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Polariton linewidth and the reservoir temperature dynamics in a semiconductor microcavity
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A method of determining the temperature of the nonradiative reservoir in a microcavity exciton-polariton
system is developed. A general relation for the homogeneous polariton linewidth is theoretically derived and
experimentally used in the method. In experiments with a GaAs microcavity under nonresonant pulsed excitation,
the reservoir temperature dynamics is extracted from the polariton linewidth. Within the first nanosecond the
reservoir temperature greatly exceeds the lattice temperature and determines the dynamics of the major processes
in the system. It is shown that, for nonresonant pulsed excitation of GaAs microcavities, the polariton Bose-
Einstein condensation is typically governed by polariton-phonon scattering, while interparticle scattering leads
to condensate depopulation.
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I. INTRODUCTION

Experimental investigation and practical use of semicon-
ductor structures in most cases require their nonresonant
excitation. The latter leads to a complex evolution of the
electron-hole (e-h) system, and this evolution involves several
processes [1]: First, internal thermal equilibrium is established
within charge carriers in a time shorter than 1 ps for GaAs-
based quantum well (QW) structures (considered further in the
present paper) [2,3]. When the internal equilibrium has been
established, the e-h system is characterized by a temperature
T greater than the lattice temperature Tlatt. Second, the e-h
system cools down due to the emission of optical (fast stage)
and acoustical (slow stage) phonons [4–7]. Both processes
are accompanied by the exciton formation. The characteristic
time of the exciton formation ranges from 10 ps to 1 ns and is
determined by the e-h density (see [8] and references therein).
For the excitation above the QW barriers the whole evolution
is accompanied by the capture of charge carriers to the QWs.
For sufficiently deep QW states the capture is relatively fast,
with a time of ∼1 ps, and is assisted by the emission of optical
phonons [9–12].

The temperature T of the e-h system during its cooldown
remains significantly higher than the lattice temperature Tlatt

for several hundreds of picoseconds in the low-temperature
experiments [4–6,8,13]. As a result, the dynamics of T

determines the exciton fraction and many important properties
of the system. An example is Bose-Einstein condensation
(BEC) of excitons, which is hindered in bulk semiconductors
and the QWs without spatial separation of electrons and holes.
The reason for such a hindrance is insufficiently fast cooling
of excitons compared with their recombination and inelastic
collisions, the latter leading to the formation of the exciton
complexes and e-h liquid [14].
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We are interested in the temperature dynamics of the
reservoir, the e-h system in the QWs embedded in a semi-
conductor microcavity (MC), and the effect of this dynamics
on the properties of MC exciton polaritons, mixed exciton-
photon states. This system attracts considerable attention,
especially inspired by the achievement of BEC of polaritons
[15] and a number of intriguing related phenomena, such as
quantized vortices, superfluidity, the Josephson effect, etc. (see
[16] for a review). The dynamics of the reservoir internal
temperature after a short-pulse nonresonant excitation is of
primary importance because it determines the possibility of
and conditions for the polariton BEC. Typically, the internal
temperature of the e-h system in bare QW structures is ex-
tracted from the Boltzmann tail in the photoluminescence (PL)
spectra, which originates from the e-h plasma recombination.
However, the recombination is rather weak and requires for a
reasonable analysis a high e-h density [4] and high quality
of QWs [8]. For the QWs embedded in a MC, the e-h
plasma recombination is even more hindered due to the strong
spectrum modification induced by the MC. In some works the
temperature was extracted by analyzing the lower polariton
(LP) population energy distribution [15,17–22]. However,
the temperature so defined is not the reservoir temperature
but, rather, characterizes the degree of nonequilibrium of the
low-wave-vector part of the polariton system.

In the present paper, we propose and justify a new method
of determining the reservoir temperature from the linewidth
of the lower polariton states. We theoretically derive and
experimentally use a general relation for the LP homogeneous
linewidth via the rate of polariton escape, used to find the
reservoir temperature, and the mean polariton occupation num-
ber. The extracted reservoir temperature in the experiments
with nonresonant pulsed excitation of the GaAs MC decays
from about 100 K at a time of 50–100 ps after the excitation
pulse and relaxes to the lattice temperature Tlatt in about
1 ns. The fact that at long times the extracted temperature
follows Tlatt as Tlatt is changed proves the validity of our
method. We conclude that at the conditions of the polariton
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Bose-Einstein condensation in GaAs MC structures the reser-
voir temperature greatly exceeds the lattice temperature. This
leads to increasing the BEC threshold and degrading the
coherence properties compared with those for the reservoir
in thermal equilibrium with the lattice. Furthermore, as a
result of the large reservoir temperature, BEC in GaAs MCs
under nonresonant pulsed excitation is typically governed by
polariton-phonon scattering, while scattering of polaritons by
excitons and free charge carriers leads to depopulation of the
condensate.

