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Transformation optics and hidden symmetries

Matthias Kraft, J. B. Pendry, S. A. Maier, and Yu Luo*

Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
(Received 10 March 2014; revised manuscript received 5 June 2014; published 20 June 2014)

Symmetry plays an important role in physics providing a means of classification and a route to understanding.
Here we show that an apparently unsymmetrical structure, in our example an ellipse/spheroid, has a more
symmetrical partner with an identical spectrum and through which its electromagnetic properties can be classified
and calculated analytically. We use the powerful tool of transformation optics to establish this relationship which
has wide application beyond the simple example we give in this paper.
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I. INTRODUCTION

In this paper we address the issue of hidden symmetries
in plasmonic systems. Sophisticated computer codes such
as COMSOL enable us to solve for electromagnetic fields in
complex geometries but powerful as they may be they often
provide little insight into how the solutions arise and therefore
cramp our imagination. Analytic solutions where they are to
be found arise from a particular insight and can show the way
forward to addressing the problem in hand. The new tool of
transformation optics greatly assists the analytic approach.
Given a solution of Maxwell’s equations for a particular
geometry, we can demand that the fields be distorted to choice
and given the coordinate transformation from the original to
distorted frames we can calculate the values of permittivity and
permeability that satisfy Maxwell’s equations in the distorted
system [1–5]. Given the infinite range of transformations
available to us, a single simple system and its electromagnetic
fields can be transformed into wildly different shapes. In this
way we have shown how a wide variety of singular plasmonic
structures that concentrate energy at singular points are related
to a single “mother” system [6,7]. Here we use transformation
optics to address the issue of symmetry. The modes of a system
can be classified by the symmetry of the system. For example a
system that is translationally invariant has eigenstates that are
Bloch waves classified by their wave vector [8–10]. Not only
does this expedite analytic solutions but identification of the
underlying structure of the modes inspires our understanding:
the electronic structure of solids would be far less advanced
without the aid of translational symmetry. Given a highly
symmetrical system, whose eigenstates we can classify, that
symmetry can be hidden by imposing an unsymmetrical
coordinate transformation. However, the classification remains
because the eigenmodes of the transformed system are given
by the original classified modes. Of course it is not always
possible to relate an arbitrary unsymmetrical system to one
that is more symmetrical but there are many instances where
symmetry does lie hidden. Here we give as an example one of
the simplest: an ellipse/spheroid which can be transformed into
two concentric circles/spheres creating continuous rotational
symmetry where none previously existed. We treat both the
two-dimensional (2D) and three-dimensional (3D) cases.
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II. TRANSFORMATION OF THE GEOMETRY

The systems we are interested in are an elliptic cylinder with
infinite extent in the z′ direction and a spheroid with rotational
symmetry around the z′ axis. Since we are dealing with an
elliptic cylinder of infinite length, this system is equivalent
to a two-dimensional ellipse. We assume that both ellipse and
spheroid are made out of metal with permittivity ε′

m and perme-
ability μ′

m = 1, and are immersed in a dielectric of permittivity
ε′
d and permeability μ′

d = 1. The incident illumination is a
plane wave, and in the quasistatic approximation it can be
taken as a uniform electric field. Let us consider the 2D case
first. The source potential (in the original coordinate frame)
can be written as

φ′
s,2d = −Ex ′x ′ − Ey ′y ′, (1)

where Ex ′ and Ey ′ are the electric field components along the
x ′ and y ′ axes, respectively. We now apply the transformation

ζ ′ = c′

2

(
ζ + 1

ζ

)
(2)

with ζ ′ = x ′ + iy ′, ζ = x + iy, and c′ ∈ +R, which is essen-
tially a Joukowski transformation [11]. The real and imaginary
parts transform as

x ′ = c′

2
x

(
1 + 1

x2 + y2

)
, (3)

y ′ = c′

2
y

(
1 − 1

x2 + y2

)
. (4)

Here and in the following, primed quantities refer to
the ellipse/spheroid geometry and unprimed ones to the
transformed space. Starting with an ellipse in the primed frame,
with semimajor axis a′ = c′ cosh(u′

0), semiminor axis b′ =
c′ sinh(u′

0), and centered at the origin, one can show that this
transforms to an annulus with inner and outer radii Rin = a′ −
b′ = e−u′

