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We present a quantum Monte Carlo method capable of sampling the full density matrix of a many-particle
system at finite temperature. This allows arbitrary reduced density matrix elements and expectation values of
complicated nonlocal observables to be evaluated easily. The method resembles full configuration interaction
quantum Monte Carlo but works in the space of many-particle operators instead of the space of many-particle wave
functions. One simulation provides the density matrix at all temperatures simultaneously, from T = ∞ to T = 0,
allowing the temperature dependence of expectation values to be studied. The direct sampling of the density
matrix also allows the calculation of some previously inaccessible entanglement measures. We explain the theory
underlying the method, describe the algorithm, and introduce an importance-sampling procedure to improve the
stochastic efficiency. To demonstrate the potential of our approach, the energy and staggered magnetization of the
isotropic antiferromagnetic Heisenberg model on small lattices, the concurrence of one-dimensional spin rings,
and the Renyi S2 entanglement entropy of various sublattices of the 6 × 6 Heisenberg model are calculated. The
nature of the sign problem in the method is also investigated.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are well established
as vital tools in the study of complex many-body quantum
systems, often providing highly accurate results. Projector
methods such as diffusion Monte Carlo [1,2] (DMC) and
Green’s function Monte Carlo [3,4] (GFMC) grant access
to zero-temperature properties by stochastically applying a
projection operator to a starting wave function to obtain
a statistical sampling of the ground state. The fixed-node
approximation [5–8] allows projector QMC to be applied to
systems with sign problems and often produces very good
results, but its accuracy depends on the quality of the trial nodal
surface and is difficult to assess. Another drawback of projector
QMC is that expectation values of quantum mechanical
observables that do not commute with the Hamiltonian are
difficult to calculate [1,2,9,10].

Finite-temperature QMC methods take a different ap-
proach. Path-integral Monte Carlo (PIMC) calculations ex-
press the partition function, Z = Tr(e−βH ), as a sum of
contributions from paths through Hilbert space [11]. With
an appropriate update procedure, the paths can be sampled
with the correct probabilities, thus allowing finite-temperature
expectation values to be evaluated. The stochastic series
expansion (SSE) method [12] has much in common with
PIMC. These algorithms also allow access to ground-state
properties in principle, but in practice the sign problem is
often insurmountable at low temperatures.

The full configuration interaction quantum Monte Carlo
(FCIQMC) method recently introduced by Booth, Thom,
and Alavi [13,14] is a projector method for studying zero-
temperature properties, and, as such, has much in common
with DMC and GFMC. However, unlike DMC and GFMC,
where the sampling of the ground-state wave function is
performed in real space, FCIQMC samples the components
of the wave function in a discrete basis. Crucially, no prior
knowledge of the nodal structure of the ground-state wave
function is required to reach the exact ground state. Rather, the

sign problem manifests itself in the large but system-specific
population of quantum Monte Carlo walkers required in
order for the ground state of the Hamiltonian to emerge [15]
from the background noise. The system sizes accessible to
FCIQMC are limited by the amount of memory available to
store these walkers. However, the method has proven highly
successful in many chemical systems, reducing the memory
needed to achieve FCI-quality results by several orders of
magnitude [16–20]. This has led to much interest in this
direction and research into fundamental improvements and
new applications of the algorithm continues [17,21].

This article presents a closely related QMC method, which
we call density-matrix quantum Monte Carlo (DMQMC).
Like the path-integral and SSE methods, DMQMC allows
finite-temperature results to be calculated. However, it uses
a projection approach to achieve this and thus has more in
common with zero-temperature QMC methods. DMQMC was
inspired by FCIQMC and shares many of its features, but
samples the elements of the density matrix instead of the
components of the wave function in a discrete basis. This
enables expectation values of arbitrary quantum mechanical
observables to be calculated easily, even when the operator
corresponding to the observable does not commute with
the Hamiltonian. Such expectation values are difficult to
calculate using other QMC methods [1,2,9,10]. Moreover,
the ability to directly sample the density matrix means that
many quantum information measures are accessible. These
advantages cannot be expected to come without drawbacks,
and, indeed, the systems to which we have successfully
applied DMQMC to date are small by the standards of other
finite-temperature methods. However, the potential uses of
a direct stochastic sampling of the density matrix are such
that DMQMC deserves investigation. This paper demonstrates
the use of DMQMC by studying the antiferromagnetic
Heisenberg model, but DMQMC is a general method, appli-
cable to bosonic and fermionic systems and to real molecules
and solids.
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Section II summarizes the FCIQMC method, setting the
stage for the description of DMQMC in Sec. III. In Sec. IV an
importance-sampling procedure is introduced. The DMQMC
method is then applied to the isotropic antiferromagnetic
Heisenberg model in Sec. V and used to calculate the energy
and staggered magnetization of small square lattices, the
concurrence of one-dimensional rings, and the Renyi S2

entanglement entropy of various sublattices of the 6 × 6 lattice.
The sign problem in DMQMC is investigated in Sec. VI.
We discuss our results and offer some concluding remarks
in Sec. VII. Hartree atomic units are used throughout.

II. FULL CONFIGURATION INTERACTION QUANTUM
MONTE CARLO

The DMQMC algorithm was formulated in analogy with
the FCIQMC method. The two methods share many of the
same features and it is often useful to compare them. We
therefore begin by providing a brief summary of the FCIQMC
method. For more detailed discussions readers are referred to
Refs. [13,15].

Consider the imaginary-time Schrödinger equation

d |�〉
dτ

= −Ĥ |�〉 . (1)

The general solution to this equation is

|�(τ )〉 = e−τĤ |�(τ = 0)〉 , (2)

for some initial wave function |ψ(τ = 0)〉. If the initial wave
function has a nonzero ground-state component, c0(0), it is
easy to see that |�(τ )〉 will become proportional to the ground
state in the limit of large τ ,

|�(τ → ∞)〉 = c0(0)e−τE0 |E0〉 , (3)

where |E0〉 is the ground state and E0 the ground-state energy.
The factor of e−E0τ can be removed by choosing the zero
of energy such that E0 = 0. In practice, since E0 is usually
unknown, we solve

d |�〉
dτ

= −(Ĥ − S1̂) |�〉 = T̂ |�〉 , (4)

where we have defined T̂ = −(Ĥ − S1̂). The energy shift
S is adjusted slowly during the simulation to keep the
normalization approximately constant. The long-time average
of S provides a measure of the ground-state energy.

