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Transport in multiband systems with hot spots on the Fermi surface: Forward-scattering corrections
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Multiband models with hot spots are of current interest partly because of their relevance for the iron-based
superconductors. In these materials, the momentum-dependent scattering off spin fluctuations and the ellipticity
of the electron Fermi pockets are responsible for anisotropy of the lifetimes of excitations around the Fermi
surface. The deep minima of the lifetimes—the so-called hot spots—have been assumed to contribute little to the
transport as is indeed predicted by a simple relaxation-time approach. Calculating forward-scattering corrections
to this approximation, we find that the effective transport times are much more isotropic than the lifetimes and
that, therefore, the hot spots contribute to the transport even in the case of strong spin-fluctuation scattering. We
discuss this effect on the basis of an analytical solution of the Boltzmann equation and calculate numerically the
temperature and doping dependence of the resistivity and the Hall, Seebeck, and Nernst coefficients.
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I. INTRODUCTION

Many materials of high current interest for condensed
matter physics are metals with strong spin fluctuations, for
example doped cuprates and iron pnictides. In both classes,
spin fluctuations are thought to mediate the superconducting
pairing at relatively high temperatures [1,2]. Spin fluctuations
are also crucial in the normal state, where they provide an
important scattering mechanism and thus strongly affect trans-
port. The transport properties of the pnictides are nevertheless
quite distinct from the cuprates and show unusual temperature
dependencies [3–11]. The main ingredients needed for the
description of transport in these systems have been controver-
sially discussed [12–15].

The scattering of electrons off spin fluctuations is governed
by the spin susceptibility. Close to an antiferromagnetic
instability, the susceptibility is strongly peaked in momentum
space in the vicinity of the possible ordering vectors Q.
Transport in such systems can thus often be understood based
on the concept of hot and cold regions of the Fermi surfaces
[16,17]. The hot regions are the parts of the Fermi surfaces
that are connected by the possible ordering vectors Q. The
scattering is particularly strong in these regions. Conversely,
in the cold regions not connected by ordering vectors the
scattering rate is lower. If the difference in the scattering rate is
large, i.e., close to the instability, transport is thus dominated
by the cold regions with high conductivity, and the hot regions
are then said to be “short circuited.”

The concept of hot and cold regions generally explains
the experimental observations for cuprates and was implicitly
assumed to hold also for the pnictides [8,10–12]. An analysis
of the lifetimes of excited electrons close to the Fermi surfaces
seems to support this picture [13], with the imperfect nesting
of electron and hole Fermi pockets naturally leading to the
appearance of hot and cold regions with short and long
lifetimes, respectively.
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Within the relaxation-time approximation (RTA), in which
the complex relaxation dynamics of each state is modeled
by a simple exponential decay, the transport relaxation time
is approximated by the lifetime. Since the conductivity is
directly proportional to the relaxation time, the states with short
lifetimes then do not contribute significantly to the transport.
In this paper we show that in multiband systems this effect
can be compensated if the forward-scattering corrections to
the RTA are taken into account.

Forward-scattering corrections, which are equivalent to
vertex corrections in the Kubo formalism, have been studied
extensively for one-band models relevant for cuprates and
heavy-fermion systems [18]. The pnictides are, in contrast,
multiband systems with electron and hole Fermi pockets. The
study of two-band models with circular Fermi pockets has
shown that forward-scattering corrections to the RTA are huge
close to the antiferromagnetic instability and that they give rise
to transport anomalies such as a large enhancement of the Hall
coefficient [14,15] and negative magnetoresistance [15]. The
minority carriers, i.e., the carriers on the smaller Fermi pocket,
were found to exhibit negative transport times, indicating
a drift in the direction opposite of what one would expect
based on their charge. However, in the simplified models with
circular Fermi pockets all states on a given Fermi pocket
are equivalent because of rotational symmetry. They are thus
unable to address the concept of hot and cold regions, which
only appear for noncircular Fermi pockets.

