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Collective modes in multiband superconductors: Raman scattering in iron selenides
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We study Raman scattering in the superconducting state of alkali-intercalated iron selenide materials
AxFe2−ySe2 (A = K, Rb, Cs) in which the Fermi surface has only electron pockets. Theory predicts that both
s-wave and d-wave pairing channels are attractive in this material, and the gap can have either s-wave or d-wave
symmetry, depending on the system parameters. ARPES data favor s-wave superconductivity. We present the
theory of Raman scattering in AxFe2−ySe2 assuming that the ground state has s-wave symmetry but d wave is
a close second. We argue that Raman profile in d-wave B2g channel displays two collective modes. One is a
particle-hole exciton, another is a Bardasis-Schrieffer-type mode associated with superconducting fluctuations
in d-wave channel. At a finite damping, the two modes merge into one broad peak. We present Raman data for
AxFe2−ySe2 and compare them with theoretical Raman profile.
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I. INTRODUCTION

Superconductivity in iron-based superconductors (FeSCs)
remains one of hottest topics in the research on correlated
electrons [1–11]. The key issue, which is still under debates, is
the symmetry of the superconducting order parameter (OP) as
it provides crucial input for microscopic description of FeSCs.
The phonon-mediated attraction is normally associated with a
conventional s-wave pairing. Alternative pairing mechanisms
originating from the electron-electron interaction often give
rise to non-s-wave pairing, like, e.g., d-wave pairing in the
cuprates, but can also lead to an unconventional s-wave pairing
in systems with multiple Fermi surfaces (FS) (Ref. [12]). In
the latter case, the gap is s wave, but the OP changes sign
across the Brillouin zone (BZ).

Such an unconventional s-wave pairing state, often called
s+−, is believed to be realized in weakly and moderately
hole and electron-doped Fe pnictides, like Ba1−xKxFe2As2,
x � 0.4, or Ba (Fe1−xCox)2As2 [7,8,13–15] or in systems
with isovalent substitution of one pnictide by the other,
like BaFe2(As1−xPx)2 [10,16]. The s+− superconductivity is
believed to originate from pair-hopping between electron and
hole pockets, enhanced by spin-fluctuations [13–15]. This
pairing state is consistent with the number of experiments,
including ARPES, neutron scattering, STM, NMR, opti-
cal conductivity, and various thermodynamic measurements
[2,4,7,8,10,17–20].

Still, RPA-type [15,21] and renormalization group studies
[22–24] of weakly/moderately doped FeSCs show that there
are at least two attractive channels—the attraction in s+−
channel is the strongest, but d-wave channel is also attractive,
and the corresponding coupling is comparable to that in the
s+− channel. Such close competition between the different
pairing channels is ubiquitous in FeSCs and originates from
the interplay between repulsive interaction between hole and
electron pockets, which favors s+− superconductivity with
the sign change of the gap between the two, and repulsion
between, e.g., two electron pockets, which favors d-wave
superconductivity with the sign change between the gaps on the
two electron pockets [15,25,26] (by symmetry, the two electron

pockets transform into each other under spatial rotation by π/2
around z axis, and the d-wave gap changes sign under such a
rotation).

There is no theory restriction that would prevent d-wave
attraction to become the strongest in some doping range.
For weakly/moderately doped FeSCs, experimental data seem
to rule out d-wave superconductivity. However, at stronger
doping, and, in particular, in systems with only hole pockets
or only electron pockets, the symmetry of the pairing state is
at the moment a highly controversial issue. The change of the
pairing state upon doping would be quite interesting already
on its own, but the interest is further triggered by the fact
that the change from s to d symmetry can generate a mixed
s + id state in the intermediate doping range [27,28]. Such
a mixed state breaks time-reversal symmetry and is highly
sought superconducting state as it has reach phenomenology
[29].

For systems with only hole pockets, like strongly hole-
doped KFe2As2, functional RG calculations [30] favored the
d-wave state, with the largest gap on the outer hole pocket,
while RPA-type calculations [21,31] found near-identical
couplings in d-wave and s-wave channels. In the latter case,
the largest gaps are on the two inner hole pockets [the two
�-centered pockets in Fe-only Brillouin zone (1FeBZ)]. On the
experimental side, some thermal conductivity measurements
were interpreted [32,33] as strong evidence for d-wave pairing,
while other thermal conductivity measurements [34] and
ARPES data for the same material [35] were interpreted as
equally strong evidence for s-wave. Thermodynamic data were
also interpreted [36] as evidence for either d or s wave.

For systems with only electron pockets, like AxFe2−ySe2

Fe selenides, RPA calculations within five-band Hubbard-type
model [21,37–40] (the one which neglects doubling of the unit
cell due to nonequivalent positions of Se compared to Fe plane)
and fRG calculations [40] yielded d-wave superconductivity
due to a repulsion between electron pockets, while calculations
within a metallic model with a purely magnetic spin-spin
interactions between first and second neighbors (a metallic
version of the J1 − J2 model) yielded [41] a conventional
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s-wave pairing as in this model the interaction between
electron pockets turns out to be attractive. On the experimental
side, ARPES experiments, particularly recent measurements
of the superconducting gap along a small electron pocket
centered at kz = π and kx = ky = 0 in the actual (2Fe) zone
[42], were interpreted as strong evidence for s-wave gap
symmetry because the measured gap was argued to have
only weak angular dependence, far from | cos 2θ |, expected
for a d-wave state. At the same time, neutron scattering
measurements on AxFe2−ySe2 showed [43,44] spin resonance
in the superconducting state, which most, but not all [45],
researchers interpret as evidence for the sign change of the gap.
Recently, two of us considered [46] the pairing in AxFe2−ySe2

within the model, which includes the hybridization between
the electron pockets due to hopping via Se, and found
another s+− state, in which the gap changes sign between the
hybridized bonding- antibonding electron pockets. This “other
s+−” state was originally proposed in Ref. [47]. This state
is s-wave, yet it supports spin resonance [48], in agreement
with both ARPES and neutron scattering measurements. For
repulsive interaction between electron pockets, this “other”
s+− state competes with a d-wave state, and the winner of
the competition is determined by the ratio of the hybridization
and the (energy equivalent of) the ellipticity of the electron
pockets [46]. If this ratio is small, d-wave wins, if it is large,
s+− wins. In between, the system develops a mixed s + id

superconductivity at low temperatures. For parameters relevant
to AxFe2−ySe2, the ratio of hybridization and ellipticity is of
order one, and the couplings in s+− and d-wave channels
are attractive and comparable in strength. In this respect, the
situation at strong electron doping is quite similar to the one
in strongly hole-doped materials.

The presence of two different attractive channels in FeSCs
and the uncertainty, both at the experimental and the theoretical
level, about the pairing symmetry in systems with only hole or
only electron pockets clearly calls for measurements that can
probe both pairing channels and, in particular, detect features
associated with the subleading pairing channel, i.e., the one
which does not cause superconductivity but is nevertheless an
attractive one. The problem of this kind was considered by
Bardasis and Schrieffer (BS) back in 1961 (Ref. [49]). They
argued that the subleading attractive pairing interaction gives
rise to a collective mode at an energy below 2�, where �

is the superconducting gap generated by the primary pairing
interaction. The presence of a collective mode below 2� is
the direct consequence of residual attraction in this subleading
channel. BS considered the case when the largest interaction
is in s-wave channel and the gap � is a constant along the
FS, but the analysis can be equally applied to cases when the
leading pairing interaction is in a channel with nonzero angular
momentum. The only difference is that in this situation � has
nodes and the excitonic BS mode should have a nonzero rate
of damping into particle-hole continuum.

It has been argued [27,50] that that BS-type mode can be
detected by Raman scattering, by analyzing Raman response
in the subleading attractive channel. A detection of the
resonance in this channel at a finite energy below 2� would
indicate that (i) this channel is secondary and does not cause
superconductivity and (ii) this channel is nevertheless an
attractive one. Furthermore, the position of the peak would

indicate to what extent this second channel is a competitor; if
the mode is close to 2�, the attraction in the secondary channel
is weak compared to that in the leading channel, while if the
mode frequency is near zero, the second channel is a strong
competitor and can become the leading pairing channel upon
a modest change of system parameters.

For FeSCs with both hole and electron pockets present, the
analysis of BS mode in the Raman profile has been presented
in Ref. [50]. It was argued that B2g Raman intensity should
have a strong peak at a frequency of a BS collective mode (here
and below we use the 2FeBZ notations in references to Raman
geometry). The observation of BS mode has been reported by
Kretzschmar et al. in Ref. [51].