II. THEORY

The MC polariton system can be divided into the low-k,
radiative part (k is a wave vector) and the high-k, nonradiative
part, usually referred to as a reservoir. In the radiative part,
exciton-photon mixing is high, which results in a steep
polariton dispersion curve. This polariton part is strongly
nonequilibrium due to the short polariton lifetime determined
by the MC Q factor. On the other hand, the nonradiative
reservoir, containing almost all of the population of the e-h
system, is virtually unaffected by the MC, which can only
alter the rate of the reservoir density decay induced by exciton
scattering to the leaky low-k region [23]. All the processes
occurring in the e-h system and discussed for bare QW
structures in the Introduction also take place in the reservoir.
The reservoir determines the population of the low-k region.

Here, we determine the LP linewidth. Let us consider a
subsystem representing one low-k polariton state in the MC.
The evolution of the probability distribution for the state
occupation number n is governed by the master equation

ṗn = wnpn−1 − [w(n + 1) + γ n]pn + γ (n + 1)pn+1, (1)

where pn is the probability of finding n polaritons in the
subsystem, with n = 0,1,2, . . . , and w and γ are the rates
of, respectively, emission and absorption of a polariton by an
environment, the state of which is assumed to be virtually
unaffected by coupling to the subsystem. The stationary
solution of Eq. (1) is pst

n = (1 − w/γ )(w/γ )n and represents
the Bose-Einstein probability distribution. Let us stress in this
connection that the subsystem is, in general, in a nonequilib-
rium stationary state and that the environment is of the general
kind and need not be an equilibrium particle-and-energy bath.
The stationary mean polariton number is

〈n〉 = 1

γ /w − 1
, (2)

the finiteness of which implies w < γ .
Now we find the polariton energy spectrum

S(E) = 1

2π

∫ ∞

−∞
exp(iEτ )g(1)(τ ) dτ (3)

with the normalization
∫

S(E)dE = 1, where g(1)(τ ) =
〈a†(0)a(τ )〉/〈n〉 is the first-order temporal correlation function
(the quantum degree of first-order temporal coherence) and a†

and a are the creation and annihilation operators [24]. Note
that we put � = kB = 1. Equation (3) has the form of the
Wiener-Khinchin theorem [25–28]. Neglecting the interaction
between polaritons within the subsystem, we recover from

Eq. (1) the quantum master equation for the reduced density
operator ρ of the subsystem,

ρ̇ = −iE′
0[a†a,ρ] − w

2
(aa†ρ − 2a†ρa + ρaa†)

−γ

2
(a†aρ − 2aρa† + ρa†a), (4)

where the energy E′
0 is close to the energy of the state

uncoupled from the environment. By finding the temporal
behavior of 〈a〉 from Eq. (4) and using the quantum regression
theorem [29–31], we have

g(1)(τ ) = exp

(
− iE′

0 τ − γ − w

2
|τ |

)
. (5)

We may draw an analogy between the subsystem of
noninteracting polaritons and chaotic light. The analogy stems
from the fact that the probability distribution {pst

n } is formally
similar to the Planck distribution; in other words, the statistical
properties of the subsystem are similar to those of the chaotic
light emitted by an equilibrium thermal source. From this
analogy we immediately write for the subsystem of polaritons
the relation that takes place for chaotic light [24],

g(2)(τ ) = 1 + |g(1)(τ )|2, (6)

where g(2)(τ ) = 〈a†(0)a†(τ )a(τ )a(0)〉/〈n〉2 is the second-
order temporal correlation function (the quantum degree of
second-order temporal coherence).

Interestingly, this analogy allows us to foresee Eq. (5)
directly from Eq. (1) without using Eq. (4): By determining
the temporal behavior of the mean polariton number 〈n〉
from Eq. (1) and using the quantum regression theorem, we
arrive at

g(2)(τ ) = 1 + exp[−(γ − w)|τ |]. (7)

Clearly, we have super-Poissonian fluctuations with g(2)(0) =
2, as it must be for the Bose-Einstein distribution. From
Eqs. (6) and (7) it follows that |g(1)(τ )| = exp[−(γ −
w)|τ |/2], which implies Eq. (5).