In this article we present a semiclassical Boltzmann theory
of transport for a two-band model with elliptical electron
pockets relevant for the iron pnictides. We show that due
to the forward scattering, the hot-spot picture fails for the
pnictides even for very strong spin fluctuations and highly
elliptical electron pockets. In contrast to the lifetimes, which
are highly anisotropic around the Fermi pockets with deep
minima at the hot spots, the effective transport relaxation times
are found to be much more isotropic and to show no special
features at the hot spots. Our approximate analytical solution of
the Boltzmann equation provides insight into the mechanism
behind this effect: The anisotropy of the spin-fluctuation
scattering extends the effective relaxation time. At the hot
spots, the reduction of the relaxation time due to the stronger
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scattering is thus compensated by the extension due to the
higher anisotropy.

To elucidate the consequences of this mechanism, we
calculate numerically the temperature-dependent transport
coefficients from the full Boltzmann equation and compare
them to the analytical solution and the RTA, finding that the
RTA makes qualitatively incorrect predictions. For strongly
momentum-dependent scattering, we find large transport
anomalies as well as a strong doping dependence.

The remainder of this paper is organized as follows:
In Secs. II and III we present the two-band model, give
expressions for the scattering rates, and set up the Boltzmann
equation for our model. To gain insight into the physics, we
present in Sec. IV an analytical solution to leading order in the
ellipticities of the electron pockets. Higher-order corrections
are discussed in the Appendix. In Sec. V we present full
numerical solutions of the Boltzmann equations. We also
calculate the temperature dependence of the resistivity and
the Hall, Seebeck, and Nernst coefficients. Finally, we draw
some conclusions in Sec. VI.

II. MODEL

We model the FeAs layers of the iron pnictides by an effec-
tive two-dimensional two-band model with the dispersions in
the single-iron unit cell [1] given by [19]

εhk = εh − μ + 2th (cos kxa + cos kya), (1)

εek = εe − μ + te,1 cos kxa cos kya

− te,2 ξ (cos kxa + cos kya), (2)

where a is the iron-iron separation. As illustrated in Fig. 1,
the band h gives rise to a nearly circular hole Fermi pocket
at the center of the Brillouin zone, while the band e forms
two electron pockets e1 and e2, displaced by Qe1 = (0,π/a)
and Qe2 = (π/a,0), respectively. The parameter ξ controls the
ellipticity of the electron pockets. The chemical potential μ is
determined by the filling n, i.e., the number of electrons per
unit cell, which can be tuned by doping in the pnictides. The
filling n determines the sizes of the Fermi pockets. For n ≈
2.08 the areas of the three pockets are nearly equal, while for
smaller (larger) n the hole pocket (electron pockets) become
larger. Following Ref. [19] we take εh = −3.5 th, εe = 3 th,
te,1 = 4 th, and te,2 = th.

It is widely accepted that repulsive interactions between the
nested electron and hole pockets drive a magnetic instability
towards a stripe spin-density wave in the pnictide parent
compounds with magnetic ordering vector Qe1 or Qe2 [20].
Above the magnetic transition temperature, we therefore
expect that the spin susceptibility will display pronounced
peaks at these vectors. Because of the ellipticity of the electron
pockets, however, the nesting is imperfect and distinct hot
spots develop at the points on the electron and hole Fermi
pockets separated by Qe1 or Qe2, see Fig. 1. The positions of
the hot spots change with the doping [12,19]: for underdoping
(n < 2.08) the hot spots are located near the major axis of the
electron pockets, while at overdoping (n > 2.08) the hot spots
shift to the minor axis. On the hole pocket, the hot spots shift

FIG. 1. (Color online) Illustration of the Fermi pockets and the
scattering rates. An electron in state |h,θ〉 is scattered to |e1,θ ′〉. The
yellow (light gray) dots indicate the maxima of the scattering rates
We1 θ ′

h θ and We2 θ ′
h θ as functions of the polar angle θ ′ on the target Fermi

pocket. The maxima stem from the enhanced spin susceptibility (color
gradient) for the scattering wave vectors Qe1 and Qe2. The thin dotted
lines show the Fermi surfaces displaced by the nesting vectors. The
hot spots are located at the resulting crossing points.

from the axes to the diagonal and back again as one dopes
across the antiferromagnetic dome.

