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Crater function approach to ion-induced nanoscale pattern formation:
Craters for flat surfaces are insufficient
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In the crater function approach to the erosion of a solid surface by a broad ion beam, the average crater produced
by the impact of an ion is used to compute the constant coefficients in the continuum equation of motion for the
surface. We extend the crater function formalism so that it includes the dependence of the crater on the curvature
of the surface at the point of impact. We then demonstrate that our formalism yields the correct coefficients
for the Sigmund model of ion sputtering if terms up to second order in the spatial derivatives are retained. In
contrast, if the curvature dependence of the crater is neglected, the coefficients can deviate substantially from their
exact values. Our results show that accurately estimating the coefficients using craters obtained from molecular
dynamics simulations will require significantly more computational power than was previously thought.

DOLI: 10.1103/PhysRevB.89.245401

I. INTRODUCTION

Bombarding a solid surface with a broad ion beam can
lead to the spontaneous formation of nanoscale patterns on the
surface [1]. These patterns include periodic height modulations
or “ripples” as well as nanodots arranged in hexagonal arrays
of surprising regularity [2-7]. This has spurred widespread
interest in the development of ion sputtering as a means
of nanofabrication. Since broad beam ion bombardment is
relatively easy to implement, the potential for cost-effective
mass production of nanostructures is quite high.

Much of the theoretical work performed in analyzing these
patterns has been based on the continuum Bradley-Harper
(BH) theory [8], which is itself based on the Sigmund model
of ion sputtering [9]. BH showed that for the Sigmund
model the sputter yield at a point on the surface does not
just depend on the local angle of incidence—it depends on
the surface curvature as well. Because high points on the
surface are eroded more slowly than the low points, the
curvature dependence of the sputter yield leads to an instability
of the solid surface. The BH theory has been extended to
include nonlinear effects [10—13], and so it applies to binary
materials [14].

Since the work of Carter and Vishnyakov (CV) in 1996
[15], it has become increasingly clear that ion-induced mass
redistribution can play an important role in the pattern
formation [16-29]. In this process, momentum is transferred
from the incident ions to atoms near the surface of the solid.
These atoms are not ejected from the solid surface as they
would be in sputtering. Instead, they are displaced within the
solid.

The theories of BH and of CV are based on simple models
of sputtering and mass redistribution. It has been unclear just
how good these models are and in what circumstances they
can be reasonably applied. Moreover, the predictions of the
BH and CV theories depend on a number of phenomenological
parameters but give no means of computing their values.

Recently, there has been considerable interest in incorpo-
rating the results of molecular dynamics (MD) simulations
into a continuum theory of ion-induced surface dynamics. The
so-called crater function formalism (CFF) utilizes the average
result of many ion impacts at a single point to generate a
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Green’s function, which is then used to determine the response
of a surface to bombardment with a broad ion beam [21,30,31].
This approach has the advantage that it takes into account both
sputtering and ion-induced mass redistribution and does not
rely on simple models of these phenomena. The formalism
yields estimates of the constant coefficients that appear in
the continuum equation of motion based on input from MD
simulations. In the first application of this method to a specific
physical problem, Notris et al. carried out MD simulations of
the bombardment of a silicon surface with 100 and 250 eV
Ar" ions and then used their CFF to obtain estimates of some
of the coefficients in the equation of motion [21].

The Green’s function, which is usually referred to as the
crater function, depends on the complete shape of the surface
surrounding the impact point [30]. However, because it is not
possible to find the crater function for an arbitrarily shaped
surface using MD, the shape dependence of the crater was
simply neglected in the study of Notris et al. that concerns the
erosion of Si with an Ar™ beam [21]. In particular, the crater
function for a flat surface was used to estimate the coefficients
in the equation of motion (EOM), even though the accuracy
of such a procedure is questionable. The dependence of the
crater on the shape of the surface has also been neglected in
more recent applications of the CFF [32,33].

In this paper, we extend the CFF so that it includes the
dependence of the crater function on the curvature of the
surface at the point of impact. We give explicit expressions
for the coefficients in the equation of motion which reduce to
the expressions given by Norris et al. [21] only if the curvature
dependence of the crater function is neglected. We then demon-
strate that our extended CFF yields the exact BH coefficients
for the Sigmund model. In contrast, the BH coefficients are not
recovered if the curvature dependence of the crater function is
neglected. This uncontrolled approximation instead results in
coefficients that are off by a factor of 2 for normal-incidence
bombardment. Our results therefore strongly suggest that if
reliable estimates of the coefficient values are to be obtained
using the CFF, the curvature dependence of the crater function
must be taken into account.

