
PHYSICAL REVIEW B 89, 245115 (2014)

Density functional theory based calculation of small-polaron mobility in hematite
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The mobility of electron small polarons in hematite, α-Fe2O3, is calculated by density functional theory
within the generalized gradient approximation including Hubbard U corrections. Our work goes beyond previous
computational investigations of this system by computing both the prefactor and activation energies for adiabatic
polaron transport. The results obtained using a Hubbard U value of 4.3 eV yield a calculated value of the
room-temperature basal plane mobility of 0.009 S*cm2/s, which compares to within an order of magnitude with
experimental measurements. Further, the values of the electronic-coupling parameter in the Marcus theory for
small-polaron transport are estimated from DFT + U calculations of the defect energy levels in the stable and
saddle-point configurations. Our results predict an adiabatic polaron transfer, in good agreement with previous
wave function based calculations.
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I. INTRODUCTION

Predictive modeling of the mobility of polarons in transition
metal oxides and other ionic systems is an active field, as
controlling conductivity in these materials can improve the
performance of many technologies such as batteries [1,2],
thermoelectrics [3], photovoltaics [4,5], catalysts for water
splitting [6–8], solid-oxide fuel cells [9], and oxidation
of organic compounds [10]. In many transition-metal ox-
ides, charge transport occurs through the hopping of small
polarons [11,12], i.e., highly localized electrons or holes
that are self-trapped by the polarization of the surrounding
lattice. Small polaron mobilities in these systems are typically
modeled within the framework of Marcus theory [13], with
the associated parameters derived from quantum-mechanical
calculations employing either wave function based calcula-
tions on clusters [14,15] or density functional theory based
calculations (DFT) on periodic supercells [1,16,17].

Within Marcus theory, in limiting cases where the transfer
falls into the nominally adiabatic or nonadiabatic regimes, the
electron transfer rate, τ , can be expressed as

τ = A exp

(−�E‡

kT

)
, (1)

where A is a preexponential factor, �E‡ denotes the activation
energy barrier, T is temperature, and k is the Boltzmann
constant. For electron transfer between equivalent ions, there
is assumed no free energy change, so only the energy barrier
is necessary to consider when evaluating the rate.

The energy barrier �E‡ is determined by the nature of
the hopping mechanism, which can be roughly ascertained by

*adelstein1@llnl.gov
†Current address: PolyPlus Battery Company, Berkeley, California

94710, USA.

evaluating the Landau-Zener approximation for the diabatic
electron transfer probability. Following Ref. [18], this proba-
bility is redefined as the adiabadicity parameter, γ :

γ = 1

hνeff

(
π

4�EadkT

) 1
2

V2
AB. (2)

In Eq. (2), �Ead is the adiabatic activation energy, h is Planck’s
constant, and νeff is the effective frequency for motion along
the reaction coordinate, which can be estimated from a typical
phonon frequency in the material. The high temperature limit
is assumed, such that the electronic coupling matrix element,
VAB , is a measure of the overlap integral between states A and
B. Note that in the low temperature limit vibronic factors are
necessary to capture the coupling between the electron and the
lattice at the transition state (TS).

The probability of charge transfer is 1 − exp[−γ ] and, if γ

is much less than 1, the transfer is nonadiabatic and the rate is
governed by Fermi’s golden rule. In this weak coupling regime,
the Born-Oppenheimer approximation does not hold, as the
electron remains localized on the initial ion on the time scale
of typical phonon cycles. On the other hand, if the electronic
coupling is large compared to the activation energy barrier,
the transfer can be considered adiabatic. In this case, the
adiabatic activation energy barrier, �Ead, decreases by VAB

from the diabatic (more generally, nonadiabatic) activation
energy barrier, �Edia, such that �Ead = �Edia − VAB , as
illustrated in Fig. 1. Thus knowledge of VAB and either �Edia

or �Ead allows one to determine the nature of the transfer
process through Eq. (2).

The calculation of nonadiabatic activation energy barriers
has traditionally been undertaken using wave function based
quantum chemistry methods, where the electronic wave
function can be held constant while the atom positions are
interpolated between the reactant and product configurations.
Small polarons hop between these two potential energy
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FIG. 1. (Color online) Plot showing the results for adiabatic and
nonadiabatic energy barriers for polaron hopping in α-Fe2O3, as
calculated by the DFT + U method and the approach described
in the text. The dashed lines show harmonic energy curves with
the calculated nonadiabatic energy barrier (�Edia), given by the
intersection of the curves, corresponding to the value calculated in
this work. The red line shows the adiabatic energies along a reaction
path defined by linearly interpolating the atomic positions between
the initial and final polaron states. The black symbol gives a refined
value for the adiabatic activation energy barrier (�Ead) defined by
relaxing the approximate saddle-point geometry determined by linear
interpolation. The difference between �Edia and �Ead corresponds
to the magnitude of the electron coupling matrix element, VAB . The
images from the linear interpolation and the relaxed saddle point are
calculated for the 30-atom unit cell with U = 4.3 eV.

minima, which can be modeled as intersecting harmonic wells
centered at the reactant and product states. Wave function
based methods can also be used to compute VAB and many
researchers have used cluster models in order to implement
Hartree-Fock based methods in the calculations of these
parameters and associated polaron mobilities [19–24].

