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Dispersive excitations in one-dimensional ionic Hubbard model
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A detailed study of the one-dimensional ionic Hubbard model with interaction U is presented. We focus
on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on
increasing U . By a recently introduced continuous unitary transformation [H. Krull et al., Phys. Rev. B 86,
125113 (2012)] we are able to describe the system even close to the phase transition from BI to SDI although
the bare perturbative series diverges before the transition is reached. First, the dispersion of single fermionic
quasiparticles is determined in the full Brillouin zone. Second, we describe the binding phenomena between
two fermionic quasiparticles leading to an S = 0 and to an S = 1 exciton. The latter corresponds to the lowest
spin excitation and defines the spin gap which remains finite through the transition from BI to SDI. The former
becomes soft at the transition, indicating that the SDI corresponds to a condensate of these S = 0 excitons. This
view is confirmed by a BCS mean-field theory for the SDI phase.
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I. INTRODUCTION

Electrons in solids can imply metallic, i.e., conducting
behavior. But, there are also several mechanisms leading
to insulating behavior. The most common one is realized
in band insulators (BI) which are characterized by filled
bands. A variant of this scenario consists in the occurrence of
spontaneous breaking of the symmetry in the ground state. The
reduction of the symmetry splits the bands into subband such
that fractionally filled bands become filled subbands so that
insulating behavior results again. This happens, for instance,
in antiferromagnets on bipartite lattices with long-range order.

Another mechanism leading to insulating behavior is
disorder. If the system is strongly enough disordered, the
electronic states are localized so that no extended, conducting
states exist. This is called an Anderson insulator.

Strong interactions imply the third scenario of insulating
behavior, the Mott insulators (MI). It is generic for half-filled
narrow-band systems. A strong local repulsion prevents the
electrons to pass each other.

The band insulator and the Mott insulator will be the
focus of this paper. We will concentrate on one-dimensional
systems where quantum fluctuations are most strongly felt. For
instance, long-range order due to the breaking of a continuous
symmetry generically does not occur. Our particular interest
lies in the description and the understanding of the elementary
excitations. This includes their dispersion and their interaction
which partly induces bound states, i.e., excitons. The softening
of the energies of these bound states signals phase transitions.

Aside from the conceptual, theoretical interest there are
also many experimental systems for which our investigation
is relevant. Mixed stacked organic charge-transfer compounds
are composed of alternating donor and acceptor molecules.
These materials are either nominally ionic or nominally
neutral. They are insulating due to the double periodicity of
the lattice. If the compounds are situated close to the boundary
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between neutral and ionic behavior, such as TTF-chloranil,
a reversible phase transition from the neutral phase to the
ionic phase can be induced by changing pressure [1] or
temperature [2]. The transition from the neutral ground state
to the ionic ground state appears not to be of first order. Yet,
there is an intermediate region where both neutral and ionic
molecules coexist [2].

The observation of the neutral-ionic phase transition has
been the subject of various experimental [3–7] and theoretical
investigations [8–14]. In theory, the chain of alternating donor
and acceptor molecules of the mixed stacked organic com-
pounds is described by the ionic Hubbard model (IHM) [11].
This model consists of three terms: a nearest-neighbor (NN)
hopping, an onsite Hubbard interaction, and an ionic potential
which describes the onsite energy difference between the
donor and acceptor molecules. The effect of additional terms
such as electron-electron interaction on NN sites [12] or
electron-lattice interaction [13] was also considered in order
to make the Hamiltonian describe the experimental situation
more closely.

The one-dimensional (1D) IHM in the electron-hole sym-
metric form reads as

H = δ

2

∑
iσ

(−1)ini,σ + U
∑

i

(
ni,↑ − 1

2

) (
ni,↓ − 1

2

)
+ t

∑
iσ

(c†i,σ ci+1,σ + H.c.), (1)

where ci,σ and c
†
i,σ create and annihilate an electron at site i

with spin σ , respectively. The density operator ni,σ := c
†
i,σ ci,σ

counts the number of electrons with spin σ at site i. It is
convenient to choose δ as unit of energy. The IHM for U = 0
at half-filling describes a BI with equal spin gap and charge
gap. The density of particles on odd sites is larger than the
density on the even sites so that the phase is nominally ionic.
In reciprocal space, the lower band is completely filled, the
upper one is empty.

In the opposite limit U − δ � t , the IHM at half-filling
can be mapped to the Heisenberg model whose ground state is
known to be a Mott insulator (MI) with zero spin gap. Although
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the IHM (1) has two sites per unit cell, it has been shown
that the effective Heisenberg model has the full translational
symmetry in all orders of the hopping term t [11]. In this MI
phase, the densities of particles of even and odd sites are close
to each other ni,σ ≈ 1 so that the phase is nominally neutral.

The IHM attracted further interest as a model to describe
ferroelectric perovskites [15]. Since then, various analytical
and numerical methods have been employed to find the phase
diagram and excitation spectrum of the IHM. In one dimen-
sion, Fabrizio et al. showed by using bosonization techniques
that a spontaneously dimerized insulator (SDI) represents a
stable intermediate phase between BI and MI. The transition
from BI to SDI at a critical value Uc1(t) was recognized as
Ising type and the transition from SDI to MI at a critical value
Uc2(t) found to be of Kosterlitz-Thouless type [16].

Using exact diagonalization techniques on finite-size clus-
ters, it was found that the BI and MI are separated by a transi-
tion point where both spin and charge gaps vanish [17,18]. In
Ref. [17], however, it could not be decided whether the spin
and charge gaps close exactly at the same value or at slightly
different values due to limitations in the finite-size scaling.
Contrary to this finding, an exact diagonalization study of
the Berry phase by Torio et al. indicates that the BI and
MI are separated by an intermediate SDI region [19]. The
results of approximations such as self-consistent mean-field
theory [20,21], renormalization group complemented by a
mean-field analysis [22], and the slave-boson approach [23]
are in favor of a single transition point between the BI and the
MI without intermediate phase.

A variational quantum Monte Carlo study only found a
single transition from the BI to the SDI phase without a second
transition to the MI phase. It was argued that the MI phase
only stabilizes for δ = 0 [24]. Furthermore, the density-matrix
renomalization group (DMRG) method was used by various
groups to investigate the phase diagram of the IHM [25–32].
By extrapolating the DMRG results of finite-size lattices to
infinite-size lattices, most of them support the scenario of
two transition points Uc1 and Uc2 [25–31]. But, the reported
behavior for charge gap and spin gap near the transition points
differs [25–27,32]. It was also deduced by Kampf et al. that,
within the accuracy of DMRG and the accessible chain lengths,
it is not possible to establish the second transition from SDI to
MI beyond doubt [32].

In two dimensions, the phase diagram of the IHM is a
matter of controversy. Although the existence of the BI at
small values and of the MI at large values of the Hubbard
interaction is established [33–38], the nature of the interme-
diate phase is not clear. A single-site dynamic mean field
theory (DMFT) indicates a metallic phase between BI and
MI [33] which is confirmed by determinant quantum Monte
Carlo method [34,35]. In another single-site DMFT study, a
parameter range with coexistence of MI, metallic behavior,
and BI is found in addition to the pure metallig phase [36].
Cluster-DMFT, however, indicates that the intermediate phase
is a SDI similar to the case in one dimension [37]. In
the variational cluster approach, the intermediate phase is a
bond-located spin-density wave with magnetic order which
produces the lowest energy between BI and MI [38].

The excitation spectrum of the IHM has attracted much less
attention so far. The low-energy spectrum and the dynamic

spin and charge structure factors in the BI phase of the model
are investigated in 1D using perturbative continuous unitary
transformations [39,40]. The expansion parameters of these
studies are the hopping t and the interaction U . In the reduced
Brillouin zone (BZ), one singlet bound state and two triplet
bound state modes are found in the two-fermion sector [39].
But, due to the perturbative nature of the approach, the authors
were not able to approach the transition point and the results
for the two-particle excitations are obtained deep in the BI
phase [39].

In this paper, the phase transitions of the 1D IHM and
its excitation spectrum in the BI phase are investigated in
the vicinity of the transition point Uc1. We use the recently
formulated method of directly evaluated enhanced perturba-
tive continuous unitary transformations (deepCUT) [41] in
two subsequent steps to derive simpler effective Hamiltonians
which allow a quantitative analysis of the dynamics of the
excitations.

In the first step, we employ the deepCUT method to obtain
an effective Hamiltonian describing the low-energy physics of
the system for δ ≈ U � t . This corresponds to eliminating
doubly occupied states on even sites and empty states on odd
sites. This reduces the relevant energy scale from U to t .

In the next step, the resulting low-energy Hamiltonian
is mapped to various effective Hamiltonians using various
generators in the deepCUT method. In this step, the processes
creating particle-hole pairs from the vacuum or in addition to
existing fermionic excitations are eliminated. The one-particle
dispersion and the dispersion of two-particle bound states are
obtained by the deepCUT in the BI phase. In addition, we
aim at improving the accuracy of the results by analyzing
the effective Hamiltonians obtained from the deepCUT by
using exact diagonalization (ED) techniques valid in the
thermodynamic limit. For charge, spin, and exciton gaps, we
compare our results with the extrapolated DMRG results of
Ref. [27].

Finally, we use a BCS-type mean-field theory to describe
the phase beyond the transition point Uc1. We can show that
the SDI phase is indeed stable for U > Uc1.

The paper is organized as follows: In Sec. II, we introduce
the various employed methods. In Sec. III, we present the
results of the application of deepCUT alone. In Sec. IV, the
ED method is described and the results obtained by combining
deepCUT and ED are discussed. Section V is devoted to the
analysis of the effective Hamiltonian in the mean-field level.
Finally, the paper is concluded.

II. METHOD

In this section, the employed deepCUT [41] and the ED
methods are presented. The deepCUT is based on the con-
tinuous unitary transformations (CUT) [42,43]. First, the
general concepts of CUT are briefly presented. Finally,
the deepCUT and the ED are illustrated.