This paper is organized as follows. We introduce the crater
function and its arguments in Sec. II. In Sec. III, we use the
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crater function to determine the coefficients in the EOM for
the special case in which the surface height does not vary in
the direction transverse to the plane of the beam. In Sec. IV,
we develop the geometric preliminaries required to extend
our theory to fully three-dimensional (3D) surfaces. Section
V generalizes the results of Sec. III to the case in which the
surface height varies in both the transverse and the longitudinal
directions. Section VI contains an explicit demonstration that
our extended CFF is in accord with the BH theory in the case
of the Sigmund crater. In Sec. VII, we compare our theory
to the CFF of Norris et al. [21] and demonstrate that for the
Sigmund crater the latter produces coefficients that can differ
significantly from their exact values. Additionally, we discuss
the implications of our work and place its results in context.
Our findings are summarized in Sec. VIII.

II. THE CRATER FUNCTION

Consider the bombardment of a solid elemental material
with a broad ion beam. We will assume that the material is
amorphous or, if it is crystalline, that a layer at the surface of
the solid is rendered amorphous by the ion bombardment. The
sample surface will be taken to be nominally flat before the
irradiation begins.

We define the Z direction to be the global vertical, normal
to the macroscopic surface. £ is taken to be the direction of
the projection of the incident ion beam onto the macroscopic
surface, and y is taken to be normal to the x-z plane. The
incident ion flux is J = J(X sin 8 — Z cos #), where the angle
of incidence 6 is the angle between the global vertical and
the incident beam, as shown in Fig. 1. An arbitrary point on the
surface Pis givenby r = xX + yy + h(x,y)Z, where h(x,y)is
the height of the point above the x-y plane. (For convenience,
we will suppress the time dependence of /2 unless it is necessary
to explicitly display it.)

Solid surface

FIG. 1. The solid surface at time ¢. Points O, P, and P’ lie on the
surface. The global frame of reference has its origin at O and has
axes x, y and z, whereas the local frame of reference has its origin
at P and has axes u, v, and w. J is the incident ion flux. 6 and ¢ are
the global and local angles of incidence, respectively. The height of
point P’ is i(x’) in the global frame but is H(u") in the local frame.
For simplicity, the figure has been drawn for the special case in which
h(x,y) is independent of y.
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Our goal is to evaluate 04 /9t at an arbitrary point O on the
solid surface at an arbitrary time ¢ > 0. To that end, we will
place the global origin at the position of O at time ¢, as shown
in Fig. 1. The global origin will be taken to be stationary, and
it so will remain fixed as the surface point O moves either up
or down.

The collision cascade that an impinging ion produces in
the solid has a characteristic lateral length scale that we will
denote by /. We will assume that a smoothing mechanism
ensures that the surface height varies only a little over this
length scale; in practice, the smoothing mechanism could be
thermally activated surface diffusion (as in the BH theory) or
ion-induced viscous flow within a thin surface layer [34]. It is
important to note that the equation of motion we will derive
will not include the effects of the smoothing mechanism since
we will include only terms up to second order in the wave
number k and the smoothing mechanism produces terms of
order k*.

Our first step in finding the surface velocity at O will be to
determine the contribution to it coming from ions striking the
surface an arbitrary surface point P. In fact, we may restrict
our attention to points P that have a distance to O that is on
the order of a few times / or less because ions arriving at more
remote points make a negligible contribution to the value of
dh/dt for x = y = 0. The height & is small for these points
P. We will accordingly work to first order in 4 and its spatial
derivatives throughout the remainder of the paper.

In addition to the global coordinates x, y and z, it is
convenient to introduce a set of local coordinates whose origin
is point P. Following Norris, Brenner, and Aziz [30] we define
the vector 7 to be the local surface normal at P and 7, to
be the local downbeam direction projected onto the surface.
Explicitly,

a_ - Vh 0
T+ (VR
and
; —J +(J i )

|
f, is defined to be the cross product of 7ii and ?,. The unit
vectors 1, £, and £, form an orthonormal basis, and 7, and 7,
are tangent to the surface at P. The local angle of ion incidence,
which will be denoted by ¢, is given by J cos¢ = —J - 7i. To
first order in the spatial derivatives of the surface height,

¢(x,)’)=9—hx(x7)’)s (3)

where the subscript denotes a partial derivative with respect to
x. Finally, we define u, v, and w to be the coordinates along
directions £,, £,, and 1, respectively.

For surface points that have a distance to O that is on the
order of /, we may approximate h by discarding terms of third
order and higher from its Taylor series: We set x; = x, x, = y,
and

h(x,y) = Six + Sy + $Knux> + Kipxy + 1Kny?, @)

=

“TIT+ R

where

oh
Si = -—(0,0), ®)
Bxi
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and

%
E axiaxj

(0,0) (6)

for i,j = 1,2. Although an arbitrary number of terms in the
expansion (4) could in principle be retained, we will only keep
terms up to quadratic order in x and y because the length scale
of the height variation is assumed to be much larger than /.
Note that the quantities S; and K;; are both of first order in 4.
This will be exploited later in our analysis.