Adiabatic charge transfer implies the validity of the Born-
Oppenheimer approximation, and DFT-based methods have
been employed for modeling polaron transfer in this limiting
regime, as described below. A main drawback of DFT within
local or semilocal approximations for the exchange-correlation
potential is the failure to correctly describe highly localized
electrons such as d electrons in transition metals or f electrons
in lanthanides and actinides due to the self-interaction error
and missing correlation. The addition of a Hubbard U

correction [25] is an approximate way to overcome these
limitations; the magnitude of the Hubbard U parameters are
typically determined empirically or self-consistently either
with linear response theory [26] or through the calcula-
tion of Coulomb and exchange integrals using unrestricted
Hartree-Fock theory [27]. Both DFT + U [1,2,17,28–31] and
constrained DFT [32,33] methods have been used to determine
adiabatic activation energy barriers for polaron transport. The
advantage of such approaches stems from their computational
efficiency, which enables the use of large supercells that can
accurately capture the nature of the lattice distortions that may

arise from small-polaron formation and migration. A limitation
of this approach in most implementations is that polaron
transport is implicitly assumed to be adiabatic in nature, and
methods for checking the validity of this assumption within
DFT-based frameworks have not been presented, to the best of
our knowledge. Further, the results can vary significantly with
changes in the magnitude of the U parameter, and in some
cases this sensitivity is not examined in detail.

In the present work we employ a DFT + U approach to
study polaron transport in hematite, α-Fe2O3. Our interest
in α-Fe2O3 stems from the importance of this compound in
energy technologies and geochemistry, which has motivated
extensive experiments [6,34–36] and computational stud-
ies [15,20,37–44] of its defect properties, optical excitations,
and electronic conductivity. As a consequence, experimentally
derived values for the electronic mobilities are available for
this compound [45], allowing a direct comparison between
measurements and calculations to examine the accuracy of
the DFT + U approach. To enable such a direct comparison,
in the current study we compute the attempt frequency for
adiabatic polaron transport in addition to the activation energy
for polaron hopping.

The availability of previously published computational
work employing wave function based cluster calcula-
tions [19,46] for α-Fe2O3 enables a direct comparison between
results obtained with these methods and the independent
DFT + U calculations performed in the present study. For
comparisons with previous calculations, we present in this
work a method for estimating the magnitude of the electronic
coupling matrix element (VAB) within the DFT + U approach,
based on an analysis of the self-consistent electronic energy
levels computed for the ground- and transition-state geome-
tries.

The remainder of this paper is organized as follows. In
the next section, we describe the details of the application of
the DFT + U approach to determining the parameters entering
into the Marcus theory method of calculation of electron small-
polaron mobilities. The results for hematite are presented in
the following section, including a discussion of the sensitivity
of the calculated mobilities to the choice of the Hubbard U

parameter, along with a comparison of the present results with
previous calculations and measurements.

II. COMPUTATIONAL METHODS

Hematite (α-Fe2O3) has the corundum-type structure with
the R3̄c space group, in which the oxygen ions are hexagonal
close-packed and form stacked octahedra, as in Fig. 2. The
hexagonal unit cell contains six formula units, while the prim-
itive cell is rhombohedral with two formula units. The Néel
temperature is 953 K [47], so hematite is antiferromagnetic at
room temperature with the Fe spins coupled ferromagnetically
in the basal planes above the Morin temperature of 250 K.

Hematite is a native n-type material and in this work we will
consider the properties of electron small polarons. Henceforth,
we will therefore use the term “polaron” to refer to the electron
small polaron. In hematite, polaron hopping is expected to be
much more facile between iron atoms with the same spin,
and conductivity in the basal plane is greater than along the
c axis at room temperature [48,49]. In order to compare with
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FIG. 2. (Color online) (a) c-axis projection of the 2 × 2 × 1
supercell of α-Fe2O3 shows the initial ground state of the polaron
and its three nearest neighbors in the basal plane: Fe1, Fe2, and Fe3
(Fe ions in gold) along with the associated bond lengths and local
magnetic moments. The charge density of the Fe2+ small polaron is
illustrated by the purple isosurface. The black lines give a sense of
the a and b lattice vectors and the red oxygen ions show hexagonal
close packing. (b) The same supercell viewed along the a axis at the
saddle point for a hop between nearest neighbors shows the polaron
is delocalized over the initial and final Fe ions and a few oxygen ions.
(These images were made with VESTA [50].)

room-temperature mobility measurements, in our calculations
we use the antiferromagnetic structure above the Morin
temperature. We focus on transfer of an electron small polaron
(Fe2+) to one of its nearest Fe3+ neighbors in the basal plane.
In Fig. 2(b), the two Fe ions highlighted with the polaron’s
charge density are nearest neighbors.