In this communication we analyze the form of Raman
profile in AxFe2−ySe2 Fe selenides. Like we said, these
systems have only electron pockets, as evidenced from both
first-principle calculations [52–54] and ARPES measurements
[42,55–59]. We assume that the interaction between the
two electron pockets is repulsive. The pairing state in the
absence of the hybridization between the electron pockets
is d-wave, but the hybridization brings in a possibility for
s+− superconductivity in which the gap is s-wave, but it
changes sign between the two hybridized electron pockets
[46,47,60]. The fact that the s-wave state emerges due to
hybridization makes the analysis of the Raman intensity in
AxFe2−ySe2 Fe selenides more involved compared to earlier
analysis [22,50,61] of Raman scattering in systems with both
hole and electron pockets, for which hybridization effects play
little role and can be safely neglected.

We assume, as ARPES data indicate, that the supercon-
ducting state in AxFe2−ySe2 has s+− symmetry and analyze
Raman profile in B2g d-wave geometry. We show that in
idealized situation of weak impurity-induced damping the B2g

Raman intensity has two distinct near-δ-functional peaks. One
peak is the BS mode caused by an attraction in the d-wave
channel, the other is a particle-hole exciton, which exists
because the d-wave density-density interaction is attractive.
The BS mode and particle-hole exciton are coupled, but
we show that the coupling is parametrically weak in a s+−
superconductor (the contributions from the two pockets with
different gap signs almost cancel each other, and the net result
is nonzero only due to a finite ellipticity of electron pockets).
As a result, the two distinct peaks survive at small damping.
At larger damping, the intensity fills in the region between the
peaks and Raman intensity acquires a shoulderlike form. If
the gap was a conventional, sign-preserving s-wave, the form
of Raman profile would be very different as in this case the
coupling between BS mode and particle-hole exciton is strong
and only one combined peak develops below 2�.

We show that in our s+− case one of the two in-gap modes
softens at the boundary between s− and s + id states. This
mode becomes indistinguishable in this limit from the original
BS mode because the BS mode and the exciton in the particle-
hole channel necessarily decouple at zero frequency. We show
that the form of BS mode implies that the system develops
s + id and not s + d order, i.e., time-reversal symmetry gets
broken in the mixed state.

We compare the structure of the theoretical B2g Raman
intensity below Tc with the data for K0.75Fe1.75Se2, reported
in the Ref. [62]. Figure 1 illustrates the Raman data in the
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FIG. 1. (Color online) Low-frequency Raman response from
K0.75Fe1.75Se2 superconductor in right-left scattering polarization
channel in the normal state, at T = 41 K (red), and in superconducting
state at T = 3 K (blue), from Ref. [62]. The upper panel shows the
response with contributions from phonons subtracted, as discussed
in Ref. [62]. The in-gap modes are found in the energy interval
8 meV � ω � 11 meV.

frequency interval where the enhancement of the Raman
intensity below Tc has been observed. We argue that the
observed enhancement of the Raman intensity is consistent
with the broadened double peak structure which we find
theoretically. The in-gap modes are observed at T = 3 K in
the interval 8 meV � ω � 11 meV. The ARPES measurements
give � ≈ 10 and ≈8 meV on a large Fermi surfaces according
to Refs. [42] and [63], respectively. Reference [42] gives 7 meV
on a small symmetric κ electron pocket. These data place the
energy of an in-gap modes observed in Ref. [62] well below
2�. This indicates that the in-gap modes are strongly bound
in K0.75Fe1.75Se2, i.e., d-wave state is a strong competitor to
s-wave state.

The paper is organized as follows. In the Sec. II, we review
the pairing scenarios in AFe2Se2 (A = Rb, K, Cs) compounds,
and formulate the model for the description of our Raman data.
The calculation of the Raman intensity in s+− state is discussed
in Sec. III. We present our conclusions in Sec. IV.

II. COMPETITION BETWEEN s AND d-WAVE ORDERS IN
AFe2Se2 MATERIALS

In this section, we review the theoretical scenario which
leads naturally to the competition between s-wave and d-wave
pairing states. In Sec. II A, we describe the model in which
the relative pairing strength in the two channels is controlled
by the geometry of the electron pockets and the interpocket
hybridization. This model will also allow us to include density
fluctuations in the d-wave channel. Our goal is to describe a
double-peak structure in B2g geometry below Tc for s-wave
symmetric ground state.

A. The model

We follow [46] and consider the two-band model with
generic short-range interactions. The model Hamiltonian
contains the kinetic energy and the interactions. The kinetic

energy is quadratic in fermion operators and describes the
excitations near the two Fermi pockets located at (0,π ) and
(π,0) in the 1FeBZ. We define f

†
1(2)k as the creation operator

for electrons from the pocket at (0,π ) [(π,0)], and in each
case count k as the momentum relative to the center of the
corresponding pocket. The quadratic part of the Hamiltonian
H = H2 + Hint is

H2 =
∑
n=1,2

∑
k

ε
(n)
k f

†
nkfnk +

∑
k

λ(f †
1kf2k + f

†
2kf1k), (1)

where the first term describes fermionic dispersion in 1FeBZ,
and the second term describes interpocket scattering with
momentum transfer Q = (π,π ). This second term hybridizes
the two pockets. It is allowed because the physical BZ is 2FeBZ
due to two nonequvalent position of Se atoms staggered out of
the Fe planes in a checkerboard fashion [47,60].

For simplicity we neglect the out-of-plane dispersion, i.e.,
consider effective 2D problem. Although such an approxima-
tion has to be applied with caution to describe finite momentum
probes such as inelastic neutron scattering [48], we can safely
use the 2D approximation to describe the zero momentum
Raman response.

The simplest model dispersion yielding two elliptical
FSs is

ε
(1,2)
k = k2

x

2mx,y

+ k2
y

2my,x

. (2)

We set mx < my , in which case the Fermi pocket centered at
(0,π ) has its major semiaxis along the ky axis.

The quartic interaction Hamiltonian is the sum of four terms
allowed by symmetry:

H1 = u1

2

∫
dx(f †

1σ f
†
2σ ′f2σ ′f1σ + f

†
2σ f

†
1σ ′f1σ ′f2σ ),

H2 = u2

2

∫
dx(f †

1σ f
†
2σ ′f1σ ′f2σ + f

†
2σ f

†
1σ ′f2σ ′f1σ ),

(3)
H3 = u3

2

∫
dx(f †

1σ f
†
1σ ′f2σ ′f2σ + f

†
2σ f

†
2σ ′f1σ ′f1σ ),

H4 = u4

2

∫
dx(f †

1σ f
†
1σ ′f1σ ′f1σ + f

†
2σ f

†
2σ ′f2σ ′f2σ ).

In Eq. (3), H1 and H2 are interband density-density and
exchange interactions, H4 is the intraband density-density
interaction, and H3 describes the umklapp pair-hopping
processes. The interactions with excess momentum Q do not
play a role in the present analysis and we omit them. For
the underlying orbital model with local Hund and Hubbard
interactions, u1 + u2 = u4 − u3 (Ref. [46]). For simplicity, we
assume that this condition holds. If it does not, the values of the
couplings ud and uρ in our consideration below will change,
but the overall form of the Raman response will remain the
same.

Two of us demonstrated in Ref. [46] that the supercon-
ducting OP in the model specified by Eqs. (1) and (3) has
s-, d-, or s + id symmetry depending on the ratio κ = λ/δε

of the hybridization amplitude λ and the energy scale δε,
related to ellipticity. The latter is determined by a typical
energy separation, δεk = ε

(1)
k − ε

(2)
k between the unhybridized
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FIG. 2. (Color online) Phase diagram of AFe2Se2 in (κ,T ) plane.
At high temperatures, the system is in the normal state. For κ < κ∗

(κ > κ∗) the transition occurs to the d-wave s+− state. The two normal
to superconductor transitions merge at the tetra-critical point, (κ∗,T ∗).
For T < T ∗, the system is in the d-wave state at 0 < κ < κ∗

1 (T ),
in s+− state for κ > κ∗

2 (T ) and the intermediate s + id phase with
broken time-reversal symmetry is obtained at κ∗

1 (T ) < κ < κ∗
2 (T ).