A. CUT method

The CUT or flow equation approach was proposed by
Wegner [42] and independently by Głazek and Wilson [43]
in 1994. In this approach, a given Hamiltonian H is mapped
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by a unitary transformation to a diagonal or block-diagonal
effective Hamiltonian in a systematic fashion [44]. The unitary
transformation U (�) depends on an auxiliary continuous
parameter � which defines the flow under which the Hamil-
tonian transforms from its initial form H = H (�)

∣∣
�=0 to its

final effective form Heff = H (�)
∣∣
�=∞. A related approach is

the projective renormalization (PRG), which maps a given
Hamiltonian to an effective Hamiltonian by iteration of
discrete steps [45,46].

In CUT, the transformed Hamiltonian H (�) = U †(�)HU (�)
is determined from an ordinary differential equation, called
flow equation,

∂�H (�) = [η(�),H (�)], (2)

where the anti-Hermitian operator η(�) = −U †(�)∂�U (�) is
the infinitesimal generator of the flow. It is seen from Eq. (2)
that we can directly deal with the generator η(�) instead of the
unitary transformation U (�).

Wegner suggested to define the generator as ηW (�) =
[Hd (�),H (�)] where Hd (�) is the diagonal part of the Hamilto-
nian H (�). It can be shown that for � → ∞, Wegner’s choice of
generator brings the Hamiltonian into a diagonal form except
for degenerate states [42,47].

A disadvantage of Wegner’s generator is that it spoils certain
simplifying features of the initial Hamiltonian H (� = 0). If
the initial Hamiltonian has a band-diagonal structure, this
property will be lost during the flow. Mielke introduced
a modified generator which preserved the band diagonality
for matrices [48]. In the context of second quantization,
Stein [49] effectively used the analogous generator. Knetter
and Uhrig [50,51] realized the importance of the sign function
in the proper generalization for second quantization. This
generator is efficient in deriving an effective block-diagonal
Hamiltonian that preserves the number of excitations, also
called quasiparticles (QPs), in the system. Thus, we call
this generator the particle-conserving generator (pc) which
reads as

ηpc(�) =
∑
i,j=0

sign(i − j )Hi:j (�), (3)

where Hi:j is the part of the Hamiltonian which creates i and
annihilates j quasiparticles. It is defined that sign(0) = 0.

The pc generator makes the Hamiltonian block diagonal
in the sense that the final effective Hamiltonian conserves
the number of QPs. It is desirable to reach this goal. But,
for many properties, it is unnecessarily ambitious. For the
energetically low-lying excitation spectrum there is no need
to block diagonalize the sectors with large numbers of QPs.
It is sufficient to decouple only the sectors with low numbers
of QPs from the remaining Hilbert space. The corresponding
reduced generator, which allows us to decouple the first n � 0
quasiparticle sectors, reads as [52]

ηp:n(�) =
n∑

i=0

∑
j>n

[Hj :i(�) − Hi:j (�)]. (4)

In comparison to Eq. (3), one sees that only terms that
act on the first n quasiparticle sectors and link them to
other sectors contribute to the reduced generator. Note that
contributions from the sectors with up to n QPs to sectors

with arbitrarily large numbers of QPs may occur in the
generator. It is especially useful to describe the decay of QPs
due to the energetic degeneracy of eigenstates with different
number of QPs, the so-called overlap of continua, in the
framework of CUTs [52]. The reduced generator allows us
not only to avoid divergences that may occur in the flow
due to overlapping continua, but also to increase the speed
of calculations significantly because only less terms need to
be considered [52,53].

B. The deepCUT method

In the following, we present the deepCUT in real space.
But, we emphasize that locality is not needed but only
an appropriate small expansion parameter and a sufficiently
simple unperturbed Hamiltonian H0 [41]. In addition, a
truncation scheme is needed to obtain a closed set of equations.
The guiding idea is to keep all operators and their prefactors in
the flow equation which contribute to the quantities of interest,
for instance, the dispersion, up to a given order in the expansion
parameter.

To put the deepCUT in real space to use, we assume that
the initial Hamiltonian can be decomposed into a local part
(H0) and a nonlocal part (V ):

H = H0 + xV, (5)

where x is an expansion parameter on which we base the
truncation of the flow equations [41]. Targeting the first sectors
with a few QPs allows us to use simplification rules which
highly accelerate the calculations by eliminating unnecessary
contributions early on. For the details about the truncation
scheme and the simplification rules, we refer to Ref. [41].

In order to use second quantization in terms of the QPs, the
Hamiltonian (5) is written in terms of creation and annihilation
operators [54]. In this representation, H0 simply counts the
number of excitations present in the system. For x = 0, these
excitations are the true QPs of the system. Their vacuum is
the ground state. For any finite value of x, however, these
QPs become dressed and the initial Hamiltonian (5) does not
necessarily conserve the number of these excitations.

The Hamiltonian in QP representation can be denoted
as a sum of monomials of operators {Ai} which describe
specific interactions in real space. These monomials create and
annihilate a certain number of QPs. Hence, the transformed
Hamiltonian H (�) can be expressed generally as

H (�) =
∑

i

hi(�)Ai, (6)

where the coefficients hi(�) carry the � dependence of
the Hamiltonian. Similarly, the generators (3) and (4) are
written as

η(�) =
∑

i

ηi(�)Ai :=
∑

i

hi(�)η̂[Ai], (7)

where the superoperator η̂ defines how a given monomial
enters the generator. Using the above representations for
Hamiltonian and generator, the flow equations (2) read as

∂�hi(�) =
∑
jk

Dijkhj (�)hk(�), (8)
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where the contributions Dijk result from the reexpansion of
the commutator in terms of the monomials

[η̂[Aj ],Ak] =
∑

i

DijkAi. (9)

Summarizing, the solution of the flow equation (2) requires
two major steps:

(i) finding the contributions Dijk from Eq. (9);
(ii) solving the set of ordinary differential equations (8).
The first step is algebraic work and we assume that this

can be done up to a certain number of terms. The second
step is the integration of the flow equations which can be
done in two ways. The first one is perturbative and relies
on an expansion of the coefficients in powers of x. These
coefficients can be determined from the integration of the flow
equation yielding a perturbative evaluation of the effective
Hamiltonian. In contrast to the original perturbative CUT
(pCUT) method [51,54,55], this approach also works for
cases where the unperturbative part has a nonequidistant
spectrum. This approach, which generalizes the pCUT, is
called enhanced perturbative CUT (epCUT) [41].

The second approach consists in the direct numerical
integration of Eq. (8) once only those contributions are kept
which would be required to yield the correct epCUT result in a
fixed order in x. This procedure is called deepCUT method [41]
and has been introduced for spin ladders and successfully
applied to the transverse-field Ising model in 1D yielding to
systematically controlled multiparticle excitation spectra and
dynamical correlation functions [56].

In the deepCUT as in other nonperturbative CUTs (see
for instance Ref. [52]), one generically has to check if the
flow equation converges reliably. In the perturbative CUTs, the
hierarchical structure of the differential equations guarantees
convergence. In order to track the convergence quantitatively,
we use the residual off diagonality (ROD) defined by

ROD(�) =
√∑

i

|ηi(�)|2, (10)

where the sum runs over all the monomials appearing in
the generator. The coefficient ηi(�) is the prefactor of the
monomial Ai as defined in Eq. (7). In the deepCUT analysis,
the ROD can diverge due to the energetic overlap of continua
with different number of QPs. In this case, a less ambitious
decoupling of sectors with lower numbers of QPs may restore
convergence of the flow as we will show in the following.

C. Exact diagonalization

The ED can be applied in two ways. In the first way,
the size of the lattice is limited to a finite number of sites
and the corresponding Hamiltonian matrix is constructed and
diagonalized. The major problem in this approach is the effect
of the finite size of the system. This is the most commonly
used ED scheme.

A second approach by ED is possible if the ground state
is decoupled from the other parts of the Hilbert space. Such
a decoupling can be obtained, for instance, by the deepCUT
method (see above or Ref. [41]). In this case, the ground state
is given by the vacuum of QPs and states with a few QPs
describe the low-energy spectrum of the system. Because the

ground state is already decoupled, it is possible to work directly
in the thermodynamic limit. The Hilbert space is restricted
by limiting the maximum number of QPs considered and the
maximum relative distances between them. This approach is
employed in Ref. [52] to describe QP decay in the asymmetric
two-leg Heisenberg ladder. If we use the term ED in the
remainder of this paper we refer to this second approach valid
in the thermodynamic limit.

III. DIRECT EVALUATION ANALYSIS OF THE BAND
INSULATOR PHASE

In this section, the low-lying excitation spectrum of the IHM
including 1-QP dispersion, 2-QP continuum, and possible
singlet and triplet bound states are discussed using the
deepCUT. The results for charge gap, exciton gap, and spin gap
are compared to the available results obtained by DMRG [27].

A. Preliminary considerations

To apply the deepCUT method in the BI phase of the
IHM, we put the local staggered potential and the Hubbard
interaction in the IHM (1) into H0 and consider the hopping
term as perturbation V . The unperturbed Hamiltonian H0 has
a unique ground state only for U < δ. The energy gap of
inserting a single fermion takes the value δ − U so that the
dimensionless expansion parameter is t/(δ − U ). In the limit
U → δ, any purely perturbative analysis breaks down. Below,
however, we will show that in the deepCUT approach, the
onsite energy is renormalized to larger values so that the BI
phase is stabilized beyond U = δ and one can obtain Heff for
U > δ as well.

In the ground state of H0, all odd sites are occupied and all
even sites are empty. An electronic hop from an odd site to
an even site excites the system (see Fig. 1). In order to make
the fermionic vacuum the ground state of H0, we apply an
electron-hole transformation to the odd sites. To be specific,
we define

ci,σ = h
†
i,σ . (11)

Due to this transformation, the spin operators on odd sites
change

Sz
i =

∑
σ

σc
†
i,σ ci,σ = −

∑
σ

σh
†
i,σ hi,σ := −S̃z

i , (12a)

S+
i = c

†
i,↑ci,↓ = −h

†
i,↓hi,↑ := −S̃−

i , (12b)

S−
i = c

†
i,↓ci,↑ = −h

†
i,↑hi,↓ := −S̃+

i , (12c)

FIG. 1. (Color online) Schematic representation of excitations of
the ionic Hubbard model in the band insulator phase. In the absence
of hopping terms, the ground state for U < δ is characterized by
occupied odd sites and empty even sites. A pair of excitations appears
when an electron hops from an odd to an even site.
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and the spin operators on even sites remain unchanged. Hence,
the spin states that include a mixture of electrons and holes are
different from the usual definitions. For instance, the singlet
state of an electron-hole pair on adjacent sites reads as

|e-h〉S=0 = 1√
2

(|↑↑〉 + |↓↓〉). (13)

On an even site, the arrow refers to the spin of an electron and
on an odd site it refers to the spin of a hole. This point must
be kept in mind in the considerations following.

