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Chiral anomaly and optical absorption in Weyl semimetals
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Weyl semimetals are a three-dimensional topological phase of matter with isolated band touchings in the
Brillouin zone. These points have an associated chirality, and many of the proposals to detect the Weyl semimetal
state rely on the chiral anomaly. A consequence of the chiral anomaly is that under the application of an E · B
field, charge is transferred between points of opposite chirality. In this paper we propose an optical absorption
experiment that provides evidence for the chiral anomaly. We use the Kubo formula, and find that an applied
E · B induces the formation of steplike features at finite frequency in the interband optical conductivity. We
study the effect of scattering and finite temperatures on this feature and find that it should be observable at low
temperatures in pure samples. Finally we discuss how the application of an E · B field can be used to map out
the frequency dependence of the scattering rate.
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I. INTRODUCTION

Weyl semimetals are a novel topological phase of mat-
ter that have attracted considerable interest [1–4]. A Weyl
semimetal is a three-dimensional system whose band structure
contains pairs of bands crossings (called Weyl points) at
isolated points in the Brillouin zone (BZ). For such a band
crossing to occur, the Weyl semimetal state must break
time-reversal or inversion symmetry. Each Weyl point can
be assigned a chirality χ that takes values ±1. The Nielsen-
Ninomiya theorem [5] shows that the number of Weyl points
in the BZ must be even, with half the points of each chirality.
Near a Weyl point with chirality χ , the Hamiltonian takes the
form

H = χvF k · σ , (1)

where k is the momentum measured from the Weyl point, and
σ is the vector of Pauli matrices. The three-dimensional nature
ensures that the Weyl points are stable against perturbations.
In fact, the only way to annihilate a Weyl point is if two points
of opposite chirality meet in the BZ.

There are many candidate materials for the Weyl semimetal,
yet compelling experimental evidence for the observation of
one is still lacking. The pyrochore iridates [1,3], as well as
topological insulator heterostructures [6–9], were among the
first systems proposed to host the Weyl semimetal state. It is
also possible that certain quasicrystals may be host to the Weyl
semimetal state [10]. The observation of linear conductivity
over a wide frequency range is a sign of Dirac physics.
When combined with the lack of inversion symmetry there are
sufficient conditions for the existence of the Weyl semimetal
state. Recently there has been evidence for three-dimensional
Dirac physics in both Cd3As2 [11,12] and Na3Bi [13]. The
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discovery of three-dimensional Dirac materials is a promising
first step towards the discovery of a Weyl semimetal.

Ideally, to correctly identify the Weyl semimetal, one needs
as many probes as possible that can uniquely identify it from
other phases (such as three-dimensional Dirac semimetals).
Most of the research to date has focused on anomalous
properties that can be traced back to the chiral anomaly
[14–19]. The chiral anomaly is a peculiar nonconservation
of chiral charge and has been mostly discussed in the context
of high-energy physics. The Weyl semimetal is a condensed
matter realization of the chiral anomaly and adds to the
growing list of high-energy phenomenon in condensed matter
systems [20]. In the presence of external fields E and B the
continuity equation for a Weyl point of chirality χ takes the
form

∂n

∂t
+ ∇ · j = χ

4π2
E · B. (2)

That is, the charge density at a single Weyl point is not
conserved in the presence of parallel E and B fields. The
missing (extra) charge at a given Weyl point is compensated
at another Weyl point of the opposite chirality to ensure
the overall conservation of charge in the system. Thus
the application of parallel E and B fields can be used to drive
charge between Weyl points of opposite chirality. This charge
pumping would continue until it is cutoff by some relaxation
time τ that corresponds to scattering between the two Weyl
points. As these scattering processes generically involve large
momenta, τ is expected to be large [21].