Finally, from Eqs. (3) and (5) we conclude that the polariton
spectrum is a Lorentzian,

S(E) = 1

π

�/2

(E − E′
0)2 + (�/2)2

,

with the linewidth (FWHM)

� = γ − w. (8)

Using Eq. (2), we can also rewrite the polariton linewidth (8)
in an alternative form,

� = γ

〈n〉 + 1
. (9)

Equations (8) and (9) are valid for a general environment
with the rates w and γ being arbitrary in nature. In the
particular case of a thermalized exciton reservoir and the
absence of polariton-phonon scattering, Eq. (9) reduces to
the known result [32].

In our system, the rate of change of the environment state
is much less than �; in other words, the subsystem evolves
adiabatically, and all of the above description takes place
at each instant of time. The rate γ of polariton escape to
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FIG. 1. (Color online) Exciton, photon (dashed lines), and polari-
ton (solid lines) dispersion curves. Arrows show the polariton-exciton
scattering responsible for the LP broadening. Filled area shows the
reservoir energy distribution (population along the horizontal axis
and energy along the vertical axis).

the environment is determined by photon escape through the
MC mirrors with a rate γc and polariton scattering assisted
by phonons, excitons, and free carriers (electrons and holes)
with the corresponding rates γphon, γx, γe, and γh; thus, γ =
γcC

2 + γphon + γx + γe + γh, where C is the photon Hopfield
coefficient. The rate γcC

2 is independent of the reservoir
concentration and temperature and hence is time independent.
Under the assumption that the reservoir occupation numbers
are much less than 1, γphon is also time independent.

Let us calculate the rates γx, γe, and γh. Figure 1 shows
the scheme of polariton-exciton scattering: a polariton scatters
off an exciton and makes a transition from the considered
low-k polariton state 1i to a reservoir state 1f, with the exciton
making a transition from a state 2i to a state 2f. Since the
reservoir region contains the overwhelming majority of the
states, it is natural to assume that polaritons escape mostly to
the reservoir due to the scattering off the reservoir excitons
and free carriers. The reservoir is assumed to be in internal
thermal equilibrium [2,3,33,34]. Since the e-h density used in
the experiment is far below the saturation density, we have for
the reservoir the Boltzmann distribution with a temperature T ,
which is, in general, different from the lattice temperature Tlatt.

For polariton-exciton scattering we have, according to
Fermi’s golden rule,

γx = 2π

∫∫∫
|M|2 gx2πkf

1dkf
1 kf

2dkf
2 dφ A2

(2π )4
f

(
E

(
ki

2

))

×δ
(
E

(
kf

1

) + E
(
kf

2

) − E
(
ki

1

) − E
(
ki

2

))
, (10)

where integration is performed over the final states of both
particles because the initial state of the first particle is fixed a
priori and the initial state of the second particle is fixed by the
momentum conservation law; gx is the exciton spin degener-
acy, φ is the angle between the wave vectors kf

1 and kf
2, A is

the area of the system, f (E) = (2πNx/gxmxT ) exp(−E/T )
is the Boltzmann distribution for the exciton gas with a
time-dependent concentration Nx and temperature T , and mx

is the exciton effective mass. We choose the bottom of the
exciton dispersion curve as an energy reference point and
denote by δε = −E(ki

1) the depth of state 1i (Fig. 1). As we
consider scattering from the radiative polariton region with
relatively small wave vectors k < ω/c � √

2mxδε, where ω

is the frequency of the light emitted by the MC, we can put

ki
1 = 0 in the momentum conservation law: ki

2 = kf
1 + kf

2. For
the matrix element M we take the limit of low momenta
and write [35,36] M = XMx−x + CMsat, where X and C are,
respectively, the exciton and photon Hopfield coefficients for
state 1i, C2 = 1 − X2 = (1 + �2

R/4δε2)−1, with �R being the
Rabi splitting; the Mx−x (exciton-exciton) and Msat (saturation)
terms describe the scattering of the exciton and photon
components. We neglect the saturation term and take the
matrix element in the form M = XEx−xa

2
B/A, where aB is the

exciton Bohr radius and Ex−x is an effective exciton-exciton
interaction energy constant that considers all possible spin
channels in Eq. (10).