The inset shows the energy of BS mode in the s+− state in units of the
s+− OP, and the dashed line shows the minimal energy of quasiparticle
excitations. The BS mode softens closer to the transition to the s + id

state.

pockets. In explicit form, the parameter κ is

κ = λ

EF

μ−
μ+

, μ−1
± = 1

2

(
m−1

x ± m−1
y

)
. (4)

The parameter κ can be equally viewed as the ratio of the
dimensionless hybridization λ/EF to the combination μ+/μ−,
which characterizes the degree of pocket ellipticity.

The phase diagram of the system is shown in Fig. 2. The OP
just below Tc(κ) has s(d)-wave symmetry for κ > (<)κ∗. Near
κ = κ∗, there exists an interval κ1(T ) < κ < κ2(T ) where the
OP symmetry is s + id. This interval extends from a point at
T = Tc(κ∗), to a finite range κ1 < κ < κ2 at T = 0. For our
model with u1 + u2 = u4 − u3, κ∗ = 1/

√
3.

The quadratic part of the Hamiltonian (1) can be diagonal-
ized by transforming to new fermionic operators ak and bk

satisfying

ak = f1k cos θk + f2k sin θk ,
(5)

bk = −f1k sin θk + f2k cos θk,

where the angle of rotation in the orbital space is defined by

cos 2θk = δεk/2√
λ2 + (δεk)2/4

,

(6)
sin 2θk = λ√

λ2 + (δεk)2/4
.

The electron states created by operators a
†
k and b

†
k were termed

antibonding and bonding states in Ref. [7] and we follow
their notations. In this work, we focus on the domain κ >

κ2(T ) where the OP has an s+− symmetry. The quasiparticle
dispersion is determined by the eigenvalues of the inverse
Green function, which in the mean-field approximation takes

the form

Ĝ−1
ε,k =

⎡
⎢⎢⎢⎣

−iε + ξa
k sk�s 0 ck�s

sk�
∗
s −iε − ξa

k ck�
∗
s 0

0 ck�s −iε + ξb
k −sk�s

ck�
∗
s 0 −sk�

∗
s −iε − ξb

k

⎤
⎥⎥⎥⎦,

(7)

where ξ
a,b
k are the energies of bonding and antibonding states

counted relative to the Fermi level EF ,

ξ
a,b
k = 1

2

(
ε

(1)
k + ε

(2)
k

) − EF ± 1
2

√(
ε

(1)
k − ε

(2)
k

)2 + 4λ2. (8)

In Eq. (7), we introduced shortened notations ck = cos 2θk,
sk = sin 2θk.

The matrix propagator in Eq. (7), in general, does not
reduce to the block-diagonal form because of off-diagonal
entries ck�s , which describe interpocket pairing of a and b

fermions. Such a pairing is contained in the term ∝ck�sa
†
kb

†
k

in the mean-field Hamiltonian. This term is allowed by
symmetry, and intraband correlations ∝ck�sa

†
kb

†
k are induced

by proximity even when the superconductivity is driven by
intraband pairing [64,65]. At the same time, the terms ∝ck�s

affect only states with momenta k such that ξa
k + ξb

k � �s .
The momenta satisfying this condition fall in between of the
two hybridized Fermi surfaces and are separated from the
Fermi level by an energy of the order max{λ,δε}. If �s �
max{λ,δε}, interpocket contributions are parametrically small
compared to contributions from intrapocket pairing terms in
the Hamiltonian. To simplify presentation, we assume that the
condition �s � max{λ,δε} holds and neglect ck�s terms in
Eq. (7). With this simplification, the mean-field Hamiltonian
can be approximated by a block-diagonal form:

Ĝ−1
ε,k ≈

⎡
⎢⎢⎢⎣

−iε + ξa
k sk�s 0 0

sk�
∗
s −iε − ξa

k 0 0

0 0 −iε + ξb
k −sk�s

0 0 −sk�
∗
s −iε − ξb

k

⎤
⎥⎥⎥⎦.

(9)

It is convenient to introduce extended Nambu notations,

χ
†
k = [χ †

k,a1,χ
†
k,a2,χ

†
k,b1,χ

†
k,b2] = [a†

k,↑,a−k,↓,b
†
k,↑,b−k,↓] .

(10)

The Pauli matrices τi , i = 1,2,3 act on Nambu indices within
each subband, and the other set of Pauli matrices �i with
i = 1,2,3 is operating in the space of the two subbands. For
the block-diagonal structure of Eq. (9), its inverse in Nambu
notations is

Ĝε,k = G+
ε,k + �3G

−
ε,k, G±

ε,k = 1
2

(
G

(a)
ε,k ± G

(b)
ε,k

)
, (11)

where

G
(a,b)
ε,k = iε + τ3ξ

a,b
k ± τ1sk�s

ε2 + (
ξ

a,b
k

)2 + s2
k�

2
s

. (12)

B. Raman susceptibility

The two-photon Raman scattering cross-section IR(ω) is
related to the imaginary part χ ′′(ω) of the retarded Raman
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susceptibility, χ (ω) by a standard relation:

IR(ω) = 2 [1 + nB(ω)] χ ′′(ω) (13)

with the Bose factor, nB(ω) = (eω/T − 1)−1. The retarded
Raman susceptibility,

χ (ω) = −i

∫ ∞

0
dt exp(iωt) 〈r̂(t)r̂(0) − r̂(0)r̂(t)〉 , (14)

where r̂(t) is the Raman operator. In a general case [66–68],
the Raman operator contains two contributions—the second-
order contribution associated with fermion current (the first
derivative of the fermion dispersion over momentum) and the
first-order contribution associated with the inverse effective
mass (the second derivative of the dispersion over momentum).
The first contribution is important in the resonance regime,
when the incoming fermionic frequency is adjusted to match
a typical frequency of particle-hole excitations (Hubbard U in
case of Hubbard insulator) (Refs. [68,69]). In the nonresonance
regime, which we consider here, the second-order current
contribution to the Raman vertex is not much different from
the direct first-order contribution, and we can safely restrict
with the inverse mass term. In this approximation, the Raman
operator

r̂ =
∑

k,i,j,(n)

eI
i M

(n)
ij eS

j (15)

is determined by the polarization vectors of incoming and
scattered photons, eI,S and the effective mass tensor M

(n)
ij =

∂2ε(n)(k)/∂ki∂kj of an nth band [66,67]. We focus on the B2g

Raman configuration [61,70] relative to the (folded) 2FeBZ
(which becomes B1g in the unfolded, 1FeBZ due to 45◦ rotation
between coordinate systems in the folded and unfolded zones).
The polarization vectors for B2g polarization are eI,S = (x̂ ±
ŷ)/

√
2, where the x̂ and ŷ are orthogonal unit vectors. For the

dispersion relation (2), we obtain from Eq. (15),

r̂B2g
= 2μ−1

−
∑

k

(f †
1kf1k − f

†
2kf2k) . (16)

If the pockets were circular the B2g Raman response would
vanish by symmetry. At a nonzero ellipticity, this is no longer
the case and B2g Raman intensity becomes finite. In the
hybridized basis (5), the Raman vertex (16) takes the form

r̂B2g
= 2μ−1

−
∑

k

[ck(a†
kak − b

†
kbk) − sk(a†

kbk + b
†
kak)]. (17)

The condition �s � max{λ,δε}, which allowed us to approx-
imate Eq. (7) by Eq. (9), also allows us to neglect interband
contribution to the Raman vertex in Eq. (17), i.e., approximate
r̂B2g

by

r̂B2g
≈ 2μ−−1

∑
k

ck(a†
kak − b

†
kbk) . (18)

The Raman vertex in Eq. (18) describes the coupling of light
to d-wave density fluctuations. The d-wave symmetry of the
vertex Eq. (18) is encoded in ckx,ky

= −cky,−kx
. Crucially, this

Raman vertex Eq. (18) allows for the coupling to fluctuations
of the d-wave superconducting OP. The coupling occurs via
the triangular vertex, which involves one normal and one
anomalous Green function and one interaction line in d-wave

χ(a)

(b)

(c)

FIG. 3. (Color online) (a) Diagramatic representation of the Ra-
man susceptibility, χ ′′. (b) p-h and (c) Cooper Raman vertices within
the ladder approximation. Vertex renormalizations (often called final
state interaction in Raman literature) represent multiple interactions
in particle-hole channel and processes which convert particle-hole
into particle-particle channel and include multiple scattering events
in the particle-particle channel.

particle-particle channel, see Fig. 3. This triangular vertex does
not vanish by symmetry because both r̂B2g

and s+− gap change
sign between the hybridized bands. The coupling to d-wave
particle-particle channel gives rise to BS modes, as we discuss
in the next section.