A. Activation energy

Our approach for calculating the adiabatic activation energy
barriers starts by determining the ground state of the polaron
and continues by calculating the relaxed saddle-point energy.
The ground-state configuration is determined by adding an
extra electron to a supercell (and an accompanying positive
background) with periodic boundary conditions and then
allowing the ions and volume to relax. In order to converge
to a state corresponding to a localized polaron on a specific
Fe site, we intentionally break the symmetry of the bulk
crystal structure by manually moving one oxygen ion on
the order of 0.01 Å away from its “nearest” Fe atom,
lifting degeneracies associated with the spatial location of the
polaron. When the cell is allowed to relax, polaron formation
is reflected by a change in the magnetic moment on the Fe
atoms and change in neighboring bond lengths, as described
further below. The localization of the electron can also be
observed by plotting the charge density associated with the
extra electron and by analyzing the electronic density of
states (DOS).

The ground-state configuration is represented by the state
labeled 0 in Fig. 1, which shows a plot of the energy as
a function of reaction coordinate for transfer of a polaron
to a neighboring equivalent site, labeled 1. The initial and
final states for the polaron in the same ferromagnetically
ordered basal plane are identical by symmetry. Thus, once

the ground-state configuration (ionic positions) is determined
for the polaron on the initial Fe site, a simple translational
operation on the ionic positions can be used to obtain the
polaron configuration in the final state.

Figure 1 shows three different scenarios for modeling
polaron transfer along the reaction coordinate. The first is
illustrated by the dashed gray lines, which schematically
represent harmonic potential energy wells centered on the sites
0 and 1 and describe the change in energy as a function of
the ionic positions along a path where the electron remains
localized on one of the two sites. The intersection of the
harmonic potentials for the polaron localized on sites 0 and
1 gives the nonadiabatic activation energy barrier (labeled
�Edia in Fig. 1). The magnitude of �Edia is estimated in
the current work from the sum of the adiabatic activation
energy (�Ead) and an estimate of the magnitude of the
electron coupling matrix element (VAB) obtained as described
below.

In the second scenario, the red lines with circles represent a
commonly employed approximation to the adiabatic activation
energy (e.g., Ref. [17]) derived by linearly interpolating the
ionic positions between states 0 and 1 and computing the
energies for self-consistent charge densities on the Born-
Oppenheimer surface corresponding to these different ionic
configurations. In what follows we will use the symbol �Ẽad

to denote the difference in energy between the points 0 and
0.5, the approximate adiabatic TS, on the Born-Oppenheimer
surface obtained from linear interpolation of ionic positions. In
the final scenario, the black solid square at the transition state
represents a refined estimate of the adiabatic activation energy,
derived in this work by performing a force-based relaxation of
the ions to the nearest extremum starting from the transition
state geometry approximated by linear interpolation.

B. Attempt frequency and mobility

As will be reviewed below, nearest-neighbor polaron
transfer in hematite is adiabatic in nature. To enable a
comparison between measured and calculated values of the
polaron mobility, we compute the preexponential term (A) in
Eq. (1), using calculated phonon frequencies for the initial
and saddle-point configurations. Specifically, we compute the
prefactor from the relation A = nτ0, where n is the number of
equivalent neighbors and τ0 is the attempt frequency, which
is computed in the present work within the framework of
harmonic transition-state theory (e.g., Ref. [51]).

The classical attempt frequency in harmonic transition-state
theory can be written as the ratio of the product of the
vibrational modes at the ground and transition states (ex-
cluding the three translational modes and the additional
unstable mode at the TS). This classical expression is de-
rived assuming the temperature is higher than the Debye
temperature, which is approximately 480 K [52] in hematite.
Since we are interested in comparing to experimental mea-
surements at room temperature, we employ the full quantum-
mechanical expression for the vibrational free energy in the
saddle and ground-state configurations, accounting for the
temperature-dependent occupations of the phonon modes.
This gives the following expression for the attempt frequency
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(e.g., [53]):

τ0 = kT

h
exp

⎛
⎝ ∑

Re[m]

ln
[
2 sinh

(
xGS

m

)]

−
∑

Re[m]

ln
[
2 sinh

(
xT S

m

)]⎞⎠ , (3)

where the sums are over the real values of xm, which equals
the calculated phonon frequencies, νm, times h/(2kT ). As
described in the Results section below, this expression leads
to a significantly higher attempt frequency than the classical
expression at room temperature.