Now we obtain from Eq. (10) an analytical expression for
the escape rate,

γx = 1

2
mxX

2E2
x−xa

4
BNx exp

(
− 2δε

T

)
. (11)

Similarly, we get an expression for polariton-electron (hole)
scattering:

γe(h) = me(h)

1 + me(h)/mx
X2E2

x−e(h)a
4
BNe(h)

× exp

(
− (1 + me(h)/mx)δε

T

)
, (12)

where me (mh) and Ne (Nh) are, respectively, the electron
(hole) effective mass and concentration.

Finally, we can describe the dependence of the polariton
linewidth on time t by the following equation:

�(t) = γ0 + δγ (t)

〈n〉(t) + 1

= γ0 + rX2N (t) exp[−αδε/T (t)]

〈n〉(t) + 1
, (13)

where γ0 = γcC
2 + γphon is the time-independent rate of

polariton escape; r is a constant determined by the interparticle
interaction; the factor 1 < α � 2 depends on the dominant
polariton scattering mechanism, where α = 2 for polariton-
exciton scattering and α = 1.2 (1.8) for polariton-electron
(hole) scattering in GaAs QWs; and N is the density of the
reservoir particles by which polaritons are mostly scattered.

Further, we determine experimentally the polariton
linewidth � and occupation number 〈n〉 and use the described
theory to extract from these quantities the polariton escape
rate γ . The dependence of γ on t and δε gives a clue to the
reservoir temperature dynamics.

III. EXPERIMENTAL DETAILS

The sample under study is a 3λ/2 MC with the Bragg
reflectors made of 17 (top mirror) and 20 (bottom mirror)
AlAs and Al0.13Ga0.87As pairs and providing a Q factor of
about 2000. Two stacks of three tunnel-isolated In0.06Ga0.94As
QWs are embedded in the GaAs cavity at the positions of the
two electric-field antinodes of the MC. The Rabi splitting of
the sample is �R ≈ 6 meV. The same sample was used in
Refs. [37,38]. The experiments are done at the photon-exciton
detunings � = −0.2 and +2.0 meV.

The sample is mounted in a He-vapor optical cryostat
and excited by the emission of a mode-locked Ti:sapphire
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laser generating a periodic train of 2.5-ps-long pulses at a
repetition rate of 76 MHz. The excitation laser beam is focused
into a 120-μm spot on the sample surface using a miniature
8-mm focus lens with the optical axis inclined by 60◦ with
respect to the sample normal. In the nonresonant excitation
experiments, the exciting photon energy of 1.596 eV is above
the MC mirrors stop band and larger than the GaAs band
gap. In the experiments with resonant excitation of the LP
branch, the exciting photon energy of 1.4585 ± 0.0003 eV is
near the energy of a bare exciton (note the 60◦ excitation).
The excitation power P is measured before the laser beam
has entered the cryostat, so the presented values of P do not
take into account the transmission of the cryostat windows
and focusing lens, which lower P by about 30%. The PL is
collected by a 6-mm focus micro-objective located in front
of the sample surface so that the surface is near its focal
plane. Both the focusing lens and the micro-objective are
mounted on the sample holder inside the cryostat, and this
provides good stability of the system against vibrations. The
PL coming out from the cryostat is focused with a 76-mm
focus lens to form an intermediate magnified image of the PL
spot. A 0.7-mm-diameter diaphragm is inserted in the image
plane and selects a 60-μm-diameter region of the spot with a
homogeneous PL intensity distribution. Then the selected PL
passes through a 30-mm lens to fall on the slit of a spectrometer
coupled to a Hamamatsu streak camera. The spectrometer slit
is located in the focal plane of the lens. Thus, the emission
angle of the PL is transformed into the spatial coordinate and
selected by the spectrometer and streak camera slits, which
provides a resolution of about 1◦. By moving the final lens, it
is possible to change the selected angle. The time and spectral
resolutions of this system are 20–30 ps and 0.2–0.3 meV,
respectively.

The time-resolved spectra for a given time t after the
excitation pulse are obtained by integrating the emission in
the time range [t − 25,t + 25] ps for nonresonant excitation
experiments and [t − 5,t + 5] ps for resonant excitation
experiments.