III. THE RAMAN INTENSITY IN s+− STATE

In this section, we calculate the Raman intensity, Eq. (14)
assuming that the superconducting state has s+− symmetry.
Equations (14) and (18) show that the Raman intensity
is determined by the correlation function of the d-wave
density operator, ck(a†

kak − b
†
kbk), which in Nambu notations,

Eq. (10), reads

ck

∑
σ

(a†
kσ akσ − b

†
kσ bkσ ) = ckχ

†
k [τ3�3] χk , (19)

where, as before, τi , i = 1,2,3 are Pauli matrices acting on
Nambu indices within each subband, and �i , i = 1,2,3 operate
in the space of the two subbands.

To leading (zero) order in the interaction, χ ′′(ω) is pro-
portional to the convolution of the two fermionic propagators
with d-wave vertices. Interactions lead to two types of effects.
First, d-wave particle-hole vertex gets dressed by d-wave
density-density interaction. If this interaction is attractive,
one can expect an excitonlike resonance below 2�, where
� is s+− gap. Second, a triple vertex, which we discuss at
the end of the previous section converts a d-wave particle-hole
propagator into a d-wave particle-particle propagator. The
latter then gets dressed by the d-wave interaction on the
particle-particle channel. If the latter is attractive, one can
expect another resonance below 2�, which is a d-wave BS
mode. As a result, the Raman profile below 2� can have two
peaks. In the presence of impurity scattering, the two peaks
get broadened, and one should generally expect the Raman
intensity to get enhanced in a finite frequency range below
2�.

We show below that this is indeed what we obtain in the
calculations. Before we proceed, we note that, in general, there
can be two resonance modes in the particle-particle channel,
one is associated with the longitudinal fluctuations of the d-
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wave superconducting order parameter, another is associated
with phase fluctuations. Let us assume for definiteness that
the ground state s+− OP is real. Then the two modes describe
fluctuations of the real and the imaginary part of the d-wave
OP. This was realized already by BS. In the present context,
the collective variables describing these two modes of OP
oscillations are

ck[(ak↓ak↑ + a
†
k↑a

†
k↓) − (a → b)] = ckχ

†
k [τ1�3] χk, (20a)

ick[(ak↓ak↑ − a
†
k↑a

†
k↓) − (a → b)] = ckχ

†
k [τ2�3] χk. (20b)

Note similar structure of the operators (19) and (20). We define
the matrix correlation function with entries

χ̂αβ = 〈τ̂ατ̂β〉ω (21)

defined as Matsubara Green functions of collective variables,

τ̂ =
∑

k

ckχ
†
k [τ�3] χk. (22)

The Raman susceptibility, Eq. (14) is

χ ′′(ω) = Im [χ̂33(ω)] . (23)

To compute χ ′′(ω), we project the interaction Hamiltonian,
Eq. (3), on the s- and d-wave Cooper channels and the d-wave
density channel:

Hint ≈ V s
C + V d

C + V d
ρ . (24)

Keeping only the parts of the interaction Hamiltonian, which
contain intraband processes, we obtain

V s
C = −us

2

∑
k,k′

∑
σ,σ ′

sk(a†
k,σ a

†
−k,σ − b

†
k,σ b

†
−k,σ )

× ck′(ak′,σ ′a−k′,σ ′ − bk′,σ ′b−k′,σ ′), (25a)

V d
C = −ud

2

∑
k,k′

∑
σ,σ ′

ck(a†
k,σ a

†
−k,σ − b

†
k,σ b

†
−k,σ )

× ck′(ak′,σ ′a−k′,σ ′ − bk′,σ ′b−k′,σ ′), (25b)

V d
ρ = −uρ

2

∑
k,k′

∑
σ,σ ′

ck(a†
k,σ ak,σ − b

†
k,σ bk,σ )

× ck′(a†
k′,σ ′ak′,σ ′ − b

†
k′,σ ′bk′,σ ′). (25c)

The interaction amplitudes are (see Ref. [46] and
Appendix B)

ud = 1
2 (u3 − u4) , us = − 1

2 (u1 + u2)
(26)

uρ = u1 − 1
2 (u2 + u4) .

The interactions in the d-wave channel, Eqs. (25b) and (25c),
can be conveniently rewritten in terms of the collective
variables introduced in Eq. (22) as

V d
C = −ud

2
τ̂+τ̂− , V d

ρ = −ud

2
τ̂3τ̂3 , (27)

where τ̂± = τ̂1 ± iτ̂2.
In our case the “amplitude” mode, Eq. (20a) is coupled

neither to the “phase” modes nor to density fluctuations in
the d-wave channel, Eq. (16), and therefore does not show
up in the Raman response. We therefore can safely neglect the

“longitudinal” mode of d-wave OP and truncate the matrix Eq.
(21) to a two-by-two matrix with indices α,β = 2,3. Projecting
the amplitude mode simplifies the d-wave Cooper channel to
V d

C in (27) to V d
C = −(ud/2)τ̂2τ̂2.

The full Raman intensity is obtained by combining the
processes with multiple interactions in particle-hole channel
and processes that convert particle-hole into particle-particle
channel and include multiple scattering events in the particle-
particle channel. We compute χ ′′(ω) by summing up series
of ladder diagrams in the particle-particle and particle-hole
channels. The corresponding diagrams are shown in Fig. 3.

In analytical form, we have

χ̂ = �̂(Î + V̂ �̂)−1 , (28)

where �̂ is the noninteracting χ̂ matrix, Î is the two-by-two
unit matrix, and the matrix

V̂ = 1

2

[
ud 0

0 uρ

]
. (29)

Equations (28) and (29) give for the Raman susceptibility,
Eq. (23)

χ ′′(ω)

= Im

[ −ud�32�23/2 + �33(1 + ud�22/2)

(1 + ud�22/2)(1 + uρ�33/2) − uduρ�23�32/4

]
.

(30)

The matrix elements of the polarization operator are

�ij (ω) =
∫

dε

2π

∫
dk

(2π )2
Tr[Ĝ(ε + ω,k)τ̂iĜ(ε,k)τ̂j ]. (31)

In Eq. (31), the Green function is defined in Eq. (9) and the
trace is taken over the extended Nambu indices. We present
the details of the calculation of the elements of Eq. (31) in
Appendix A, and here quote the result :

�22 = − 2

u

[ 〈c2〉
〈s2〉

]
− 2

〈c2〉
〈s2〉 〈s

2 ln s2〉 + 2〈c2 ln s2〉

− 4x

〈
c2 arcsin (x/s)√

s2 − x2

〉
(32a)

�23 = �∗
32 = −4i

〈
F(μ+/μ−; κ,φ)

arcsin(x/s)√
s2 − x2

〉
(32b)

�33 = −4

〈
c2s2 arcsin (x/s)

x
√

s2 − x2

〉
. (32c)

In Eq. (32), we use the dimensionless variable x = ω/(2�s)
and the angular brackets, 〈. . .〉 indicate averaging over the
directions of the vector k specified by the angle φ, which
vector k forms with the kx axis in the BZ.

The magnitude of the off-diagonal polarization operator,
Eq. (32b) is determined by the dimensionless function F ,
which depends on the interplay between superconducting
gaps on the bonding and antibonding Fermi surfaces. For a
conventional sign-preserving superconducting OP F = 1. In
our case, F is strongly reduced. To see this we note that
�23 contains products of the normal and anomalous Green
functions and is therefore an odd function of the s+− OP, �s .
The contributions from the bonding and antibonding bands
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then have opposite signs and tend to cancel. The cancellation
would be exact if the Fermi pockets were circular. In our case
of elliptical pockets, the cancellation is not complete and in the
limit of weak ellipticity and hybridization, {λ/EF ,μ+/μ−} �
1 but κ = O(1), we obtain (see Appendix A2 for details)

F
(

μ+
μ−

� 1; κ,φ

)
≈ μ+

μ−

[
2c2

ks
2
k − c4

k(1 + κ)
]

. (33)

The proportionality of F to μ+/μ− is the key result here. We
see that the term, which mixes contributions from particle-
hole and particle-particle channels, is parametrically small
for s+− superconductivity and near-circular pockets. The
angle-dependent term in Eq. (33) is not important as it yields
O(1) after angular integration. By this reason, in numerical
calculations below, we approximate F(μ+

μ−
� 1; κ,φ) by

F
(

μ+
μ−

� 1; κ,φ

)
≈ μ+

μ−
. (34)

In the limit of strong ellipticity, μ+/μ− = O(1) and F is a
nonuniversal number of order one.