From the calculated value of A = nτ0, and the activation
energy for hopping �Ead, the adiabatic transition rate τ can
be computed from Eq. (1), and used to compute the diffusion
coefficient, D, and the mobility, μ, through the standard
relations:

μ = eD

kT
= e

kT

a2τ

4
, (4)

where a is the electron transfer distance, e is the charge of
the electron, and the value of 4 in the denominator reflects 2D
mobility.

While we report one value for the 2D mobility in the basal
plane, in reality the mobility is a tensor, which characterizes
the anisotropy of diffusion along different axes of the crystal.
In order to compute the mobility in a single crystal material
one would have to determine the activation energy and rate for
charge transfer along each of the different axes of the crystal.
In what follows we report calculated values of the mobility
only in the basal plane. These computational results should
thus be viewed as an upper bound to measurements made on
polycrystalline samples, which would average over different
crystallographic directions.

C. Electronic coupling

In applications of DFT + U methods to the calculation of
polaron activation energy barriers it is commonly assumed
that the hopping process is adiabatic in nature [1,30,31].
As described in this section, the validity of this assumption
can be checked from a consideration of the ground-state and
saddle-point electronic structure. Specifically, we can deter-
mine the adiabaticity parameter [γ , defined in Eq. (2)] if we
know the adiabatic activation energy barrier and the electronic
coupling.

We estimate the electronic coupling matrix element along
the lines of the Mulliken-Hush formalism within Marcus
theory, as described in Ref. [54]. In the Mulliken-Hush
formula, �E12 is the energy difference between the adiabatic
bonding and antibonding electronic states at the TS, which is
related to the parameter VAB as follows:

VAB = 1
2�E12. (5)

This energy difference (�E12) will be estimated from the
positions of the two gap states, above and below the Fermi
energy, at the TS. In order to employ the Mulliken-Hush
formalism, the bonding and antibonding states in the TS
ionic configuration must fall in the gap and should be linear

combinations of the initial and final polaron states. From an
analysis of the charge density in the ground state and transition
state configurations, this conjecture is viewed to be reasonable.

We emphasize that since we are using an unoccupied state
from a ground-state theory (DFT), we are only estimating VAB

to determine the adiabaticity of the polaron tranfer, rather than
calculating an exact value of the electronic coupling parameter.
When determining the adiabaticity of a charge-transfer process
in this manner, the uncertainty in calculating �E12 should be
considered since DFT is known to underestimate band gaps.
This uncertainly is reduced to some extent in our calculations
by choosing the appropriate value of the Hubbard U parameter
which improves the calculated band gap. We also note that the
energy levels of shallow defect states have been reported, in
certain cases, to be more accurate relative to the band edge
than those in the center of the gap [55]. Since the polaron gap
states are close to the band edges for nearest-neighbor transfer,
we can be more confident in our estimation of the adiabaticity.

D. Calculation details

The present calculations make use of DFT within
the generalized-gradient approximation (GGA) functional
of Perdew, Becke, and Ernzerhof (PBE) [56] as im-
plemented in the Vienna Ab Initio Simulation Package
(VASP) [57,58]. Within VASP, the projector-augmented-wave
(PAW) method [59] is employed using the PBE-PAW po-
tentials with eight valence electrons for Fe and six valence
electrons for O. The electronic wave functions are expanded
in a plane wave basis set with a 650 eV energy cutoff. We use
a 2 × 2 × 2 k-point mesh for hexagonal 2 × 2 × 1 supercells
and a 4 × 4 × 2 k-point mesh for 30 atom hexagonal cells.
Based on convergence tests, we estimate that the energy
for both cells are converged with respect to k points to
within 10−4 eV. For total energy and relaxation calculations,
a Gaussian smearing of the electronic states with a width of
0.03 eV is used, while density of state calculations employ
the tetrahedron method of k-point generation with Bloch
corrections [59] for sampling the Brillouin zone. In the
structural relaxations, the energy is optimized with respect
to atomic positions until the forces on the ions in the bulk unit
cells are converged to 0.001 eV/Å and the forces in the cells
containing polaron defects are converged to 0.01 eV/Å. The
criterion for convergence of the self-consistent charge density
was a tolerance on the energy change of 10−7 eV.