IV. RESULTS AND DISCUSSION

The MC emission spectra corresponding to different angles
of observation (polariton wave vectors) at time t = 275 ps
after the nonresonant excitation pulse are presented in
Fig. 2(a) for the photon-exciton detuning � = −0.2 meV.
The time-average excitation power P = 1 mW corresponds
to the electron-hole pair density per QW below 5 × 1010 cm−2.
The spectra show two lines corresponding to the LP and
upper polariton (UP) branches, with the characteristic angular
dependencies of their energies indicating strong exciton-
photon coupling. The measured LP linewidth (FWHM) � is
mainly determined by the rates of polariton scattering and
photon escape, the processes giving a Lorentzian intensity
distribution, as discussed above. The measurements of the
highly photonlike LP linewidth give γc ≈ 1 meV. Thus, for
� = −0.2 meV and � = −1◦ the contribution of photon
escape to the linewidth is γcC

2 ≈ 0.5 meV. Inhomogeneous
broadening, mainly related to the QW width fluctuations, and
the instrumental response also give some contribution to �

in the form of a Gaussian component. The best fit to the LP
line for � = −0.2 meV and � = −1◦ at long t with the Voigt
function gives a Lorentzian component width of ≈0.5 meV
and a Gaussian component width of ≈0.3 meV, close to γcC

2

and the instrumental response function width, respectively.
On the other hand, the best fit to the same spectrum with the
Lorentzian distribution gives � ≈ 0.6 meV. Thus, the relative
contribution of the nonhomogeneous sources is small for the
considered photon-exciton detunings and observation angles
(corresponding to δε = 1.4–3.1 meV), especially at shorter
times, and further, the LP line is fitted by the Lorentzian
distribution to determine the FWHM [Fig. 2(b)].

The LP line, broad at short times after the nonresonant ex-
citation pulse, significantly narrows at longer times [Fig. 2(b)].
The narrowing rate varies for different angles of observation,
as first pointed out in Ref. [38]. For the small angle � = −1◦
(δε = 3.1 meV) the linewidth is close to its low-density limit
already at t = 475 ps, while for the larger angle � = 11◦

FIG. 2. (Color online) (a) MC emission spectra corresponding to different angles of observation � for t = 275 ps. Spectra are vertically
shifted, and intensity values for E > 1.46 eV are multiplied by 10 for clarity. (b) LP spectra corresponding to different times after the excitation
pulse (circles) for two angles of observation. Spectra are normalized to the maximum value and vertically shifted. Solid lines show Lorentzian
fits. In (a) and (b) � = −0.2 meV, Tlatt = 10 K, nonresonant excitation with P = 1 mW.
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FIG. 3. (Color online) Kinetic dependencies of the LP linewidth
� (open symbols), polariton escape rate γ (solid symbols), and
population 〈n〉 (lines, right axis) for different state depths δε. The
black squares and solid line correspond to � = −0.2 meV, � = −1◦,
the red circles and dashed line correspond to � = −0.2 meV,
� = 11◦, and the blue triangles and dotted line correspond to � =
2.0 meV, � = 13◦. Nonresonant excitation with P = 1 mW, Tlatt =
10 K.

(δε = 2.0 meV) the line continues narrowing for significantly
longer times. The LP linewidth � dynamics for these angles
is presented in Fig. 3 by open squares and circles. However,
as follows from the theory [Eq. (13)], not � but the state
depth δε is the proper parameter that determines the linewidth
dynamics. Indeed, a decrease in δε achieved by increasing
the photon-exciton detuning � leads to the further slowdown

of the linewidth kinetics, as shown by open triangles for
� = 2.0 meV and � = 13◦ (δε = 1.4 meV). Such behavior of
the linewidth kinetics with δε can be understood from Eq. (13).
With increasing δε the linewidth becomes more sensitive to
the reservoir temperature dynamics and decreases much faster
with decreasing T .

Now we aim to determine the polariton escape rate γ

from the measured linewidth �. According to Eq. (9), γ =
�(〈n〉 + 1). The mean number 〈n〉 of polaritons in a single
quantum state is proportional to the emission intensity I :

I = κC2〈n〉, (14)

where κ = γc × 2�kx�kyA/(2π )2 × ω × κ̃ is the photon
escape rate times the number of the states from which the
intensity is registered times the energy of emitted photons ω,
and times a constant κ̃ that transforms the real intensity in watts
to the intensity measured by the streak camera in arbitrary
units; �kx and �ky are the wave-vector intervals determined
by the angular aperture in which the emission is registered.
The coefficient κ is independent of δε and constant in all the
considered experiments (we neglect the small variation of ω).
To determine κ , we implement the conditions under which
the reduction of � due to a finite 〈n〉 is detected directly.
For resonant excitation of the LP branch the reservoir is not
overheated, in contrast to the nonresonant excitation case, and
its temperature is close to the lattice temperature already at
short t . Thus, the time-dependent contribution to the escape
rate γ [Eq. (13)] is minimum, and the kinetics of the linewidth
� is dominated by the kinetics of the polariton number 〈n〉
[denominator in Eq. (13)].