Most of the proposals to detect a Weyl semimetal have fo-
cused around experiments hoping to detect the chiral anomaly
in some form. One of the transport properties tied to the chiral
anomaly is a large longitudinal magnetoconductivity [22].
Other transport predictions have focused on an anomalous
nonquantized Hall effect [6,8,23,24] that is proportional to
the separation of the Weyl points in momentum space. The
chiral magnetic effect is another consequence of the chiral
anomaly wherein current flows parallel to an applied magnetic
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field [25,26]. Another transport experiment was proposed in
which chiral charge pumping could be measured as a voltage
drop over long distances [27]. There has also been a proposal
to measure the chiral anomaly through the nonvanishing
gyrotropy induced by external fields [21,28]. Most recently,
the density response of Weyl semimetals was studied [29],
showing that both the compressibility and plasmon modes
contain signatures unique to the Weyl semimetal state.

In this paper, we propose an optical absorption experiment
that measures the chiral anomaly. Our proposal takes advan-
tage of the charge pumping induced by the chiral anomaly.
The charge pumping leaves different Weyl points at different
chemical potentials and causes measurable effects in both
the Drude peak as well as in the interband portion of the
conductivity. In particular, we identify sharp steplike features
in the interband conductivity that should prove as another
“smoking gun” for the Weyl semimetal state.

II. SINGLE POINT CONDUCTIVITY

Our starting point is the Kubo formula for the optical
conductivity. Written in terms of the spectral functions A and
for a chemical potential μ, the xx component of the real part
of the optical conductivity is given by

σxx(�) = e2π

�

∫
dω[f (ω − μ) − f (ω − μ + �)]

×
∫

d3k

(2π )3
Tr[vxÂ(k,ω)vxÂ(k,ω + �)]. (3)

Here f (x) = 1/(ex/T + 1) is the Fermi function, and vx =
∂H
∂kx

= σx are the velocity operators. We work in units where
� = vF = kB = 1 and all photon energies and temperatures
are in meV (in the Appendix we restore the factors of vF

and � for clarity). The spectral functions are found from the
decomposition of the Green’s function

Ĝ(k,ω) =
∫

dω′ Â(k,ω′)
ω − ω′ . (4)

After evaluating the trace and converting the k-space inte-
gration to an integral over energy, the optical conductivity
appears as the sum of two terms, σxx = σ D + σ IB. Details of
this derivation are provided in the Appendix. The first term is
a Drude (or intraband) term σ D and the second is an interband
term σ IB. We find

σ D
xx(�) = e2

6π

∫ ∞

−∞
dω

f (ω − μ) − f (ω − μ + �)

�

×
∫ ∞

0
dεε2[A(ε,ω)A(ε,ω + �)

+A(−ε,ω)A(−ε,ω + �)] (5)

and

σ IB
xx (�) = e2

3π

∫ ∞

−∞
dω

f (ω − μ) − f (ω − μ + �)

�

×
∫ ∞

0
dεε2[A(ε,ω)A(−ε,ω + �)

+A(−ε,ω)A(ε,ω + �)]. (6)

We would like to point out the factor of 2 difference between
the interband term and the Drude term. This factor of 2 arises
when preforming the angular integration in Eq. (3).

In the presence of a self-energy 
(ω) the spectral functions
are given by

A(±ε,ω) = 1

π

−Im 
(ω)

(ω − Re 
(ω) ∓ ε)2 + [Im 
(ω)]2
. (7)

We can now perform the integration over ε to obtain ex-
pressions for the conductivity. An essential feature of our
expressions is that they retain the energy dependence of �(ω).
We adopt the shorthand �(ω) = � and �(ω + �) = �′ for the
frequency dependent scattering rate. In the limit of a small
impurity scattering rate, and neglecting the real part of the
self-energy, we obtain

σ D(�) = e2

6π2

∫ ∞

−∞
dω

× f (ω − μ) − f (ω + � − μ)

�

ω2�′ + (ω + �)2�

(� + �′)2 + �2

(8)

for the Drude piece, and

σ IB(�) = e2

3π2

∫ ∞

−∞
dω

f (ω − μ) − f (ω + � − μ)

�

× ω2�′ + (ω + �)2�

(� + �′)2 + (2ω + �)2
(9)

for the interband piece.
In the strict � = 0 and T = 0 limit our formula reduces to

the well-known result

σxx(�) = e2μ2

6πvF

δ(�) + e2�

24πvF

(� − 2|μ|), (10)

where we have restored the factor of the Fermi velocity that
defines the Weyl fermions [see also Eqs. (A14) and (A16)].
This makes it clear how the relativistic Hamiltonian Eq. (1)
impacts the conductivity.