We may also parametrize the surface in terms of the local
coordinates u, v, and w. Close to P, the height of the solid
surface above the u-v plane is given by

H(u,v) = Ejju® + Epuv + 1 Exv?, @)
to second order in u and v. Here

*H
3%,‘311”

Eij = (0,0), (8)

where u; = u, up = v, and i,j = 1,2. Terms that are linear in
u and v do not appear on the right-hand side of Eq. (8) because
the u and v axes are tangent to the solid surface at point P. The
expansion (7) gives a good approximation to the value of H
for O because the distance between O and P is of order /.

We now introduce the crater function

F = F(M,U,¢,E11,E12,E22), (9)

which is defined to be minus the average change in the local
surface height H above the point (#,v) in the u-v plane as
a result of a single ion impact at u = v =0, i.e., point P.
Although two impacts may produce very different craters, by
taking the statistical average of a great number of craters, we
develop an expected response. The information required to
construct F is assumed to be known a priori from another
theory or from MD simulations.

The crater function F(u,v,¢,E 1, E12, E>>)is defined in the
local coordinate system of the point of impact P. Its first two
arguments are the lateral coordinates 1 and v in that coordinate
system. The third argument of F is the local angle of incidence
¢. Finally, we have included the dependence of the crater on
the local curvatures E;;, Ej», and Ey. This dependence was
neglected by Norris et al. [21], but, as we will discuss in
Sec. VII, evidence from experiments [35] and MD simulations
[36] suggests that it can have a significant effect.

Note that although the E;;’s refer to second derivatives of
H with respect to the local coordinates u and v at point P,
it is shown in Sec. IV that to first order they are equal to
the corresponding second derivatives of & with respect to the
global coordinates x and y at point O, i.e.,

E;j = K;j (10)
fori,j = 1,2. We may therefore rewrite Eq. (9) as

F =F(u,v,¢,K11,K12,Kp). (11
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III. THE EXTENDED CRATER FUNCTION FORMALISM
IN TWO DIMENSIONS

The goal of our analysis is to derive an EOM of the form

1 dh
Tar = Co(0) + C1(0)hy + C2(0)hy

+ Cll(e)hxx + CIZ(Q)hxy + C22(9)h_vys (12)

and to write the coefficients Cy, Cy, ...,Cy in terms of the
crater function F. The first step in our analysis will be to
determine the contribution to the normal velocity of the surface
at O due to impacts at point P. Having found this, we will
perform a flux weighted integral over all possible impact points
P to determine the overall response.

To make the analysis as transparent as possible, we will
begin by considering the special case in which the surface
height A has no dependence on y. In this case, Eq. (12) reduces
to

h,
7= Co(0) + C1(Ohy + Cr1(O)hyy, 13)

where h, = dh/dt. This problem is equivalent to a two-
dimensional (2D) problem in which /4 depends only on x and ¢
and ions are incident in the x-z plane with an angle of incidence
6. The effective crater function for this 2D problem is

o0

g(u,¢,En)z/ Flu,0..En.0.0dy.  (14)

—00
We will study the equivalent 2D problem for the remainder of
this section.

Consider an impact at point P whose position in the global
coordinate system is r = xX + h(x)Z. The lateral position of
the global origin O in the local reference frame of the impact
point is to first order

u==t,(x) - (0—r)=[%+ h(x)2Z]-[-x% — h(x)Z] = —x.
(15)

Thus, to first order, we may replace the first argument of the
crater function g(u,¢,E;;) by —x. Similarly, the height of
origin O relative to the local frame of the impact point P is to
first order

Hw) =ax)-0—r)=[—h ()% + 2] [—x% — h(x)Z]
= xh,(x) — h(x). (16)

Recall that the crater function gives the change in surface
height in the direction of the local normal 7, and so we must
project the local normal velocity along the global vertical
direction in order to find the velocity of the surface point
O along the global vertical direction. However, because

ax)-z2=1 a7

to first order, this projection has no effect on the linearized
EOM we will obtain.

This analysis permits us to write the time derivative of the
surface height at O in terms of the crater function g and the
ion flux J:

h:(0,1) = —J/g(—x,qb,E”)cosq)dx, (18)
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where the factor of cos ¢ comes from projecting the ion flux
onto the local normal at point P. Finally, because only points
P within a distance on the order of / from the origin give a
significant contribution to the integral on the right-hand side
of Eq. (18), we may replace E|; by K = K| in the integral.
We are now in a position to begin analyzing the integrand
in Eq. (18). To do so, we will linearize in the quantities S = S|
and K, which, as we noted earlier, are first order in A. This
will yield expressions for the coefficients in the EOM (13).
Making use of ¢ =0 — h, =60 — S — Kx, we see that

—J 'm0,

= / g(—x,0,0)cos 0 dx

+ S|:dd_S f g(—x,0 — §,0)cos (6 — S)dx]

5=0

d
K|{— — — Kx,K —K
+ |:dK /g( x,0 x,K)cos (6 x)dx:|

K=0
19)