In order to unify all electron and hole operators, we define
the fermionic operator

fi,σ =
{
ci,σ for i ∈ even,

hi,σ for i ∈ odd.
(14)

According to these definitions, the Hamiltonian (1) reads as

H = U−2δ

4

∑
i

1 + δ − U

2

∑
i,σ

f
†
i,σ fi,σ

+U
∑

i

f
†
i,↑f

†
i,↓fi,↓fi,↑

+ t
∑
i,σ

(−1)i(f †
i,σ f

†
i+1,σ + H.c.), (15)

it still has two sites per unit cell as the original Hamiltonian (1).
It is possible to restore full translational symmetry by

applying a suitable local transformation on the fermionic
operators

f
†
j,σ −→ e−i π

4 ei π
2 j f

†
j,σ . (16)

This transformation leaves the first three terms in Eq. (15)
unchanged and eliminates the prefactor (−1)i from the last
term. Thereby, we reach

H = U−2δ

4

∑
i

1 + δ − U

2

∑
i,σ

f
†
i,σ fi,σ

+U
∑

i

f
†
i,↑f

†
i,↓fi,↓fi,↑

+ t
∑
i,σ

(f †
i,σ f

†
i+1,σ + H.c.). (17)

The last term of this Hamiltonian is a Bogoliubov term which
creates and annihilates a pair of QPs (originally an electron
and a hole) with total spin zero on neighboring sites. In
the following, the deepCUT method will be applied to this
Hamiltonian.

The conservation of the original electron number in the
representation (17) is not manifest. Thus, we write the operator
of the total electron number N̂ in terms of f operators

N̂ :=
∑
i,σ

c
†
i,σ ci,σ = L +

∑
i,σ

(−1)if †
i,σ fi,σ , (18)

where L is the number of sites in the chain. The difference
between the number of QPs on even sites and on odd sites
is a constant of motion. Thus, they are always created or
annihilated in pairs with an odd distance between them.

B. Low-energy effective Hamiltonian

The interesting physics of the IHM happens at large values
of the Hubbard interaction U approaching the first transition
at Uc1. We focus on the case U,δ � t where the states with
finite number of double occupancies (DOs) lie very high in
energy. Thus, the low-energy physics of the Hamiltonian (17)
is governed by the Hilbert subspace without DO. But, the
subspaces with and without DOs are linked by the Bogoliubov
term.

In a first step, we decouple the low- and the high-energy
parts of the Hilbert space. The same idea was first realized
by Stein perturbatively for the Hubbard model on the square
lattice [57]. Extended calculations using self-similar CUTs
(sCUT) were carried out at and away from half-filling [53,58]
to investigate the range of validity of the mapping from the
Hubbard model to the t-J model. High-order perturbative
calculations for the Hubbard model on the triangular lattice at
half-filling have been performed by Yang and co-workers [59].

In the fermionic representation (17) of the IHM it is
not evident how many DOs are created or annihilated by a
term because this depends on the state to which the terms
are applied. Thus, we introduce a representation (Hubbard
operators [60]) of hard-core particles defined by

g
†
i,σ := |σ 〉i i〈0| = (1 − ni,σ̄ )f †

i,σ , (19a)

g
†
i,d := |↑↓〉i i〈0| = f

†
i,↑f

†
i,↓, (19b)

where σ̄ = −σ . The fermionic hard-core operator g
†
i,σ creates

a fermion with spin σ at site i from the vacuum and the bosonic
operator g

†
i,d creates a DO at site i from the vacuum. They obey

the hard-core (anti)commutation relation

[gi,α,g
†
j,β]± = δi,j

⎛⎝δα,β ± g
†
i,βgi,α− δα,β

∑
γ=↑,↓,d

g
†
i,γ gj,γ

⎞⎠ ,

(20)

where the anticommutation [. . . , . . .]+ is to be used if both op-
erators are fermionic, otherwise the commutation [. . . , . . .]−
is to be used. The above representation can be reversed to
express the f operators in terms of the g operators

f
†
i,σ = g

†
i,σ + sign(σ )g†

i,dgi,σ̄ . (21)

The IHM (17) in terms of the g operators can be split into
different parts which create and annihilate a specific number
of DOs. Explicitly, one has

H = H0:0 + H1:1 + H1:0 + H0:1 + H2:0 + H0:2, (22)

where Hi:j creates i and annihilates j DOs. These parts are
given by

H0:0 = U−2δ

4

∑
i

1 + δ−U

2

∑
i,σ

g
†
i,σ gi,σ

+ t
∑
i,σ

(g†
i,σ g

†
i+1,σ + H.c.), (23a)

H1:1 = δ
∑

i

g
†
i,dgi,d , (23b)
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1:1
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1:2
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FIG. 2. (Color online) Schematic representation of the applica-
tion of the generator D :0 to the initial Hamiltonian (22). Each
part Hi:j of the Hamiltonian is depicted by a block; the notation
i :j stands for the number of DOs which is first annihilated (j )
and then created (i). The blank blocks indicate the absence of the
corresponding interaction in the Hamiltonian. In the final effective
Hamiltonian, the sector with zero number of DOs is decoupled and
the coefficients in other blocks are renormalized as indicated by the
change of color/shading.

H1:0 = t
∑
i,σ

sign(σ )(g†
i,dgi,σ̄ g

†
i+1,σ + g

†
i,σ g

†
i+1,dgi+1,σ̄ )

= (H0:1)†, (23c)

H2:0 = t
∑
i,σ

g
†
i,dgi,σ g

†
i+1,dgi+1,σ = (H0:2)†. (23d)

These expressions indicate that for U ≈ δ � t , the low-energy
physics takes place in the subspace without DOs. The reduced
generator ηD:0 is applied to (22) to disentangle the subspace
without any DOs from the remaining Hilbert space. The
process is schematically shown in Fig. 2. The final low-energy
effective Hamiltonian acts on a three-dimensional local Hilbert
space (no fermion present or an ↑ or ↓ fermion is present).
The fermionic hard-core QP can hop and they interact with
one another. In Table I, the relevant monomials Aj up to the
minimal order Omin � 2 are given. The expression “minimal

TABLE I. The operators Aj up to the minimal order Omin = 2
present in the low-energy effective Hamiltonian (24). Note that we
combined certain monomials which must have the same prefactor due
to symmetries or Hermitian conjugation.

j Aj Omin

0
∑
i

1 0

1
∑
i,σ

g
†
i,σ gi,σ 0

2
∑
i,σ

(g†
i,σ g

†
i+1,σ + H.c.) 1

3
∑
i,σ

g
†
i,σ gi,σ g

†
i+1,σ gi+1,σ 2

4
∑
i,σ

g
†
i,σ gi,σ g

†
i+1,σ̄ gi+1,σ̄ 2

5
∑
i,σ

g
†
i,σ gi,σ̄ g

†
i+1,σ gi+1,σ̄ 2

6
∑
i,σ

(g†
i,σ g

†
i+1,σ̄ gi+1,σ̄ gi+2,σ + H.c.) 2

7
∑
i,σ

(g†
i,σ g

†
i+1,σ gi+1,σ̄ gi+2,σ̄ + H.c.) 2
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(b)

(c)

FIG. 3. (Color online) The coefficients h1(∞)/δ (a), h2(∞)/δ
(b), and h3(∞)/δ (c) defined in Eq. (24) plotted versus the Hubbard
interaction U/δ. The results are obtained by applying the D :0
generator to the Hamiltonian (23). Each panel includes the results
for the hopping parameters t = 0.05δ (solid line), t = 0.10δ (dashed
line), and t = 0.20δ (dotted-dashed line) in three different orders 2
(green/light gray), 4 (blue/dark gray), and 6 (red/gray).

order” refers to the lowest power in the expansion parameter x

in which this term appears. Together with the prefactors hj (∞),
the monomials define the low-energy effective Hamiltonian
after the first CUT:

H eff
0:0 =

∑
j=0

hj (∞)Aj . (24)

In order to verify the convergence of the results, the
prefactors of the monomials A1, A2, and A3 are plotted versus
U in Figs. 3(a), 3(b), and 3(c), respectively. In each panel,
the results for the hopping parameters t = 0.05 (solid line),
t = 0.10 (dashed line), and t = 0.20 (dotted-dashed line) in
three different orders 2 (green/light gray), 4 (blue/dark gray),
and 6 (red/gray) are depicted. For t = 0.05, the results in
the different orders agree nicely for all the three prefactors.
Figure 3 also shows that for t = 0.10, orders 4 and 6 still
coincide. But, for t = 0.20 we need to go to higher orders
to obtain the effective Hamiltonian quantitatively. In the
following, we fix the order of deepCUT in this first step to
4 in the hopping parameter t . This appears to be sufficient as
long as we focus on low values of t in the following.

The underlying idea to eliminate processes changing the
number of DOs is similar to the one used in the well-known
derivation of the t-J model from the Hubbard model [61,62].
We stress that the obtained effective Hamiltonian is a renor-
malized one and that can be systematically improved by
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including higher orders in t/δ (see also Refs. [53,58,59]). In
Ref. [30], Tincani et al. investigated the IHM by restricting the
local Hilbert space to the three states. They deal directly with
the Hamiltonian (23a) omitting the other processes completely.
Their findings for the transition points tend towards the results
of the IHM in the limit U,δ � t [30].