The above theory is common to all projector methods; the
difference is how they achieve the evolution to the ground
state. FCIQMC works in a discrete basis of kets |Xi〉, which
are normally Slater determinants for fermions or permanents
for bosons. The components of the wave function in this
basis are represented stochastically by a collection of markers.
Following Anderson [5,6], we refer to these markers as psips.
Each psip has an associated sign, q = ±1, which we refer
to as its charge, and resides on a particular basis state |Xi〉
(or on site i). The expected value of the net psip charge on a
basis state is proportional to the amplitude of that state in the
expansion of the wave function. At any point in a simulation,
the distribution of psip charges does not need to provide

an accurate representation of the wave function. Rather, the
FCIQMC method only requires that the expectation values of
the site charges represent the ground state [18]. Thus, at any
point in the simulation, the memory required to sample the
wave function may be many orders of magnitude smaller than
the memory required to store the whole state.

Booth and coworkers [13] introduced an algorithm to
evolve the population of psips according to the imaginary-time
Schrödinger equation. This can be summarized as follows. For
each time step �τ we loop over the entire population of psips
and perform the following steps.

(i) Spawning: Allow a psip with charge qi on site i to
spawn onto connected sites j , where Tij �= 0 and i �= j , with
probability |Tji |�τ . If the spawning attempt is successful, a
psip is born at site j with charge qj = sign(Tji)qi .

(ii) Diagonal death/cloning: Each psip has the chance to
either clone or die with probability |Tii |�τ . The consequence
of a successful death/cloning event depends on the sign of
the diagonal matrix element: if Tii > 0 the psip is cloned;
otherwise the psip is removed from the simulation.

(iii) Annihilation: Pairs of psips on the same site with
opposite charges cancel out (annihilate) and are removed from
the simulation, leaving a population of only a single charge
type on each site.

The FCIQMC algorithm samples the solution of a first-
order Euler finite-difference approximation to Eq. (4). Hence,
the distribution of psips gives a stochastic representation of the
wave function and, as τ → ∞, the psips settle down to sample
the ground-state wave function.

The psip annihilation step does not alter the total charge on
a site. However, it has been shown to be vital in order for the
true ground-state wave function to emerge in systems with sign
problems [15]. Similar and more complex walker cancellation
mechanisms have been attempted in continuum DMC and
GFMC calculations with less success [22–27]. Walker cancel-
lation in FCIQMC works better because psips are more likely
to encounter each other in a discrete and finite Hilbert space.

The ability of FCIQMC to tackle the sign problem through
the annihilation step is perhaps its most significant advantage.
Annihilation leads to the characteristic population dynamics
and allows the true ground state to emerge without any
knowledge of the nodal structure of the ground-state wave
function [15]. At the start of an FCIQMC simulation, the
shift is held constant at a value large enough to ensure that
the psip population grows exponentially. Eventually, when a
system-specific population of psips is reached, the annihilation
rate becomes equal to the spawning rate and the population
spontaneously plateaus. During this plateau period the ground
state of the Hamiltonian emerges, after which the population
begins to grow again. The population can then be controlled
by varying the shift. The psip population at the plateau must
be a small fraction of the number of basis states in the Hilbert
space in order for FCIQMC to be more (memory) efficient
than an exact diagonalization.

The ground-state energy in FCIQMC can be calculated
using a projected estimator based on the expression

E0 = 〈�T | Ĥ |E0〉
〈�T |E0〉 =

∑
i,j ψT

i Hijχj∑
i ψ

T
i χi

. (5)
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Here |�T 〉 is an appropriate trial function with components
ψT

i in the many-particle basis, |Xi〉, and χi is a compo-
nent of the exact ground state in this basis. FCIQMC was
initially performed using only the Hartree-Fock determinant
as the trial function; multireference trial functions have
subsequently been shown to substantially decrease statistical
fluctuations [21]. The ground-state energy is obtained by
averaging the numerator and denominator separately, with
the total psip charge on each site, q tot

i , used in the place of
corresponding exact amplitude, χi .

Calculating the ground-state expectation value of an oper-
ator Ô that does not commute with the Hamiltonian is more
difficult because a projected estimator cannot be used. Instead,
assuming that |E0〉 is real, it is necessary to evaluate

〈Ô〉 = 〈E0| Ô |E0〉
〈E0|E0〉 =

∑
i,j Oijχiχj∑

i χ
2
i

, (6)

where Oij = 〈Xi | Ô |Xj 〉. Although 〈q tot
i 〉 = χi , the expec-

tation value of a product is not equal to the product of
the expectation values: 〈q tot

i q tot
j 〉 �= χiχj . This means that

χiχj cannot be obtained by averaging the products of the
instantaneous psip weights. One could in principle average
q tot

i over many iterations to obtain χi before multiplying χi

and χj , but this would involve storing a number for every basis
function, which is impractical due to memory limitations.

This problem is not easy to overcome and there is
currently no way to evaluate general expectation values exactly
and efficiently within the FCIQMC framework. Indeed, the
calculation of general expectation values in other Monte Carlo
methods is often a difficult task.

III. DENSITY-MATRIX QUANTUM MONTE CARLO

We now show how an FCIQMC-like dynamics can be used
to sample both finite-temperature and ground-state density
matrices. We first consider the thermal density matrix and
how it can be evolved as a function of inverse temperature by
solving the symmetrized Bloch equation. We then draw upon
analogies with FCIQMC to formulate the DMQMC algorithm
before discussing the calculation of estimators for a general
quantum mechanical observable. This section ends with an
explanation of how to sample a reduced density matrix in
order to calculate estimators of entanglement measures.