It is clear from Eq. (30) that the Raman susceptibility is
peaked at the frequencies where the denominator in Eq. (30)
vanishes. In the absence of the coupling between particle-
hole and particle-particle channels, i.e., at �23 = �32 = 0,
the two poles in χ ′′ at ω < 2� would correspond to two
distinct collective modes: a BS mode at 1 + ud�22/2 = 0 and
a particle-hole exciton at 1 + uρ�33/2 = 0. In both cases,
to obtain the corresponding mode one needs an attractive
interaction. In our case, both ud and uρ are positive, i.e.,
both collective excitations are present and are Raman-active.
The existence of Raman-active particle-hole excitons in Fe
pnictides is not new: earlier an s-wave particle-hole exciton
was argued to be present in A1g Raman channel in systems
with both hole and electron pockets [22].

At a nonzero �23, the two modes get coupled, but, as
long as the coupling is small and the mode frequencies are at
some finite distance from each other, the two-pole structure of
χ ′′(ω) at ω < 2� survives, although each collective excitation
becomes a mixture of an exciton and a BS mode.

In Fig. 4, we show the behavior of the two modes as a
function of κ with and without the mixing term. The upper
mode is predominantly an exciton, the lower one is a BS
mode. The two modes repel each other, as it is expected as
the “coupling term” in Eq. (30) is repulsive.

The frequencies of the modes in the two channels as well
as the energies of the actual, coupled excitations are shown
in Fig. 4 as a function of the parameter κ . These results are
obtained by numerically performing angular integrations in
the Eqs. (32a)–(32c) and finding the roots of the equation
det[χ̂(x)] = 0. The BS mode softens when the parameter κ

decreases towards the critical value κ = κ2 and the system
undergoes the transition from s+− to s + id superconductor.
We emphasize that the “phase” mode rather than the “ampli-
tude” mode becomes critical. The “phase” excitations are in
the direction transverse to the direction of the phase of the
s+− OP. Hence a condensation of the phase mode implies
that the resulting state is s + id. This is consistent with the
GL analysis in [46]. If, instead, longitudinal mode would
soften, the resulting state would be s + d. We also note that

κ

ω 2 s

0.611525 0.65 0.7 0.75

0.2

0.4

0.6

FIG. 4. (Color online) B2g collective modes (solid lines) of an
s+− superconductor at T = 0 (the superconducting gap changes sign
between the two hybridized Fermi pockets). The energies of the
collective excitations are plotted as functions of the dimensionless
parameter κ introduced in Eq. (4). The energies are in units of 2�s ,
where �s is the magnitude of s+− superconducting OP. The modes are
shown in the interval κ > κ2 ≈ 0.611 525 (see Fig. 2). At the energies
of the two modes the denominator in Eq. (30) vanishes, giving rise to
the δ-functional peak in the Raman intensity χ ′′. We used Eqs. (32) for
the polarization operators �ii in Eq. (30) and used the approximate
form for �23, (34). The parameters used in the calculation are
ud = 0.4, uρ = 0.6, μ+/μ− = 0.15. The lower (red) and upper(blue)
dashed lines are obtained in the limit �23 = �32 = 0, and represent
the BS mode and a particle-hole exciton, respectively. The coupling
between the two channels mixes the BS mode and p-h exciton.
This coupling is, however, weakened for s+− gap superconductivity
and scales with the degree of ellipticity of electron pockets. The
shaded area is the quasiparticle continuum whose lower boundary
is defined by 2�s(κ/

√
κ2 + 1). This boundary approaches 2�s for

large hybridization, κ � 1.

the transition from s to s + id at κ = κ2(T = 0) breaks a
discrete time reversal symmetry (an Ising-type transition) and
therefore does not lead to the appearance of a Goldstone
mode. As a result, the BS mode must bounce back to a
finite value at κ < κ2. Finally, we note that the softening
of the BS mode is not affected by the particle-hole exciton.
Combined mode softens because the BS mode and the exciton
decouple at ω = 0. Indeed, one can easily find from (32b)
that �23(x = 0) = 0. From physics perspective, the vanishing
of the coupling is the consequence of the fact that the phase
of a superconducting OP enters the quantum action only via
spatial or temporal derivatives and hence the coupling between
the phase mode and other modes must vanish at zero frequency.

The Raman susceptibility calculated by substitution of
Eq. (32) into Eq. (30) is shown in Fig. 5. In an idealized case
of vanishingly small damping, the Raman intensity contains
two nearly δ-functional peaks, the lower one is predominantly
a BS mode, the upper one is predominantly an exciton in the
particle-hole channel. At higher degree of disorder, the peaks
get broader and intensity in the region between the peaks gets
increased.

Figure 6 illustrates this build up of the Raman intensity
for the specific choice of parameters. The peaks at lower
and higher energies represent the BS and exciton modes
respectively the same way as in Fig. 5. Except in the immediate
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ω 2 s

χ ''
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FIG. 5. Calculated Raman susceptibility, χ ′′ as a function of the
dimensionless frequency, ω/2�s for the fixed κ = 0.62 > κ2. The
two peaks represent in-gap modes corresponding to the two solid
lines in Fig. 4. The parameters are the same as in Fig. 4. The
continuum starts once the frequency enters the shaded area in Fig. 4.
The small imaginary part 0.003(2�s) was added to the frequency for
regularization.

vicinity of the boundary between the s+− and s + id phases
the two modes have roughly similar binding energies of the
order of �, see Fig. 4. The mixing between the two channels
tend to repel the two modes in frequency similar to a familiar
level repulsion, which is also shown in Fig. 4. In the case of
s+− OP, however, such a mixing is a weak effect, and the peaks
will, in general, stay close in energy.

In the presence of the disorder and inhomogeneous
broadening, the frequency interval between the two peaks
is filled up below the superconducting transition. This trend
is in agreement with the experimental results reproduced
in Fig. 2.

IV. CONCLUSIONS

In this paper, we analyzed the Raman response of an
AFe2Se2 superconductor assuming that the symmetry of the
superconducting state is the “other” s+− state [46,47], in
which the gap is s-wave, but it changes sign between the two

ω 2 s

χ ''

0. 0.2 0.4 0.60

10

20

FIG. 6. Calculated Raman susceptibility, χ ′′ as a function of the
dimensionless frequency, ω/2�s for the fixed κ = 0.63 > κ2. The
two peaks represent in-gap modes corresponding to the two solid
lines in Fig. 4. The parameters used in the calculation are ud = 0.4,
uρ = 0.98, μ+/μ− = 0.05. The finite imaginary part 0.07(2�s) �
2�s is added to the frequency to simulate the effect of the disorder
induced smearing.

0.0 0.5 1.0 1.5 ω 2 s0.0

0.2

0.4

0.6

0.8

χ ''

FIG. 7. (Color online) Raman intensity, χ ′′
r,r as a function of x =

ω/2�s . Solid (black) line is obtained by substitution of Eqs. (C3b),
(C5), and (C6) in Eq. (30) for us = 0.5, ud = 0.4, and uρ = 0.2.
Dashed (red) line is calculated Raman intensity with only Cooper
channel included, uρ = 0. Dashed (blue) line is calculated Raman
intensity with only particle-hole channel included, ud = 0. A small
imaginary part is added to the frequency for illustration purposes,
x → x + i�, � = 10−5. The quasiparticle continuum is shown only
for the full Raman susceptibility.

hybridized electron pockets. We focused on Raman response
in B2g channel in the actual 2Fe BZ.

We found that B2g Raman susceptibility at T = 0 exhibits
the double-peak structure, Fig. 5. The two peaks correspond to
two distinct in-gap B2g symmetric collective modes. The first
mode is the BS mode in the Cooper channel, and its existence
is due to the fact that the pairing interaction in the d-wave
channel is weaker than that in s+− channel, but nevertheless is
attractive. The second mode is the exciton in the particle-
hole channel. This mode emerges because density-density
interaction in B2g channel is also attractive. The d-wave
attraction emerges from the original Hubbard-type repulsion
because density-density interaction in the B2g channel changes
sign between the two hybridized electron pockets. This sign
reversal is akin to the transformation of the Hubbard repulsion
into a attraction in s+− Cooper channel. This situation should
be contrasted with that in a single band superconductors where
the interaction in the particle-hole channel is, in general, a
repulsive one.