For a moment let us consider only the intraband term σ D.
In the small � limit (appropriate for this term) we have � =
�′ and for � � T the difference [f (ω − μ) − f (ω + � −
μ)]/� can be replaced by − ∂f

∂ω
. In this limit we have

σ D(�) = e2

3π

∫ ∞

−∞
dω

(
− ∂f

∂ω

)
ω2 �

4�2 + �2
, (11)

which is precisely the form of the conductivity derived from the
Boltzmann equation that is used elsewhere in the literature [7].

A. Weyl semimetal

Now that we have obtained formulas for a single Weyl
point we can examine the consequences in the Weyl semimetal
state. A real Weyl semimetal contains an even number of
Weyl points, with half of each chirality. For our purposes it
will be sufficient to consider the case of two Weyl points.
The chiral anomaly implies that the application of a constant
E · B will induce a charge difference between the pair of Weyl
points. This change in charge density is captured through a
change in the chemical potential at each Weyl point. The
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charge density continues to change until one reaches a steady
state characterized by some relaxation time τ . The pumping
of the chemical potential due to the applied field is given by

μ3
p = 3e2

�v3
F

2 E · Bτ (we have restored the factors of � and vF

in this equation for clarity). For a Weyl point of chirality χ and
chemical potential μ before the application of the E · B field,
the resulting chemical potential after pumping is given by [21]

μ3
χ = (

μ3 + χμ3
p

)
, (12)

and it is understood that the real root should always be
chosen. To estimate the size of the chemical potential shift
we take vF = 4.3 × 105 m/s, B = 1 T, E = 103 V/m, and
τ = 10−11 s, which gives μp = 9.18 meV. Such a chemical
potential shift should be observable in a low frequency optical
experiment. The value of vF stated above is typical of two-
dimensional (2D) Dirac systems [30,31] and is conservative
for three-dimensional (3D) Dirac materials. An experiment
by Orlita et al. [32] presents spectroscopic evidence for 3D
Dirac fermions with a velocity vF = 106 m/s. Timusk et al.
[10] recently pointed out that the quasicrystal AlCuFe and
its related approximant Al2Ru show a conductivity that is
remarkably linear over a large energy range (>0.5 eV). Their
best estimate of the Fermi velocity is 4.3 × 106 m/s. Such large
Fermi velocities (vF > 106 m/s) lead to a chemical potential
shift that is ten times larger than our estimated energy.

In Fig. 1 we show the finite frequency optical conductivity
for two Weyl points in the clean limit (� = 0) at T = 0. In this

FIG. 1. (Color online) The finite frequency optical conductivity
for a clean Weyl semimetal at T = 0. In black we show the optical
conductivity for a doped Weyl semimetal; we have used a small
broadening, γ = 0.01, to the Drude for graphing purposes. After
the application of the applied E · B field, charge is pumped from
one Weyl point to the other, and steplike signatures appear in the
interband portion of the optical conductivity. The missing interband
spectral weight is transferred to the Drude peak. The measurement of
these interband features is tied to the chiral anomaly and would be a
direct signature of a Weyl semimetal.

case the optical conductivity is simply given by

σxx(�) = e2

6π

∑
χ

[
μ2

χδ(�) + �

4
(� − 2|μχ |)

]
. (13)

The Weyl points pictured have a chemical potential initially
at 7 meV. The optical conductivity is given by Eq. (13) (with
μ± = 7 meV) and is shown in black. After the application of
the E · B field the chemical potentials change at the two Weyl
points. The resulting optical conductivity after charge pumping
is pictured in orange. As can be seen in Fig. 1, the pumping has
two effects: A steplike feature has appeared in the interband
conductivity, and spectral weight has been transferred to the
Drude peak. Careful measurement of these two features as a
function of applied E · B would be a direct signal of the Weyl
semimetal state since this phenomenon is intimately linked
with the chiral anomaly.