0 and Rout = a′ + b′ = eu′
0 , respectively. One could

go on to transform the annulus to an infinite metal slab [12],
which is a problem that has been discussed extensively in
the literature [13,14], but we will work in the rotationally
symmetric annulus geometry. Since the transformation in
Eq. (2) is conformal, the permittivity and source potential
transform trivially as ε′

d = εd , ε′
m = εm, and φ′

s,2d (x ′,y ′) =
φs,2d (x,y) [6,15]. Using this together with the transformation
in Eq. (2), the source potential in the transformed frame can
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FIG. 1. (Color online) Schematic illustration of the transforma-
tion in Eq. (2) applied to a metal ellipse in a uniform electric field.
The transformed metal annulus is rotationally symmetric.

be deduced:

φs(x,y) = −c′

2
E

′
0 · r + p · r

2πε0r2
, (5)

where we defined three vectors:

E
′
0 =

[
Ex ′

Ey ′

]
, r =

[
x

y

]
, p = πε0c

′
[

Ex ′

−Ey ′

]
. (6)

Thus, the uniform electric field E
′
0 (in the original frame)

transforms to a uniform electric field scaled by c′/2, plus
a line dipole at the origin with a dipole moment p. The
result of this transformation is shown schematically in Fig. 1.
Similarly, one can show that a dipole in the ellipse’s geometry
transforms to two dipoles in the transformed annulus space (see
Appendix A).

An analogous transformation in 3D transforms a spheroid to
a concentric spherical shell. Specifically, for a prolate spheroid
we can use ρ ′ = 1

2 (r − 1
r
) sin(θ ),z′ = 1

2 (r + 1
r
) cos(θ ), and

φ′ = φ, where r,θ , and φ are the standard spherical polar
coordinates. The transformation of the source potential is
analogous to the 2D case; however the permittivity and
permeability change according to the rules of transformation
optics [1,2,4,5]:

εij = det(J )−1J i
i ′J

j

j ′ε
′i ′j ′

, (7)

μij = det(J )−1J i
i ′J

j

j ′μ
′i ′j ′

, (8)

where J is the Jacobian transformation matrix. In our case this
leads to

ε
p

r,d/m = ε
p

θ,d/m = 1 − r2

2r2
ε′
d/m, (9)

μ
p

r,d/m = μ
p

θ,d/m = 1 − r2

2r2
, (10)

ε
p

φ,d/m = 1 + r4 − 2r2 cos(2θ )

2r2(1 − r2)
ε′
d/m, (11)

μ
p

φ,d/m = 1 + r4 − 2r2 cos(2θ )

2r2(1 − r2)
. (12)

Similarly, for an oblate spheroid we can use the transforma-
tion ρ ′ = 1

2 (r + 1
r
) sin(θ ),z′ = 1

2 (r − 1
r
) cos(θ ), and φ′ = φ

and get

εo
r,d/m = εo

θ,d/m = −1 + r2

2r2
ε′
d/m, (13)

μo
r,d/m = μo

θ,d/m = −1 + r2

2r2
, (14)

εo
φ,d/m = −1 + r4 + 2r2 cos(2θ )

2r2(1 + r2)
ε′
d/m, (15)

μo
φ,d/m = −1 + r4 + 2r2 cos(2θ )

2r2(1 + r2)
. (16)

It should be stressed that although 3D transformations result
in permittivity/permeability that depend on r and θ , the
eigenmodes supported by the system can still be characterized
by spherical harmonics for the angular part (i.e., θ and φ) and
assigned “quantum” numbers, l,m. The spatial dependence in
ε and μ only affects the solution for the radial part (i.e., r). This
is a subtle point which contrasts a previous study [16] and will
be explained in the Appendix C. Good “quantum” numbers
in the transformed geometry will remain good “quantum”
numbers upon transforming back to the original. Furthermore,
the geometries in the transformed space possess rotational (2D)
and spherical (3D) symmetry. The transformations thus reveal
a “hidden” symmetry in the ellipse/spheroid geometry, which
helps to shed light on the optical response of the nanoparticles.

III. PLASMON MODE STRUCTURE AND SYMMETRIES

With the geometries and source potential in the transformed
space known, we can calculate the system’s properties in the
quasistatic limit by solving [17]

∇ · (¯̄ε · ∇φ) = 0, (17)

and demanding continuity of the tangential component of the
electric field and continuity of the normal component of the
electric displacement across the metal/dielectric boundary. In
the 2D case this reduces to solving Laplace’s equation in polar
coordinates, which is a laborious but straightforward task,
so we shall only give the results here. The 3D case is more
complicated, but can also be solved analytically with TO. We
refer the reader to the Appendix C for details. In both cases
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FIG. 2. (Color online) Shift of the plasmon resonance frequen-
cies as a function of the ratio of semiminor to semimajor axis of
the ellipse. The dashed lines correspond to (in descending order) the
m = 1,2,3,4,5 odd plasmon modes and the solid lines correspond
to (in ascending order) the m = 1,2,3,4,5 even plasmon modes. We
used the Drude model with ωp = 8 eV and negligible losses and
defined the surface plasma frequency ωsp = ωp/

√
2.

we find resonance conditions for the excitation of localized
surface plasmon modes.