We assume that the transport behavior is dominated by
the scattering off spin fluctuations, which we model by the
phenomenological susceptibility proposed by Millis, Monien,
and Pines [21], with temperature-dependent parameters based
on neutron-scattering experiments [22]. Although this ignores
the anisotropy of the magnetic excitations in the pnictides
caused by the ellipticity of the electron Fermi pockets [23],
we shall see that the precise form of the susceptibility
is less important for the transport than the anisotropy of
the scattering rate. Together with momentum-independent
impurity scattering, the scattering rate from a single-electron
state |b,k〉 to a state |b′,k′〉, where b = e, h denotes the band,
can be written as [24]

Wb′k′
bk = (1 − δbb′ ) Wsf

pT (εbk − εb′k′)

(εbk − εb′k′)2 + ω2
k,k′

+ δ(εbk − εb′k′) Wimp, (3)

where Wsf and Wimp represent the overall strength of the
scattering off spin fluctuations and impurities, respectively,
pT (x) ≡ x (coth x/2kBT − tanh x/2kBT ), and

ωk,k′ ≡ �T

{
1 + ξ 2

T min
Q

[(k − k′ + Q)2]
}
, (4)

where the four possible values for Q are ±Qe1 and ±Qe2. With
the Curie-Weiß temperature −θCW < 0, the frequency scale
and the correlation length are given by [14,22] �T = �0 (T +
θCW)/θCW and ξT = ξ0

√
θCW/(T + θCW) exp(−T/T0), re-

spectively. Following Ref. [14], here we introduce an ad-
ditional exponential decay of ξT to account for the high-
temperature behavior and choose T0 = 200 K. Following
Ref. [22], we take ξ0 = 10 a, θCW = 30 K, and �0 = 4.2 meV.
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The resulting form of ωk,k′ and thus Wb′k′
bk is only valid as long

as the system does not order antiferromagnetically or becomes
superconducting.

The transport is governed by states on the Fermi pockets,
denoted by |s,θ〉, where s = h, e1, e2 is the pocket index
and θ is the polar angle along the pocket, see Fig. 1. From
Eq. (3) we see that in the low-temperature regime kBT �
εF the scattering rate is sharply peaked at εbk = εb′k′ so that
scattering is nearly elastic. We exploit this fact by writing

Wb′k′
bkF

≈ δ(εb′k′ − εF ) Ws ′θ ′
sθ , (5)

where

Ws ′θ ′
sθ ≡ (1 − δbb′ ) Wsf

∫
dε

pT (ε)

ε2 + ω2
k,k′

+ Wimp (6)

is the effective elastic scattering rate between states on the
Fermi pockets s, s ′ belonging to the bands b, b′. Since the spin
susceptibility and thus Wb′k′

bk is strongly momentum dependent,
the elastic scattering rate Ws ′θ ′

sθ strongly depends on the angles
θ and θ ′, in particular on the change in angle θ ′ − θ . This is
what we call anisotropic scattering in the following.

More specifically, the scattering anisotropy stems from the
peaks in the spin susceptibility at the wave vectors ±Qe1

and ±Qe2. For an initial state |h,θ〉 with wave vector k, the
scattering rate has maxima for the final states |e1,θ̄e1〉 and
|e2,θ̄e2〉, defined as the states on the Fermi pockets e1, e2 with
wave vectors closest to k + Qe1 and k + Qe2, respectively,
see Fig. 1. Similarly, for an initial state |e1,θ〉 (|e2,θ〉) with
wave vector k, the scattering rate has a maximum for the final
state |h,θ̄h〉 with wave vector closest to k − Qe1 (k − Qe2),
where θ̄h ≈ θ since the hole pocket is nearly circular.

The scattering rate summed over all final states determines
the characteristic lifetime of the state |s,θ〉,

τsθ =
(

1

2π

∑
s ′

∫
dθ ′ Ns ′θ ′ Ws ′θ ′

sθ

)−1

, (7)

where Nsθ = |dkF,sθ /dθ |/π�|vF,sθ | is the density of states,
with the spin degeneracy included, of pocket s at the polar
angle θ and kF,sθ and vF,sθ are the Fermi momentum and
the Fermi velocity, respectively. In contrast to the transport
relaxation time, which will be discussed below, the lifetime
only depends on the integrated scattering strength and is
independent of the precise shape of Ws ′θ ′

sθ as a function of θ ′.