In all calculations we make use of the rotationally invariant
form of the DFT + U approach introduced by Dudarev
et al. [25], coupled with the PBE-GGA. In the formalism
of Dudarev et al., the Hubbard model parameters, U and J ,
are not independent, and the energy depends only on the
parameter Ueffective = U − J . In the text above and below
we refer to the value of Ueffective simply as U . An important
issue in the present application of the DFT + U approach is the
choice of the magnitude of the effective Hubbard U parameter.
In order to assess the sensitivity of the calculated results to
changes in the value of U , we calculated the activation energy
barrier from linear interpolation (�Ẽad) for transfer to the ions
labeled Fe1 and Fe2 in Fig. 2, using the 2 × 2 × 1, 120 atom
supercell with values of U ranging from 3.1 to 6.3 eV. These
cover the range of values employed in previous DFT + U
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studies of hematite [38,60,61], maghemite (γ -Fe2O3) [62],
and magnetite (Fe3O4) [36,63–69]. The calculated values of
�Ẽad obtained with values of U in this range increased
monotonically from 0.01 eV to 0.47 eV for hopping to
Fe1 ions, and from 0.13 to 0.51 eV for hopping to Fe2.
The increases in �Ẽad with U correlate with increases in
the local magnetic moment, suggesting a higher degree of
electron localization with increasing U . These variations in
�Ẽad correspond to many orders of magnitude variation in the
room-temperature mobility of the polaron. It is thus important
for what follows to justify the choice of U used in the remainder
of this study.

In previous first-principles studies of hematite a value of
U = 4.3 eV was calculated self-consistently using Fe2O3 clus-
ters [27]; this value gave rise to calculated electronic structures
comparing favorably to those obtained from higher levels of
theory (hybrid functionals and the GW approximation) and
from experimental photoemission and inverse-photoemission
spectra [38]. A similar result is presented in Ref. [61], which
compares the electronic structure of hematite obtained with
hybrid functionals with results from a GGA + U calculation
by Rollman et al. [60]; the authors of Ref. [61] conclude
that the choice of U = 3 eV used by Rollman et al. [60]
gives reasonable agreement between DFT + U and hybrid-
functional results. Rollman et al. [60] themselves arrived
at the value of U = 3 eV through a comparison of their
calculated results with photoemission measurements [70,71].
While values of U in the range of 3 to 4.3 eV give reasonable
descriptions of the electronic structure of bulk hematite,
the self-consistently calculated value of 4.3 eV compares
much better to the measured activation energy than smaller
values.

In what follows we will present results obtained with U =
4.3 eV and note that the use of a lower value of U = 3.1 eV
would lead to a significant decrease in the reported activation
energy to approximately 0.01 eV, which would increase the
polaron hopping rate at room temperature by two orders of
magnitude. It is the intent of this work to examine how a
parameter-free DFT + U theory performs in the calculation
of polaron mobilities, and for this reason we have chosen the
value for U derived from Coulombic and exchange overlap
integrals in Ref. [27].

III. RESULTS AND DISCUSSION

A. Crystal structure

Table I compares calculated and experimentally measured
crystallographic parameters for bulk hematite. As described
above, all calculations were obtained using PBE-GGA with
Hubbard U corrections and U = 4.3 eV. In the calculations Fe
ions were ferromagnetically coupled in the basal planes and
antiferromagnetically coupled along the c axis, with a average
magnetic moment of 4.17μB . The Fe ions are high spin with a
measured magnetic moment of 4.6μB [72]. Consistent with
earlier calculations using DFT + U [38,60,73], the present
calculations show a good level of agreement with measured
crystallographic parameters for bulk hematite, with the lattice
constants differing by less than 1% and the Wyckoff positions
showing an even better level of agreement.

TABLE I. Calculated and experimental lattice parameters are
given in Å. Wyckoff positions are in fractional coordinates. The two
Fe-O bond lengths are given in Å and the nearest neighbor O-O angle
with Fe is given in degrees. The supercell bond distances and angles
are an average over the cell.

Structural Experiment Calculation: 2 × 2 × 1 supercell
parameter hexagonal [74] hexagonal with polaron

a 5.04 5.07 10.17
b 5.04 5.07 10.17
c 13.77 13.88 13.93
α (deg) 90 90.0 90.1
β (deg) 90 90.0 90.0
γ (deg) 120 120.0 120.0
z (Fe, 12c) 0.355 0.354
x (O, 18e) 0.306 0.306
Fe-O 1.96, 2.12 1.96, 2.11 1.97, 2.12
O-Fe-O 90.5, 86.0 90.9, 86.4 90.6, 86.1