In a generic situation, the BS mode and particle-hole exciton
are strongly mixed in which case only a single undamped
in-gap mode survives, the other is pushed above 2� threshold
(see Fig. 7). This does not happen for s+− superconductor
as the vertex which couples particle-particle and particle-hole
channels is an odd function of an s+− gap, and the contributions
to this vertex bonding and antibonding Fermi pockets nearly
cancel each other, the net result remains finite only due
to a finite ellipticity of electron pockets. As a result, both
modes remain below 2� and the Raman intensity χ ′′(ω)
has two distinct peaks, Fig. 4. The decoupling between the
two channels becomes exact at the boundary between s+−
and s + id phases, at κ = κ2 along T = 0 line on the phase
diagram in Fig. 2.

We compared our results with B2g Raman data for
K0.75Fe1.75Se2, reported in Ref. [62]. The double-peak struc-
ture of χ ′′(ω) combined with inhomogeneous broadening gives
rise to Raman profile with intensity enhanced in a finite
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frequency window below 2� (see Fig. 6). We argue that this
is quite consistent with the data. We note that the interval
between the two peaks can be filled with the B2g intensity due
to the higher order processes originating form nonlinear mode
coupling [71].
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APPENDIX A: CALCULATION OF THE POLARIZATION
OPERATORS

In this section, we give details of calculation of the polar-
ization operators as defined by the Eq. (31). The calculation of
diagonal polarization operators, �22 and �33 differs from the
calculation of the off-diagonal polarization operators, �23 and
�32 in two respects. First, the diagonal polarization operators
require regularization at the ultraviolet, while the off-diagonal
polarization converge well enough to make it possible to
integrate over the momentum and energy in arbitrary order.

The second difference is that while for the diagonal
polarization operators the difference in the density of states
is inessential, it is crucial in the case of the off diagonal
polarization operators. Hence we consider the two cases
separately.

1. Diagonal polarization operators �22 and �33

In all the integrations here, the small difference in the
density of states for the subbands a and b is neglected and both
species then contribute equally. This results in extra factor of 2
compared for a single band case. We start with the calculation
of �22. We decompose it into

�22(x) = �22(0) + [�22(x) − �22(0)], (A1)

where the first peace contains a logarithmic ultraviolet diver-
gence, while the second piece is well-convergent, and can be
easily evaluated to give

�22(x) − �22(0) = −4x

〈
c2 arcsin (x/s)√

s2 − x2

〉
. (A2)

The first, a static term in (A1) reads

�22(0) = −4

〈
c2 ln

2�

s�s

〉
, (A3)

where � is the ultraviolet cutoff. To eliminate it in favor
of coupling constants, we consider the self consistency
equation on the s-wave order parameter in the s+− phase,

κ > κ2(T = 0),

1

us

−
∫

dξ

∫
dε

2π

〈
s2

ε2 + ξ 2 + s2�2
s

〉
= 0 . (A4)

Similarly to Eq. (A3), Eq. (A4) gives

1

us

− 2

〈
s2 ln

2�

�ss

〉
= 0. (A5)

Equation (A5) yields

ln
2�

�s

= 〈s2 ln s2〉
2〈s2〉 + 1

2us〈s2〉 . (A6)

Substituting Eq. (A6) to Eq. (A3), we obtain

�22(0) = − 2

us

〈c2〉
〈s2〉 − 2

〈c2〉
〈s2〉 〈s

2 ln s2〉 + 2〈c2 ln s2〉. (A7)

Equations (A1), (A2), and (A7) yield Eq. (32a) of the main
text.

We now turn to the calculation of the d-wave density
polarization operator. Similar to Eq. (A1), we write

�33(x) = �33(0) + [�33(x) − �33(0)] . (A8)

The rationale for the decomposition, Eq. (A8) is that the second
term is well convergent at the ultraviolet and the momentum
integration can be performed first with the result

�33(x) − �33(0) = 4 − 4

〈
c2s2 arcsin (x/s)

x
√

s2 − x2

〉
. (A9)

The static part gives the density of states

�33(0) = −4 . (A10)

Equations (A8)–(A10) reproduce Eq. (32c) of the main text.

2. Off-diagonal polarization operators �23 and �32

To evaluate �23, we substitute the representation (11) in
the definition (31). We obtain after taking the trace over the
subband indices,

�23(ω) =
∫

dε

2π

∫
d2k

(2π )2
c2

kTr [τ2G+(ε + ω)τ3G+(ε)]

+
∫

dε

2π

∫
d2k

(2π )2
c2

kTr [τ2G−(ε + ω)τ3G−(ε)] .

(A11)

Taking the trace over Nambu indices in the first term of
Eq. (A11) and using Eq. (11), we write∫

dε

2π

∫
d2k

(2π )2
Tr [τ2G+(ε + ω)τ3G+(ε)]

= −2i

∫
dε

2π

∫
d2k

(2π )2
c2

k
i(ε + ω) + ξa

k

(ε + ω)2 + (
ξa

k

)2 + s2
k�

2
s

× sk�s

ε2 + (
ξa

k

)2 + s2
k�

2
s

− (a → b) . (A12)

The cross-product terms that contain both subband energies,
ξa

k and ξb
k , are omitted in the right-hand side of Eq. (A12).

Such terms are not singular at ω ∼ 2�s and we should discard
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them in view of the approximation made in going from Eq. (7)
to Eq. (9). We note, however, that contributions of this kind
from the two terms of Eq. (A11) cancel each other identically
out. The second term of Eq. (A11) is readily shown to make
the contribution identical to that of Eq. (A12). Therefore we
have

�23 = −4i

∫
dε

2π

∫
d2k

(2π )2
c2

k
i(ε + ω) + ξa

k

(ε + ω)2 + (
ξa

k

)2 + s2
k�

2
s

× sk�s

ε2 + (
ξa

k

)2 + s2
k�

2
s

− (a → b) . (A13)

Clearly, the polarization operator in Eq. (A13) is nonzero
only when ξa �= ξb. These energies are made unequal by a
finite hybridization and/or ellipticity. The expression for �23

is therefore nonuniversal, and depends on the fine details of the
band structure. We therefore do not attempt to consider it in
full generality. The only important message for us is that �23 is
nonzero in generic situation. For completeness and illustration,
we evaluate it for the model specified by Eqs. (2) and (8) such
that

ξ
a,b
k = k2

2μ+
±

(
λ2 + k4

4μ2−
cos2 2φ

)1/2

− EF . (A14)

We transform the momentum integration in Eq. (A13)
following the standard prescription:∫

d2k
(2π )2

f (k) =
∫ 2π

0

dφ

2π
Na,b(φ)f (ξa,b,φ) , (A15)

where the densities of states

Na,b = (2π )−1

(
dξa,b

ka,bdka,b

)−1

(A16)

are slightly different.
The nonzero contribution to �23 arises from the two

sources. The first is due to the difference in the density of states,
δN = Na − Nb, and the second is due to the variation of the
momentum dependent prefactors c2

ksk for the finite difference,
δξ = ξa − ξb. Correspondingly, we write

�23 = δ1�23 + δ2�23 . (A17)

In explicit form, we have

δ1�23 = −4i

∫
dε

2π

∫
dξ

〈
δNc2

k
i(ε + ω) + ξ

(ε + ω)2 + ξ 2 + s2
k�

2
s

× sk�s

ε2 + ξ 2 + s2
k�

2
s

〉
, (A18)

δ2�23 = −4i

∫
dε

2π

∫
dξ

〈
∂ξ

(
c2

ksk
)
δξ

i(ε + ω) + ξ

(ε+ω)2 + ξ 2 + s2
k�

2
s

× �s

ε2 + ξ 2 + s2
k�

2
s

〉
. (A19)

We start with the contribution, δ1�23, Eq. (A18). From
Eq. (A14), we obtain

dξa,b

ka,bdka,b

≈ 1

μ+
± k2

F cos2 2φ

2μ2−

(
λ2 + k4

F

4μ2−
cos2 2φ

)−1/2

(A20)

with the definition, kF = √
2m+EF . To the same accuracy,

Eqs. (A16) and (A20) yield

Na,b ≈ N0

[
1 ∓ (μ+/μ−)