There are two special cases that we now mention. The
first is an undoped Weyl semimetal. In this case, the charge
pumping simply transforms it into a doped Weyl semimetal
with doping μp (one Weyl cone is electron doped, and the
other is hole doped). In this case there is a single step in
the interband conductivity, and the missing spectral weight is
transferred to the Drude. The second case is when the chemical
potential due to pumping μp exactly matches the initial doping
μ. In this case, one Weyl point is completely drained of its
charge density. The point that sits at charge neutrality has no
Drude and contributes linearly at all frequencies. The resulting
optical conductivity has a peculiar shape (see the blue curve
in Fig. 2).

The presence of these steps can be understood from
an inspection of Eq. (10). Most simply, the steps are a
consequence of the Pauli principle for the two absorption scales
μχ . We would like to point out that Eq. (10) was obtained in
the analysis the Faraday and Kerr rotations presented by Hosur
and Qi [21]. Our calculation of the Kubo bubble is essentially
the same as theirs except that we have not taken the T → 0
or � → 0 limit. Indeed, the Faraday and Kerr effects can be
derived from the optical conductivity. Here we have chosen to
focus on the direct measurement of the changes in the optical
conductivity, rather than a derived quantity. The experiment
outlined by Hosur and Qi [21] is both technically challenging,
and produces an incredibly small signal (picoradians for the
Kerr effect). On the other hand, the chemical potential shift
of 9 meV occurs at frequencies routinely measured in infrared
spectroscopic experiments [33]. Thus, we expect that a direct
measurement of the chiral chemical potential shift through
optical absorption will be favorable.

B. Impurities

We now turn to the effect of impurities on the features
that we saw in Fig. 1. It is important to understand if these
features will still be observable in the presence of disorder.
As a first approximation we take a constant residual scattering
rate in Eqs. (8) and (9). In this case, at T = 0 we obtain simple
expressions for the single node conductivity,

σ D(�,T = 0) = e2μ2�

3π2(4�2 + �2)
(14)
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FIG. 2. (Color online) Top: The finite frequency conductivity for
several different values of the charge pumping. In this figure we show
how disorder smears out the steplike features in the interband. The
pictured curves are for a residual scattering rate of � = 0.1μ. The
steplike features are most prominent when μp ≈ μ and are clearly
visible as long as the scattering is not an appreciable fraction of μ.
Also notice the anomalous case, μp = μ, which contains a linear
piece all the way to zero frequency. Bottom: The finite frequency
conductivity for several different values of the charge pumping at
finite temperature. Finite temperature shifts the chemical potential
downward, as well as introducing thermal broadening. This figure
has T = 0.1μ, the same energy as we used in the residual scatting
figure. However, the effect of temperature is much more noticeable,
and the steplike features have almost been completely washed out.

and

σ IB(�,T = 0) = e2

24π2

[
4� + � arccot

(
2�

2μ + �

)

−� arccot

(
2�

2μ − �

)]
. (15)

In the formula for σ D we have assumed � � μ. We see that
in this case σ D takes the form of a simple Drude peak. The
conductivity is plotted as a function of frequency in the top
panel of Fig. 2 for a constant residual scattering rate � = 0.1μ

for several different values of the charge pumping. Notice the
peculiar shape of the conductivity when μp = μ. At all values
of μp the steplike feature at finite frequency has been smoothed

out by disorder, but is still clearly visible. The steplike feature
is most pronounced when μp ≈ μ due to the way the chemical
potentials add, and away from this region the larger of the two
energies, max[μ,μp], dominates the shape of the conductivity.