C. One-quasiparticle sector

The effective Hamiltonian derived in the previous sub-
section is still complicated. It includes various interactions
between different QP sectors. These QPs are created and
annihilated by the g operators of spin ↑ and ↓. To determine the
dispersion of a single quasiparticle (1QP), we need to decouple
at least the zero- and one-QP sectors from the sectors with
more QPs. The reduced generator ηg:1 is required for this goal.
Various symmetries and simplification rules are used in order
to decrease the runtime and the memory requirement in the
deepCUT algorithm so that the high orders can be reached.

We use the symmetries of reflection, the rotation about the z

axis of the spins, and the self-adjointness of the Hamiltonian to
reduce the number of representative terms by about a factor 8.
The various simplification rules we use are analogous to those
introduced in the first paper on deepCUT [41]. In addition,
we exploit the conservation of the particle number for each
spin separately. For details about the implementation of the
simplification rules, we refer the reader to Appendix. In this
way, we were able to reach order 20 in the hopping parameter
t in the calculations for the 1QP dispersion. Up to this order,
no divergence in the numeric evaluation of the flow equations
occurred in the investigated parameter regime.

The final effective Hamiltonian is translationally invariant
so that the one-QP sector is diagonalized by a Fourier
transformation. The resulting one-QP dispersion reads as

ω(k) = h0 + 2
n∑

d=1

h2n cos(2nk), (25)

where the prefactor hd is the hopping element from site i

to i ± d. Only hopping elements over even distances occur
because odd hops would violate the conservation of the total
particle number of original particles [see Eq. (18)]. All bilinear
terms acting on odd distances are of Bogoliubov type.

The one-QP dispersion (25) resulting from the consecutive
application of the generators D :0 and g :1, denoted by D :0 +
g :1, is depicted in Fig. 4. The shorthand D :0 + g :1 stands
for a first application by applying the generator ηD:0. Then,
the resulting effective Hamiltonian is block diagonalized by
applying the generator ηg:1. The left panel of Fig. 4 is for
U = 1.02δ and the right panel is for U = 1.06δ. The hopping
prefactor t in Eq. (17) is fixed to 0.05δ. The one-QP dispersion
is presented for orders 12 (dotted-dashed line), 16 (solid line),
and 20 (dashed line) in the hopping prefactor t .

The left panel in Fig. 4 shows that the results of different
orders 12, 16, and 20 accurately coincide in the whole range
of momenta 0 � K < π demonstrating a good convergence
of the deepCUT method. The largest deviation occurs around
the momentum K = π

2 where the dispersion is maximum as
is shown in the inset.
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D:0+g:1 (12)
D:0+g:1 (16)
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FIG. 4. (Color online) The one-QP dispersion of the IHM for t =
0.05δ and U = 1.02δ (left panel) and U = 1.06δ (right panel). The
one-QP dispersion is obtained by a successive application of the
generators D :0 and g :1, denoted by D :0+g :1. The order in D :0
step is fixed to 4 and the step g :1 is realized in order 12 (dotted-
dashed line), 16 (solid line), and 20 (dashed line). The deviations
between different orders are maximum close to K = π

2 . In addition,
the dispersion resulting from the combination of the deepCUT with
ED, denoted D :0+g :0+ED (see Sec. IV) is depicted. The largest
deviation between the two approaches occurs around K = π

2 , i.e., at
the maximum value of the dispersion.

But, the convergence for increasing order is worse for U =
1.06δ because we approach the transition point Uc ≈ 1.07δ.
Again, the largest deviation between different orders occurs
near the total momentum K = π

2 . The one-QP dispersion
ω(k) shows a tendency to decrease on increasing the order
of calculations.

The charge gap (�c) is defined as the energy necessary to
add an electron plus the energy for taking an electron from the
system

�c = E0(N + 1) + E0(N − 1) − 2E0(N ), (26)

where E0(N ) is the ground-state energy of the system with N

particles. For our electron-hole symmetric Hamiltonian (1), it
is twice the minimum of the dispersion �c = 2ωmin.

Aside from the charge gap, the following gaps are relevant
in the IHM as well. The exciton gap �e is defined as the first
excitation energy in the sector with the same particle number
as in the ground state and with total spin zero:

�e := E1(N,S = 0) − E0(N,S = 0), (27)

where E1 stands for the first excited state in the corresponding
sector. Similarly, the spin gap is defined as the first excitation
energy in the sector with the same particle number, but with
total spin one:

�s := E1(N,S = 1) − E0(N,S = 0). (28)

In our formalism, the exciton gap is given by the lowest energy
of the first singlet bound state and the spin gap by the first triplet
bound state, if binding occurs. Otherwise, the lowest scattering
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FIG. 5. (Color online) The charge gap of the ionic Hubbard
model for the hopping parameter t = 0.05δ. Left panel: The charge
gap as a function of U/δ in various orders. The deepCUT results
extrapolated to infinite order are also depicted. The extrapolated
DMRG results [27] are shown for comparison. The deviation in
our analysis at finite orders becomes large close to the transition
point Uc = 1.07δ. The difference between extrapolated deepCUT
results and DMRG results is about 0.002δ. Right panel: The charge
gap versus the inverse of the order for different values of Hubbard
interaction U . The deepCUT results are extrapolated to infinite order
by a linear fit to the last four points in 1/order.

states matter. Excited states of two QPs will be considered in
detail in Sec. III D.

The charge gap for different orders of the hopping prefactor
t is plotted in the left panel of Fig. 5 as a function of
Hubbard interaction U . The deepCUT results extrapolated
to infinite order by a linear fit in 1/order are also depicted.
The DMRG results, rescaled to the present units, are shown
for comparison [27]. Data are given up to U = 1.08δ because
around this point the phase transition to the SDI takes place (see
the next subsection) and the QP picture breaks down. Figure 5
shows that the results of the deepCUT at high orders coincide
very well for U < 1.00δ. For U > 1.00δ, however, especially
close to the transition point, the different orders separate due
to the numerical deviations indicating a poorer convergence.
The difference between the extrapolated deepCUT results and
the DMRG results is about 0.002δ. We draw the reader’s
attention to the accuracy of such data. The energy scale of the
initial model before the renormalizing unitary transformations
is U + δ ≈ 2δ so that the transformations are still precise on
energy scales reduced by three orders of magnitude.

In the right panel of Fig. 5, the charge gap versus the
inverse order is displayed for various values of U . The charge
gap decreases on increasing order. The deepCUT results are
extrapolated to infinite order by a linear fit to the last four
points. This plot illustrates how the deepCUT calculations
converge as a function of the order in the hopping t . The
deepCUT method as used in this work is a renormalizing
approach based on a truncation in real space. This means
that processes are tracked only up to a certain range in real
space. This range is determined by the order of the calculations
interpreted as the maximum number of hops on the lattice.

Thus, it is clear that the approach as presented here runs
into difficulties upon approaching continuous phase transitions
where long-range processes become essential.

D. Two-quasiparticle sector

In the framework of deepCUT, the treatment of sectors with
higher number of QPs is also possible [41,51,52,54,63–65].
The two-QP sector can be decoupled by using the reduced
generator ηg:2. This generator will yield an effective Hamil-
tonian that can be diagonalized for each combination of the
total momentum K , total spin S, and total magnetic quantum
number M . The two-QP states with fixed K , S, and M read as

|K; d〉S,M=
∑
σ1σ2

AS,M
σ1,σ2

|K,σ1; d,σ2〉

= 1√
L

∑
r

eiK(r+ d
2 )

∑
σ1σ2

AS,M
σ1,σ2

|r,σ1; r + d,σ2〉,

(29)

where σ1 and σ2 indicate the spins of the QPs, AS,M
σ1,σ2

are the
appropriate Clebsch-Gordon coefficients, L is the system size,
i.e, the number of sites. The sum runs over all lattice sites
and d > 0 is the distance between the two QPs which can not
be zero due to the hard-core property. Furthermore, because
the two constituting fermions are indistinguishable after the
particle-hole transformation, the Clebsch-Gordon coefficients
take the contributions with negative d into account.

The Hamiltonian matrix in the two-QP sector is composed
of three different submatrices referring to different total
charge. Both QPs can be original electrons, or holes, or
one is an electron and the other a hole. Here, we refer to
the fermions before the particle-hole transformations. If the
two-QP state (29) contains only odd distances d, it consists of
an electron and a hole. But, if the two-QP state is made of two
original electrons or two holes, the distances between them
are even [cf. Eq. (18)]. Here, we focus on the case of two-QP
states with one electron and one hole and discuss the possible
triplet and singlet bound states.

The sector with two holes (or two electrons) is also
very interesting in the context of superconductivity. A recent
investigation of the IHM including next-nearest neighbor
(NNN) hopping terms on the honeycomb lattice found evi-
dence for superconducting behavior upon hole doping [66]. A
dynamic mean field theory study of the model also indicates
an interesting half-metallic behavior on doping away from
half-filling [67]. But, these issues are beyond the scope of this
paper.

The Hamiltonian matrix can be constructed by applying the
Hamiltonian parts H1:1 and H2:2 to the state |K,σ1; d,σ2〉. For
H1:1, we obtain

H1:1|K,σ1; d,σ2〉
= +

∑
n>−d

∑
β1

eiK n
2 β1
σ1

[
C1

1

]n|K,β1; +d + n,σ2〉

−
∑
n<−d

∑
β1

eiK n
2 β1
σ1

[
C1

1

]n|K,σ2; −d − n,β1〉
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+
∑
n<d

∑
β2

eiK n
2 β2
σ2

[
C1

1

]n|K,σ1; +d − n,β2〉

−
∑
n>d

∑
β2

eiK n
2 β2
σ2

[
C1

1

]n|K,β2; −d + n,σ1〉, (30)

where the appearance of the minus signs is due to the fermionic
nature of the problem. We use the shorthand

β
σ

[
C1

1

]n
:= 〈r−n,β|H1:1|r,σ 〉. (31)

Similarly, for H2:2 we have

H2:2|K,σ1; d,σ2〉
= −

∑
n

∑
d ′>0

∑
β1β2

eiK(n+ d−d′
2 )β1β2

σ1σ2

[
C2

2

]nd ′

d
|K,β1; d ′,β2〉,

(32)

with the definition
β1β2
σ1σ2

[
C2

2

]nd ′

d
:=〈r−n,β1; r−n+d ′,β2|H2:2|r,σ1; r + d,σ2〉.