78.4 78.5 78.3

The calculated bulk structure is used as the basis for
computing the ground state configuration for the polaron in
a 2 × 2 × 1 supercell, as described above. Listed in Table I
are values of the relaxed crystallographic parameters for the
polaron ground state in this supercell. Compared with bulk
hematite, the formation of the polaron is seen to give rise
to a slight expansion of the lattice constants, consistent with
the larger size of Fe2+ relative to Fe3+. The calculated bond
length between the Fe ion with the polaron and its nearest
neighbors are found to be distorted relative to the bulk values.
Specifically, the nearest Fe ions in the basal plane show three
different bond lengths. The shortest bond length with the
polaron containing Fe (Fe0) corresponds to the Fe1 ion labeled
in Fig. 2(a); the Fe0-Fe1 bond length is 2.92 Å, which is
significantly shorter than the average Fe-Fe bond length in the
basal plane, which is 2.99 Å. The bond lengths with the Fe
ions labeled Fe2 and Fe3 are 0.07 Å larger than that for Fe1,
and they do not differ significantly from the bond lengths of
2.99 Å between Fe3+ ions far from the polaron. Figure 2(a) also
labels the values of the local magnetic moments (m) on the Fe
ions neighboring the polaron. The Fe1 ion has a significantly
smaller magnetic moment than the average magnetic moment
of 4.17μB for the Fe3+ ions, suggesting some delocalization
of the polaron charge to this neighboring ion.

B. Activation energies and attempt frequencies

Using a 120-atom 2 × 2 × 1 supercell, we compute saddle-
point energies employing the methodology described in the
previous section. We compute the activation energy for
hopping to Fe1 and Fe2 ions. We will assume that the
activation energy barrier for hopping to Fe3 will be similar
as that for hopping to Fe2 since the difference between
their distance and magnetic moments are insignificant. To
identify saddle-point geometries for polaron hopping we begin
by generating configurations with atomic positions linearly
interpolated between those corresponding to the initial and
final polaron sites and then relax the TS, as described in
Sec. II A. With a value of U = 4.3 eV, we obtain the calculated
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TABLE II. Using a Hubbard U value of 4.3 eV, mobilities and
activation energies for polaron transport across two different paths to
Fe1 and Fe2 show significant differences between the saddle point
(column 2) and linear interpolation* (column 3). The next nearest
neighbor (NNN) activation energies are also presented.

μ [cm2/(V s)] �Ead �Ẽad [eV] τ0 [THz]

Experiment [75] 0.007 0.17 37
Experiment [45] 0.04 0.118(2) 168.9
Present calc. Fe1 0.009 0.13 0.17 60.4
Present calc. Fe2 0.15 0.24
Cluster calc. [46] 0.00056* 0.19 18.5
Cluster calc. [14] 0.062* 0.11 99
Present calc. NNN 0.33 0.34

adiabatic activation energies listed in Table II for hopping to
Fe1 and Fe2 ions.

To assess the magnitude of finite-size effects associated
with the choice of the 120-atom supercell, we repeated some of
the calculations using a 30-atom conventional hexagonal cell
(i.e., a 1 × 1 × 1 supercell). For the activation barriers obtained
using linearly interpolated atomic configurations (�Ẽad) the
value of 0.20 eV obtained with the 1 × 1 × 1 cell compares
favorably to the average of the values of 0.17 and 0.24 eV
obtained for hops to the Fe1 and Fe2 sites shown in Fig. 1.
We note that in the 1 × 1 × 1 cell the activation energies to
all neighboring Fe atoms in the basal plane are equivalent
by symmetry, whereas the symmetry is broken in the 2 ×
2 × 1 supercell. Similarly, the relaxed value of the saddle-
point energy (�Ead) obtained with the 1 × 1 × 1 supercell
is 0.15 eV, which compares well with the values of �Ead =
0.13 eV and 0.15 eV, obtained with the 2 × 2 × 1 supercell
for transfer to Fe1 and Fe2 neighbors, respectively. This level
of agreement between the 1 × 1 × 1 and 2 × 2 × 1 supercell
results for �Ead suggests that the finite-size effects on the
calculated activation energies are reasonably small.

The calculated values of 0.13 and 0.15 eV for the activation
energy barrier for polaron hopping to Fe1 and Fe2, respec-
tively, compare well with the experimental value of 0.118 eV,
which was measured for conductivity within the basal plane
of Ti-doped (Ti0.03Fe0.97)2O3 epitaxially grown thin films [45].
Other experimental studies have also reported the anisotropy in
the conductivity and activation energy [48,49], finding slightly
higher values for the basal plane activation energy than in
Ref. [45]. For example, Ref. [49] reports 0.17 eV for the
activation energy in the basal plane, compared with 0.74 eV
in the [0001] direction. In Ref. [75], measurements on poly-
crystalline samples yield a lower value for the conductivity,
but an average activation energy in all directions of 0.17 eV,
equal to the basal plane value in Ref. [49]. Thus our value
for the activation energy falls within the range of the smallest
value reported for conductivity in the basal plane [45] and the
value measured from both a polycrystalline sample [75] and
the basal plane of a bulk single crystal [49].