The measured kinetic dependencies of the linewidth for
resonant excitation of the PL branch at � ≈ 60◦ with different
powers P are presented in Fig. 4 by open symbols. At short
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FIG. 4. (Color online) Resonant excitation case. (a) Kinetic dependencies of the LP linewidth � (open symbols), polariton escape rate γ

(solid symbols), and population 〈n〉 (lines, right axis) for different excitation powers P . (b) Ratios of the LP linewidths for low, P0, and high,
P1, excitation powers �(P0)/�(P1) as a function of the difference of the intensities I (P1) − I (P0) (bottom axis) and the difference of the filling
factors 〈n〉(P1) − 〈n〉(P0) (top axis). Data are presented for P0 = 0.5 mW and two different P1, P1 = 2 mW (squares) and 4 mW (circles).
Arrows on the lines connecting data points indicate the direction of increasing time. Thick solid lines show linear fits. In (a) and (b) δε =
2.1 meV (� = 2.0 meV, � = 0◦), Tlatt = 10 K.
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FIG. 5. (Color online) (a) Kinetic dependencies of the time-dependent part δγ of the polariton escape rate for different state depths δε

corresponding to � = −0.2 meV, � = −1◦,8◦,11◦ (circles) and � = 2.0 meV, � = 5◦,13◦ (squares). (b) Energy distributions of δγ normalized
to the exciton fraction for different times after the excitation pulse. Solid lines are exponential fits. � = −0.2 meV. In (a) and (b) Tlatt = 10 K,
nonresonant excitation with P = 1 mW.

times, � experiences a pronounced drop down proportional to
the measured intensity (shown by solid lines, right axis). The
intensity has already been transformed to 〈n〉 by dividing by
a constant κC2 that will be determined further. An increase
in P leads to an enhancement of the intensity and the corre-
sponding increase in the � drop down. According to Eqs. (13)
and (14), �(t)−1 ≈ γ −1

0 [1 − δγ (t)/γ0 + 〈n〉(t)] = γ −1
0 [1 −

δγ (t)/γ0 + I (t)/κC2] for δγ (t)/γ0 � 1 and 〈n〉(t) � 1. The
linewidth ratio for two excitation powers P0 (small) and P1

(high),

�P0 (t)

�P1 (t)
≈ 1 − δγP1 (t) − δγP0 (t)

γ0
+ IP1 (t) − IP0 (t)

κC2
, (15)

allows us to eliminate the systematic error, the line broadening
at t < 40 ps due to the scattered light from higher states. This
ratio is proportional to the intensity difference IP1 (t) − IP0 (t)
with the desired coefficient 1/κC2 in the time range where
I (t) varies with t much faster than δγ (t) (t � 200 ps).
Figure 4(b) shows the dependencies of �P0/�P1 on IP1 − IP0

for two different values of P1, and the direction of increasing
time is indicated by arrows. The dependencies are close to
linear for high intensities (at t � 200 ps), as expected from
Eq. (15). As the intensity first increases and then decreases
with time, the hysteresis in �P0/�P1 is small. This validates
the fact that, in the considered time range, δγ (t) varies much
slower than I (t), and hence, the slope of the linear dependence
of �P0/�P1 on IP1 − IP0 gives the sought-for coefficient κC2.
From the linear fits to both the dependencies (thick solid
lines) we find κC2 = 50 ± 2. From the measured intensities
we calculate with Eq. (14) and the known C(ε)2 the polariton
population for all considered states [Figs. 3 and 4(b), right
axis]. We note that our method to determine 〈n〉 is more
precise than the direct method based on measuring the emitted
intensity [39] because the latter method requires knowledge
of the exact number of the registered states, which is hard to
determine.

Once � and 〈n〉 are found, we calculate with Eq. (9) the
polariton escape rate γ , which is shown by solid symbols
in Fig. 3 for nonresonant excitation and in Fig. 4(a) for
resonant excitation. It is interesting that the time-dependent
components of both � and γ for nonresonant excitation are
much larger than the corresponding components for resonant
excitation for comparable polariton populations. This fact is
a good illustration of the reservoir overheating induced by
nonresonant excitation and causing the LP line broadening.