(33)

In order to fix the fermionic sign in the definition (33) uniquely
we assume from now on that in each monomial of H2:2

the creation operators are placed in front of the annihilation
operators and the annihilation and the creation parts are
separately site ordered.

The low-lying excitation spectra for U = 1.02δ and U =
1.06δ are depicted in the left and in the right panels of Fig. 6,
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FIG. 6. (Color online) Low-lying excitation spectrum including
one-quasiparticle dispersion (solid line), two-quasiparticle and three-
quasiparticle continuum (colored/shaded regions), singlet (dashed
line) and triplet (dotted-dashed line) bound states. The results are
obtained by consecutive application of the generators D :0 and g :2.
The order of the transformation for D :0 is 4 and for g :2 it is 12 which
is the highest converging order. The hopping element is t = 0.05δ.
The Hubbard interaction U is fixed to 1.02δ for the left panel and to
U = 1.06δ for the right panel. There are two singlet bound states near
the total momentum K = π and around K = π

2 . The triplet bound
state is almost symmetric around K = π

2 and exists in the whole
BZ. For U = 1.06δ, the two-quasiparticle continuum lies completely
within the three-quasiparticle continuum.
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FIG. 7. (Color online) The exciton (or singlet) gap �e versus the
Hubbard interaction in various orders. The hopping is fixed to t =
0.05δ. The exciton gap at becomes soft for Uc = 1.072δ in order
12. For comparison, the DMRG prediction of the first transition is
Uc = 1.069δ [27].

respectively. The hopping t is fixed to 0.05δ. The order of the
second CUT is 12. We can not go beyond this order because
the flow equations for the two-QP sector do not converge in
higher orders. As can be seen in the right panel, the two-QP
continuum lies within the three-QP continuum. The lower edge
of the four-QP continuum (not shown) lies also close in energy
to the lower edge of two-QP continuum. This large overlap
between continua of different number of QPs is the major
reason of divergence of the flow equations [52].

For both values of U in Fig. 6 there are two singlet and one
triplet bound states. The singlet bound modes occur only near
the total momentum K = π and around K = π

2 . The triplet
bound mode becomes more and more symmetric about K = π

2
as the Hubbard interaction U is increased and approaches
the transition point Uc1 ∼ 1.07δ. We attribute the wiggling of
the singlet mode for U = 1.06δ around the total momentum
K = π

2 to the truncation of the flow equations. For U = 1.06δ,
the lowest excited state is the singlet bound state that appears
at the total momentum K = π . This mode becomes soft, i.e.,
its energy vanishes, upon increasing the Hubbard interaction,
further indicating the first phase transition at Uc1 from the BI
to the SDI phase.

The exciton gap is plotted versus the interaction U in
Fig. 7 for different orders. Due to divergence of the flow
equations, no values are reported in order 10 for U > 1.04δ.
For the same reason, orders higher than 12 were not accessible.
The extrapolated DMRG results extracted from Ref. [27] and
rescaled to the present units are also shown. The deepCUT
results at high orders are very close to the DMRG results.
The DMRG prediction of the transition point is 1.069δ. In our
analysis, in order 12 the exciton gap vanishes at Uc = 1.072δ.
The deepCUT results for the exciton gap �e converge better
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upon increasing order than the deepCUT results for the charge
gap �c shown in Fig. 5. We attribute this to the larger
separation in energy from the closest continuum.

We studied the energy difference between the spin and the
charge gap. While this difference is finite in any finite order,
its extrapolation in the inverse order is consistent with a zero
difference in the BI phase, i.e., for U � Uc1. In view of the
definitions (27) and (28), this implies that no binding between
two QPs occurs in the two-QP sector with total S = 1. These
findings are to be compared to previous DMRG data. Takada
and Kido extrapolated the DMRG results to infinite system size
and deduced that the spin gap and charge gap become different
before the first transition point Uc1 [25]. The equality of spin
and charge gaps up to the first transition point is supported by
other extrapolated DMRG calculations [26,27,32].

The deepCUT approach realized in real space, the range
of processes taken into account is proportional to the order
of the calculation. Thus, we expect the deepCUT method to
provide accurate results as long as the order is larger than the
correlation length ξ in units of the lattice spacing of the system.
The correlation length can be estimated as [68,69]

ξ ≈ v

�
, (34)

where v is the velocity for vanishing gap and � is the
gap present in the system. The relation (34) stems from the
assumption that the low-energy physics of the model fulfills
an (approximate) Lorentzian symmetry.

In the IHM, the exciton gap is the smallest gap and hence
we set � = �e. The fermionic velocity can be obtained by
fitting ω(k) = v sin(k) to the one-QP dispersion. We find ξ =
0.09

0.038 ≈ 2.4 for U = 1.02δ, ξ = 0.07
0.008 ≈ 8.8 for U = 1.06δ,

and ξ = 0.07
0.0015 ≈ 47 for U = 1.07δ. The rapid increase of ξ

on approaching the transition point Uc1 reflects the vanishing
exciton gap �e. This implies that the deepCUT approach
parametrized in real space naturally becomes inaccurate on
approaching Uc1.

IV. EXACT DIAGONALIZATION IN THE
THERMODYNAMIC LIMIT

The deepCUT results close to the transition point are
not quantitative, especially for the charge gap for reasons
given above. In this section, we aim at improving the results
by following the route used previously in Ref. [52]. The
goal of the deepCUT is chosen less ambitious, i.e., less
terms are rotated away. This makes the deepCUT step less
prone to inaccuracies and convergence can be achieved more
easily. But, the disadvantage is that the resulting effective
Hamiltonian is not yet diagonal or block diagonal so that the
subsequent analysis becomes more demanding. Here, we will
employ exact diagonalization in restricted subspaces for this
purpose.

A. Construction of the Hamiltonian matrix

In order to take into account processes of longer range for
the important excited states, we only decouple the ground state
from the subspaces with finite number of QPs. This is achieved
by applying the reduced generator g :0. This generator keeps
interactions and transitions between different excited states.

Because the system under study is fermionic, there are only
terms in the Hamiltonian with even number of fermionic
operators. Thus, there is no process linking one QP and two
QPs: H2:1 = 0. Therefore, the major off-diagonal interaction
for one-QP states is H3:1 + H1:3 and for two-QP states it is
H4:2 + H2:4.

After applying the generator g :0, the effective Hamiltonian
has the following structure:

Heff = H0:0 + H1:1 + H2:2 + H3:3 + H4:4

+ (H3:1 + H.c.) + (H4:2 + H.c.)

+ less important terms, (35)

where the less important terms include the parts which involve
states with more than four QPs. These interactions have much
less effect than H3:1 and H4:2 on the low-energy spectrum given
by the eigenvalues in the one-QP and in the two-QP sectors.

The effect of off-diagonal interactions between one- and
three-QP states and between two- and four-QP states can be
considered by restricting the Hilbert space to four-QP states
and performing an exact diagonalization (ED) within this
restricted Hilbert space. The effect of the Hamiltonian is stored
in two separate matrices: one for the states that are built from
one and three QPs and the other for the states built from two
and four QPs. We stress that also states with four QPs have
to be considered to be able to address modifications in the
two-QP spectrum.

Because the ground state is decoupled in the deepCUT
step, we can work directly in the thermodynamic limit by
introducing the states with specific total momentum K , total
spin S, and total magnetic number M:

|K〉S,M = 1√
L

∑
r

eiKr |r〉S,M, (36a)

|K; d〉S,M = 1√
L

∑
r

eiK(r+ d
2 )|r; r+d〉S,M, (36b)

|K; d1; d2〉S,M
α = 1√

L

∑
r

eiK(r+ 2d1+d2
3 )

× |r; r + d1; r + d1 + d2〉S,M
α , (36c)

|K; d1; d2; d3〉S,M
α = 1√

L

∑
r

eiK(r+ 3d1+2d2+d3
4 )|r; r + d1; r + d1

+ d2; r + d1 + d+d3〉S,M
α , (36d)

where d1, d2, and d3 are the distances between the QPs,
and α is an additional quantum number that specifies the
spin configuration. The quantum number α is required for
distinction because there is more than one spin configu-
ration with three and four QPs for given total spin and
total Sz.

The Hamiltonian matrix is constructed for each fixed set of
K , S, and M . The action of the parts of the Hamiltonian Hi:j

for i,j � 4 on the states (36) is calculated analytically. The
effect of H1:1 and H2:2 on the two-QP state is already reported
in Eqs. (30) and (32). The effect of H1:1 on the two-QP state has
4 contributions while it has 9 and 16 contributions for three-
and four-QP states, respectively. The application of H2:2 on
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FIG. 8. (Color online) Schematic representation of the applica-
tion of H1:1 = ∑

i,j ti,j g
†
i gj on the three-QP state |K; d1; d2〉 defined

in (36c). There are three different possibilities for the operator gj to

annihilate a QP and the operator g
†
i can create a QP in three distinct

positions: to the left, between, and to the right of the two QPs already
present. This leads to nine different contributions.

three- and four-QP states leads to 9 and 36 different contribu-
tions. The numbers of contributions can be understood easily.
For instance, H1:1 has three different possibilities to annihilate
a QP when it acts on a three-QP state and it can also create
a QP in three distinct positions, namely, to the left, between,
and to the right of the two QPs on the chain, leading to 9
contributions. The process is schematically shown in Fig. 8.

The explicit expressions for the action of different parts
of the Hamiltonian (35) on the states (36) are calculated and
reported in the Supplemental Material [70]. These expressions
are general and can be used for all hard-core fermionic or
bosonic problems. The two-, three-, and four-QP states with
total spin S = 0 and 1, total magnetic number M = 0 and 1,
and the additional label α are also given in the Supplemental
Material [70].

The idea that we have applied here is similar to what
had been introduced in Ref. [52] to describe QP decay with
CUT. The main difference is that we have to take care of
the fermionic minus sign and to consider also the states with
four QPs. Including the four-QP states not only leads to large
analytic expressions, but also limits the maximum relative
distances that can be treated numerically. For the following
results, the Hamiltonian matrix has been constructed with
maximum distances dmax

1 = dmax
2 = dmax

3 = 24.