III. BOLTZMANN FORMALISM

Our starting point is the semiclassical Boltzmann transport
equation for a multiband system,

−f ′
0(εbk) E · vbk − e

�
B · (vbk × ∇k) gbk

=
∑
b′k′

Wb′k′
bk (gbk − gb′k′), (8)

where E = (Ex,Ey,0) and B = (0,0,B) are weak uniform
electric and magnetic fields, respectively, vbk ≡ �

−1 ∇kεbk is
the velocity and gbk ≡ fbk − f0(εbk) is the difference between
the nonequilibrium distribution function fbk and the Fermi-
Dirac distribution f0(εbk). This difference is of the general

form [25–27]

gbk = −f ′
0(εbk) E · (�bk + δ�bk), (9)

with the as yet unknown vector mean free path �bk + δ�bk.
Here, �bk (δ�bk) is of zero (first) order in the magnetic field
B. For states on the Fermi pockets we write �sθ , δ�sθ with
obvious definitions.

Inserting Eqs. (5), (6), and (9) into the Boltzmann equation
(8) and using

∑
b′k′ = ∑

s ′
∫

dθ ′
2π

Ns ′θ ′
∫

dεb′k′ , one finds for
states at the Fermi energy [27]

�sθ = τsθ vsθ + τsθ

∑
s ′

∫
dθ ′

2π
Ns ′θ ′ Ws ′θ ′

sθ �s ′θ ′ , (10)

δ�sθ = τsθ ηs

eB

π�2

1

Nsθ

∂�sθ

∂θ

+ τsθ

∑
s ′

∫
dθ ′

2π
Ns ′θ ′ Ws ′θ ′

sθ δ�s ′θ ′ , (11)

where ηh = 1 and ηe1 = ηe2 = −1. The RTA consists of
neglecting the forward-scattering corrections in Eqs. (10) and
(11), i.e., the second terms on the right-hand sides. Thus in the
RTA one obtains

�sθ = �
(0)
sθ ≡ τsθ vsθ , (12)

δ�sθ = δ�
(0)
sθ ≡ τsθ ηs

eB

π�2

1

Nsθ

∂�
(0)
sθ

∂θ
. (13)

Evidently, within the RTA the solution is determined by the
bare lifetimes τsθ given in Eq. (7). The RTA becomes exact
if the scattering rate is isotropic around the Fermi pockets
so that the forward-scattering corrections average out. For a
nonzero scattering anisotropy, however, the result may differ
significantly from the RTA [15].

The charge current J = σE is controlled by the conductivity
tensor σ , which is in turn determined by the vector mean free
path [27],

σ ij = e2
∑

s

∫
dθ

2π
Nsθ vi

sθ

(



j

sθ + δ

j

sθ

) ≡
∑

s

∫
dθ

2π
σ

ij

sθ .

(14)

Writing E = E (cos φ, sin φ,0) we find the current parallel to
the electric field as

J · E
E

=
∑

s

∫
dθ

2π

(
σxx

sθ cos2 φ + σ
yy

sθ sin2 φ

+ σ
xy

sθ cos φ sin φ + σ
yx

sθ cos φ sin φ
)

≡
∑

s

∫
dθ

2π
Jsθ , (15)

where Jsθ is the contribution of the state |s,θ〉 to the current.

IV. ANALYTICAL RESULTS

To gain insight into transport beyond the RTA, we now
construct an approximate analytical solution of Eqs. (10) and
(11) that fully accounts for the anisotropic scattering. We
will first discuss a few reasonable assumptions that make
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an analytical solution feasible. The full numerical solution
is discussed in Sec. V.

As illustrated in Fig. 1, the scattering rate Ws ′θ ′
sθ understood

as a function of θ ′ has a maximum at θ ′ = θ̄s ′ , which of course
depends on θ . The small difference between θ and θ̄s ′ stems
from the ellipticity of the electron pockets. We now make two
simplifying assumptions: (i) The peak of the scattering rate
Ws ′θ ′

sθ as a function of θ ′ is assumed to be symmetric around
θ ′ = θ̄s ′ , and (ii) the peak width is small on the scale on which
the Fermi velocity |vsθ | and the density of states Nsθ vary.
Both assumptions become exact in the limit of very strongly
peaked spin susceptibility, i.e., as the magnetic instability is
approached. In the opposite limit of isotropic scattering, the
forward-scattering corrections cancel out so that we also obtain
the exact results.

On the right-hand side of Eq. (10) we split �s ′θ ′ into
contributions parallel and perpendicular to �s ′ θ̄s′ ,

�s ′θ ′ = |�s ′θ ′ |
|�s ′ θ̄s′ |

[�s ′ θ̄s′ cos(θ ′ − θ̄s ′ ) + ẑ × �s ′ θ̄s′ sin(θ ′ − θ̄s ′ )].