A. Theory

Since the psip population (and hence the normalization)
varies during a quantum Monte Carlo simulation, it is
convenient to work with the unnormalized thermal density
matrix

ρ̂(β) = e−βĤ , (7)

where Ĥ is the Hamiltonian operator and β = 1/kBT is the
inverse temperature. The canonical partition function Z(β) is
given by

Z(β) = Tr[ρ̂(β)]. (8)

Differentiating ρ̂(β) with respect to β shows that it obeys both
the Bloch equation,

dρ̂

dβ
= −Ĥ ρ̂, (9)

and the symmetrized Bloch equation,1

dρ̂

dβ
= −1

2
(Ĥ ρ̂ + ρ̂Ĥ ) = −1

2
{Ĥ ,ρ̂}. (10)

The symmetrized version turns out to be more useful for
our purposes. Consider the general solution to Eq. (10),

ρ̂(β) = e− β

2 Ĥ ρ̂(β = 0)e− β

2 Ĥ , (11)

and let |Ei〉 denote an energy eigenstate with energy Ei .
Without loss of generality, we assume that E0 = 0. By
expanding ρ̂(β = 0) as

ρ̂(β = 0) =
∑
i,j

ρij (0) |Ei〉 〈Ej | (12)

and applying Eq. (11) it is seen that ρ̂(β) becomes proportional
to the ground-state density matrix as β → ∞:

ρ̂(β → ∞) = ρ00(0) |E0〉 〈E0| . (13)

A similar analysis shows that the ground-state density matrix
is not reached if a general initial density matrix is propagated
using the unsymmetrized Bloch equation. Hence, in cases
where ground-state properties are desired, Eq. (10) is more
useful. If we wish to sample thermal properties at any
finite temperature T , we must also impose the correct initial
condition on Eq. (10). The most convenient is at β = 0, where

ρ̂(β = 0) = 1̂. (14)

Equations (10) and (14) provide everything required to
stochastically sample the thermal density matrix. As in
FCIQMC we introduce a collection of psips, which in
DMQMC occupy not basis states |Xi〉 but basis operators
|Xi〉 〈Xj | of the expansion of the full many-particle density
operator ρ̂(β) in some convenient basis set. At the start of
a simulation the psips are distributed randomly along the
diagonal of the infinite-temperature density matrix ρij (β =
0) = δij . The psips then evolve under a set of rules so that
they sample the matrix elements ρij (β) in the chosen basis
at each iteration. In order to prevent the population of psips

1There is a close relationship between the symmetrized Bloch
equation in Eq. (10) and the von Neumann and quantum Liouville
equations, i� ∂ρ

∂t
= [H,ρ]. The von Neumann equation may be derived

by using the time-dependent Schrödinger equation to work out how
the arbitrary initial density matrix of Eq. (12) evolves. Analogously,
the Bloch equation may be derived by using the imaginary-time
Schrödinger equation to work out how Eq. (12) evolves in imaginary
time. The switch from real to imaginary time replaces the commutator
of Ĥ and ρ appearing in the von Neumann equation with the
anticommutator appearing in the Bloch equation. The additional
factor of 1

2 is introduced for convenience: it ensures that evolving
Eq. (10) for β units of imaginary time, starting from the unit
operator, ρ(β = 0) = Î , yields the canonical density matrix at inverse
temperature β, not 2β.
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from exploding, we introduce an energy shift, S, and let
Ĥ → Ĥ − S1̂ as in FCIQMC. Eq. (10) thus becomes

dρ̂

dβ
= 1

2
(T̂ ρ̂ + ρ̂T̂ ), (15)

where T̂ = −(Ĥ − S1̂) is the update matrix.

B. Algorithm

We use the following algorithm to evolve a collection of
psips according to Eq. (15). For a single step in inverse
temperature of �β, we loop over the entire population of psips
and perform the following steps.

(i) Spawning along columns of the density matrix: Allow a
psip with charge qij on site (i,j ) to spawn onto connected sites
(k,j ), where Tik �= 0 and i �= k, with probability 1

2 |Tik|�β. If
the spawning attempt is successful, a psip is born at (k,j ) with
charge qkj = sign(Tik)qij .

(ii) Spawning along rows of the density matrix: Similarly,
allow a psip with charge qij on site (i,j ) to spawn onto con-
nected sites (i,k) with probability 1

2 |Tjk|�β. If the spawning
attempt is successful, a psip is born at site (i,k) with charge
qik = sign(Tjk)qij .

(iii) Diagonal death/cloning: If there is a psip on site (i,j )
and Tii + Tjj < 0, then with probability pd = 1

2 |Tii + Tjj |�β

that psip is killed and removed from the simulation; if Tii +
Tjj > 0, the psip is cloned (i.e., a new psip is created on the
same site and with the same charge) with probability pd .

(iv) Annihilation: Pairs of psips inhabiting the same site
(i,j ) with opposite charges annihilate and are removed from
the simulation, leaving a population of only a single charge
type on each site.

The first three steps describe a stochastic algorithm to
sample the solution of a first-order Euler finite-difference
approximation to Eq. (10). The distribution of psip charges
at β + �β is thus proportional to the density matrix at this
inverse temperature, provided that the distribution of charges
at β was correct.

The DMQMC method shares many similarities with
FCIQMC, namely,

(i) Annihilation does not alter the expected (normalized)
psip distribution but serves to overcome the sign prob-
lem [13,15].

(ii) The underlying finite-difference approximation is sta-
ble if 0 < �β < 2/(Emax − E0), where Emax is the largest
eigenvalue of the Hamiltonian matrix [15]. This is a sufficient
condition to ensure correct projection onto the exact ground
state, but the finite value of �β leads to an error of O(�β)
in the density matrix at temperatures greater than zero. It is
therefore necessary to check that finite-temperature results
have converged with respect to �β.

(iii) The familiar shift-update algorithm already used in
DMC [28] and FCIQMC [13] simulations is employed to
modify S and thus to control the population. The shift, S,
is adjusted according to

S(β + A�β) = S(β) − ζ

A�β
ln

(
Np(β + A�β)

Np(β)

)
, (16)

where A is the number of β steps between shift updates, ζ is
a shift damping parameter, and Np(β) is the total number of

psips at the inverse temperature β. During simulations, ζ is
chosen carefully to prevent large fluctuations in S.

(iv) Rather than attempting all possible spawning events
from a psip on a given site, it is computationally efficient to
attempt just one (or a small number) of the many possible
spawning events and reweight the acceptance probabilities
accordingly [13].

(v) The algorithm is highly parallelizable—only the anni-
hilation step requires communication between CPU cores and
so using a large psip population is a viable option.

As with all projection methods, the ground state is ap-
proached as β → ∞. Once convergence to the ground state
has been attained the density matrix no longer depends on β

(remember that S is chosen to keep the normalization fixed)
and the statistical errors of measured ground-state expecta-
tion values can easily be reduced by averaging over many
iterations. A single simulation is therefore sufficient to obtain
accurate ground-state expectation values. The estimation of
finite-temperature properties is more difficult because the
inverse temperature β changes continuously as the simulation
progresses; it is not possible to hold the simulation at a specific
temperature while statistics are accumulated.

