 0). Surely, the antiresonance
effect will make γ0 equal to 1.0 in the case of λ = 0. But
when the nonzero λ is incorporated, T (ω = 0) = 1

2 , which
accordingly leads to the result of γ0|eVb=0 = 1

2 . In Fig. 8(b)
where N = 3, we see that in the case of λ = 0, γ0 = 0, but
the increment of λ causes γ0 to be equal to 1

2 at the zero-bias
limit. It is certain that these results obey the relationship of
γ0 = 1 − T (ω = 0). In addition, the increase of λ enhances
the amplitude of γ0. The main cause should be attributed to
the weakened transport in the presence of MBS-QD coupling.
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Next, as shown in Fig. 8(c) where N = 4, the modification
of the Fano factor is similar to that in the case of N = 2, in
addition to the shift of the maximum of γ0 to the low-bias
direction. In Fig. 8(d), we take the N = 2 case to investigate
the Fano factor under the condition of asymmetric QD-lead
coupling. In the zero-bias limit, when λ = 0γ0 is also equal to
1, similar to that in the case of symmetric QD-lead coupling.
When λ = 0.5 the Fano factor is tightly dependent on the
value of 
L. Besides, we can find that γ0 ≈ 1 − T (ω = 0) in
such a case, which is different from the result of a normal
three-terminal structure [35].

IV. SUMMARY

In summary, we have introduced a Majorana zero mode
to couple to the last QD of the T-shaped QD structure
and then investigated the electron transport in it. After
numerical calculation, we have found that the existence of
the Majorana zero mode completely modifies the electron
transport properties of the QD structure. For a typical structure
of double QDs, the coupling between the Majorana zero
mode and the side-coupled QD efficiently removes the an-
tiresonance point in the conductance spectrum and induces
a conductance peak to appear at the same energy position
whose value is equal to e2

2h
. Such a result was checked

by the tight-binding calculations. We believe that such an

antiresonance-resonance transformation will be more feasible
to detect the MBSs, in comparison with the change of from
e2

h
to e2

2h
in the single-QD structure. Next, the influences of the

MBSs on the electron transport in the multi-QD structure have
been discussed. It showed that the conductance spectra always
exhibit the similar conductance peaks whose values are always
equal to e2

2h
in the zero-bias limit, independent of the change

of QD number. This result further confirms that such a kind of
structure is fit for detecting the MBSs. By transforming the QD
system into the Majorana fermion representation, all the results
have been well clarified. In addition, the noise properties of this
structure have been presented, which enrich the information
of the MBS-assisted electron transport. We believe that this
work can be helpful for the relevant experiments.
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[35] D. Sánchez and R. López, Phys. Rev. B 71, 035315 (2005).

245413-8

http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevLett.98.010506
http://dx.doi.org/10.1103/PhysRevLett.98.010506
http://dx.doi.org/10.1103/PhysRevLett.98.010506
http://dx.doi.org/10.1103/PhysRevLett.98.010506
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.85.085415
http://dx.doi.org/10.1103/PhysRevB.85.085415
http://dx.doi.org/10.1103/PhysRevB.85.085415
http://dx.doi.org/10.1103/PhysRevB.85.085415
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.87.241402
http://dx.doi.org/10.1103/PhysRevB.87.241402
http://dx.doi.org/10.1103/PhysRevB.87.241402
http://dx.doi.org/10.1103/PhysRevB.87.241402
http://dx.doi.org/10.1103/PhysRevB.86.115311
http://dx.doi.org/10.1103/PhysRevB.86.115311
http://dx.doi.org/10.1103/PhysRevB.86.115311
http://dx.doi.org/10.1103/PhysRevB.86.115311
http://dx.doi.org/10.1103/PhysRevLett.111.036802
http://dx.doi.org/10.1103/PhysRevLett.111.036802
http://dx.doi.org/10.1103/PhysRevLett.111.036802
http://dx.doi.org/10.1103/PhysRevLett.111.036802
http://dx.doi.org/10.1103/PhysRevB.87.214513
http://dx.doi.org/10.1103/PhysRevB.87.214513
http://dx.doi.org/10.1103/PhysRevB.87.214513
http://dx.doi.org/10.1103/PhysRevB.87.214513
http://dx.doi.org/10.1103/PhysRevB.65.193402
http://dx.doi.org/10.1103/PhysRevB.65.193402
http://dx.doi.org/10.1103/PhysRevB.65.193402
http://dx.doi.org/10.1103/PhysRevB.65.193402
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.70.035319
http://dx.doi.org/10.1103/PhysRevB.70.035319
http://dx.doi.org/10.1103/PhysRevB.70.035319
http://dx.doi.org/10.1103/PhysRevB.70.035319
http://dx.doi.org/10.1103/PhysRevLett.95.066801
http://dx.doi.org/10.1103/PhysRevLett.95.066801
http://dx.doi.org/10.1103/PhysRevLett.95.066801
http://dx.doi.org/10.1103/PhysRevLett.95.066801
http://dx.doi.org/10.1016/j.physe.2004.05.004
http://dx.doi.org/10.1016/j.physe.2004.05.004
http://dx.doi.org/10.1016/j.physe.2004.05.004
http://dx.doi.org/10.1016/j.physe.2004.05.004
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1016/j.physleta.2006.07.075
http://dx.doi.org/10.1016/j.physleta.2006.07.075
http://dx.doi.org/10.1016/j.physleta.2006.07.075
http://dx.doi.org/10.1016/j.physleta.2006.07.075
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevB.73.245329
http://dx.doi.org/10.1103/PhysRevB.73.245329
http://dx.doi.org/10.1103/PhysRevB.73.245329
http://dx.doi.org/10.1103/PhysRevB.73.245329
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevB.86.035441
http://dx.doi.org/10.1103/PhysRevB.86.035441
http://dx.doi.org/10.1103/PhysRevB.86.035441
http://dx.doi.org/10.1103/PhysRevB.86.035441
http://dx.doi.org/10.1103/PhysRevLett.109.227005
http://dx.doi.org/10.1103/PhysRevLett.109.227005
http://dx.doi.org/10.1103/PhysRevLett.109.227005
http://dx.doi.org/10.1103/PhysRevLett.109.227005
http://dx.doi.org/10.1088/1367-2630/14/12/125011
http://dx.doi.org/10.1088/1367-2630/14/12/125011
http://dx.doi.org/10.1088/1367-2630/14/12/125011
http://dx.doi.org/10.1088/1367-2630/14/12/125011
http://dx.doi.org/10.1103/PhysRevB.77.045329
http://dx.doi.org/10.1103/PhysRevB.77.045329
http://dx.doi.org/10.1103/PhysRevB.77.045329
http://dx.doi.org/10.1103/PhysRevB.77.045329
http://dx.doi.org/10.1103/PhysRevLett.101.216806
http://dx.doi.org/10.1103/PhysRevLett.101.216806
http://dx.doi.org/10.1103/PhysRevLett.101.216806
http://dx.doi.org/10.1103/PhysRevLett.101.216806
http://dx.doi.org/10.1103/PhysRevLett.88.136601
http://dx.doi.org/10.1103/PhysRevLett.88.136601
http://dx.doi.org/10.1103/PhysRevLett.88.136601
http://dx.doi.org/10.1103/PhysRevLett.88.136601
http://dx.doi.org/10.1103/PhysRevB.71.035315
http://dx.doi.org/10.1103/PhysRevB.71.035315
http://dx.doi.org/10.1103/PhysRevB.71.035315
http://dx.doi.org/10.1103/PhysRevB.71.035315