(16)

By virtue of the assumptions (i) and (ii), the sine term drops
out and we obtain

�sθ = �
(0)
sθ +

(
1 − 1

2
δs,h

) ∑
s ′

as ′
sθ �s ′ θ̄s′ , (17)

where

as ′
sθ ≡ (1 + δs,h) τsθ

∫
dθ ′

2π
Ns ′θ ′ Ws ′θ ′

sθ cos(θ ′ − θ̄s ′ ) (18)

parametrizes the scattering anisotropy and in the following will
be referred to as the anisotropy parameter. The Kronecker
symbols δs,h appearing in Eqs. (17) and (18) ensure that
as ′

sθ ∈ [0,1] and that as ′
sθ → 1 corresponds to the limit of strong

scattering anisotropy Ws ′θ ′
sθ ∝ δ(θ ′ − θ̄s ′ ), while as ′

sθ → 0 gives
the case of isotropic scattering, where the RTA result is
recovered.

Iterating Eq. (17), we obtain � in terms of �(0) as a power
series in the anisotropy parameter. We now discuss the states
appearing in this series. The zero-order contribution to �sθ is
of course �

(0)
sθ , the RTA result for the same state |s,θ〉. The

first-order term involves �
(0)
s ′ θ̄s′

for the state |s ′,θ̄s ′ 〉. This is the
final state on the Fermi pocket s ′ �= s to which the initial state
|s,θ〉 has the largest scattering rate. Due to the ellipticity of
the electron pockets, the shift of the angle θ̄s ′ − θ is always
directed towards the closest hot spot, i.e., the intersection of
the Fermi pocket s with pocket s ′ shifted by the appropriate
vector Q. The state appearing in the second-order term is
the one reached from |s ′,θ̄s ′ 〉 with the largest scattering rate,
again shifted towards the closest hot spot. The states appearing
in all higher-order terms are obtained in the same way. The
whole process can be interpreted as an effective hopping of
the electron along a sequence of states, as illustrated by Fig. 2.

The contribution to �sθ from �
(0)
sνθν

of the state |sν,θν〉
reached after ν hopping events involves the product of ν

anisotropy parameters at θ , θ1, . . ., θν−1. Since the angular shift
between successive hopping events is due to the ellipticity of
the electron pockets, and vanishes for a purely circular pocket,

FIG. 2. (Color online) Sketch of multiple scattering. During the
process, an electron initially in state |s,θ〉 effectively scatters between
Fermi pockets towards the closest hot spot (red/gray dot). The
sequence of states (black dots) is given by the maximum of the
scattering rate. Their decreasing contribution to the vector mean free
path � of the original state |s,θ〉 is indicated by the decreasing size
of the dots.

it is small for small ellipticities. Indeed, in the Appendix we
show that for a circular hole pocket and a single elliptical
electron pocket the error in the vector mean free path is
of fourth order in the eccentricity of the electron pocket.
If we henceforth neglect this shift, i.e., let θν ≈ θν−1 for
all ν, we incur an error that is small for the moderate
ellipticities of the electron Fermi pockets of the pnictides.
In the following section we shall see that this convenient
approximation generally compares well with the full numerical
solution of Eqs. (10) and (11).

Accordingly setting θ̄s ′ = θ in Eq. (17), the vector mean
free paths for different θ decouple and we obtain

�hθ = �
(0)
hθ + 1

2

(
ae1

hθ�
(0)
e1θ + ae2

hθ�
(0)
e2θ

)
1 − 1

2

(
ae1

hθa
h
e1θ + ae2

hθa
h
e2θ

) , (19)

�e1θ = �
(0)
e1θ + ah

e1θ �hθ , (20)

�e2θ = �
(0)
e2θ + ah

e2θ �hθ . (21)

Results for the magnetic part δ�sθ can be found analogously
by replacing � by δ� and �(0) by

τsθ ηs

eB

π�2

1

Nsθ

∂�sθ

∂θ
, (22)

cf. Eq. (11). Since the anisotropy parameters as ′
sθ are the only

parameters in the solution, apart from the RTA vector mean
free paths, we will refer to these expressions as the anisotropy
approximation (AA). Clearly, for as ′

sθ �= 0 the vector mean free
paths involve the RTA solutions of all three Fermi pockets.
This coupling between the pockets becomes stronger for
larger anisotropy parameters. Additionally, the denominator
in Eq. (19), which appears in all results, provides a factor
that is larger than unity. In the anisotropic limit as ′

sθ → 1 the
vector mean free paths �sθ of all three pockets at a certain
angle θ become equal and diverge. Thus, for strong scattering
anisotropy the vector mean free path of the minority carriers
must be inverted relative to the RTA result �

(0)
sθ ∝ vsθ .