In 2D cases, the resonance condition is split into even and
odd plasmon modes and reads

tanh(mu0) = − εd

εm

(18)

for even and

tanh(mu0) = −εm

εd

(19)

for odd modes, with u0 = tanh−1(b′/a′). These are the con-
ditions obtained for the annulus; however, by virtue of our
transformation they are also the correct conditions for the
ellipse. In the following we assume the annulus to be made of
silver, immersed in the vacuum. Unless stated otherwise, we
use a Drude model fit of Johnson and Christy’s data [18] for
the permittivity εm = 1 − ω2

p/[ω(ω + iγ )] with ωp = 8 eV
and γ = 0.032 eV.

The potential problem of a 2D ellipse in a constant
electric field has been addressed before analytically [19] and
numerically [20]. The modes of this system have also been
studied in terms of the Mathieu function [21]. However, to
the authors’ best knowledge, the physical reason for the mode
splitting has not been adequately discussed in the literature and
neither has the equivalence of the annulus and ellipse system.

Figure 2 shows the resonance condition as a function
of the ratio between semiminor and semimajor axis b′/a′.
Note that in the limiting case b′/a′ = 1 (i.e., a cylinder),
we recover the well-known result that all surface plasmon
modes are degenerate at the surface plasma frequency [22].
In the opposite limit b′/a′ → 0, i.e., a thin strip, the splitting
of the modes is most prominent with the odd modes shifting
to the bulk plasma frequency ωp and the even modes shifting
to zero frequency.

Figure 2 indicates that when a cylinder is deformed into an
ellipse, the modes split into even and odd parities. The general
splitting of the modes results from a breaking of rotational
symmetry; however the modes specifically split into even

m=1

-1 -1 11 00

m=3

FIG. 3. (Color online) Imaginary part of the electrostatic poten-
tial at the m = 1 (left) and m = 3 (right) resonance. We show the
potential for the 2D ellipse and the corresponding annulus geometry,
as indicated. The top panel shows the even, the bottom panel the odd
plasmon modes. The m = 1 resonance has been excited by a plane
wave with the source potential of Eq. (1) (E′

x = E′
y) and the m = 3

resonance by a dipole in the near field of the ellipse (
′
x = 
′

y ; see
Appendix A).

and odd parities because the ellipse still possesses two mirror
planes.

As previously shown, the ellipse transforms to an annulus,
which has the same plasmon mode structure as in Fig. 2. The
annulus is a rotationally symmetric structure; thus the mode
splitting in it is not owing to symmetry breaking. The reason
for the mode splitting becomes evident from Fig. 3. It shows the
electrostatic potential φ′

2d at the m = 1 (left) and m = 3 (right)
resonance for the ellipse and the corresponding one for the
transformed annulus. We can see that there are localized
surface plasmons excited at both inner and outer surfaces in
the annulus geometry. These plasmons interact and hybridize,
which leads to the formation of bonding and antibonding
modes [23,24]. This is the physical reason for the splitting
of the plasmon modes in the annulus geometry [23,24]. There
is thus a clear connection between the breaking of rotational
symmetry in the single surface elliptic geometry and plasmon
hybridization in the two surface annulus geometry.

Next, let us turn our attention to 3D cases. As pointed out in
the previous section, for the 3D spheroidal nanoparticles, the
permittivity/permeability of the transformed annulus geometry
is no longer homogeneous, but acquires a θ dependence. How-
ever, this spatial dependence only adds a little complication to
the problem, and the plasmon modes supported by the system
can still be diagonalized by two quantum numbers, i.e., the total
angular momentum l and the azimuthal angular momentum
m. This is quite different from the case of the sphere pair in
our previous study, where all the eigenmodes as a whole are
described by a tridiagonal matrix [16]. Our detailed derivations
provided in the Appendix C show that the resonance conditions
for prolate and oblate spheroids are respectively given by

εm

εd

= P m
l (τ )

[
i π

2 P m′
l (τ ) + Qm′

l (τ )
]

[
i π

2 P m
l (τ ) + Qm

l (τ )
]
P m′

l (τ )
, (20)

εm

εd

= P m
l (iξ )

[−i π
2 P m′

l (iξ ) + Qm′
l (iξ )

]
[−i π

2 P m
l (iξ ) + Qm

l (iξ )
]
P m′

l (iξ )
, (21)
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FIG. 4. (Color online) Shift of the plasmon resonance frequencies as a function of the ratio of semiminor to semimajor axis of the 3D
spheroid; oblate (top) and prolate (bottom). The insets (left) show the electrostatic potential for their respective modes.