The first term on the right-hand side of Eq. (19) is
particularly simple and gives the steady-state erosion velocity.
Notice that we may perform a change of variable x — —x
without changing the overall sign of this term, i.e.,

/g(—x,@,O)cos@dx =/g(x,9,0)cos(9dx. (20)

Therefore, the steady-state erosion velocity for the undisturbed
flat surface is

Vo(0) = J COSG/g(x,@,O)dx. 1)

The second term on the right-hand side of Eq. (19) is
somewhat more involved. Noticing that the only dependence
of g upon S comes from the the local angle of incidence ¢, it
is clear that we may write the second term on the right-hand
side of Eq. (19) as

S[% / g(—x,0 — §,0)cos (0 — S)dxi|

5=0
= —Si g(x,0,0)cos 0 dx
a6
= _Eivo(e). (22)
J a6

Finally, we turn to the dependence of /1, on K. The last term
on the right-hand side of Eq. (19) becomes

d
K[ﬁ/g(—x,e — Kx,K)cos (6 — Kx)dx:|

K=0

9
_ K/dx[—x sin 0g(x,0,0) + x cos@%(x,@,O)

}, (23)
K=0

where we have once again used the change of variable
X —> —X.

g
0 —(x,0,K
+ cos 8K(x )
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Inserting Eqs. (21)—(23) into Eq. (19), we arrive at an EOM
of the form (13). Defining

MK(O):/g(x,G,K)dx, (24)
and

M™©B) = / g(x,0,0)x"dx, (25)
we obtain

9
h(0,6)=—J M cos 6 + Jﬁ(Mch) cos 0)h,(0,1)

—J i(M(')cose) +cos@iMK
* 0K

}hxx(o,t).
K=0

a0
(26)
Comparing this to Eq. (13), we see that
Co(0) = —M"9 cos b, 27
I (1
Ci(0) = @(Mx cos@)
d
= _ﬁco(e), (28)
and
C11(6) = —i(M“)cose) —cosf 9 Mg . (29)
00 oK !

11 Ki1=0

The first term on the right-hand side of Eq. (29) stems from
the fact that a nonzero surface curvature gives rise to a local
angle of ion incidence that depends on the point of impact.
The second is a direct result of the curvature dependence of
the crater function itself.

IV. GEOMETRIC PRELIMINARIES
IN THREE DIMENSIONS

The extension of the analysis of the previous section to
3D is subtle and requires care. In this section, we delve into
the relationship between the local and the global coordinate
systems before turning to the CFF in 3D. As discussed in
Sec. 11, the local coordinate system is defined using the local
surface normal and the projection of the ion beam onto the
local tangent plane.

To first order in £, the local unit vectors may be expressed
in terms of their global counterparts as follows:

~

t, =J?—(hycot9)j’+hxﬁ, (30)
£, = (hycot®)® + 5+ h,z, 31)

and
A=—h&—hj+5. (32)

The partial derivatives of & are to be evaluated at the point
(x,y) in the x-y plane in these expressions. The coordinates of
point O in the local coordinate system (u, v, and w) can now
be found using Egs. (30)—(32). The vector leading from P to
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O is —r. Recalling that r = xX + yJ + h(x,y)Z, we obtain

u=—r-f,=—x+yh,cotb, (33)

v=—r-f,=—y—xh,cotd, (34)
and

w=—r-fi=xh+yh,—h (35

to first order. We may use Eq. (4) to eliminate & from Eqgs. (33)—
(35) because the surface height varies slowly between O and
P. In particular, Eq. (35) yields

w = 1K x> + Kppxy + Ky (36)

We are now prepared to demonstrate that Eq. (10) is valid.
Inversion of Egs. (33) and (34) gives

X = —u — vhycotf, (37)
and
y =—v+uhycotd. (38)

Since H = w and the K;;’s are first order in h, Eq. (36) may
now be written

H(u,v) = Ky 1(u + vhy cot0)> + Kia(u + vhy cot 0)
x (v —uhycotf) + %Kzz(v —uh, coth)?
= %Kl]uz + Kjuv + %Kzzl)z. 39

Taking the partial derivatives of H with respect to u; and u,
we arrive at the desired result, Eq. (10).

V. THE EXTENDED CRATER FUNCTION FORMALISM
IN THREE DIMENSIONS

We will now utilize the results of Sec. IV to obtain the
coefficients of the EOM in three dimensions. To extend the
formalism to the general case in which the surface height
depends on y as well as x, we return to the crater function
F(u,v,¢,E1,E2,E»), the generalization of g(u,¢,E ;) to
three dimensions. The EOM is

ht = —J/dx/dy Cos¢F(u,v,¢,E11,E12,E22). (40)

Using Egs. (3), (10), (33), and (34), we see that this may be
written

hy = —J/dx/dy cos(f — hy)F(—x + yhy cotd,

—y —xhycot8,0 — hy,Ki1,K12,K2). (41)