B. Low-lying excitation spectrum

The charge and exciton gaps obtained by the combination
of deepCUT and ED are depicted in Fig. 9. We denote this
approach by D :0 + g :0 + ED which means that the effective
Hamiltonian is derived by the consecutive application of the
generators ηD:0 and ηg:0. Then, this effective Hamiltonian
is analyzed by the ED method as described above. Due to
the restriction of the Hilbert space in the ED, its results
overestimate the eigenvalues of the effective Hamiltonian, i.e.,
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FIG. 9. (Color online) The charge gap (left panel) and the exciton
gap (right panel) vs U obtained by D :0+g :0+ED (see main text).
The order of the D :0 step is 4 and g :0 is carried out in various orders
(see legend). The data for charge gap appears to be more robust in
D :0+g :0+ED than in the pure deepCUT analysis D :0+g :2.

they provide upper bounds to them. But, note that the effective
Hamiltonian has only a limited accuracy due to the truncations
in the course of the deepCUT D :0 + g :0 so that the ED results
can not be taken as rigorous upper bounds. If we, however,
assume that the inaccuracies introduced in the derivation of the
effective Hamiltonian are of minor importance, the ED results
can be taken as an upper bound for the correct eigenvalues.

The left panel of Fig. 9 shows that the difference between
the data obtained by D :0+g :0+ED and the DMRG results is
smaller than the difference of the data of the pure application
of the deepCUT to the DMRG results (cf. Fig. 5). For the
charge gap close to the phase transition, the deviation between
our results and the DMRG data is decreased from about 1%
for the pure deepCUT to about 0.5% for the combination of
deepCUT and ED.

In the right panel of Fig. 9, the exciton gap is plotted versus
the Hubbard interaction U . The results agree nicely with the
DMRG results for all orders higher than 4. Inspecting the trend
of the results for increasing order they appear to converge to
values slightly higher than the DMRG results. We attribute this
fact to the restriction of the Hilbert space in the ED treatment
making it an upper bound.

The one-QP dispersion obtained by the combination D :
0 + g :0 + ED is plotted in Fig. 4 for the two different values of
the Hubbard interaction U = 1.02δ (left panel) and U = 1.06δ

(right panel). In this figure, we compare the results of pure
deepCUT with the results of the combination of deepCUT
and ED. For U = 1.02δ, both methods coincide nicely except
very close to K = π

2 where the maximum deviation occurs.
Around K = π

2 the results of deepCUT plus ED lie a bit higher
in energy than those by pure deepCUT (see also inset). It is
not clear whether the small difference is due to the restriction
of the Hilbert space in ED implying a certain overestimation
or whether it is due to the effect of long-range processes that
are less well captured by the pure deepCUT.
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FIG. 10. (Color online) The low-energy spectrum of the IHM
including one-quasiparticle dispersion (solid line), two- and three-
quasiparticle continuum (solid region), and singlet (dashed line) and
triplet (dotted-dashed line) bound states. The results are obtained by
D :0+g :0+ED. The deepCUT steps D :0 and g :0 are performed
in orders 4 and 16, respectively. For the ED, the Hamiltonian matrix
is constructed for maximum relative distances of 24. The hopping is
fixed to t = 0.05δ for both panels: U = 1.02δ in the left panel and
U = 1.06δ in the right panel. For U = 1.06δ, the lower edge of two-
and three-quasiparticle continuum are very close to each other. No
singlet bound state is found near the total momentum K = π/2 in
contrast to the pure deepCUT D :0+g :2 (see Fig. 6).

Next, we focus on the right panel of Fig. 4 where U =
1.06δ close to the transition point. Here, the difference between
the two methods is larger. For the momenta near 0 and π ,
the combination D :0 + g :0 + ED yields a dispersion with
lower energy, while for the momenta around π

2 the result from
D :0 + g :2 is the lower one. From the comparison with the
extrapolated DMRG results for the charge gap, we deduce
that the dispersion of D :0 + g :0 + ED is more accurate near
K = 0 and π . Thus, we presume that also around K = π

2 the
D :0 + g :0 + ED data are more accurate, but there are no
data from alternative approaches available to corroborate this
conclusion.

Let us turn to Fig. 10 which shows the low-energy spectrum
of the IHM obtained by D :0 + g :0 + ED with the orders 4
and 16 for the deepCUT steps D :0 and g :0, respectively.
The left and right panels are again for U = 1.02δ and 1.06δ.
The lower edge of the three-QP continuum for U = 1.06δ lies
close to the lower edge of the two-QP continuum. The major
difference between this figure and the pure deepCUT results
plotted in Fig. 6 is the absence of the singlet bound state around
the total momentum K = π/2. This difference may arise
from the restricted relative distances of QPs in the ED
treatment. The singlet bound state mode near K = π/2 has
a small binding energy, indicating that it is weakly bound and
thus extending over large distances. Its extension is restricted
due to computational limitations and the binding may be
suppressed in the ED spuriously.

V. BEYOND THE TRANSITION POINT: A MEAN-FIELD
STUDY

The deepCUT approach realized in the previous sections is
based on the QPs of the BI, i.e., the more complicated, dressed
excitations close to the transition to the SDI are continuously
mapped to the simple QPs of the BI. The same quantum
numbers are used in analogy to Fermi-liquid theory which
uses the same quantum numbers as the Fermi gas. As long as
the system is located on the BI side of the phase transition, only
a few-particle problem remains to be solved in a subsequent
step to find the low-lying excitation spectrum. But, this QP
picture breaks down when a phase transition occurs. Beyond
the transition point, a macroscopic number of QPs of the BI
condenses, forming the new phase. This new phase displays
other types of elementary excitations.

Our analysis of the BI of the IHM in the previous sections
showed that the exciton gap decreases on increasing the
Hubbard interaction and vanishes at a critical value Uc1.
This critical interaction was found to be Uc1 = 1.072δ for
D :0 + g :2 in order 12 (see Fig. 7). How can we proceed
beyond the transition and still profit from the effective
Hamiltonians obtained by deepCUT? The most systematic
way would be to set up a CUT with respect to the ground
state and the elementary excitations for U > Uc1. But, there
are two obstacles to this route. The first one is that one has to
know and to characterize the SDI ground state sufficiently well
to be able to set up a CUT. The second one is that this approach
would require us to implement another, different CUT which
is tedious.

Thus, we choose a slightly modified approach and continue
to use the implemented CUT to derive an effective Hamiltonian
by applying D :0 + g :2 and then to analyze this effective
Hamiltonian by a perturbative approach. The guiding idea is
that the terms driving the phase transition are small and can be
treated perturbatively as long as the system is considered close
to the phase transition. In this way, one continues to profit from
the deepCUT implemented to obtain effective Hamiltonians.
We use the deepCUT D :0 + g :2 in order 12 to derive the
effective Hamiltonian that we analyze perturbatively in the
sequel. This deepCUT is not yet so sensitive to be spoiled by
the instability towards the SDI because the latter takes place
on very low-energy scales.

For simplicity, we choose here a mean-field approximation
as a first step of a perturbative treatment. Although this
approach is not able to capture the correct critical behavior in
low dimensions and underestimates the role of fluctuations, it
provides us with an estimate which phases are lower in energy.
Since the exciton becomes soft at Uc1, the SDI can be seen
as a condensate of excitons. The particle-hole transformation
that we performed maps the original exciton into a bound
state of two fermions, i.e., the exciton appears as Cooper pair.
Thus, we expect a BCS-type theory to describe the SDI phase
transition.

The effective Hamiltonian is represented in terms of
hard-core fermions {gi,σ } and it includes various interactions
within and between sectors of different numbers of QPs. In
the following, we consider this effective Hamiltonian up to
quadrilinear interactions and ignore interaction terms acting
on higher numbers of QPs. Hence, the effective Hamiltonian
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takes the general form

Heff = H0:0 + H1:1 + H2:2, (37a)

where

H0:0 = E01, (37b)

H1:1 =
∑
ij

�j ;ig
†
j gi , (37c)

H2:2 =
∑
ijkl

�kl;ij g
†
kg

†
l gi gj . (37d)

The prefactors �j ;i and �kl;ij are nonzero up to an
interaction range proportional to the order of calculations.
The processes of longer range are all zero. Because the
effective Hamiltonian (37a) is obtained by applying the
reduced generator g :2, no off-diagonal interactions such as
H3:1 appear.

In order to apply the Wick theorem, we neglect the
hard-core property of the operators and treat them like
usual fermions. Due to this approximation, two fermions
with different spin are allowed to occupy the same site.
It is also possible to deal with the hard-core property by
the slave-particle techniques (see Ref. [71] and references
therein) or by the Brueckner approach [72]. But, such
analyses are beyond the scope of the present investigation.

For a self-consistent mean-field approximation, the sym-
metries of the ground state are essential. In order to describe
the SDI phase of the IHM, we take the possibility of a
spontaneous symmetry breaking into account with nonzero
anomalous expectation values (see following). The broken
symmetry is the parity with respect to reflection about a site.
Thus, adjacent bonds may become different even though in the
original Hamiltonian the (directed) bond from site 0 to 1 was
identical to the one from 0 to −1. This is characteristic of the
SDI as found in previous studies based on variational quantum
Monte Carlo [24] and DMRG [25–30,32]. Thus, we assume
for the expectation values

〈g†
i,σ g

†
i+m,σ 〉 �= 〈g†

i+1,σ g
†
i+m+1,σ 〉 �= 0, (38a)

〈g†
i,σ gi+n,σ 〉 = 〈g†

i+1,σ gi+n+1,σ 〉 �= 0, (38b)

where m and n stand for odd and even distances, respectively.
The maximum values of m and n depend on the order in which
the deepCUT was performed. All the above expectation values
are zero in the BI phase where the ground state is the vacuum
of “g particles” but they become finite as soon as the exciton
begins to condense and the phase transition occurs.