where τ = (Rout + 1/Rout)/2 and ξ = (Rout − 1/Rout)/2;
P m

l (·) and Qm
l (·) represent the associated Legendre polyno-

mials of the first and second kind, respectively.
In the past, light scattering from spheroidal nanoparticles

was studied using a spheroidal wave expansion [25–28]
or shape perturbation method [29]. However, due to their
slow convergence, these methods normally demand high
computational resources in order to obtain a reasonable
accuracy. Hence, discussions of plasmon resonances are
generally restricted to dipolar modes [30–32]. Higher-order
multipolar plasmon resonances have never been systematically
investigated, to the best of our knowledge. On the other hand,
our transformation approach relates a spheroidal particle to a
spherical shell, enabling us to decompose all the eigenmodes
in terms of spherical harmonics. As a result, both dipolar
and higher-order resonances can be easily addressed using
our approach. Moreover, a thin flat disk (finite rod) can be
considered as a special case of oblate (prolate) spheroids in the
limit of b′/a′ � 1. Therefore, we anticipate that the following
discussions will be important, especially when people want to
make use of the higher-order plasmon modes of disks/rods for
further developments.

Figure 4 shows the shifts of the plasmon resonances for
oblate and prolate spheroids, again as a function of the ratio
between semiminor and semimajor axis (b′/a′). As pointed
out before, in the 3D case we need two “quantum” numbers,
l (the total angular momentum) and m (the azimuthal angular
momentum) to classify the modes. In the limit of b′/a′ = 1,
the resonance condition for both oblate and prolate spheroids
is solely determined by the total angular momentum l, as is

required for a sphere [14]. In the opposite limit of b′/a′ → 0,
which corresponds to a flat disk for oblate spheroids and a thin
rod for prolate spheroids, the behavior is rather different. The
modes for oblate spheroids shift to the bulk plasma frequency
(corresponds to ε = 0) if l − m is an odd integer and shift
to zero frequency (ε → −∞) if l − m is an even integer.
This behavior can be easily understood through the potential
distribution (corresponding to the distribution of surface
charges) plotted in the insets of Fig. 4(a) (see Appendix C
for higher order modes). When l − m is an odd (even) number,
the surface charges on the upper and bottom surfaces of the
spheroidal particle have opposite (the same) signs, and hence
the energy of the resonance increases (decreases) for elongated
geometries. On the contrary, in the prolate case only the modes
with zero azimuthal angular momentum m = 0 shift to zero
frequency, while all the other modes shift to the surface plasma
frequency (ε = −1). This is because for modes with nonzero
m, the prolate spheroid can be considered as a single cylinder,
where all the modes are degenerate at the surface plasmon
frequency.

The resonance frequencies of a sphere (b′/a′ = 1) do not
depend on m [14], yet the modes split for spheroids. In this
case, the splitting is due to the breaking of spherical symmetry
and the modes can be tuned by changing the ratio of semiminor
to semimajor axis. This is similar, but not identical, to tuning
the modes in a metal nanoshell with uniform permittivity by
changing the shell thickness [33,34]. In our case, the splitting
of the modes is not only due to the hybridization of plasmons
at the outer and inner surface, but also depends on the angle
dependence of the permittivity and permeability.
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IV. ABSORPTION AND SCATTERING: SELECTION RULE

To identify which of the plasmon modes are bright and
which are dark under far-field illumination, we will calculate
the absorption and scattering cross sections. The polarizability
of the ellipse can be obtained from the scattered part of
the potential in the far field [14]. For the ellipse this leads
to the polarizability in the quasistatic approximation (see
Appendix B),

α′
2d = −πε0

[
γ x

2d 0

0 γ
y

2d

]
=

[
αx ′

2d 0

0 α
y ′
2d

]
, (22)

with

γ x
2d = (ε′

d − ε′
m)eu0 cosh(u0) sinh(u0)

ε′
m sinh(u0) + ε′

d cosh(u0)
, (23)

γ
y

2d = (ε′
d − ε′

m)eu0 cosh(u0) sinh(u0)

ε′
m cosh(u0) + ε′

d sinh(u0)
. (24)

As a result the only bright modes for the ellipse under
far-field illumination are the two dipole modes. Higher-order
modes would require the presence of terms such as cosh(mu0),
sinh(mu0), and emu0 in the polarizability. This is a surprising
result as at first sight the ellipse does not have enough
symmetry to select only these two modes for excitation. The
hidden symmetry of the system reveals its hand at this point.
Externally incident radiation can couple to the higher order
modes but only if the ellipse is large enough to invalidate the
quasistatic approximation and so to see the higher multipole
terms in the field.