Finally we considered the Born approximation, where the
scattering rate is proportional to the density of states �(ω) ∝
g(ω). We found that the form of scattering had little effect on
the interband features in the conductivity. The impact of the
Born approximation on the Drude will be discussed later.

C. Finite temperature

Until now we have shown results at T = 0. A Weyl
semimetal has a nonconstant density of states, which results in
the chemical potential being strongly temperature dependent.
Since we are interested in the effects of finite temperature as
well as finite doping, we include the shift in μ due to finite T .
To find the chemical potential as a function of temperature we
require that the charge density remain constant as we change
T. The charge density is given by

n =
∫

d3k

(2π )3
[f (ε − μ) − f (ε + μ)]. (16)

We use the identity

df (ε ± μ)

dT
=

(
ε ± μ

T
∓ dμ

dT

)(
−∂f

∂ε

)
(17)

and integrate over k. Thus, we obtain the following differential
equation for μ:

dμ

dT

(
μ2 + π2T 2

3

)
+ 2π2T

3
μ = 0. (18)

Combining this with the boundary value μ(0) = μ0 gives the
following solution:

μ(T ) =
21/3

(
9μ3

0 +
√

81μ6
0 + 12π6T 6

)2/3 − 2π231/3T 2

62/3
(
9μ3

0 +
√

81μ6
0 + 12π6T 6

)1/3
.

(19)

This equation gives the chemical potential at finite T , which
is rapidly suppressed as T increases. Thus, finite T has two
effects on the conductivity: The first is the usual thermal
broadening from the Fermi functions. The second is the finite
T shift, which moves the μp split chemical potentials closer to
one another. Both of these effects tend to smear out the steplike
features that identify the Weyl semimetal.

The conductivity at T = 0.1μ is plotted as a function of
frequency for several values of μp in the bottom panel of
Fig. 2. The effect of temperature is much more drastic than
disorder, even though the energy scale is similar. Although the
steplike feature is almost completely smeared out, the onset of
spectral weight transfer from the interband to the Drude due to
finite μp is still a clear signature of the Weyl semimetal state.

Finite temperature also has a large effect on the shape
of the Drude peak at � = 0. In Fig. 3 we show the Drude
peak for both constant residual scattering (left) and Born limit
scattering (right). For constant residual scattering, the peak
always has a Drude from and the effect of finite temperature
only broadens the peak further. In the Born limit the scattering
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FIG. 3. (Color online) Here we show the effect of finite temper-
ature on the shape of the Drude peak for two different types of
scattering. Constant residual scattering is pictured on the left, and
finite temperature simply causes the Drude peak to broaden. On the
right we show the case of Born limit scattering. In this case the
scattering rate is frequency dependent and the line shape depends on
which energy is dominant. For T < |μ| the line shape has a Drude
form, while for T > |μ| the line shape develops a sharp cusp.

rate is proportional to the density of states, �(ω) = γω2/π ,
resulting in an unusual line shape. For a constant scattering
rate, the conductivity as a function of ω is concave down for
small ω and approaches ω = 0 with zero slope. This is in stark
contrast to the dashed red curve in the right hand frame of
Fig. 3 which shows a cusp at ω = 0 and is concave up. The
unusual line shape associated with Born limit scatterers was
first pointed out by Burkov and Balents for the case of a μ = 0
Weyl semimetal [6]. They showed that in this case the line
shape had a cusp of the form

σ D(�) = e2

6πγ

(
1 − 1

8

√
2π3�

γT 2

)
. (20)

This line shape follows from our expressions in the Born limit
provided that � � T . If the chemical potential is increased by
the application of an E · B field so that |μ| > T , then the line
shape for a single Weyl point takes the form

σ D(�) = e2γ

3π2

[
μ4

4γ 2

π2 μ4 + �2

]
, (21)

which has the form of a Drude peak. The width of the Drude
peak can be increased simply by increasing the applied E · B
field. Using the chiral anomaly to change μp allows one to
change the energy scale at which �(ω) is probed. In this way
the frequency dependence of a general �(ω) can be completely
mapped out, since �(ω) is responsible for the shape of σ D. The
spectral weight in the Drude peak characterizes its width. At
finite T and μ we find that the spectral weight is given by∫ ∞

0
dωσ (ω) = 1

12π

(
μ2 + T 2π2

3

)
. (22)

The Drude weight does not vanish at T = 0 since it is
experimentally impossible to arrange μ = 0.