With access to a stochastic sampling of the unnormalized
density matrix at a given temperature, the expectation value of
any quantum mechanical observable, Ô, at that temperature
can be calculated using

〈Ô〉 = Tr(ρ̂ Ô)

Tr(ρ̂)
=

∑
i,j q tot

ij Oji∑
i q

tot
ii

. (17)

The numerator and denominator must be sampled and aver-
aged separately at each temperature to achieve the desired
statistical accuracy. Hence a simulation involves repeatedly
evolving the density matrix from β = 0 to some chosen maxi-
mum value of β, a process we call a “β loop”. This also gives us
the freedom to allow Eq. (14) to be satisfied only on average,
which greatly reduces the memory demands. Each β loop is
initialized with a different random number seed and with psips
randomly distributed with uniform probability along the diago-
nal of the density matrix. Statistics are accumulated over a suf-
ficiently large number of β loops in order to obtain the desired
statistical accuracy. As each β loop is completely independent,
performing multiple β loops is an embarrassingly parallel task
and each β loop gives statistically independent data points.

A primary concern is that averages over an impractically
large number of β loops may be required. Indeed, it is
not uncommon to have to average over O(106) iterations
in ground-state calculations. In practice, however, reaching
a sufficiently large number of β loops does not appear to
be a problem. The crucial difference from the ground-state
case is that each β loop provides statistically independent data
whereas ground-state calculations need to overcome inherent
correlations between nearby iterations. Furthermore, as will be
shown, the quality of estimates obtained using a given number
of β loops is better at high temperature than at low temperature.
Another advantage is that a single simulation can provide data
across the entire temperature range being studied.

The energy shift S is varied in order to control the
normalization. This, however, introduces a bias: if the shift is
varied by �S, then the psip population is effectively altered by
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a factor e�β�S over the next β step. As a result, configurations
in which the average energy of the psip population happens
to be less negative than usual are effectively given too large
a weight. This problem is particularly severe in DMQMC
because the results at each temperature are obtained by
averaging over separate β loops, and thus, for each quantity
contributing to a given estimator, the corresponding shift (and
hence population) profiles can be very different.

The population bias can be greatly reduced using a method
suggested by Umrigar et al. in the context of DMC [28],
in which each sampled quantity proportional to the psip
population is multiplied by the factor

�(β,B) =
B̃−1∏
m=0

e−S(β−m�β), (18)

where B is some chosen number of factors and B̃ =
min( β

�β
,B). By multiplying by this factor, we remove the last

B̃ factors of e�β�S introduced by varying the shift. As B → ∞
the population control bias should be completely removed. The
population control bias can also be reduced by using a larger
population of psips.

Another concern is that the number of elements in the den-
sity matrix is the square of the dimension of the Hilbert space of
many-particle states. At first glance it might seem that, without
dramatically increasing the number of psips, the density matrix
would be very poorly sampled. However, the dimension of the
Hilbert space, D, rises exponentially with the number of par-
ticles or sites, N , so that D ∝ eαN and thus D2 ∝ eα(2N). The
doubling of the exponent implies that a DMQMC simulation
for an N/2-site lattice model requires approximately the same
number of psips as an N -site FCIQMC simulation to achieve
the same sampling quality. Moreover, DMQMC estimators for
operators that do not commute with the Hamiltonian often
have significantly smaller variance than the forward-walking
or other estimators required to evaluate the ground-state
expectation values of such operators in FCIQMC.

C. Entanglement measures

Entanglement measures are well established as an im-
portant concept in quantum information theory and have
recently become a subject of active research in the condensed
matter community. For example, changes in entanglement
are observed at quantum phase transitions [29] and used to
classify properties of Fermi liquids [30,31] and bonding in
small molecules [32]. The Lanczos method can be used to
calculate entanglement measures in small systems and the
density-matrix renormalization group method is applicable
in one-dimensional systems [33], but the study of entan-
glement in large systems in more than one dimension is
less straightforward. Relationships between reduced density
matrices (RDMs) and spin correlation functions [34] allow
QMC methods to access some entanglement measures in
certain situations [35], and Sandvik recently introduced a
QMC method formulated in the valence-bond basis [36]
that allowed certain new entanglement entropy measures to
be evaluated [37,38]. Hastings et al. showed that Renyi S2

entanglement entropy can also be calculated [33]. However, in
general, the inability of QMC methods to directly access the

density matrix and reduced density matrices of systems has
hindered their use in this area.

Within DMQMC it straightforward to obtain a stochastic
representation of any reduced density matrix element from a
stochastic representation of the full density matrix. A RDM
can be sampled by tracing out unwanted psips. Consider a
composite quantum system C, which can be partitioned into
two subsystems A and B so that HC = HA ⊗ HB , where
HA (HB) denotes the Hilbert space of system A (B). The
RDM ρA that describes sublattice A is defined by taking the
partial trace of the full density matrix, ρC , over all the sites on
sublattice B:

ρA = TrB(ρC). (19)

Our implementation of DMQMC represents the many-
particle basis functions as bit strings [39], where each bit refers
to the state of a single spin. To evaluate ρA we construct a
mask, IB , which only has bits set that correspond to spins
in subsystem B. The (i,j ) density matrix element of ρC

contributes to ρA if the result of the logical AND operation
of the i string with the IB mask is identical to that of the j

string. The corresponding element in the RDM can be found
by taking AND with an analogous IA mask.

Evaluating the von Neumann entanglement entropy, S1 =
−Tr(ρ log ρ), and other nonlinear functions of a RDM ρ is
challenging because 〈f (ρ)〉 �= f (〈ρ〉). Thus, although it is
easy to accumulate contributions to 〈f (ρ)〉 on the fly, this does
not yield the correct result f (〈ρ〉). A well-averaged estimate
of the full RDM is required before the nonlinear function can
be calculated accurately. Accumulating this estimate requires
storing the full RDM, limiting studies to relatively small
subsystems. It would be reasonable to store the reduced density
matrix of a subsystem of 15 spins, but much larger subsystems
are out of reach. The von Neumann entanglement entropy is
particularly challenging because its derivative with respect to
any RDM eigenvalue tends to infinity as the eigenvalue tends
to zero. Thus, small errors in small RDM eigenvalues can lead
to large errors in the final estimate of S1.