Figure 5(a) shows the kinetics of the time-dependent com-
ponent of the polariton escape rate δγ (t), which is determined
as the difference of γ (t) (solid symbols in Fig. 3) and its value
at long t . The data are shown for different state depths δε,
and changing δε is performed by increasing the observation
angle and photon-exciton detuning [squares and circles in
Fig. 5(a) correspond to two different detunings]. For δε =
2.0 meV the dependencies corresponding to different detun-
ings almost coincide despite different angles, which confirms
that δε is the proper parameter to define the properties of a
polariton state. As δε is increased, the kinetics of δγ becomes
faster at t � 1000 ps. At longer times the decay of δγ is more
δε independent. According to Eq. (13),

δγ (t,δε) ∝ [X(δε)]2N (t) exp

(
− αδε

T (t)

)
, (16)

and the observed behavior of δγ indicates a strong variation
of the reservoir temperature T at t � 1000 ps. The variation
becomes smaller at longer times as T relaxes to Tlatt. To
make this description more quantitative, we plot in Fig. 5(b)
δγ /X2 as a function of δε for different times and fixed � =
−0.2 meV. The dependencies are well described by the
exponential function, in accordance with Eq. (16). This allows
us to determine the reservoir temperatures T [already indicated
in Fig. 5(b)] provided the coefficient α is known. We obtain
α = 1.3 from the condition that T approaches Tlatt at long
times when Tlatt = 20 K (red solid circles in Fig. 6), and the
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FIG. 6. (Color online) Dynamics of the e-h reservoir temperature
for different lattice temperatures Tlatt after nonresonant excitation with
P = 1 mW (solid symbols). Open squares show the corresponding
dependence for P = 0.5 mW and Tlatt = 10 K. � = −0.2 meV.
Horizontal lines indicate the values of Tlatt.

same value α = 1.3 is fixed for all the considered Tlatt and
excitation powers.

The time dependencies of the reservoir temperature T for
different lattice temperatures Tlatt are presented in Fig. 6. At
very short times, T is too large to determine; in the time range
t ∼ 50–1000 ps, T changes from about 200 K to the values
close to Tlatt. The fact that at long t the determined reservoir
temperature follows Tlatt for different values of Tlatt is proof
of the validity of our method. Interestingly, for small lattice
temperatures, T stays considerably larger than Tlatt for several
hundreds of picoseconds, in agreement with Refs. [4–6,8,13].
For the excitation power P = 0.5 mW (open squares) the
reservoir temperature T at t � 1000 ps is reduced compared
with T for P = 1 mW (solid squares). This observation
indicates that the reservoir cooldown is slower for an increased
number of particles and can be explained by reabsorption
of emitted phonons (hot-phonon bottleneck effect), which is
more effective for a denser system [4,5,7]. Thus, the obtained
dynamics of T is very similar to the e-h temperature dynamics
reported for bare QW structures [4–6,8,13].

It is instructive to discuss the reservoir temperature
dynamics (Fig. 6) in relation to the MC polariton Bose-
Einstein condensation. In experiments with GaAs MCs under
nonresonant pulsed excitation, BEC is usually observed in the
time range t � 200 ps [40,41]. Our results indicate that in
this time range the reservoir is strongly overheated, calling
into question the existence of excitons in the BEC regime
(however, not canceling the polariton picture [42,43]) and
resulting in the significantly increased BEC threshold and
degraded BEC coherence properties in comparison with what
one would expect for the reservoir in equilibrium with the
lattice. Furthermore, increasing the excitation density well
above the threshold leads, on the one hand, to shortening the
BEC onset time [41] and, on the other hand, to increasing
the reservoir temperature for any given time (open and solid

squares in Fig. 6). These effects can be one of the reasons
leading to the suppression of the condensate spatial coherence
for the excitation densities well above the threshold [41]. It is
illustrative that, for the MC structure considered here, further
increasing the nonresonant excitation power leads to lasing on
the energy of a photon mode [38]. By contrast, in a similar
structure under resonant excitation, and hence with a cold
reservoir, the polariton BEC was reported [44].