We now expand this to linear order in 4 and its derivatives and
let F; denote the partial derivative of F' with respect to its ith
argument. This gives

h
_ r /dx/dy{F(—x,—y,@,0,0,0)
J cos6
+ Fi(—x,—,6,0,0,0)(yh, cot 8)

+ F>(—x,—,0,0,0,0)(—xhy cot )

0
— sec 9@[cos@F(—x,—y,H,0,0,0)hx]
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+ K11 Fy(—x,—y,60,0,0,0)
+ K12FS(_X,_)’,9»0,070)
+ Ky Fg(—x,—y,60,0,0,0)}. 42)

To simplify this expression, we will examine it term by term
and will employ Eq. (4). The second term on the right-hand
side of Eq. (42) is

I, = /dx/dy Fi(—x,—y,6,0,0,0)
Xy cotf(S, + Kppx + Kzzy). 43)

I, is in fact zero. To see this, recall that we have assumed that
the solid surface is amorphous. Independent of the details of the
crater function F(u,v,¢,K 1,K12,K2), therefore, symmetry
demands that it be an even function of v if Ki» = 0. Thus,
the terms which are proportional to odd powers of y in the
integrand of Eq. (43) integrate to zero. The remaining term in
the integrand vanishes upon integration over x since

x=—00

/dx Fi(=x,=y.0.0,0,0) = F(=x,~,6,0,0.0[[Z"_ =0.
44

The third term on the right-hand side of Eq. (42) may be
written

I; = —/dx/dy F(—x,—y,60,0,0,0)
X x cotf(S; + Kppx + K y). 45)

Again using the symmetry of F, we see that Fr(—x,—Yy,6,
0,0,0) is an odd function of y, and thus the terms in the
integrand that are proportional to even powers of y will
integrate to zero. This leaves

I = —cot@Kzz/dx/dy F(—x,—y,0,0,0,0)xy

%)

= cotGKZZ/dx/dy F(x,y,6,0,0,0)x
= COtQKzzM)(Cl), (46)

where we have integrated by parts and have changed the
dummy variables of integration from x to —x and from y
to —y.

The fourth term on the right-hand side of Eq. (42) is
identical to the analogous term in the 2D case, except that
h, now contains the additional term K,y. However, since
F(—x,—y,0,0,0,0) is an even function of y, this term makes
no contribution.

Without additional assumptions or specific information
about the crater function, the fifth and seventh terms on
the right-hand side of Eq. (42) cannot be simplified further.
However, we may eliminate the dependence of A, on K
using a symmetry argument. Notice that a surface described
by h(x,y) = Kjpxy is invariant under the transformation
y — —y, K; > —Kj». We may thus write

F(x,y,Q,O,KIZ,O) == F(xa_y59707_K1250)' (47)
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It follows that Ig, the sixth term on the right-hand side of
Eq. (42), is given by

I 0 *© *©
6 _ dx dy F(—x,—,0,0,K15,0)
K> 0K J o —c0
a o0 o0
= d d F_ [ ,G,O,K 70
{31{12[/;00 x/o yEEny 20

o0 o0
+ / dx/ dy F(—x,—y,Q,O,—Klz,O)“
—00 0

The quantity in the square brackets in the later expression
is an even function of Ki,. As a consequence, I vanishes,
and Cj, = 0. We could have reached this conclusion a priori
from Eq. (12): Since the system is invariant under a reflection
about the x-z plane, 4, must also remain invariant under this
transformation, which implies that C1, = 0.

Ki,=0

K1n=0
(48)

We define
Mg, = // F(x,y,0,K11,0,0)dx dy, (49)
My, = // F(x,y,0,0,0,K»)dx dy, (50)
and
M = / / F(x,y,0,0,0,00x"dx dy. Gh

Collecting terms, we arrive at a simpler form of Eq. (42),

ht(oaoat)
J cos@

d
= MY — 8 sec Gﬁ(cos OMJ(CO))

+ K| sec Qi(coseM“)) + LMK
00 X 3K11 11

K11—0:|

] . (52)
K»n=0

Comparing this with Eq. (12), we conclude that Egs. (27)—(29)
remain valid, but the moments M, and M™ are now given
by Eqgs. (49) and (51). We also have found that C, = Cj, =0
and that

+ K22|:00t9M§1) +

3
Cn(0) = —cosf cot MV — cos b o M (53)

22

K2»=0

The first term on the right-hand side of Eq. (53) is present
because if &, is nonzero at the point of impact P, the local
normal 7 and the local downbeam direction #, have nonzero
components along the y direction. The second term results
from the explicit dependence of the crater function on the
curvature in the y direction.

Despite the appearance of the factor of coté in Eq. (53),
Cy(0) is well behaved in the limit & — 0. To see this, note
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that for small 6,
MP(©6) = Ro+ Ri6, (54)

where Ry and R; are finite constants. Symmetry demands that
M)(Cl)(O) = 0, and thus Ry = 0. Therefore, in the limit of small
6, the lowest-order term in M is proportional to 6. It follows
that

lim [ cos® cotd MV(0)] = Ry. (55)
6—0

The value of the constant R; of course depends on the specifics
of the crater being considered, but it is finite.