III. CONCLUSIONS

We have described a method for detecting the chiral
anomaly using an optical absorption experiment. The chiral
anomaly is one way in which the Weyl semimetal is distinct
from its 3D Dirac cousin. Direct measurement of the chiral
anomaly is therefore a sign of bulk Weyl points. We show that
there are signatures in the finite frequency optical response
that can be controlled through the application of an applied
E · B field. After the application of an E · B field, a pair of
Weyl points have different chemical potentials and steplike
features appear in the interband portion of the conductivity.
An important result is that the signature of this anomaly in
the absorptive part of the conductivity is large and should
be easily detected with presently available optical absorption
techniques. In addition to this, spectral weight is transferred to
the Drude peak at � = 0. We showed that these features remain
as long as the scattering rate remains small compared to the
chemical potential. We estimated that the pumping provided by
the E · B term in Eq. (2) leads to a pump chemical potential on
the order of 9 meV and thus the impurity scattering rate should
be kept below a few meV. This impurity scattering rate is both
realistic and achievable. The effect of finite temperature had a
more dramatic effect on the interband transitions, so it seems
likely that low temperatures will be required to resolve the
steps cleanly. Optical experiments are routinely carried out at
a few Kelvin and so we expect this should not pose a technical
challenge. Finally, we discussed how the application of the
E · B field can be used to trace out the frequency dependence
of the scattering rate. Since the E · B field controls the chemical
potential, it can be used to probe �(ω) at many different energy
scales.

It is natural to wonder about the effects that the gapless
surface states of Weyl semimetals (known as Fermi arcs) would
have on the measurement of the optical conductivity. Since the
optical conductivity is a bulk probe, we expect our results
to be largely unchanged by the presence of the Fermi arc
surface states. The features in the interband conductivity occur
at energies too high to be affected by the low-energy surface
states. The Fermi arcs may enhance the low-energy absorption
(i.e., the Drude), however, analysis of the changes to the low
frequency absorption would require the study of the Weyl
semimetal in the presence of a boundary. This boundary value
problem is beyond the scope of the results presented here.

We would like to address one final point. In this work we
considered the case of a weak magnetic field where Landau
level quantization was unimportant. If one applies a B field
strong enough that Landau level formation is important, the
interband line shapes discussed here should be replaced instead
by the magneto-optical conductivity line shapes [34]. The
steplike features will still appear in the interband, but occur
from a superposition of the magneto-optical line shapes instead
of the free fermion line shapes discussed here.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada and the Canadian
Institute for Advanced Research.

245121-5



PHILLIP E. C. ASHBY AND J. P. CARBOTTE PHYSICAL REVIEW B 89, 245121 (2014)

APPENDIX: CALCULATION OF OPTICAL
CONDUCTIVITY

The Kubo formula reads

Re σij (�) = e2π

�

∫ ∞

−∞
dω[f (ω − μ) − f (ω + �)]

×
∫

d3k

(2π )3
Tr[viÂ(k,ω)vj Â(k,ω + �)]. (A1)

The velocity operators are given by v = ∂H
∂k = vF σ . We can

find the spectral densities from the Green’s function. The
inverse Green’s function is given by

G−1(z) =
(

z − kz −kx + iky

−kx − iky z + kz

)
. (A2)

Inverting gives

G(z) = 1

|k|2 − z2

( −kz − z −kx + iky

−kx − iky kz − z

)
. (A3)

The spectral densities follow from the relation

G(z) =
∫ ∞

−∞
dω

Â(ω)

z − ω
. (A4)