Two-qubit entanglement measures are more straightfor-
ward to calculate as the small size of the RDM allows it
to be estimated accurately with relative ease. In this paper
a concurrence estimate was taken from each β loop by
first averaging the relevant RDM in the ground state. These
concurrence estimates were themselves averaged to provide a
final value and associated error.

The replica trick approach, also used by Hastings et al. [33],
allows Renyi entropies to be calculated in a rigorously
unbiased manner without storing and averaging the full RDM.
Two DMQMC calculations performed simultaneously, each
starting from a different random number seed and thus fol-
lowing a different Markov chain, are statistically independent.
The Renyi-2 entropy can therefore be evaluated in an unbiased
fashion:

S2 = −log2

⎛
⎝

〈∑
i,j

q tot
ij wtot

ij

〉⎞
⎠ , (20)

where q tot
ij (wtot

ij ) is the total psip amplitude on the ij th element
of the reduced density matrix in the first (second) simulation.
Thus, by averaging

∑
ij q tot

ij wtot
ij at each temperature over
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many β loops, it is straightforward to calculate an accurate
temperature-dependent estimate of S2.

In general, performing N replica simulations enables the
unbiased sampling of ρN and thus SN . S2 is particularly simple
computationally because, as can be seen from Eq. (20), only
amplitudes from psips on the same sites need to be multiplied.
Note that, unlike in Ref. [33], the replica trick is used here
only to ensure the statistical independence of the two reduced
density matrices.

IV. IMPORTANCE SAMPLING

This article considers the application of DMQMC to the
S = 1/2 antiferromagnetic Heisenberg model,

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj , (21)

where J > 0 and the 〈i,j 〉 implies that the summation is
over nearest-neighbor pairs of spins only. Periodic boundary
conditions are applied. We work in the standard basis set
where the many-spin states are tensor products of the one-spin
eigenstates, |↑〉 and |↓〉, of the Ŝz operator.

The algorithm described in Sec. II allows a stochastic sam-
pling of the exact finite-temperature density matrix, assuming
�β is sufficiently small. However, for the antiferromagnetic
Heisenberg model, the sampling method described is found to
be insufficient for all but the smallest systems. The ground-
state wave function is highly delocalized over the states in
the basis set, and thus the ground-state density matrix, ρ =
|E0〉 〈E0|, has many off-diagonal elements with magnitudes
comparable to the diagonal elements. As a result, when the
density matrix is sampled via the DMQMC algorithm, only
a small fraction of psips reside on or near diagonal elements.
Estimators for the expectation values of most operators of
interest only receive contributions from psips on or near the
diagonal, so very few psips contribute and these estimators
suffer from large statistical errors at low temperatures. Impor-
tance sampling can greatly improve the sampling quality.

We start by defining the excitation level between basis states
|Xi〉 and |Xj 〉 to be the smallest number of pairs of opposite
spins that must be flipped in order to reach |Xi〉 from |Xj 〉. For
the Heisenberg model, Eq. (21), the excitation level can change
by at most ±1 in a single application of the Hamiltonian.

One straightforward way to improve the quality of sampling
is to reduce the probability of psips spawning far from the
diagonal of the density matrix. Psips that do reside on higher
excitation levels are given a correspondingly larger weight, so
that expectation values of operators are unchanged. However,
the increase in the population of low-weight psips near the
diagonal of the density matrix reduces the stochastic error in
near-diagonal expectation values.

With this motivation in mind, we define the following
importance-sampling procedure; a more rigorous formulation
is given in Appendix B. Every time a psip on excitation
level γ attempts to spawn a new psip on excitation level
δ, the probability of successful spawning is altered by a
factor Pγδ . Thus, if a psip on a diagonal element attempts
to spawn a new psip onto the first excitation level, the
probability of successful spawning is altered by a factor
P01, where P01 < 1. The first excitation level will thus be

occupied by P01 times as many psips as it would have been
with unaltered spawning probabilities. The reduced (relative)
population must be accounted for by giving all psips in the
first excitation level a weight of W1 = 1/P01 when evaluating
estimators. The number of spawning attempts from the first
to the second excitation level is also altered by a factor P01

(due to the reduced number of psips at level 1) and the chance
of successful spawning for each attempt is multiplied by the
factor P12. Hence, the weight given to the second excitation
level must be W2 = 1/P01P12. Furthermore, since there are
P01 times as many psips on the first excitation level, the
probability of spawning from the first excitation level to the
diagonal elements must be enhanced by a factor 1/P01 in order
to achieve consistent spawning dynamics.

In general Pγδ = 1/Pδγ and the weight given to a psip on
excitation level γ is

Wγ =
δ=γ∏
δ=1

1

Pδ−1,δ

. (22)

The estimator for an expectation value, 〈Ô〉, is thus

〈Ô〉 =
∑

i,j ρ̃ijWE(i,j )Oji∑
i ρ̃ii

, (23)

where E(i,j ) is the excitation level between |Xi〉 and |Xj 〉, and
ρ̃ij is the importance-sampled density matrix. The expected
value of the importance-sampled psip charge on site (i,j ) is
proportional to ρ̃ij .

There is clearly some freedom in the numerical values
chosen for the factors Pγδ . In this study we adjust Pγδ

such that all excitation levels have similar psip populations
in the ground state. While this choice is not necessarily
optimal, it successfully increases the quality of ground-state
estimates by many orders of magnitude while still allowing
the entire density matrix to be sampled. Figures 1(a) and 1(b)
show the fractions of psips on the first four excitation levels
for the 4 × 4 square Heisenberg lattice as obtained without
and with importance sampling. Both simulations used an
initial population of 105 psips and a single β loop. It is
clear that importance sampling greatly assists in keeping a
non-negligible population on the lower excitation levels.

In practice, the values of Pγδ are very small for small γ and δ

and decrease in magnitude as the lattice size increases. In order
to avoid an unnecessarily large suppression of psip spawning
from the diagonal at high temperatures, we introduce the
weights Wγ and probabilities Pγδ gradually from β = 0 until
they reach their desired final values at βtarget. For β < βtarget,
the weight at excitation level γ is set equal to (Wγ )β/βtarget ; for
β > βtarget, the weight is held constant. The value of βtarget is
chosen to be the inverse temperature at which the ground state
is deemed to have been reached. However, the value of this
parameter is not critical for the quality of the sampling.