For a transparent notation, we express the g operators acting
on even and odd sites by a and b operators, respectively. The
resulting mean-field Hamiltonian takes the BCS form

HBCS = L

2

(
εA

0 + εB
0

) +
∑

r∈even,σ

(
tA0 : a†

r,σ ar,σ : +
∑

n=2,4,...

tAn : a†
r,σ ar+n,σ + H.c. :

)

+
∑

r∈odd,σ

(
tB0 : b†r,σ br,σ : +

∑
n=2,4,···

tBn : b†r,σ br+n,σ + H.c. :

)
+

∑
r∈even,σ

∑
m=1,3,···

�A
m : a†

r,σ b
†
r+m,σ : +H.c.

+
∑

r∈odd,σ

∑
m=1,3,···

�B
m : b†r,σ a

†
r+m,σ : +H.c., (39)

where we have divided the lattice into the two sublattices A and B of even and odd sites, respectively. The prefactors εA
0 , εB

0 , tAd ,
tBd , �A

d , and �B
d depend on the coefficients of the effective Hamiltonian, which stem from the flow equations [see Eq. (6)] and

from the expectation values introduced in Eq. (38). Due to the identity (38b), the hopping prefactors of the two sublattices are
identical. So, we unify them omitting the sublattice index tAd = tBd =: td .

The BCS Hamiltonian (39) is diagonalized by a Bogoliubov transformation in momentum space. The self-consistency equations
to be solved are found after some lengthy standard calculations:

〈a†
r,σ ar+n,σ 〉 = 〈b†r,σ br+n,σ 〉 = 1

π

∫ π
2

0
dk

λ(k) − t(k)

λ(k)
cos(nk), (40a)

〈a†
r,σ b

†
r+m,σ 〉 = 1

π

∫ π
2

0
dk

Im[�(k)] sin(mk) − Re[�(k)] cos(mk)

λ(k)
, (40b)

〈b†r,σ a
†
r+m,σ 〉 = 1

π

∫ π
2

0
dk

Im[�(k)] sin(mk) + Re[�(k)] cos(mk)

λ(k)
, (40c)

where n and m take even and odd values, respectively. The
functions t(k), �(k), and λ(k) are defined as

t(k) = t0 + 2
∑

n=2,4,...

tn cos(nk), (41a)

�(k) =
∑

m=1,3,...

[(
�A

m − �B
m

)
cos(mk)

− i
(
�A

m + �B
m

)
sin(mk)

]
, (41b)

λ(k) =
√

t2(k) + |�(k)|2. (41c)

Once the parameters t and U are specified, the mean-field
equations (40) have to be solved self-consistently for the
expectation values (38). The results are shown in Fig. 11. The
left panel displays the expectation values of the local density
operator, of the NN Bogoliubov term, and of the NNN hopping
term. For U � 1.072δ, all the expectation values are zero; they
continuously increase from zero for U � 1.072δ. This critical
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FIG. 11. (Color online) Analysis of the effective Hamiltonian
obtained by D : 0 + g : 2 in order 12 within the BCS-type approxima-
tion. The hopping prefactor t is 0.05δ. Left panel: Expectation values
of the local density, the nearest-neighbor (NN) Bogoliubov term,
and the next-nearest-neighbor (NNN) hopping term vs the Hubbard
interaction U . At the phase transition at Uc = 1.072δ, the expectation
values become finite. The Bogoliubov term shows a square-root
behavior near the transition point. Right panel: The condensation
energy per site �ε0 (upper panel) and the charge gap �c (lower
panel) vs Hubbard interaction U . The charge gap starts to increase
beyond the transition point U > Uc1.

Hubbard interaction Uc = 1.072δ is precisely the value we
found in our study of the BI phase in the previous sections
based on the deepCUT D : 0 + g : 2 in order 12 (see Fig. 7).
This demonstrates the overall consistency of the approach
used.

The two NN Bogoliubov terms in the unit cell are related
to each other by a minus sign:

〈a†
r,σ b

†
r+1,σ 〉 = −〈b†r+1,σ a

†
r+2,σ 〉; r ∈ even. (42)

Two equivalent solutions are possible corresponding to the
two ground states. In one of them 〈a†

r,σ b
†
r+1,σ 〉 > 0 holds and

in the other 〈a†
r,σ b

†
r+1,σ 〉 < 0. It is seen from the left panel

of Fig. 11 that the expectation values of the local density
and of the NNN hopping term are close to each other and
behave linearly in the vicinity of the transition point. The
NN Bogoliubov term displays a square-root behavior around
the transition point. This square-root behavior of the order
parameter near the transition point is what one expects from
a mean-field theory without spatial fluctuations, i.e., Landau
theory, for transitions from a unique ground state to a state
with spontaneously broken symmetry.

We define the condensation energy as the energy difference
between the vacuum of “g particles” and the mean-field
ground state of the system. In the right panel of Fig. 11, the
condensation energy per site �ε0 and the charge gap are plotted
versus U . Of course, the condensation energy is zero in the BI
phase and becomes finite when the condensation starts.

The mean-field analysis shows that the charge gap starts
to increase as soon as the transition has taken place. The
behavior of the charge gap beyond the first transition point
Uc1 has been discussed controversially in previous studies.

Lou et al. [26] concluded by extrapolating DMRG results to
infinite chain length that the charge gap continues to decrease
beyond Uc1 up to the second transition point Uc2. At this
second transition point, both charge and spin gaps vanish and
for U > Uc2 the charge gap starts to increase while the spin
gap remains zero [26]. The DMRG method employed by other
groups, however, shows that the charge gap starts to increase
just from the first transition point on [25,27,32]. Our findings
clearly support the latter scenario.

Because the IHM can be mapped to the Heisenberg
model in the limit U − � � t , we expect a MI phase in
the large-U limit with a vanishing spin gap. However, the
effective Hamiltonian analyzed on the mean-field level shows
no evidence for a second transition to the MI phase. But,
there is strong evidence for a second transition to the MI
phase obtained by field-theoretical approach [16,19] and by
DMRG [25–30] even though it appears to be difficult to
determine it unambiguously [24,32].

The question arises as to why we do not see any evidence for
the transition SDI to MI. From the employed approach, two
sources are conceivable. The first source consists in errors
in the mapping of the IHM to the effective Hamiltonian
using D :0 + g :2. We have already seen that this effective
Hamiltonian includes some inaccuracies. This is seen, for
instance, in the charge gap calculated from the effective
Hamiltonian and compared to DMRG results in the left panel
of Fig. 5. But, this is only a quantitative discrepancy which
can explain quantitative deviations and it is unlikely that the
qualitative aspect of a mechanism driving the system from the
SDI to the MI is completely missed.

The second source arises from the analysis of the effective
Hamiltonian. The mean-field analysis can capture the essential
aspects of the gaps of single fermionic excitations, but it is
not powerful enough to provide information about binding
phenomena. The physics of the MI is characterized by the
massless excitations of a generalized Heisenberg model. In
higher dimensions it would display magnetic long-range order.
In 1D, this order is reduced by quantum fluctuations to a quasi-
long-range order with power-law decay. Still, we expect that
the transition SDI to MI is driven by the softening of a magnetic
S = 1 excitation, i.e., a triplon. The condensation of such a
triplon would indicate the transition to a phase dominated by
magnetic fluctuations or with magnetic long-range order [73].

In terms of fermions, the triplon is an exciton with S = 1,
in contrast to the exciton with S = 0 which signaled the BI to
SDI transition. Thus, we conclude that the second transition
Uc2 can only be found if the binding of S = 1 excitons formed
by two fermionic excitations above the SDI ground state is
analyzed. This is left to future research.

VI. CONCLUSION AND OUTLOOK

Summarizing, we studied the ionic Hubbard model (IHM)
with interaction U at half-filling in one dimension to under-
stand the nature of its three phases: the band insulator (BI), the
spontaneously dimerized insulator (SDI), and the Mott insula-
tor (MI). The model is empirically relevant to the neutral-ionic
transition observed in the mixed-stack organic compounds as
well as to ferroelectricity in transition-metal oxides. The phase
diagram of the model was studied before by several methods,
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but the momentum-dependent excitation spectrum has been
considered only deep in the BI phase [39,40]. In this work,
a quantitative description of the dispersions almost up to the
BI-to-SDI transition point has been achieved.

We employed the recently developed deepCUT ap-
proach [41] to derive an effective Hamiltonian in a system-
atically controlled fashion. This Hamiltonian describes the
physics in terms of the elementary excitations of the correlated
BI. Technically, the use of the deepCUT is essential because
any perturbative description necessarily breaks down at some
point U < δ while the phase transition from BI to SDI takes
place at Uc1 ≈ 1.07δ. We could show that this transition
beyond the point U = δ is due to a renormalization of the local
excitation energy δ − U to positive values when higher-lying
excitations are integrated out.

We quantitatively determined the dispersion of single
fermionic excitations (quasiparticles, QP) in the whole Bril-
louin zone in the BI phase almost up to the first transition point
Uc1. Very good accuracy could be reached if the system was
not too close at the transition point. This has been established
(i) by comparing the results of various orders establishing
convergence for the limiting process towards infinite order,
and (ii) by comparison of the results for the charge gap to
DMRG data [27]. We emphasize that our approach has the
merit to address the full dispersion, going beyond the gap.

Moreover, we computed the dispersion of singlet and triplet
bound states formed by two fermionic excitations. It is found
that the nonmagnetic S = 0 exciton at momentum π becomes
soft on approaching the phase transition to the SDI. Beyond
the transition point, we described the condensation of these
excitons by a mean-field theory. This condensed phase displays
the same symmetries as the SDI phase, namely, an alternating
bond strength. Thereby, a consistent picture of the BI-to-SDI
quantum phase transition has been provided. By this strategy,
even in the leading order of the deepCUT we correctly identify
the nature of the middle phase in the IHM. This is remarkable
because numerical diagonalization methods require very large
system sizes to recognize the existence and the nature of this
intermediate phase [24,74].

Furthermore, we argued that the second transition from
the SDI to the MI is signaled by the softening of an S = 1
exciton in the SDI phase. Its condensation would lead to the
quasi-long-range order in the MI phase. But, the computation
of this binding effect and the determination of Uc2 was beyond
the present investigation.