Semiclassically we can interpret our results as follows. The
solution to the Boltzmann equation describes a nonequilibrium
stationary state in which the acceleration of the electrons due
to external forces is balanced by scattering. The vector mean
free path of state |s,θ〉 can be understood as the displacement
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that an electron suffers until its velocity vsθ is randomized
by scattering. The lifetime τsθ is the mean time between two
scattering events. If the scattering is isotropic the velocity
is randomized after a single scattering event and the vector
mean free path thus reads τsθ vsθ ≡ �

(0)
sθ . On the other hand,

anisotropic scattering only partially randomizes the velocity
so that the effective relaxation time exceeds the lifetime τsθ ,
giving rise to multiple scattering during the relaxation, see
Fig. 2. The enhancement by the denominator in Eq. (19)
accounts for this fact. In the extreme limit of as ′

sθ → 1, the
factor diverges, indicating that the velocities cannot relax at
all and the vector mean free paths become infinite.

This physical picture also applies to the case of two
circular Fermi pockets considered in Refs. [14,15]. Because of
rotational symmetry, the vector mean free path is parallel to the
velocity in that case, and the AA becomes exact. This permits
a simple description in terms of transport times. However,
here we are concerned with noncircular Fermi pockets, which
means that the vector mean free path is generally not parallel
to the velocity. The common feature is that strong anisotropic
scattering forces the vector mean free path of electron and
hole pockets at θ to point in the same direction, which is set by
the majority carriers. In the relevant parameter range for our
model, we will find that the direction is set by the electrons
since there are two electron pockets. A change of the dominant
carrier type can only be achieved by strong hole doping.

V. NUMERICAL RESULTS

To obtain quantitative results without further approxima-
tions beyond the choice of the model and the semiclassical
transport theory, we calculate the scattering rate given in
Eq. (6) by numerical integration. Furthermore, we discretize
the polar angle θ , choosing 160 sites on each Fermi pocket.
We have checked that taking more points does not significantly
change the results. The lifetimes [Eq. (7)] and the anisotropy
parameters [Eq. (18)] are obtained by summation over the dis-
crete sites. Finally, Eqs. (10) and (11) are solved numerically
by matrix inversion. The numerical results will be compared
to the AA, which is given by inserting the lifetimes and the
anisotropy parameters into Eqs. (19)–(21).

A. Scattering rate

Figure 3(a) shows the temperature dependence of the
scattering rate for ξ = 1 in Eq. (2) and Wimp/Wsf = 10−3.
While at high temperatures the scattering rate is isotropic, at
lower temperatures a peak due to spin fluctuations develops
corresponding to scattering vectors close to Qe1 or Qe2. The
peak becomes sharper as the temperature is lowered so that
the scattering anisotropy increases. At very low temperatures
spin fluctuations freeze out and only the isotropic impurity
scattering remains so that the anisotropy vanishes again. In
Fig. 3(b) we plot the anisotropy parameter corresponding
to the scattering rate shown in Fig. 3(a), averaged over the
Fermi pocket. It clearly exhibits the increase for decreasing
temperature and the final sharp downturn at very low tem-
peratures. Note that in real pnictides, this low-temperature
behavior will in most cases be preempted by antiferromagnetic
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FIG. 3. (Color online) (a) Scattering rate at different tempera-
tures for an electron in state |h,π〉 on the hole pocket to scatter to the
state |e1,θ〉 on the electron pocket e1, as a function of the final-state
angle θ . (b) Temperature dependence of the anisotropy parameter
averaged over all angles θ for the scattering shown in (a). The
parameters have been set to ξ = 1, n = 2.08, and Wimp/Wsf = 10−3.

or superconducting order, which are not described by our
model spin susceptibility.