Thus far we have been working in the quasistatic ap-
proximation, which limits our treatment to particle sizes of
only a few nanometers. However, we can go beyond the
quasistatic approximation and account for radiation losses,
which greatly increases the maximum size of particles for
which this approach is valid [35]. This is done by defining an
effective polarizability as [22,35]

α
eff,x ′/y ′
2d = α

x ′/y ′
2d

1 − i k2

8 α
x ′/y ′
2d

, (25)

where k is the free space wave number of the incident
electromagnetic wave. Having obtained the effective polar-
izability of the ellipse, the extinction σext and scattering σsca

cross section can be obtained from σ
x ′/y ′
ext = k Im(αeff,x ′/y ′

2d ) and

σ
x ′/y ′
sca = k3

8 |αeff,x ′/y ′
2d |2 [35,36]. The absorption cross section is

then obtained via σabs = σext − σsca [36]. Assuming the x and y

component of the incident electrical field have equal strength,
i.e., E′

x = E′
y , the total cross sections are simply σ = σx + σy .

Figure 5 shows the absorption and scattering cross section
for the ellipse illuminated by a plane wave, normalized by the
semimajor axis a′ of the ellipse. We assume a silver ellipse in
vacuum with permittivity data from Johnson and Christy [18].
Our analytical calculations are compared to simulations ob-
tained with COMSOL MULTIPHYSICS. For particles of semimajor
axis a′ = 5 nm and a′ = 10 nm, theory and simulation are in
excellent agreement for both the absorption and scattering
cross section. The peaks at ≈2.9 eV and ≈3.7 eV correspond
to the even and odd dipole resonance of the ellipse. Since there
are no other peaks present (for a′ = 5 nm and a′ = 10 nm),
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FIG. 5. (Color online) Absorption (top) and scattering (bottom)
cross section for the ellipse normalized by its semimajor axis a′.
Shown are the quasistatic results including radiation loss, for our
analytic theory (solid lines) and numerical simulations (open circles).

this confirms our selection rule that only the dipole modes can
be excited by a plane wave. The origin of this selection rule
lies in the rotational symmetry of the annulus and will be exact
as long as the quasistatic approximation holds.

As we can see, for particles of semimajor axis a′ = 30 nm,
the quasistatic approximation starts to break down and the
COMSOL simulation shows a peak in the absorption spectrum
at the even quadrupole resonance, which the quasistatic
approximation cannot predict. Along with the emergence of
the quadrupole peak, the dipole peaks in the simulation also
redshift compared to our prediction.

Similarly to the 2D case, we can calculate the absorp-
tion and scattering cross sections in the 3D case from the
polarizability. Assuming an incident potential of the form
φ′

s,3d = −Ex ′x ′ − Ez′z′, the polarizability is

αx ′
3d,o/p = −i

8πε0

3Ex

a
sca,o/p

l=1,m=1, (26)

αz′
3d,o/p = −4πε0

3Ez

a
sca,o/p

l=1,m=0, (27)

where a
sca,o/p

l,m are the scattering coefficients for oblate and pro-
late spheroids, respectively [see Eq. (C10) and Eq. (C15)]. The
polarizability only has a dipole, l = 1, response which leads
to the same dipole selection rule as in the two-dimensional
case.

Incorporating radiation losses as in [22,37] we obtain for
the extinction and scattering cross section of the prolate and
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FIG. 6. (Color online) Absorption (left) and scattering (right) cross section for oblate (top) and prolate (bottom) spheroids. The cross
sections are normalized by the effective area (πa2) of the spheroids. Shown are quasistatic calculations incorporating radiative losses.

oblate spheroid

σ
x ′/z′
ext = k Im

(
1

ε0/α
x′/z′
3d,p/o−ik3/(6π)

)
, (28)

σx ′/z′
sca = k4

6π

∣∣∣∣ 1

ε0/α
x′/z′
3d,p/o−ik3/(6π)

∣∣∣∣
2

. (29)

In the above equations, the imaginary parts of the denominators
account for the radiative losses.

The analytical results are shown in Fig. 6, which are normal-
ized by the physical cross section πa2 (detailed comparison
with COMSOL simulations are provided in the Appendix C). The
dipole modes with l = 1 are again predominant in the absorp-
tion/scattering spectrum, providing evidence that our selection
rule also holds in the 3D case. Comparing the results shown in
Fig. 6, we find that the prolate spheroid is a better candidate for
suppressing radiative losses, since the absorption cross section
remains one order of magnitude larger than the scattering one
even when the semimajor axis a′ increases to 30 nm.