V. RESULTS

Results are presented for the S = 1/2 antiferromagnetic
Heisenberg model. In order to calculate finite-temperature
properties, it is necessary to include contributions from all MS

(total spin) subspaces. Because the Heisenberg Hamiltonian
conserves MS , different subspaces can be studied using
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FIG. 1. (Color online) The inverse-temperature dependence of
the fractions of psips on the first four excitation levels during a
DMQMC simulation of a 4×4 square antiferromagnetic Heisenberg
lattice [40]. A single β loop was carried out using an initial population
of 105 psips on the diagonal elements. The results shown in (a) were
obtained without importance sampling. The results shown in (b) were
obtained using importance sampling to ensure that every excitation
level had a roughly equal number of psips at zero temperature.

separate simulations for estimators of the form in Eq. (17),
which is an embarrassingly parallel computational task. Com-
bining such results for different values of MS is straightforward
but requires additional calculations and reveals nothing of
interest about DMQMC. The energy and staggered magnetisa-
tion results presented in this paper are for the MS = 0 subspace
only. For more general quantities such as S2 it is necessary to
perform a simulation with psips spanning all MS subspaces
simultaneously.

A. Temperature-dependent energy on the 4 × 4 lattice

The 4×4 lattice is small enough that an exact diagonal-
ization can be performed, thus allowing a direct check of our
DMQMC results. Figure 2(a) shows the energy as a function
of temperature using an initial population of 100 psips at the
start of each β loop and accumulating statistics over 1000 such
loops. The shift was allowed to vary throughout the simulation
and there were typically 700–800 psips in the simulation by the
end of each β loop. No importance sampling was applied, and
so statistical fluctuations increase with inverse temperature as
explained in Sec. IV. Increasing the initial population to 105

psips [Fig. 2(b)] reduces the statistical errors such that the
agreement with the exact results is essentially perfect.

B. Temperature-dependent staggered magnetization
on the 8 × 8 lattice

The square of the staggered magnetization is represented
by the operator

M̂2 = M̂ · M̂, with M̂ = 1

N

∑
i

(−1)xi+yi Ŝi , (24)
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(a) Exact
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βJ
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(b)

FIG. 2. (Color online) The exact and DMQMC energies for the
4×4 antiferromagnetic Heisenberg lattice (Hilbert space dimension
D ≈ 1.29 × 104) with periodic boundary conditions [40]. The β step
size, �β, obeys JN�β = 0.1, where N = 16, and results are shown
every 30 iterations. Each simulation consisted of 1000 β loops. For
the simulation reported in (a), 100 psips were introduced at the start
of each β loop; for (b), 105 psips were introduced. The error bars in
(b) are smaller than the size of the markers.

where xi and xj denote the coordinates of the square lattice.
This operator does not commute with the Hamiltonian. Its
expectation value, 〈M̂2〉, is plotted as a function of β in
Fig. 3 for an 8 × 8 lattice; a ground-state value obtained using
the SSE method [41] is also shown. The dimension of the
MS = 0 Hilbert space of an 8 × 8 Heisenberg Hamiltonian is
approximately 1.83 × 1018, so the density matrix sampled in
this simulation has approximately 3.36 × 1036 elements.

C. Ground-state energy and staggered magnetization
on the 6 × 6 lattice

For ground-state calculations statistics are accumulated
over a single β loop after the ground state has been reached. A
relatively modest simulation of a 6 × 6 lattice using 6.5 × 106

0 1 2 3 4 5 6

βJ

0.00

0.05

0.10

0.15

0.20

M̂
2

SSE(β = ∞)

DMQMC

4 5 6

0.175

0.180

FIG. 3. (Color online) The square of the staggered magnetization
for an 8 × 8 antiferromagnetic Heisenberg lattice (D ≈ 1.83 × 1018)
using 1.4 × 107 psips and 143 β loops [40]. The importance-sampling
procedure described in the main text was applied. The DMQMC value
of 〈M̂2〉 is plotted every 50th iteration. Error bars, where not visible,
are smaller than the size of the marker. The ground-state value of 〈M̂2〉
obtained from an SSE simulation [41] is plotted for comparison.
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TABLE I. DMQMC estimates of the ground-state concurrence, Cgs , for antiferromagnetic spin rings containing N sites in the absence of
an external magnetic field. Each ring corresponds to a Hilbert space of D basis functions. The density matrix was sampled using Np psips,
and statistics accumulated over Nl β loops. Exact results for the energy and concurrence for rings up to N = 10 are taken from Ref. [45]. An
FCIQMC calculation was used to find the energy of the N = 36 chain, from which an exact value of Cgs was determined using Eq. (25). The
full density matrix of the N = 36 chain has approximately D2 = 8.24 × 1019 elements.

Cgs

N E0/N Exact [45] DMQMC Np Nl D

4 − 0.5000 0.5000 0.5005(4) 2.5 × 103 250 6
6 − 0.4671 0.4343 0.4342(5) 2.5 × 103 1 × 103 20
8 − 0.4564 0.4128 0.4129(5) 1 × 104 1 × 103 70
10 − 0.4515 0.4031 0.4031(4) 4 × 103 1 × 103 252
36 − 0.44374(2) 0.38748(4) 0.3873(8) 1 × 106 12 9.08 × 109

psips gave a ground-state energy of −0.67888(24)JN and a
value of 〈M̂2〉 equal to 0.20985(7), where errors were obtained
via a blocking analysis [42]. These values agree with exact
results [43] of −0.678872JN and 0.20983 for the ground-
state energy and staggered magnetization, respectively, to
within statistical errors [44]. Remarkably, despite the fact that
[M̂2,Ĥ ] �= 0, the statistical error in the value of 〈M̂2〉 was
smaller than that of the energy. It was not necessary to reweight
these results using Eq. (18) as the psip population was large
enough to render such biases negligible.