VI. APPLICATION OF THE FORMALISM TO THE
SIGMUND MODEL

In this section, we demonstrate explicitly that our crater
function formalism yields the exact BH coefficients for the
Sigmund model. The crater function for the Sigmund model is
given by Eq. (8) of Ref. [37]. For convenience, we will adopt
the same notation that was used in that paper [38]. On average,
an impact at the origin produces a crater whose negative depth
atpoint r = xX + yy + h(x,y)Z is

F(x,y,0,K11,K12,K»)
€A
= _— _ex
2n)2ap?
1
282

1
pl—==le¢ —x sin 0 + h(x,y)cos 0]
202

1
cosf + h(x,y)sin 67 — —y? ). 56
[x + h(x,y)sin 0] 2ﬂ2y> (56)
If the distance between the origin and r does not exceed a few
times /, then we may set

h(x,y) = SK11x* + Kipxy + 1 Kpy? (57)

in Eq. (56). The dependence of the crater for the Sigmund
model on the components K;; of the curvature tensor becomes
manifest once Eq. (57) has been inserted into Eq. (56).

For brevity, let

a’e A

D (27-[)3/20[[32'

(58)

We readily obtain

1
MO = D// exp (—Eai(l — x sin 6)?

1 1
- Eaéxz cos’ 6 — Eaéyz)dx dy

—a2/2 By 2 aé 2
= De % exp —7x +Ax—7y dxdy

_ Dt 2T o (A2 ) (59)
- (1,3«/ Bl P 2B1 ’
and
2
MD = gDe%/? //x exp (——x2 + Ax —ﬁy2> dxdy
A
=5 M (60)
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To find C;; and C,;, we need the partial derivatives of
the curvature-dependent moments Mg,, and Mk, with re-
spect to Ky; and Ky, respectively. Since the K;;’s do not

J
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depend on x and y, we may exchange differentiation with
respect to the Kj;;’s with integration over x and y. This
gives

d
— Mg =// F(x,y,0,K1,0,0) dxdy
aKll ! K11=0 8I<ll K11=0
a B
= —aDe %2 //exp (——x + Ax — Tﬂy2> ( 22x2+Cx )dxdy
A’B, A’C B, 3AC
=—aM? + = +t—=+=]. 61
! (2312 B} 2B, B} S
Similarly,
9 M // 0 F(x,y,0,0,0,K2) dxd
Py = X,y,0,U,U, K22 xay
K2 " K2=0 K2 K2»n=0
ag B
= —aDe” “/szexp (——x + Ax — Eﬁ )(%yz—i—nyZ)dxdy
B, AC
=m0 L2227 62
Pel3 g (62)
We must also compute the derivative of MV cos 6 with respect to 6. We obtain
(MWD cos o 9
M M(O) cos 6
a0 90
Asin 6 B, 6AC A’B, 2A°C
—aM®P| —— —cosO — + + : 63
} |: I (Bl B} B} B} ©3)
Finally, we will need the identity
1 2AC A
— | B2+ = cotf—. (64)
ag By 1
Inserting Eqs. (61) and (63) into Eq. (29) yields
Asind cos@ (B, 6AC A?B, 2A3C
Ci(0) = aM?® - =+ + . 65
1(6) p B, 2 \& "B B? B (65)
Similarly, inserting Egs. (60) and (62) into Eq. (53) and applying the identity (64), we have
1 (B, AC A
Cn®) = —aMO| —— — to— 0
2(0) aM; Clé > +B1 +co B cos
B AC
= -MOZ (2 + 2= ) cos. (66)
11'3 2 Bl

Note as well that explicit expressions for Cy and C; can be
obtained by inserting Eq. (60) into Eqs. (27) and (28). The
resulting expressions for Cy and C; and Egs. (65) and (66)
for C1; and Cy; agree with the results obtained by BH for the
Sigmund model.

VII. DISCUSSION

The key results of this paper are given by Egs. (29) and (53).
These equations give a means of computing the coefficients
Cy; and Cy, if the curvature-dependent crater function is
known. These coefficients play a key role in determining
whether parallel-mode or perpendicular-mode ripples form or
if the surface remains flat.

(

In their 2011 paper, Norris et al
expressions for Cy; and C;;, namely,

[21] gave explicit

Cn@)=——

= [M(0)cosb],

(67)

and
Cn () = —MPB)cosf cotb. (68)

Our results Egs. (29) and (53) show that Egs. (67) and (68) are
a good approximation only if the curvature dependence of the
crater function is negligible [39].