V. CONCLUSIONS

In this paper, transformation optics has been applied to
elliptical nanostructures to study their plasmonic properties
in the quasistatic limit and beyond. We have revealed a
hidden symmetry in the elliptical structures by transforming
them to rotationally (2D) and spherically (3D) symmetric
structures, which could be simultaneously diagonalized. This
allowed us to classify the original system in terms of the
eigenmodes and good “quantum” numbers of the rotationally
and spherically symmetric systems. It also explained the

emergence of selection rules in the elliptical geometries based
on symmetry arguments in the transformed frame. From a
numerical point of view, the symmetries in the transformed
frame may allow one to perform quasi-2D or at least quasi-
2.5D [38] simulations, instead of more time-consuming 3D
simulations. Analytical formulas for the plasmonic resonance
conditions in the quasistatic limit of a 2D ellipse and 3D
spheroids have been derived, including the ones for a thin
strip (2D), a flat disk (3D), and a thin nanorod (3D) as limiting
cases. We also calculated the absorption and scattering spectra
and have checked our analytical calculations against COMSOL

simulations; we found an excellent agreement for particles
of diameter <20 nm. For larger particles the quasistatic
approximation and with it the selection rules break down,
leading to quadrupole resonances, which provide the starting
point of further study.
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APPENDIX A: TRANSFORMATION OF A
DIPOLE SOURCE

In the main text we showed how a constant electric field
transforms from the elliptic to the annulus geometry. Here,
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FIG. 7. (Color online) Power absorbed by the annulus in the source field originating from Eq. (A6). This is equivalent to the power absorbed
by the ellipse in the corresponding dipole field. The figure on the left shows the log10(power absorbed) as a function of frequency and the dipole
distance to the ellipse (along y axis). The figure on the right shows a cut through the left figure along x ′

0/a
′ ≈ 1.05. Note that on the right we

show the power absorbed, not log10(power absorbed). In both cases the odd/even dipole mode corresponds to the outermost lines/peaks. The
power absorbed can be calculated from Pabs = − ω

2 Im(�− · Esca
ζ=ζ− ) [22], where Esca

ζ=ζ− is the scattered part of the electric field at the position of
the dipole at ζ−.

we consider the transformation of a line dipole from elliptic to
annulus geometry. The line dipole in the elliptic space is placed
along the x ′ axis at x ′

0, which results in the source potential

φ′
s = 1

2πε0


x ′ (x ′ − x ′
0) + 
y ′y ′

(x ′ − x ′
0)2 + (y ′)2

(A1)

with 
x ′ = 2λδx ′ and 
y ′ = 2λδy ′ . To find the source potential
in the annulus geometry we first note that the point x ′

0 is
transformed to two points in the annulus geometry, namely
x± = x ′

0/c
′ ± √

(x ′
0/c

′)2 − 1 [inverse of Eq. (2); note that
x ′

0/c
′ � 1]. Further consider how the complex dipole moment


′ = λ(ζ ′
+ − ζ ′

−) (A2)

transforms. Here ζ ′
± = x ′

0 ± (δx ′ + iδy ′ ) gives the position of
the positive and negative line charge, respectively. The dipole
moment in the annulus geometry is defined in an analogous
manner as


 = λ(ζ+ − ζ−). (A3)

Using the transformation in Eq. (2) of the main text, this
can be written to first order in (δx ′ ,δy ′ ) as


± = 2λ(δx ′ + iδy ′ )

(
1 ± x ′

0/c
′√

(x ′
0/c

′)2 − 1

)
(A4)

= ±
′
(

x±√
(x ′

0/c
′)2 − 1

)
, (A5)

which means that a single-line dipole in the elliptic geometry
transforms to two-line dipoles in the annulus geometry, one
aligned and one antialigned with the original one. Finally the
source potential in the annulus geometry can be written as

φs = − 1

2πε0

[ (

x(x − x+) + 
yy

(x − x+)2 + y2

)

−
(


x(x − x−) + 
yy

(x − x−)2 + y2

) ]
, (A6)

with


x/y = 
x ′/y ′

(
x±√

(x ′
0/c

′)2 − 1

)
. (A7)

The potential problem is then reduced to solving the
Laplace equation in polar coordinates with the source potential
of (A6). In contrast to the source potential in the main
text, the two-line dipoles in the annulus geometry can excite
higher-order plasmon modes, as can be seen in Fig. 7. These
will then also be present in the elliptic geometry.