D. Ground-state concurrence on spin rings

The ground-state concurrence, Cgs , for neighboring spins
(qubits) on an antiferromagnetic Heisenberg ring was studied
by Wootters and O’Connor in 2001 [45]. They showed that,
for an even number of spins, Cgs has a simple relationship with
the ground-state energy,

Cgs = − 1
2 (4E0/N + 1). (25)

The exact results calculated from this formula provide a useful
test of our DMQMC estimates of Cgs , which are obtained from
the sampled reduced density matrix (see Appendix A).

The DMQMC estimates of Cgs are presented in Table I,
along with Wootters and O’Connor’s exact analytic values
for up to N = 10 sites. A ring with N = 36 sites was also
studied, using FCIQMC to calculate E0 and then Eq. (25) to
obtain a value of Cgs for comparison with the DMQMC results.
For lengths up to N = 10, the calculation of the concurrence
can easily be carried out using other methods and provides a
straightforward test of the DMQMC algorithm. The N = 36
chain is far from trivial and it is promising that such accurate
results can be obtained.

We note that the DMQMC estimates of Cgs were obtained
by sampling the reduced density matrix for a single pair of
spins. Due to translational invariance, these estimates could
have been improved by sampling the reduced density matrix
for every neighboring pair and combining the results.

E. Temperature-dependent Renyi-2 entropy on the 6 × 6 lattice

Temperature-dependent Renyi-2 entropies were calculated
for various sublattices of the 6 × 6 lattice using the replica
approach described in Sec. III. Translational invariance was
used to improve the quality of the statistics and importance

sampling was once again applied. Note that, unlike other
calculations presented, the initial population spanned the entire
Hilbert space rather than just the MS = 0 subspace in order
to capture the correct behavior of S2 at nonzero temperatures.
Results are presented in Fig. 4 for square sublattices and in
Fig. 5 for strip sublattices. We were unable to find results in
the literature for comparison.

VI. SIGN PROBLEM IN DMQMC

As discussed in Sec. II, the annihilation step in FCIQMC
leads to the characteristic population dynamics, whereby
the sign problem can only be overcome once a critical
psip population (the plateau) has been exceeded. Since the
annihilation steps in FCIQMC and DMQMC are identical,
we would expect DMQMC to possess similar population
dynamics. The annihilation rate for a given psip population
in DMQMC will be significantly smaller than in FCIQMC
because the number of density matrix elements is the square
of the number of basis functions. As such, it is to be expected
that the plateau height for a given Hamiltonian will be higher
in DMQMC than in FCIQMC.

To investigate this issue, we considered the antiferromag-
netic Heisenberg model on a 4 × 4 triangular lattice, for which
an exact diagonalization is easily performed. The triangular
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FIG. 4. (Color online) Renyi-2 entropy for square sublattices of
a 6 × 6 antiferromagnetic Heisenberg lattice. Error bars, where not
shown, are smaller than the line thickness. The inset zooms in on
the 4 × 4 sublattice, which has the largest error bars. S2 values were
taken from every 25th iteration and averaged over 16–180 loops over
the temperature range.
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FIG. 5. (Color online) Renyi-2 entropy for strip sublattices of a
6 × 6 lattice. Error bars are shown in the inset (color scheme as in the
main plot) for large β, where they are largest, and are smaller than
the linewidth where not visible. S2 values were taken from every 25th
iteration and averaged over 32–240 loops over the temperature range.
As expected, S2 for the 2 × 6 and 4 × 6 sublattices tend to the same
value in the zero-temperature limit.

lattice is the archetypal example of a frustrated lattice and
has a severe sign problem. We carried out a single β loop
and allowed the population to grow with a fixed shift while
simultaneously investigating the accuracy of the DMQMC
energy estimate. Figure 6(a) demonstrates that the population
plateaus as expected. Figure 6(b) shows the accuracy of the
energy estimate throughout the plateau period.

At high temperatures accurate results are obtained. This is
also the case in other finite-temperature methods, where it is
generally found that the sign problem is less severe for small β;
indeed, there is no sign problem at all at infinite temperature.
However, at lower temperatures the energy estimates suffer
large fluctuations, and it is not until the population exceeds
the plateau that a good agreement with exact results is once
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FIG. 6. (Color online) Population dynamics and energy estimate
for the antiferromagnetic Heisenberg model on a 4×4 triangular
lattice with periodic boundary conditions. A fixed shift was used and a
single β loop performed. (a) shows the emergence of a plateau in the
psip population and (b) shows the exact energy and the DMQMC
estimate of the energy as functions of β. Once the plateau has
been exited, the DMQMC energy is in good agreement with the
exact results. The severity of the sign problem increases with inverse
temperature.

again obtained. The plateau height occurs at ∼ 1.75 × 108

psips. For comparison, the plateau population in an FCIQMC
calculation of the same system is at ∼ 2.0 × 104 psips. We find
(in this case) that the DMQMC plateau height is approximately
the square of the plateau height in FCIQMC, matching the
increase in the size of the space being sampled. It is possible to
obtain accurate results for the entire temperature range simply
by starting the simulation with an initial population greater
than that of the plateau. Moreover, even if the plateau cannot
be reached due to memory restrictions, one can nevertheless
systematically reach lower temperatures by increasing the
population of psips.

The sign problem in the antiferromagnetic Heisenberg
model on a triangular lattice is severe in both FCIQMC and
DMQMC [15]. However, the efficiency of the annihilation
procedure in FCIQMC varies substantially with the system
studied and with the basis set used [15]. Furthermore, the
initiator approximation (i-FCIQMC) proposed by Cleland
et al. [17] has been shown to reduce the memory requirements
for FCIQMC calculations by several orders of magnitude in
many cases. In i-FCIQMC, spawning events onto previously
unoccupied sites are forbidden unless the psip population of the
parent site exceeds a threshold. This increases the annihilation
rate relative to FCIQMC and ameliorates the sign problem
at the expense of introducing a systematically improvable
approximation. We have yet to investigate the DMQMC equiv-
alent of the initiator method. It is expected that ground-state
properties will be available, but it is not yet clear to what extent
the modified spawning will affect finite-temperature results.

VII. DISCUSSION

This article has described DMQMC, a quantum Monte
Carlo method that allows direct sampling of the finite-
temperature and ground-state density matrices in a discrete
basis. The validity of the method has been verified by
reproducing exact and well-established results for some small
systems, including the calculation of the concurrence of one-
dimensional spin rings by directly sampling reduced density
matrices. In all cases investigated, DMQMC has proved
capable and accurate.