Due to computational cost, the vibrational frequencies in the
ground-state and transition-state configurations, which enter
the quantum-mechanical expression for the attempt frequency
given in Eq. (3), were computed as the 	-point phonons in the

1 × 1 × 1 supercell of bulk hematite. At the relaxed TS there
is an unstable mode of 14.64i THz (488.33i cm−1); the other
frequencies are given in the Supplemental Material [76], where
results are also given for the rhombohedral primitive cell of
hematite and compared to available experimental data [77–81]
and other calculations [73,82]. The attempt frequency given in
Eq. (3) depends on temperature, and the present calculations
give a value at room temperature of τ0 = 60.4 THz. For
comparison, the attempt frequency in the classical limit has
a value that is nearly 20 times smaller (2.93 THz). These
results thus highlight a strong temperature dependence of the
attempt frequency near room temperature, and indicate that
the mobility calculated using the classical expression would
lead to more than an order of magnitude smaller value for the
calculated room-temperature mobility relative to that obtained
from Eq. (3).

As shown in Table II, the present calculated value for
the attempt frequency is roughly a factor of 3 smaller than
the experimental values reported in Ref. [45], but about
the same magnitude as the value reported in Ref. [75] for
polycrystalline samples. The present calculated values fall
between those reported from cluster calculations in Refs. [46]
and [14]. Note that the various calculations use different values
of the dimensionality in Eq. (4), so direct comparison of the
reported mobilities is not possible. Our value of τ0 contributes
to the majority of the discrepancy between our calculation and
the experimental 2D basal mobility [45], as reported in Table II
and described below.

C. Mobility

With the values of the adiabatic activation energies and
attempt frequencies given in the previous subsection, and
the average calculated nearest Fe-Fe distance of 2.99 Å
for a, we compute a room-temperature basal plane polaron
mobility of μ = 0.009 cm2/(V s). As listed in Table II, this
calculated value agrees to within an order of magnitude of the
experimental value of 0.04 cm2/(V s) reported in Ref. [45],
obtained for epitaxially grown thin films. The calculated value
for the basal plane mobility is very close to that reported in
Ref. [75] of 0.007 cm2/(V s), though a direct comparison
is imprecise due to the measurement on a polycrystalline
sample.

It should be noted that in computing the mobility from
the hopping rates given in Table II, we have assumed that
the hopping rates to all nearest neighbors are equal to
those reported for Fe1. The difference between the activation
energies and hopping rates to Fe1 versus Fe2 and Fe3 is due to
the occupation of the electron in a given t2g orbital (dyz). All
of the t2g orbitals should be degenerate in a perfect octahedral
crystal field, but the lowered symmetry in the defect containing
cells leads to a distortion of the octahedra which then lowers
the barrier for polaron hopping to one neighbor (Fe1) relative to
the other two (Fe2 and Fe3). However, we find that by changing
the distortions slightly in the calculations, the polaron can be
made to occupy the dxy orbital, which is degenerate in energy.
Additionally, changing the distortion and thus the t2g orbital
of the nearest neighbors enables the faster electron transfer rate
through lowering the activation energy barrier. Thus, since the
orbital occupation is expected to vary randomly due to thermal
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FIG. 3. (Color online) (a) Calculated density of states for a
1 × 1 × 1 unit cell containing an electron small polaron in both the
ground-state and saddle-point configurations for nearest-neighbor
hopping shows the narrow band due to the polaron in the ground
state near the Fermi energy (Ef ) in green/dotted lines. At the saddle
point, the “bonding” and “antibonding” orbitals are both in the spin-
down channel and show appreciable bandwidth (in blue/solid lines).
(b) The peaks due to the polaron sharpen in the calculated DOS results
obtained with the 2 × 2 × 1 supercell compared to the 1 × 1 × 1 cell
for both the linear interpolation (light blue/dashed) and the saddle
point (black/solid). (c) Calculated density of states for a saddle-point
configuration for hopping to next-nearest neighbors calculated in a
2 × 2 × 1 supercell. The bonding and antibonding defect states are
very close together, indicating small electronic coupling, in contrast
to the results shown for the nearest-neighbor saddle point.

disorder, we have assumed that all neighbors can be accessed
through the faster of the hopping rates given in Table II.

As shown in Table II, the present results for the polaron
mobility are found to be in closer agreement with the
experimental values reported in Ref. [45] than the previously
published calculation by Iordanova et al. based on the use
of cluster methods, which is a more recent publication than
Ref. [14]. Clearly, the large value for ˜�Ead in Ref. [46]
contributes to the low estimate of the mobility, but this does
not explain why our calculation of μ is so different from
that in Ref. [14]. Here, the pre-exponential factor derived in
Ref. [14] is roughly 30 times larger than the value calculated
in this study. As described above, the temperature-dependent
corrections to the preexponential factor considered in the
present work are found to have a large effect on the presently
calculated mobility.