In the Sigmund model of ion sputtering, the form of the
crater depends on the curvature of the surface at the point of
impact, despite a statement to the contrary in Ref. [30]. This
point has been discussed in detail by Nietiadi and Urbassek
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0.3

0.2

0.1

-0.1-

FIG. 2. The coefficients C;; and C,, as functions of 6 for the
Sigmund model. The exact results for Cy; and Cy, are shown with a
solid and dashed curve, respectively. The results obtained for Cy; and
Cy, if the curvature dependence of the crater function is neglected are
shown with long dashes and with a dashed-dotted curve, respectively.
The values of a, «, and 8 employed are for 1-keV Art bombardment
of silicon. The coefficients are in units of 2+/27 /(A€a’ag), and 6 is
given in degrees.

[36]. The second terms on the right-hand sides of Eqgs. (29)
and (53) therefore yield nonzero contributions to Cy; and C»;.
These contributions were computed explicitly in the preceding
section.

For normal-incidence ion bombardment, the values of Cy;
and C,, obtained by neglecting the curvature dependence of
the crater function [Egs. (67) and (68)] differ by a factor of 2
from the exact values for the Sigmund model [Eqgs. (65) and
(66)]. In fact, the result of Norris et al. for Cy; is equal to twice
the exact value for all angles of incidence 6.

To get an idea of how much Eq. (67) differs from the
exact result for the Sigmund model for nonzero values of
0, see Fig. 2. The values of a, «, and B used in that figure
are for 1-keV Art bombardment of silicon [20]. The ratio of
C; as given by Eq. (67) to the exact value is greater than 2
for a broad range of 6 values. For 8§ = 45°, for example, the
ratio exceeds 3.5. The angle where the switch from parallel-
to perpendicular-mode ripples occurs is 50.8° but, if we use
Egs. (67) and (68), this angle is found to be 66.7°, fully 15.9°
higher than the correct value.

Recently, Nietiadi and Urbassek carried out MD simula-
tions of the bombardment of an amorphous silicon target with
a normally incident 500-eV Ar™ beam [36]. They found that
the craters for curved surfaces are substantially different than
those for a flat surface. These observations and our results for
the Sigmund model lead us to the conclusion that the errors
incurred by neglecting the curvature dependence of the crater
function are typically not small.

The contribution to C;; that comes from the curvature
dependence of the crater function is F; cos 6, where

a
i = ——— Mg, (69)

PHYSICAL REVIEW B 89, 245401 (2014)

fori = 1,2. If K;; is initially zero and then becomes negative,
the surface of the solid nears the core of the collision cascade,
and the amount of sputtered material increases for an arbitrary
choice of target and ion beam. M, is a decreasing function of
K;; fori =1 and 2 as a result. We conclude that both F; and
F, are positive, which means that the curvature dependence
of the crater function yields a smoothing contribution to the
dynamics that is neglected in Egs. (67) and (68).

Equations (61) and (62) give the values of F; and F;, for the
Sigmund model. It is a simple matter to verify that F; and F,
are indeed positive using these formulas, in accord with our
general observation. In addition, for the Sigmund model, F)
is greater than F, for all & > 0. To see this, note that because
the collision cascade is elongated along the direction of the
incident ion, the lateral straggling length 8 is less than the
longitudinal straggling length ov. Thus, a, = a/a < a/B = ag
and By = ag, sin® 6 4 aj cos* 0 < aj for 6 > 0. The constants
A, By, By, and C are all positive for & > 0 and M¥ > 0 as
well. Hence

aM® (B, N 3AC N A’B, A’C
By \ 2 B 2B, B}
aM® (B, AC
2 -5 t =
aﬂ 2 B1
= F. (70)

\

For the Sigmund model, therefore, the smoothing effect that
comes from the curvature dependence of the crater function is
greater for parallel-mode ripples than it is for perpendicular-
mode ripples, except of course for the degenerate case of
normal-incidence bombardment.

Nietiadi and Urbassek noted that for normal-incidence
ion bombardment, the common value of Mg, and Mk, is
a decreasing function of K;; = K, for both the Sigmund
model and their simulations of sputtering of amorphous silicon
[36]. From these observations, they correctly concluded that
the curvature dependence of the crater function produces a
smoothing effect. However, Nietiadi and Urbassek then went
on to assert that this effect “counteracts the main effect of
Bradley-Harper theory, since it leads to increased sputtering on
crests and decreased sputtering in troughs.” In fact, as we have
seen, the curvature dependence of the crater function must be
taken into account if the exact BH values of the coefficients Cq;
and Cy; are to be reproduced by the CFF. The smoothing effect
produced by the curvature dependence of the crater function
is therefore included in the BH theory.