The introduction of an importance-sampling procedure
allows larger lattices to be investigated—the largest system
that we have simulated successfully to date is a 10 × 10
antiferromagnetic Heisenberg model. Larger systems could
easily be tackled at high temperatures, but it is unlikely that
our very simple approach to importance sampling will allow
simulations of lattices of more than 10 × 10 sites over the
entire range of temperatures from infinity to zero. If a better
importance-sampling procedure can be devised, as we believe
likely, many more avenues will be opened.

Like FCIQMC, DMQMC uses an annihilation procedure
that allows it to overcome the sign problem if a system-
specific population of psips is reached. In FCIQMC the sign
problem can often be ameliorated, for example by changing
to a more appropriate basis set [15,46] or by applying the
initiator approximation [17]. Given the similarities between
DMQMC and FCIQMC, it is likely that these ideas and future
developments in FCIQMC will also apply to DMQMC. Due
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to the relative youth of FCIQMC, the rate of theoretical and
algorithmic improvements is rapid [17,21,47–49].

Obtaining expectation values of operators that are nonlinear
in the full density matrix or functions of a reduced density
matrix is challenging. We used the replica approach [33],
in which two DMQMC simulations are performed side by
side, to obtain unbiased estimates of the Renyi-2 entropy for
several subsystems of a Heisenberg lattice across a range of
temperatures.

The replica approach might also be useful in FCIQMC
for unbiased sampling of expectation values of operators
that do not commute with the Hamiltonian. However, a
general calculation of this type would require running over
every pair of psips in both calculations, which would be
computationally demanding and have a major impact on the
efficient parallelization of the FCIQMC algorithm.

The lattices studied with DMQMC so far are small by
the standards of path-integral quantum Monte Carlo methods.
However, the unique and defining feature of DMQMC is that
it samples the full density matrix. This allows the calculation
of arbitrary expectation values and quantum information
measures that are inaccessible using other quantum Monte
Carlo methods. We wish to finish by emphasizing that,
while the applications presented here have been to lattice
models, the formulation of DMQMC is general. For example,
DMQMC could be used to calculate the two-electron reduced
density matrix for small molecules, which could then be
used to construct accurate exchange-correlation functionals
for density-functional theory [50].
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APPENDIX A: CONCURRENCE

For the special case of a two-qubit state, the entanglement
of formation can be calculated from a quantity known as the
concurrence. Given a reduced density matrix ρA, where in this
case A refers to a subsystem of two qubits, the concurrence is
defined as

C(ρA) ≡ max(0,γ1 − γ2 − γ3 − γ4), (A1)

where γ1 > γ2 > γ3 > γ4 are the eigenvalues of the matrix

R =
√√

ρAρ̃A

√
ρA (A2)

and

ρ̃A = (σy ⊗ σy)ρ∗
A(σy ⊗ σy), (A3)

with σy the Pauli spin matrix for the y direction. This
expression is only valid in the standard basis set.

The value of the concurrence C ranges from zero to one and
is monotonically related to the entanglement of formation [51];
the concurrence can therefore be regarded as a measure
of entanglement. The entanglement of formation for two
qubits [52] is given by

E(C) = h

(
1 + √

1 − C2

2

)
, (A4)

where

h(x) = −x log2 x − (1 − x) log2(1 − x). (A5)

If the Hamiltonian and thus the reduced density matrix are
real (as is the case in the Heisenberg model), the calculation of
C reduces to the calculation of the moduli of the eigenvalues
of

R = ρA(σy ⊗ σy). (A6)

Since R is a 4 × 4 matrix, it is trivial to compute the
concurrence by direct diagonalization once ρA is known.

Using DMQMC, it is possible to sample the unnormalized
reduced density matrix as described in Sec. III and thus to
estimate the concurrence using

〈C〉 = max(0,γ1 − γ2 − γ3 − γ4)

Tr(ρA)
, (A7)

where ρA is now the unnormalized reduced density matrix and
{γi} are the eigenvalues of the unnormalized matrix R.

APPENDIX B: IMPORTANCE SAMPLING

The DMQMC evolution equation is

dρij

dβ
= 1

2

∑
k

(Tikρkj + ρikTkj ), (B1)

where ρij is an element of ρ̂ in the many-particle basis chosen
for the simulation. Instead of ρij , we would like to sample the
importance-sampled density matrix

ρ̃ij = ρij

WE(i,j )
, (B2)

where E(i,j ) is the excitation level of the pair (i,j ) and Wα

is defined in Eq. (22). Following the standard procedure of
importance sampling, we introduce a trial function

ρT
ij = 1

WE(i,j )
. (B3)

This matrix is symmetric, ρT
ij = ρT

ji , as E(i,j ) = E(j,i).
The importance-sampled density matrix then has components
ρ̃ij = ρT

ij ρij , where no summation is performed over indices.
Multiplying Eq. (B1) by ρT

ij yields the following evolution
equation for ρ̃ij :

d
(
ρT

ij ρij

)
dβ

= 1

2

∑
k

(
ρT

ij Tikρkj + ρikρ
T
ij Tkj

)
(B4)

= 1

2

∑
k

[(
ρT

ij Tik

1

ρT
kj

) (
ρT

kjρkj

)

+ (
ρT

ikρik

) (
ρT

ij Tkj

1

ρT
ik

)]
(B5)
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⇒ dρ̃ij

dβ
= 1

2

∑
k

[(
ρT

ij Tik

1

ρT
kj

)
ρ̃kj + ρ̃ik

(
ρT

ij Tkj

1

ρT
ik

)]
.

(B6)

The above differential equation is entirely analogous to
Eq. (15). As such, the finite-difference version of Eq. (B6)
can be simulated in an almost identical manner to the standard
DMQMC algorithm: the extra factors of ρT simply act to
alter the spawning probabilities. Consider the case where the
excitation level of (i,j ) is γ and excitation level of (k,j ) is

γ − 1. The probability that a spawning attempt from (k,j ) to
(i,j ) is successful is altered by the factor

ρT
ij

1

ρT
kj

= WE(k,j )

WE(i,j )
= Wγ−1

Wγ

= Pγ−1,γ , (B7)

where Eq. (22) has been used to simplify the expres-
sion. Similarly, when spawning in the opposite direction,
the probability is altered by the reciprocal of this factor.
Spawning events that do not alter the excitation level are
unaffected.
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