Two possible extensions suggest themselves for future
research. The first is to develop a quantitative transformation
yielding an effective Hamiltonian for the SDI phase. This
should allow us to determine (i) the softening of an S = 1
excitation for U → Uc2 from below and (ii) the instability
towards the BI by the softening of an S = 0 excitation for
U → Uc1 from above.

Second, we recall that much less is known about the IHM in
two and higher dimensions. The first question is whether the BI
becomes unstable towards some modulated phase similar to the
SDI. This would be seen in the softening of an S = 0 exciton
at the corresponding wave vector. Alternatively, it is possible
that no modulated phase occurs but that the BI becomes
unstable directly towards a MI phase. This would be signaled
by the softening of an S = 1 exciton. Another scenario

would be that no collective bosonic excitation condenses, but
that the fermionic dispersion becomes negative, leading to a
strongly correlated metallic behavior. So, an application of the
presented approach is called for.
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APPENDIX: SIMPLIFICATION RULES

The algebraic part of the deepCUT method requires us
to keeping track of many monomials and to calculate their
commutators. The number of monomials to be tracked can
be substantially reduced if we are interested in sectors with
only a few QPs and in processes up to a specific order n in
the formal expansion parameter. For the bookkeeping [41], we
define two different orders for each monomial Ai . The first is
the minimal order Omin(Ai) which is the order in which the
monomial Ai appears.

The second is the maximal order Omax(Ai) which gives
the order up to which the prefactor of the monomial Ai is
needed to describe the targeted sector up to order n. By the
term “targeted” we simply express that it is this sector that
we want to know and to compute finally. The maximal orders
of monomials can be determined from the minimal orders
and the flow equations in an iterative way (see Ref. [41] for
details and examples). Finally, if Omax(Ai) < Omin(Ai) holds,
the monomial Ai has no effect on the targeted quantities up to
order n and we can discard it.

This omission of unnecessary monomials is possible only
after determining the flow equations. The idea of simplification
rules (SRs) is to find an upper bound Õmax for the maximal
order of each monomial Ai during the algebraic part of the
calculations. Then, this bound Õmax is used to discard at
least some of the unnecessary monomials in the algebraic
calculations, leading to an acceleration of the algorithm and
reduced memory requirements.

Here, we present two different kinds of SRs: a posteriori
and a priori SRs. They are employed in our second application
of the deepCUT analysis where effective Hamiltonians are
derived which preserve the number of fermionic QPs.

1. The a posteriori simplification rules

The a posteriori SRs are applied after the calculation of
each commutator. They check whether a monomial can be
discarded or not. In the sequel, it is assumed that the order of
calculations is n. First, we discuss the simplifications if the
sector with zero QPs is targeted, i.e., the ground state because
this is the simplest case. But, we also discuss what is necessary
to target sectors with q QPs.
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For an upper bound to the maximal order of the monomial
A, let us assume that cσ and aσ are the number of creation
and annihilation operators with spin σ which occur in Ai . We
explain the idea for the creation operators. The annihilation
operators can be treated in the same way.

The ground-state energy is just a number so that its
corresponding operator is the identity 1. For the monomial
Ai to influence the ground-state energy, all creation operators
have to be canceled in the commutation process. The generator
η comprises the monomials

η
(1)
eff =

∑
i,σ

(g†
i,σ g

†
i+1,σ + H.c.) (A1)

in first order. In commutation, this generator term can
compensate two creation or two annihilation operators with
the same spin. This is the key observation for the SR. We point
out that the higher-order terms in the generator may be able
to compensate more than two operators, but the ratio between
the number of compensated operators and the minimal order
of the generator term is always equal or less than 2. Thus, it is
sufficient to consider just the first-order term of the generator
in our analysis [41]. The minimal number of commutations
needed to cancel all the creation operators reads as

Kc
0 =

∑
σ

⌈
cσ

2

⌉
, (A2)

where the ceiling brackets stand for the smallest integer
larger than the argument. A lower number of commutations
is necessary if sectors with more QPs are targeted. If we want
to target q QPs, we denote the required minimal number of
commutations by Kc

q . The least number of commutations are
required if these operators are chosen from spin channels with
an odd number of operators. In this way, one can reach the
sector with q quasiparticles by a minimum of

Kc
q = max

(
Kc

0 − dc −
⌊

q − dc

2

⌋
,0

)
(A3)

commutations with dc := min(q,αc). The floor brackets stand
for the largest integer smaller than the argument. The parameter
αc is zero if both the numbers of creation operators with spin
up and with spin down are even; it is one if one of them is
even and the other odd; it is two if both of them are odd.
Analogously, Ka

q for the annihilation part is defined.
Because each commutation with the generator (A1) in-

creases the order by one, we deduce from the above con-
siderations the upper bound

Õmax(A) = n − Kc
q − Ka

q (A4)

for the maximal order of the monomial A. The monomial A

is safely omitted if Õmax(A) < Omin(A). We refer to the de-
scribed analysis for the maximal order as basic a posteriori SR.

The above upper bound of the maximal order can be reduced
further by considering the structure of the generator terms on
the lattice. The term (A1) contains two creation or annihilation
operators with the same spin only on adjacent sites. This means
that the compensation of two operators which do not act on
neighboring sites needs at least two commutations with leading
to an increase by two in the maximal order.

We point out that in the generator there are also other terms
with extended structure in real space, but they occur in higher
minimal orders [41] so that it is sufficient to focus on the
first-order term (A1). To exploit these structural aspects on the
lattice, the clusters of creation and annihilation operators with
spin σ are divided into different linked subclusters. We denote
the number of creation and annihilation operators with spin σ

in the subcluster labeled by i by k
c,σ
i and k

a,σ
i , respectively [41].

The number of commutations with (A1) needed to compensate
all the creation operators reads as

Kc
0 =

∑
i,σ

⌈
k

c,σ
i

2

⌉
. (A5)

This equation extends (A2) by considering the real-space
structure of the monomials. In full analogy to the basic a
posteriori SR, the relation (A5) can be generalized to Kc

q if
the sectors with q QPs are targeted. In order to minimize Kc

q ,
the q operators are taken at first from subclusters with odd
number of sites saving one commutation for each operator.
Then, the remaining operators are taken from even subclusters
which needs at least two operators to save one commutation.
Eventually, we obtain

Kc
q = max

(
Kc

0 − dc −
⌊

q − dc

2

⌋
,0

)
, (A6)

where dc := min(q,αc) and αc is the number of odd-size linked
subclusters present in both spin-up and spin-down creation
clusters. Similarly, one can find the corresponding relation for
annihilation yielding Ka

q . Replacing them for Kc
q and Ka

q in
Eq. (A4) leads to a maximal order which is lower than the
estimate of the basic a posteriori SR. This improved analysis
for the maximal order which takes into account the real-space
structure of the monomials is called extended a posteriori SR.

2. The a priori simplification rules

The a priori SRs are applied before commutators are com-
puted explicitly. Thus, they allow for an additional speedup.
This type of SR checks whether the result of the commutator
[T ,D] = T D − DT leads to any monomial which can pass the
a posteriori SRs or not. Here, T stands for any monomial from
the generator and D for any monomial from the Hamiltonian.
If all the monomials which may ensue from the studied
commutator are unnecessary, one can ignore this commutator
improving the computational speed. Two different basic and
extended a priori SRs can be defined corresponding to the
basic and extended a posteriori SRs.

In the basic a priori SR, the minimal number of creation
and annihilation operators with spin σ which result from the
products T D and DT are estimated separately. Then, the basic
a posteriori SR is employed to obtain an upper bound for the
maximal orders of T D and DT . We explain the method for
T D; the product DT can be analyzed in the same way.

Let aσ
T and cσ

T be the numbers of creation and annihilation
operators with spin σ in the monomial T . Similarly, we define
aσ

D and cσ
D for the monomial D. Next, the product T D is normal

ordered, the creation operators are sorted left to the annihilation
operators by appropriate commutations. In the course of this
normal ordering, the number sσ

T D := min(aσ
T ,cσ

D) from the
creation and annihilation parts with spin σ may cancel at
maximum. Therefore, the minimal number of creation and
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annihilation operators of the normal-ordered product T D is
given by

cσ
T D = cσ

T + cσ
D − sσ

T D, (A7)

aσ
T D = aσ

D + aσ
T − sσ

T D. (A8)

Using these estimates, one can find the upper bound for the
maximal order of the normal-ordered product T D. Eventually,
we conclude that the commutator [T ,D] can be ignored if

max (Õmax(T D),Õmax(DT )) < Omin(T ) + Omin(D). (A9)

In the extended a priori SR, similar to the extended a posteriori
SR, the lattice structure of monomials is considered as well.
Using this property, one can manage to identify more unneces-
sary commutators before computing them. Again, we describe
the method for T D; DT is treated in the same fashion. All we
have to do is to evaluate the clusters of creation and annihilation
operators of the normal-ordered product T D for up and down
spins. Then, the method uses the extended a posteriori SR to
find the maximal order of T D based on the estimated clusters.

Because the operator algebra is local, only operators acting
on the same sites can cancel in the normal ordering. This
means that the spin-σ creation operators of T and the spin-σ

annihilation operators of D which are elements of the set

Sσ
T D := Aσ

T ∩ Cσ
D (A10)

may cancel in the normal ordering. The sets Aσ
X and Cσ

X

denote the spin-σ creation and annihilation clusters of operator
X. Hence, the creation and annihilation clusters of T D are
given by

Cσ
T D = Cσ

T ∪ (
Cσ

D \ Sσ
T D

)
, (A11a)

Aσ
T D = Aσ

D ∪ (
Aσ

T \ Sσ
T D

)
. (A11b)

Similar results can be obtained for the product DT . Using the
extended a posteriori SR, one obtains an upper bound for the
maximal orders of T D and DT . The commutator [T ,D] is
ignored finally if (A9) is fulfilled.

Although the extended a priori SR can cancel more
commutators compared to the basic a priori SR, it has a
caveat. In contrast to the basic a priori SR, the extended
version has to be applied individually to each element of
the translation symmetry group, which is computationally
expensive. Therefore, in order to reach the highest effi-
ciency, we use a combination of these a priori SRs in
practice [41].
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