APPENDIX B: CALCULATION OF THE
POLARIZABILITY OF THE ELLIPSE

As pointed out in the main text, the polarizability of
the ellipse can be calculated from the scattered part of the
potential in the far field. The potential outside the ellipse
can be obtained in elliptic coordinates x ′ = c′ cosh(u′) cos(ν ′),
y ′ = c′ sinh(u′) sin(ν ′) as

φ′
2d = φ′

s,2d − c′

2
Ex ′γ x

2de
−u′

cos(v′) − c′

2
Ey ′γ

y

2de
−u′

sin(v′)

= φ′
s,2d + φ′

sca,2d , (B1)

where γ x ′
2d and γ

y ′
2d are given in the main text. In the far field,

the scattered part of the potential above can be rewritten as

φ′
sca,2d = −1

2

(
Ex ′

x ′

x ′2 + y ′2 γ x
2d + Ey ′

y ′

x ′2 + y ′2 γ
y

2d

)

= 1

2πε0

p′
2d · r ′

r ′2 , (B2)

with the dipole moment of the ellipse

p′
2d = −πε0

(
γ x ′

2d 0

0 γ
y ′
2d

)(
Ex ′

Ey ′

)
. (B3)
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From the dipole moment in Eq. (B3), we infer the polarizability
of the ellipse in the quasistatic approximation as [14]

α′
2d = −πε0

(
γ x ′

2d 0

0 γ
y ′
2d

)
=

(
αx ′

2d 0

0 α
y ′
2d

)
. (B4)

APPENDIX C: ANALYTIC SOLUTION TO THE
THREE-DIMENSIONAL PROBLEM

Prolate spheroid. As shown in the main text, a prolate
spheroid can be related to a concentric spherical shell with
space-dependent permittivities given by Eqs. (9)–(12) in the
main text. Substituting these space-dependent permittivities
into ∇ · (¯̄ε · ∇φ) = 0 and rearranging the equation yields

1

r2

∂

∂r
(1 − r2)

∂

∂r
φ + 1 − r2

r4 sin θ

∂

∂θ
(sin θ )

∂

∂θ
φ

+
[

1 − r2

r4 sin2 θ
+ 4

r2(1 − r2)

]
∂2

∂ϕ2
φ = 0. (C1)

By letting φ = Z(r)�(θ )�(ϕ), detailed mathematical manip-
ulations show that Eq. (C1) is separable:

r2

1 − r2

d

dr
(1 − r2)

dZ

dr
−

[
l(l + 1) + 4m2r2

(1 − r2)2

]
Z = 0,

(C2)

1

sin θ

d

dθ
sin θ

d�

dθ
+

[
l (l + 1) − m2

sin2 θ

]
� = 0, (C3)

d2�

dϕ2
= −m2�. (C4)

The general solution to the above equations can be found as

Z (r) = A1P
m
l

[
1

2

(
r + 1

r

)]
+ A2Q

m
l

[
1

2

(
r + 1

r

)]
,

(C5)

� (θ ) = A3P
m
l (cos θ ) + A4Q

m
l (cos θ ) , (C6)

� (ϕ) = A5e
imϕ + A6e

−imϕ. (C7)

It is interesting to see from Eqs. (C6) and (C7) that the
solutions for the angular part are still spherical harmonics. On
the other hand, Eq. (C5) indicates that the solution for the
radial part depends on both total angular momentum l and
azimuthal angular momentum m (as compared to the case of
homogeneous spheres or spherical shells, where only l appears
in the radial solution).

Now, we can write the electrostatic potential in each region.
Since the electric field must vanish at the cut r = 1, this ensures
the potential inside the annulus takes the form

φin =
∞∑
l=1

l∑
m=−l

ain
l,mP m

l

[
1

2

(
r + 1

r

)]
Ym

l (θ,ϕ). (C8)

Meanwhile, the field must vanish at infinity r → ∞; this
indicates the scattered potential outside the annulus takes the

form

ϕsca =
∞∑
l=1

l∑
m=−l

asca
l,m

{
i
π

2
P m

l

[
1

2

(
r + 1

r

)]

+Qm
l

[
1

2

(
r + 1

r

)] }
Ym

l (θ,φ) . (C9)

By solving the boundary equations, the unknown expansion
coefficients asca

l,m and ain
l,m can be calculated:

asca
l,m = (ε − 1)P m

l (τ )P m′
l (τ )

P m
l (τ )Gm′

l (τ ) − εGm
l (τ )P m′

l (τ )
aS

l,m, (C10)

ain
l,m = P m

l (τ )Gm′
l (τ ) − Gm

l (τ )P m′
l (τ )