An interesting conclusion can immediately be drawn from
T � Tlatt at BEC. According to Eq. (2), above the BEC
threshold γ ≈ w, which can be rewritten as

(wxeh − γxeh) + (wphon − γphon) − γcC
2 ≈ 0, (17)

where γxeh = γx + γe + γh is the rate of the polariton escape
assisted by interparticle interaction (γxeh coincides with the
time-dependent escape rate δγ ) and wphon and wxeh are the
rates of the polariton scattering assisted by phonons and
interparticle interaction to the given state. Since the general
expression (2) for the mean polariton number reduces to the
Bose-Einstein distribution {exp[(E − μ)/T ] − 1}−1 when the
state interacts solely with the equilibrium reservoir (which
formally corresponds to γcC

2 = γphon = wphon = 0), we have

wxeh = γxeh exp

(
− E − μ

T

)
, (18)

where μ is the chemical potential for the exciton part of
the reservoir. Alternatively, this equation can be derived by
calculating γxeh and wxeh in the Born approximation. It is easy
to show that for a nondegenerate reservoir

exp

(
− E − μ

T

)
≈ 2πNx

gxmxT
exp

(
δε

T

)
.

Taking the realistic parameters for a GaAs structure δε =
5 meV, mx = 0.3m0 (two-dimensional exciton effective mass
[45]), where m0 is the free electron mass, gx = 4 and taking
the reservoir temperature T = 60 K at t ∼ 100 ps (Fig. 6),
we obtain exp[−(E − μ)/T ] ≈ Nx × (2 × 10−12 cm2) < 1
because the polariton BEC implies the strong-coupling regime
and thus the unsaturated reservoir, a2

BNx � 1, where the
exciton Bohr radius is aB ∼ 10−6 cm. With Eq. (18), we
conclude that the rate of polariton scattering to the given
state due to interparticle interaction is smaller than the
corresponding polariton escape rate:

wxeh < γxeh. (19)

As a result, the first term in Eq. (17) is negative; therefore,
polariton escape in the regime of BEC is compensated only
by the phonon-assisted polariton relaxation. Thus, contrary to
the common belief, for nonresonant excitation, interparticle
interaction drives polaritons away from the condensate rather
than promoting their condensation.

Condition (19) might be violated for too deep states [note
exp[−(E − μ)/T ] ∝ exp(δε/T )], e.g., for δε > 13 meV at
Nx = 1011 cm−2 or δε > 25 meV at Nx = 1010 cm−2. These
values of δε are relatively large for BEC in GaAs MCs
[19,22,40,41,44,46] but are easily achievable for the MCs
based on materials with larger exciton binding energy and
Rabi splitting, such as CdTe [15,20,47], GaN [21,48], and ZnO
[49]. In this case condition (19) can be satisfied at positive
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photon-exciton detunings in the so-called thermodynamic
condensation regime [20,21].

Condition (19) does not contradict the well-established
importance of interparticle interaction in polariton relaxation
for relatively high excitation densities for the noncondensed
regime [23,37,50,51]. Indeed, in the rate equation the income
term describing polariton scattering assisted by interparticle
interaction is wxeh(1 + 〈n〉), whereas the corresponding term
describing polariton escape is γxeh〈n〉. For 〈n〉 � 1, the income
term can dominate despite the condition (19). The situation is
reversed for the regime of condensation, when 〈n〉 � 1. Fur-
thermore, our conclusion does not contradict the reported en-
hancement of polariton relaxation due to reservoir heating [52]
because the value of wxeh grows with the reservoir temperature
[Eqs. (11), (12), and (18)].

V. CONCLUSION

We have studied theoretically and experimentally the
polariton linewidth and have shown that it is determined
by the polariton escape rate and polariton population. In
experiments with resonant excitation, the dynamics of the
polariton linewidth is mainly governed by the dynamics of
the occupation number. By contrast, in experiments with
nonresonant excitation, this dynamics is mainly governed
by the dynamics of the polariton escape rate, which in turn

is governed by the dynamics of the reservoir temperature.
On this basis, we have developed a method of determining
the reservoir temperature by tracing the dependence of the
polariton escape rate on the polariton energy. The extracted
reservoir temperature for nonresonant pulsed excitation of a
GaAs microcavity decays from ∼100 K at 50–100 ps to the
lattice temperature in a time of ∼1 ns. Increasing the excitation
power leads to a slowdown of the reservoir temperature
relaxation. We have concluded that, in experiments with
nonresonant pulsed excitation of GaAs microcavities, the
reservoir temperature greatly exceeds the lattice temperature
in the regime of the polariton Bose-Einstein condensation. As
a result, the condensation is governed by the phonon-assisted
polariton relaxation, while the overall effect of interparticle
scattering is depopulation of the condensate.
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