We can read off the components of Â directly. For example,

G11 = −kz − z

|k|2 − z2
= −kz − |k|

2|k|(|k| − z)
+ −kz + |k|

2|k|(|k| + z)
. (A5)

Now defining

u2 = 1

2

(
1 + kz

|k|
)

, (A6)

v2 = 1

2

(
1 − kz

|k|
)

, (A7)

we have that A11 = u2δ(ω − |k|) + v2δ(ω + |k|). Simi-
larly, A22 = v2δ(ω − |k|) + u2δ(ω + |k|). Now for σxx the
trace takes the form Tr[σxÂσxÂ

′] = A12A
′
12 + A21A

′
21 +

A22A
′
11 + A11A

′
22. The terms proportional to A12 and

A21 will vanish once the angular integration is car-
ried out since they are proportional to kx ± iky . So
we have Tr[σxÂσxÂ

′] = A22A
′
11 + A11A

′
22. Now we define

A± = δ(ω ∓ εk) and A′
± = δ(ω + � ∓ εk). Expanding out

the trace we have Tr[σxÂσxÂ
′] = 2u2v2(A+A′

+ + A−A′
−) +

(u4 + v4)(A−A′
+ + A+A′

−). We will now perform the angu-

lar integration. We need u4 + v4 = 1
2 (1 + k2

z

|k|2 ) and 2u2v2 =
1
2 (1 − k2

z

|k|2 ). The relevant integrals are thus∫
d3k

(2π )3

1

2

(
1 ± k2

z

|k|2
)

(A8)

= 1

2

∫
dε

ε2

2π2v3
F

± 1

2

∫
dε

ε2

(2π )3v3
F

2π

×
∫ π

0
dθ sin(θ ) cos2(θ ) (A9)

= 3 ± 1

6v3
F

∫
dε

ε2

2π2
. (A10)

Finally we obtain

Re σxx(�) = e2

6πvF

∫ ∞

−∞
dω

f (ω − μ) − f (ω + � − μ)

�

×
∫ ∞

0
dεε2[A+A′

+ + A−A′
−

+ 2(A+A′
− + A−A′

+)]. (A11)

In the presence of impurities, after performing an impurity
average over a random distribution which restores translation
invariance, the spectral functions can be written as [35]

A(±ε,ω) = 1

π

−Im 
(ω)

(ω − Re 
(ω) ∓ ε)2 + [Im 
(ω)]2
, (A12)

where 
(ω) is the self-energy. It is this self-energy which
in general depends on ω, that carries the information on the
detailed properties of the impurity potential associated with
a single scattering center. It also differs depending on the
strength of the impurity scattering: If the scattering is weak,
the self-energy can be treated in the Born approximation, but
if it is strong, a full T-matrix approach is required, as in the
unitary limit. In this paper we consider only two cases. The first
is a constant residual scattering rate. This is appropriate for a
weak delta function potential with constant density of states.
The second we consider is the case considered by Burkov
and Balents [6] of Born scattering. In this case the scattering
rate depends on the density of states and is quadratic in energy.
Using the above form for the spectral functions one can recover
our formulas that contain the impurity scattering rate presented
in the main text.

Now we check the clean limit at T = 0. In that limit we
have the intraband piece

Re σ D
xx(�) = e2

6πvF �

∫ μ

μ−�

dω

∫ ∞

0
dεε2[δ(ω − ε)δ

× (ω + � − ε) + δ(ω + ε)δ(ω + � + ε)]

(A13)

= e2μ2

6πvF

δ(�) = e2μ2

3h�vF

δ(�). (A14)

We also have the interband piece

Re σ IB
xx (�) = e2

3πvF �

∫ μ

μ−�

dω

∫ ∞

0
dεε2[δ(ω − ε)δ

× (ω + � + ε) + δ(ω + ε)δ(ω + � − ε)]

(A15)

= e2

24πvF

�(� − 2μ) = e2

12h�vF

�(� − 2μ).

(A16)

These two results give the well-known formula Eq. (10). In
the final equalities we have restored the factors of � to make
the physical units clear.
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