(
k2
F /2μ−

)
cos2 2φ

(
λ2 + (

k2
F /2μ−

)2
cos2 2φ

)1/2

]
, (A21)

where the average density of states N0 = (2π )−1M is absorbed
in our definitions of the scattering amplitudes, and is hence-
forth omitted. In terms of the rotation angle in the orbital space,
θk defined by Eq. (6):

δN = −2
μ+
μ−

c2
k

sk
, (A22)

where we used the explicit expressions for the functions ck

and sk,

ck = cos 2φ√
κ2 + cos2 2φ

, sk = κ√
κ2 + cos2 2φ

, (A23)

obtained by substitution of Eq. (2) to Eq. (6).
To evaluate the contribution δ2�23, Eq. (A19), we note that

δξ∂ξ [(ck)2sk] ≈ 2μ+δξ∂k2 [(ck)2sk] . (A24)

Using the explicit expressions (A14) and (A23),

δξ∂ξ [(ck)2sk] = −2
μ+
μ−

κ(cos4 φ − 2κ2 cos2 φ)

(κ2 + cos2 φ)2
. (A25)

We can write Eq. (A25) using Eq. (A23) as

δξ∂ξ [(ck)2sk] = −2
μ+
μ−

κ
(
c4

k − 2s2
kc

2
k

)
. (A26)

Combining Eqs. (A17)–(A19), (A22), and (A26), we write
(A13) in the form,

�23 = −8i

∫
dε

2π

∫
dξ

〈
F(μ+/μ−; κ,φ)

× i(ε + ω) + ξ

(ε + ω)2 + ξ 2 + s2
k�

2
s

�s

ε2 + ξ 2 + s2
k�

2
s

〉
. (A27)

Integration of Eq. (A27) over ξ and ε variables yields Eq. (32b).
In the dispersion model specified by Eqs. (1) and (2), we have

F
(

μ+
μ−

� 1; κ,φ

)
≈ μ+

μ−

[
2c2

ks
2
k − c4

k(1 + κ)
]
, (A28)

which is Eq. (33) of the main text.

APPENDIX B: INTERACTION AMPLITUDES IN THE P-H
CHANNEL

In this section, we focus on the p-h channel of the generic
interaction, Eq. (3). The p-h channel in turn is decomposed
into the spin-single and spin-triplet component. In the absence
of spin-orbit interaction we expect that these two channels are
not mixed, and Raman probes the spin-singlet, i.e., density
excitations.

We consider the decomposition of the first term H1 in Eq. (3)
in details and henceforth quote the results for other three parts
of the interaction Hamiltonian. We start with singling out the
direct and exchange terms of the interaction,

H1 = H dir
1 + H ex

1 , (B1)
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where the Cooper channel is omitted and

H dir
1 = u1

∑
kk′

c
†
σkcσkf

†
σ ′k′fσ ′k′ ,

(B2)
H ex

1 = u1

∑
kk′

c
†
σkcσk′f

†
σ ′k′fσ ′k.

To facilitate the decomposition of both parts of the Hamiltonian
into density and spin channels, we introduce intraband density
operators:

ρc =
∑

k

c
†
kck , ρf =

∑
k

f
†
k fk, (B3)

and similarly, two interband density operators:

ρcf =
∑

k

c
†
kfk , ρf c =

∑
k

f
†
k ck . (B4)

It is then expedient to rearrange the density operators, Eqs. (B3)
and (B4) into a symmetric and antisymmetric combinations:

ρ± = 1
2 (ρc ± ρf ) , ρ

Q
± = 1

2 (ρcf ± ρf c) , (B5)

The symmetric (antisymmetric) combinations are selectively
excited by a photon in A1g (B1g) Raman configurations,
respectively. Hence, the total density ρ+ is not involved in
the case of B1g Raman configuration we study in this paper.
We will see below that the only relevant antisymmetric density
combination is ρ−. This is clearly a nematic density operator
proportional to the difference between the population of the
two pockets in 1 FeBZ.

In terms of the densities introduced above, Eq. (B3), we
have

H dir
1 = u1ρcρf . (B6)

To rewrite the exchange Hamiltonian in a similar fashion,
we introduce the intra and interband spin density components
parallel to the definitions (B3)–(B5) via

Sc = 1

2

∑
k

c
†
σkσ σσ ′cσ ′k , Sf = 1

2

∑
k

f
†
σkσ σσ ′fσ ′k, (B7)

and, similarly,

Scf = 1

2

∑
k

c
†
σkσ σσ ′fσ ′k , (B8)

with Sf c obtained from Scf by the interchange c ↔ f . With
the above definitions the exchange part takes the form,

H ex
1 = −u1

(
2Scf · Sf c + 1

2ρcf ρf c

)
. (B9)

Combining Eqs. (B1), (B6), and (B9) we have for the first
term of Eq. (3)

H1 = u1
(
ρcρf − 2Scf · Sf c − 1

2ρcf ρf c

)
. (B10)

Following essentially the same steps, we obtain

H2 = u2
(
ρcf ρf c − 2Sc · Sf − 1

2ρcρf

)
, (B11)

H3 = u3

4
(ρcf ρcf + ρf cρf c) − u3(Scf · Scf + Sf c · Sf c) ,

(B12)

and

H4 = u4
[

1
4 (ρcρc + ρf ρf ) − (Sc · Sc + Sf · Sf )

]
. (B13)

Here we are interested in the density (singlet) part of the total
Hamiltonian, which reads

Hch = u4

4
[ρcρc + ρf ρf ] +

(
u1 − u2

2

)
ρcρf

+
(
u2 − u1

2

)
ρcf ρf c + u4

2
(ρcf ρcf + ρf cρf c). (B14)

We now rewrite Eq. (B14) in terms of the symmetric
combinations (B5) as follows:

Hch =
(u4

2
+ u2

2
− u1

)
ρ−ρ− +

(u4

2
− u2

2
+ u1

)
ρ+ρ+

+
(u3

2
−u1

2
+ u2

)
ρ

Q
+ ρ

Q
+ +

(u3

2
+ u1

2
− u2

)
ρ

Q
− ρ

Q
− .

(B15)

The second term of Eq. (B15) is not important in B1g

configuration. The remaining d-wave combination ρ
Q
− ρ

Q
−

lacks intraband components in the hybridized ab basis and
is neglected under the conditions stated in Sec. II A. Hence
Eq. (25c) of the main text is obtained with the amplitude
uρ given by Eq. (26). To explore the possibility of attraction
in the d-wave density channel, we rewrite the corresponding
interaction amplitude in terms of the Hubbard and Hund
interaction amplitudes using [46]

u1 = U − J , u2 = −2J − J ′ , u4 = U − 3J . (B16)

Therefore the charge channel interaction, Eq. (B15),

Hch = − 1
2 [U + 3J + J ′]ρ−ρ− , (B17)

is in general attractive.

APPENDIX C: COLLECTIVE MODES IN d-WAVE
SYMMETRY CHANNEL IN BCS THEORY

In this appendix, we review the BS-type excitations in the
coupled particle-hole and Cooper channels for a single-band
material. The BS modes were first studied in Ref. [49]. The
results of that work can be summarized as follows. For each
symmetry channel defined by a total angular momentum L and
its projection on a given axes M the two types of collective
modes were identified. These excitations can be envisioned
as the oscillations of the real and imaginary parts of the
complex L �= 0 OP, taking the dominant L = 0, s-wave OP to
be real. The above two eigenmode oscillations are referred to
as �LM (“amplitude”) and �LM (“phase”) modes respectively.
The in-phase, �LM, “amplitude” modes are the oscillations
of the real part of the d-wave OP assuming �s is real. The
oscillations of the imaginary part of the d-wave OP, gives rise
to the �LM mode. The distinction between the two modes of
oscillations is due to a nonzero s-wave OP in the ground state.
It is only the overall U (1) gauge freedom which is preserved,
while the action explicitly depends on the relative phase of
s and d-wave OPs. BS have shown that the �LM is bound
below 2� and is undamped provided the interaction in the LM

channel is attractive, while the �LM falls into the quasiparticle
continuum and is damped. In a superconductor the Cooper
and p-h channels are fundamentally interrelated, and, in
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general, should be considered on equal footing. The effect
of the coupling between these two channels is most dramatic
in the dominant, L = 0 channel—the long-range Coulomb
interaction lifts the otherwise gapless phase-oscillations up to
a plasma frequency. In the subdominant channels with L �= 0,
the effect of long-range Coulomb interaction is much less
pronounced and the interaction can often be approximated as
local. In fact, BS have demonstrated that long-range Coulomb
repulsion has a negligible effect on the binding energy of L �= 0
excitons. Below we assume that the ground state is s-wave
symmetric with simple isotropic gap, �s , and consider the
excitations in the d-wave channel.