P m
l (τ )Gm′

l (τ ) − εGm
l (τ )P m′

l (τ )
aS

l,m, (C11)

where we have defined τ = (Rout + 1/Rout)/2 and Gm
l (·) =

iπP m
l (·)/2 + Qm

l (·).
Oblate spheroid. The solution to the oblate spheroid can be

derived in a similar manner. We first submit Eqs. (13)–(16) in
the main text into ∇ · (¯̄ε · ∇φ) = 0, yielding

1

r2

∂

∂r
(1 + r2)

∂

∂r
φ + 1 + r2

r4 sin θ

∂

∂θ
sin θ

∂

∂θ
φ

+
[

1 + r2

r4 sin2 θ
− 4

r2(1 + r2)

]
∂2

∂ϕ2
φ = 0. (C12)

By solving Eq. (C12), we can list the scattered potential and
the potential inside the annulus region as

φsca =
∞∑
l=1

l∑
m=−l

asca
l,mFm

l

[
i

(
r − 1

r

)]
P m

l (cos θ ) eimϕ,

(C13)

φin =
∞∑
l=1

l∑
m=−l

ain
l,mP m

l

[
i

(
r − 1

r

)]
P m

l (cos θ ) eimϕ,

(C14)

where we have defined a function Fm
l (·) = −iπP m

l (·)/2 +
Qm

l (·). Solving the boundary conditions, asca
l,m and ain

l,m can be
obtained:

asca
l,m = (ε − 1) P m

l (iξ ) P m′
l (iξ )

P m
l (iξ ) Fm′

l (iξ ) − εFm
l (iξ ) P m′

l (iξ )
aS

l,m, (C15)

ain
l,m = P m

l (iξ ) Fm′
l (iξ ) − Fm

l (iξ ) P m′
l (iξ )

P m
l (iξ ) Fm′

l (iξ ) − εFm
l (iξ ) P m′

l (iξ )
aS

l,m, (C16)

where we have defined a constant ξ = (Rout − 1/Rout)/2.
Absorption and scattering cross sections for spheroidal

particles. Taking the oblate spheroid as the example, for plane
wave illuminations, we have the following relation:

φS = Exx + Ezz = aS
1,1x+iaS

1,0z. (C17)
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Prolate, l = 4, m = 0 Prolate, l = 4, m = 1 Prolate, l = 4, m = 2 Prolate, l = 4, m = 3 Prolate, l = 4, m = 4

FIG. 8. (Color online) Imaginary part of the electrostatic potential for oblate (upper) and prolate (bottom) spheroids at different resonant
frequencies. Here the total angular momentum is fixed as l = 4. Different columns correspond to different angular momenta m (from 0 to 4).
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FIG. 9. (Color online) Absorption (left) and scattering (right) cross section for oblate (top) and prolate (bottom) spheroids. The cross
sections are normalized by the effective area (πa′2) of the spheroids. The incident electric field is aligned along the vertical direction. Solid
lines show our theoretical calculation, while circles correspond to COMSOL simulations. Different colors correspond to structures with different
dimensions: black (a′ = 5 nm), cyan (a′ = 10 nm), red (a′ = 30 nm).
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The expansion coefficients associated with the source potential
can then be obtained:

aS
1,1 = Ex, aS

1,0 = −iEz. (C18)

The polarizability is related to the scattered potential at infinity:

φsca(r ′ → ∞)

= asca
1,0F

0
1

[
i

(
r − 1

r

)]
cos θ

− asca
1,1F

1
1

[
i

(
r − 1

r

)]
sin θ cos ϕ

= −2iasca
1,1

3r ′3 x − asca
1,0

3r ′3 z = 1

4πε0

γxExx + γzEzz

r ′3 . (C19)

From the above equation, we can calculate the polarizability:

γx = −i
8πε0

3Ex

asca
1,1, γz = −4πε0

3Ez

asca
1,0. (C20)

Equation (C20) in turn gives the absorption and scattering
cross sections [37]:

σ c
abs = k0Im

{
1

ε0/γ − ik3
0/ (6π )

}
, (C21)

σ c
sca = k4

0

6π

∣∣∣∣ 1

ε0/γ − ik3
0/ (6π )

∣∣∣∣
2

. (C22)

Results. Figure 8 shows the electrostatic potential as
calculated above. Shown are the distributions for oblate and
prolate spheroids with total angular momentum l = 4 and
azimuthal angular momentum m ranging from 0 to l. As
discussed in the main text, this explains the shifting of the
plasmon resonance frequencies of Fig. 4. Figure 9 compares
the analytical calculation of the absorption and scattering
spectra with numerical simulations obtained from COMSOL

MULTIPHYSICS. For both prolate and oblate spheroids excellent
agreement is found for particles with semimajor a′ = 5, 10,
and 30 nm.
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