Perkinson et al. [35] have recently pointed out some
apparent inconsistencies in the coefficients given by Norris
et al., Egs. (67) and (68). Because the expression for Cy; of
Norris et al. is a derivative with respect to € of a function
which vanishes at 6 = 0 and /2, the integral of Cy; is

/2 O=m/2
/ C11(0)do = —MP@B)cos O =0 (71
0 0=0

for their theory. Additionally, using expressions (67) and (68)
of Norris et al., we obtain

d
Cn®) = %(sz tan 6). (72)
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The experiments of Perkinson et al. provide evidence that the
actual values for Cy; and Cy do not satisfy either Eq. (71)
or (72). This again suggests that the errors incurred by
neglecting the curvature dependence of the crater function
are significant. When one includes the curvature dependence,
however, Egs. (29) and (53) result, and Eqgs. (71) and (72) do
not apply. Our CFF therefore does not suffer from the same
difficulties as that of Norris et al. [21].

The experimental results of Perkinson er al. indicate that
there is “a surfeit of stability relative to instability compared to
the prediction of crater-function theory,” i.e., the actual values
of C; and Cy, are larger than the theoretical values obtained
using Egs. (67) and (68). It seems likely that this discrepancy
was the result of omitting the smoothing effect of the curvature
dependence of the crater function.

As Eq. (27) shows, the crater function for a flat surface is
all that is needed to compute C. Our expression for C agrees
with that of Norris et al. as a consequence. Our extended CFF
also yields an expression for C;, Eq. (28). Norris et al. did
not give an explicit formula that relates C| to a crater function
moment [21]. This coefficient is needed if one wishes to find
the velocity with which parallel-mode ripples propagate over
the solid surface.

Norris, Brenner, and Aziz introduced their CFF in 2009
but did not apply it to estimate the coefficients in the EOM
for a particular target material or choice of ion beam [30].
Subsequently, Norris et al. carried out MD simulations of the
bombardment of a flat silicon surface with 100- and 250-eV
Ar" ions and then used Eqs. (67) and (68) to obtain estimates
of Cy1 and Cy, [21].

The results of Norris et al. have some puzzling aspects. For
angles of incidence 6 below a critical value 6., the surface
remains flat. For 6 > 6., on the other hand, ripples develop
as the bombardment proceeds. The experimental value of 6,
Norris et al. obtained for 250-eV ions (48°) is approximately
10° larger than the theoretical value they obtained. Moreover,
for 6 = 50°, the measured ripple wavelength was roughly
twice as large as the theoretical value. The difference between
the measured and the theoretical wavelengths declined for
larger values of 6 but remained appreciable up until 6 had
reached 65°. Finally, a switch from parallel-mode ripples
to perpendicular-mode ripples was observed for incidence
angles near grazing in the experiments of Norris et al., but
no such transition was found by inputting their MD results
into Egs. (67) and (68).

Plausible explanations for these discrepancies between
theory and experiment emerge if the curvature dependence
of the crater function is taken into account. The smoothing
effect of the curvature dependence of the crater function
clearly increases the theoretical value of 6.. Moreover, the
wavelength of parallel-mode ripples is inversely proportional
to|Ciy] 172 and so when the contribution to Cy; that comes from
the curvature dependence of the crater function is included,
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the predicted wavelength increases. Finally, recall that for
the Sigmund model the curvature dependence of the crater
function has a greater smoothing effect on parallel-mode
ripples than it does for perpendicular-mode ripples. It seems
likely that this is also true for Ar™ bombardment of silicon
since the Sigmund model provides a good description of the
spatial distribution of the deposited energy [40]. It is therefore
possible that if the curvature dependence of the crater function
had been taken into account by Norris et al. in their theoretical
work, then they might have found a transition between parallel-
and perpendicular-mode ripples as 8 nears 90° [41].

If the correct formulas (29) and (53) are to be used in
combination with MD simulations to obtain accurate estimates
of C;; and Cy», it is not sufficient to find the crater function for
a flat surface. Instead, to find Cy;, craters on a curved surface
of the form A(x,y) = K;;x%/2 must be found for a range of
small values of Kj; so that the derivative d Mg, /0K, can
be computed for K; = 0. Naturally, an analogous statement
applies to determining Cy,. In that case, craters on a surface
that has the form (x,y) = K, y?/2 are needed. This means
that the computational resources necessary to find accurate
values of the coefficients Cy; and Cy; are considerably greater
than previously thought.

VIII. CONCLUSIONS

In principle, the crater function F' depends on the entire
shape of the surface in the vicinity of the point of impact. In this
paper, we extended the crater function formalism to include
the dependence of F on the curvature of the surface at the point
of impact. Explicit expressions for the constant coefficients in
the continuum equation of motion were derived; these reduce
to the results given by Norris et al. [21] only if the curvature
dependence of the crater function is negligible. Our extended
crater function formalism yields the exact coefficients for the
Sigmund model of ion sputtering. In contrast, if the curvature
dependence of the crater function is neglected, substantial er-
rors in the estimated values of the coefficients typically ensue.

Our results show that accurately estimating the coefficients
in the equation of motion using craters obtained from molec-
ular dynamics simulations will require significantly more
computational power than was previously thought. They also
lead us to question the reliability of the coefficient estimates
that have been obtained using the version of the crater function
formalism in which the curvature dependence of the crater
function is neglected.
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