The observables describing � and � modes are represented
by Nambu bilinears as

χ
†
kτ1χk = YLM(k̂)(ψ−k↓ψk↑ + ψ

†
k↑ψ

†
−k↓),

(C1)
χ
†
kτ2χk = YLM(k̂)i(ψ−k↓ψk↑ − ψ

†
k↑ψ

†
−k↓) ,

where the Nambu spinors are χ
†
k = [ψ†

k↑,ψ−k↓], and spherical
harmonics YLM encode the angular dependence of the Cooper
pair exciton wave function [49].

The BS modes dispersion, ω�,�(q) are found from the
equations

u−1
d + �11,22(ω�,�(q),q) = 0 . (C2)

The polarization operators entering (C2) are straightforwardly
calculated at q = 0, [49],

�11(x,0) = −u−1
s + 2

(
arcsin (x)

x

) √
1 − x2 , (C3a)

�22(x,0) = −u−1
s − 2x

arcsin (x)√
1 − x2

, (C3b)

where x = ω/2�s . The equation (C2) has no real solutions for
ω�, and the “amplitude” � mode falling in the quasiparticle
continuum is damped [49]. In contrast, the “phase” � mode
is long-lived in-gap excitation. The divergence of �22 at the
kinematical threshold, x = 1 guarantees that the solution ω� <

2�s of Eq. (C2), the BS mode exists.
The charge exciton is obtained if the interaction in the

charge sector is attractive. The energy, ωex of the exciton is
determined by the equation similar to (C2)

u−1
ρ + �33(ωex(q),q) = 0 , (C4)

where uρ is the scattering amplitude in the density channel.
The polarization operator �33(ω,0), defined by (31) reads

�33(x,0) = −2
arcsin(x)

x
√

1 − x2
(C5)

and has the divergence at x = 1 similar to (C3b), and Eq. (C4)
has a bound state exciton solution.

The coupling of the charge and Cooper channels is
expressed as an of diagonal polarization operator. In the BCS
theory, this polarization operator

�32(x) = �23(x) = 2 arcsin (x)√
1 − x2

(C6)

is characterized by the same threshold divergence at x = 1 as
Eqs. (C3b) and (C5). For that reason, the polarization operator,
(C6) which couples the particle-hole and Cooper channels

should be considered on equal footing with (C3b) and (C5).
On the other hand, �31 = �13 = 0 and the “amplitude,” the
� mode can be excluded from the consideration.

It follows that Eq. (32) reduces to Eqs. (C3b), (C5), and
(C6) in the limit of isotropic gap, sk = ck = F = 1 up to an
overall factor of 2 due to the two pockets.

To study the collective mode of coupled particle-hole and
Cooper channels, we define the T matrix as

T̂ (x) = (V̂ −1 + �̂(x))−1 , (C7)

where the polarization operator matrix

�̂ =
[
�22 �23

�32 �33

]
(C8)

with the entries defined by Eqs. (C3b), (C5), and (C6). The
interaction matrix is diagonal, since it conserves the total
number of particles,

V̂ =
[
ud 0
0 uρ

]
. (C9)

Collective modes we are after are the solutions of

det T̂ (x) = 0 . (C10)

We rewrite Eq. (C7) using the relations (C3b), (C5), and (C6)
we get,

T̂ −1(x) =
[
δu−1 0

0 u−1
ρ

]
− 2

arcsin x√
1 − x2

[
x −1

−1 x−1

]
, (C11)

where δu−1 = u−1
d − u−1

s is positive. The matrix (C11) can be
explicitly diagonalized in two steps. Consider the transformed
matrix

T̂ ′(x) = �̂trT̂ (x)�̂ (C12)

with the choice

� =
[√

(δu−1)−1 0
0

√
uρ

]
, (C13)

Eq. (C12) becomes

T̂ ′(x) = Î2 + Â(x) (C14)

and it remains to diagonalize the matrix

Â(x) = −2
arcsin x√

1 − x2

[
xδu −√

δuuρ

−√
δuuρ x−1uρ

]
. (C15)

The resulting two eigenvalues of the transformed matrix (C11)
are

λ1(x) = 1 − 2
arcsin x√

1 − x2
(x(δu−1)−1 + x−1uρ) (C16)

and λ2 = 1. Due to the strong kinematical coupling between
the two channels, the would-be two modes in Cooper and
particle-hole channels merge into a single mode with the
frequency xres satisfying λ1(xres) = 0. In the weak coupling
limit, {uρ,(δu−1)−1} � 1, the amplitudes in two channels
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contribute additively to the binding energy,

xres ≈ 1 − π2

2
((δu−1)−1 + uρ)2 , (C17)

and in general are equally important. The eigenvector of the T

matrix, (C7), corresponding to the resonance frequency xres

in this limit becomes [−(δu−1)−1,uρ]t . It follows that the
charge and Cooper channels participate in the coupled mode
in proportion to their contribution to the binding energy as
expected.

The exciton binding energy approaches 2�s when the pair-
ing amplitude in the s-wave channel exceeds the amplitude in
the d-wave channel only slightly, ud � us . At the degeneracy
limit ud = us , the collective mode softens to zero, xres = 0,
regardless of the interaction in the particle-hole channel, uρ .
Indeed, the two channels uncouple in the limit x = 0 because
at low frequencies �23 = �32 = 0 in this limit. The physical

reason for this is that only derivatives of the phase can enter
the gauge invariant action.

We now consider the asymptotic softening of the collective
mode in the degeneracy limit, ud → us , namely, in the limit
of small δu−1. Looking for the solution of λ1(x) = 0, see Eq.
(C16), in the scaling form x = y[δu−1]α with y approaching
a constant y0 in the same limit, we realize that α = 1/2 and
y0 = √

1 − uρ/2. In other words,

xres ≈
√

δu−1(1 − uρ/2) (C18)

asymptotically in the degeneracy limit, ud → us , δu−1 → 0.
The eigenvector of the T matrix with the eigenvalue (C18) is
[−√

(1 − uρ/2)(δu−1)−1,
√

uρ], which means that this mode
is predominantly made of d-wave Cooper pairs as again
expected. Equation (23) determines the Raman susceptibility,
and we illustrate it for the case of isotropic gap in Fig. 7.
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H.-H. Wen, V. Tsurkan, J. Deisenhofer, and A. Loidl, Phys. Rev.
Lett. 110, 187002 (2013).

[52] L. Zhang and D. J. Singh, Phys. Rev. B 79, 094528
(2009).

[53] X.-W. Yan, M. Gao, Z.-Y. Lu, and T. Xiang, Phys. Rev. B 84,
054502 (2011).

[54] E. Dagotto, Rev. Mod. Phys. 85, 849 (2013).
[55] Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C.

Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P.
Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nat, Mater, 10,
273 (2011).

[56] D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Zhao, L. Yu, G. Liu,
S. He, X. Dong, J. Zhang, H. Wang, C. Dong, M. Fang, X. Wang,
Q. Peng, Z. Wang, S. Zhang et al., Phys. Rev. Lett. 106, 107001
(2011).

[57] T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu,
X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, Phys. Rev.
Lett. 106, 187001 (2011).

[58] X.-P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H.-D. Wang,
C.-H. Dong, M.-H. Fang, and H. Ding, Europhys. Lett. 93, 57001
(2011).

[59] L. Zhao, D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Yu, X. Liu,
G. Liu, S. He, X. Dong, J. Zhang, J. B. He, D. M. Wang, G. F.
Chen, J. G. Guo, X. L. Chen, X. Wang et al., Phys. Rev. B 83,
140508 (2011).

[60] M. Khodas and A. V. Chubukov, Phys. Rev. B 86, 144519 (2012).
[61] G. R. Boyd, T. P. Devereaux, P. J. Hirschfeld, V. Mishra, and

D. J. Scalapino, Phys. Rev. B 79, 174521 (2009).
[62] A. Ignatov, A. Kumar, P. Lubik, R. H. Yuan, W. T. Guo,

N. L. Wang, K. Rabe, and G. Blumberg, Phys. Rev. B 86, 134107
(2012).

[63] S. V. Borisenko, A. N. Yaresko, D. V. Evtushinsky,
V. B. Zabolotnyy, A. A. Kordyuk, J. Maletz, B. Büchner,
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