D. Electronic coupling

We next consider estimates of the electron coupling param-
eter, through an examination of the electronic structure of the
polaron using the Mulliken-Hush formalism, as described in
the previous section. Although the 1 × 1 × 1 and 2 × 2 × 1
results for activation energies compare favorably (see above),
the electronic structures calculated for polarons in these two
supercells show significant differences. Specifically, the defect
states associated with the polaron in both the equilibrium and
saddle-point geometries are much broader and slightly shifted
in the calculations for the 1 × 1 × 1 supercell, relative to the
results obtained with the 2 × 2 × 1 supercell, as shown in
the calculated electronic density of states (DOS) plotted in
Fig. 3(a). Thus, in what follows, the results presented for
electronic structure and saddle-point energies will be derived
from the larger 2 × 2 × 1 supercell.

In the Mulliken-Hush formalism, the electronic coupling
parameter, VAB , is related to �E12 as in Eq. (5). We estimate
in the current work the value of �E12 from the positions
of the defect states in the band gap. For example, Fig. 3(b)
shows the calculated DOS in the saddle-point configuration
corresponding to hopping from Fe0 to Fe1. The two sharp
peaks in the gap are interpreted as the bonding and antibonding
states in the Mulliken-Hush formalism. The bonding state is
shown in Fig. 2(b), where the charge density from the lower
energy peak is plotted in purple. Table III lists values for the
coupling parameter VAB derived from the energies of these
states. The value of VAB = 0.41 eV estimated for hopping
to the Fe1 site is larger than VAB = 0.35 eV for Fe2, as is

TABLE III. Electronic coupling in eV for polaron transport across
two different paths to nearest neighbors Fe1 and Fe2 with U =
4.3 eV are compared to cluster calculations and the next nearest
neighbor (NNN) results.

VAB ṼAB

Present calc. Fe1 0.41 0.29
Present calc. Fe2 0.35 0.23
Cluster calc. [46] 0.190
Cluster calc. [14] 0.204
Present calc. NNN 0.014 0.012
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expected due to the delocalization of some of the polaron’s
charge density over the Fe1 neighbor.

Although it is difficult to derive the magnitude of the elec-
tronic coupling parameter from experimental measurements,
we can compare the values estimated in the present work with
previously calculated values obtained using wave function
based methods. Rosso et al. [14] calculate ṼAB to be 0.204 eV
for the nearest-neighbor electron transfer in the basal plane,
and Iordanova et al. [46] calculate ṼAB to be 0.190 eV using the
Mulliken-Hush formula given Eq. (5). These values compare
well to our estimate of the electronic coupling at the linear
interpolated TS using the Mulliken-Hush formalism, as shown
in Table III.

The present and previously published results are in agree-
ment that the electron coupling for nearest-neighbor polaron
transfer in hematite is strong, such that the hopping is
accurately described as being adiabatic in nature. To test the
ability of the present approach to calculate transfer near the
nonadiabatic limit, we estimated the magnitude of the coupling
for next-nearest-neighbor (NNN) polaron transfer. In Fig. 2(a),
the next-nearest-neighbor hop corresponds to transfer from
the Fe0 ion to the Fe ion near the b lattice vector in the
same basal plane, at a distance of approximately 5 Å. From
the calculated DOS for the configuration corresponding to
the NNN saddle point in Fig. 3(c), we find VAB = 0.014 eV,
which is smaller than the value estimated by Rosso et al. of
ṼAB = 0.06 eV [14], but in qualitative agreement with the
wave function based approach that the NNN hopping is on the
cusp of being nonadiabatic in nature.

IV. SUMMARY

In this work we have employed the formalism of DFT with
Hubbard U corrections to compute the activation energies and
prefactors for adiabatic hopping of electron small polarons in
hematite, α-Fe2O3. Employing a Hubbard U value of 4.3 eV,
we calculate the value for the room temperature mobility of
0.009 cm2/(V s) that agrees reasonably well with the exper-
imental value of 0.04 cm2/(V s). The calculated activation
energies lower gradually with decreasing values of U , but due
to the exponential dependence of the mobility of �E this leads
to a pronounced sensitivity of the mobility values. The work

also shows that the use of linearly interpolated geometries for
the saddle-point geometry leads to an overestimation of the
relaxed adiabatic activation energy by 0.04 eV, which has the
effect of lowering the calculated room-temperature values for
the electron mobility by a factor of 5.

In addition, we employ the calculated defect energy levels in
the saddle-point configuration to estimate the magnitude of the
electron coupling parameter in the Marcus theory for electron
transport. The results obtained by this approach are found to
be in good agreement with those from wave function based
methods. Finally, we find it is possible to predict the adiabatic
versus nonadiabatic regime of electron transfer in hematite
using the electronic structure (DOS) at the saddle point. Our
results show that calculating the mobility, adiabatic activation
energy, and electronic coupling for polarons on metal ions with
DFT + U is a viable method by comparison to experiment and
wave function based cluster methods.
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