B. Hot-spot picture

In this subsection we explore how different parts of the
Fermi pockets contribute to the transport. In particular, we
want to find out to what extent the concept of hot and cold
regions is applicable. Choosing T = 1 K and Wimp/Wsf = 0,
we focus on the regime of strong spin fluctuations with strong
scattering anisotropy, where the difference between the RTA
and the full result is the most striking.

The current parallel to the electric field is given by Eq. (15).
The state-resolved current contributions Jsθ depend on the
direction of the electric field due to the noncircular Fermi
pockets but here we are not interested in this dependence and
therefore average Jsθ over all directions of the electric field in
the xy plane. For B = 0 this gives

Jsθ ≡ e2Nsθ

vx
sθ


x
sθ + v

y

sθ

y

sθ

2
E. (23)

Figure 4 shows the contributions Jsθ resulting from the RTA
as well as from the full numerical calculation. The two are
completely different. Most prominently, the hot-spot picture
[8,10–12] is no longer valid if forward-scattering corrections
are taken into account. As discussed above, the scattering off
spin fluctuations is strongest in the hot regions since the spin
susceptibility is peaked at Qe1 and Qe2, see Fig. 1. Thus the
lifetimes are shorter and the RTA vector mean free paths given
in Eqs. (12) and (13) are smaller. This is indeed reflected by
the suppressed current contributions in the hot regions shown
in Figs. 4(a) and 4(b). However, no signatures of hot regions
are seen in the full results in Figs. 4(c) and 4(d). This is due
to the anisotropy of the scattering rate. In the hot regions, the
anisotropy as ′

sθ is enhanced relative to the cold regions and,
according to Eqs. (19)–(21), this leads to an enhancement of
the vector mean free path, as was discussed in Sec. IV. Thus
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FIG. 4. (Color online) Contributions to the current of states on the Fermi surface. (a) and (b) The RTA result as a color map and as a line
plot along a quarter of the Fermi pockets, respectively. Note the reduction of the current contributions in the hot regions. (c) and (d) The same
for the full numerical results. The large anisotropy leads to negative current contributions from the hole pocket. No signatures of hot spots are
apparent. The parameters are ξ = 2.5, n = 2.08, T = 1 K, and Wimp/Wsf = 0.

the reduction of the lifetimes is compensated by the enhanced
scattering anisotropy and the contribution of the hot regions
to the current is comparable to that of other parts of the Fermi
pockets, i.e., the short circuiting of the hot spots does not occur.
This insight is a central result of our work.

Figure 4 also shows that the holes contribute negatively to
the total current in the full calculation. In the semiclassical
picture, this means that the holes drift in the same direction
as the electrons. The insights gained in Sec. IV illuminate
this behavior: For the set of parameters chosen in Fig. 4, the
scattering anisotropy averaged over all Fermi states is close
to unity, 〈a〉θ = 0.96. As discussed in Sec. IV, such a huge
anisotropy leads to an effective relaxation time that is much
longer than the lifetime. In effect, during the relaxation, an
electron initially on the hole Fermi pocket scatters multiple
times between states on the hole pocket and states on the
electron Fermi pockets, which have nearly opposite velocity.
Since there are more states on the electron pockets than on
the hole pocket, the electron spends the larger part of the time
on the electron pockets. The electron thus on average drifts in
the opposite direction to what one would get if it stayed on
the hole pocket. The RTA is not sensitive to the inversion of the
velocity upon interpocket scattering and thus cannot account
for this effect.

C. Transport coefficients

The transport coefficients can be obtained from the vector
mean free paths. The conductivity tensor is given in Eq. (14),
while the thermoelectric tensor reads [27]

αij = −π2k2
BT

3e

∂σ ij

∂μ
. (24)

We will focus on the resistivity

ρ = 1

σxx
, (25)

the Hall coefficient

RH = σxy

(σxx)2B
, (26)

the Seebeck coefficient (thermopower)

S = −αxx

σ xx
, (27)

and the Nernst coefficient

N = σxyαxx − σxxαxy

(σxx)2B
. (28)

We give the resistivity in units of

ρ0 ≡ �

e2

�Wsf

V0
× 10−2 (eV)2, (29)

where V0 is the volume of the unit cell, and the Nernst
coefficient in units of

N0 ≡ V0

eρ0
× 10−5 V/K. (30)

For the scattering strength ratio we choose in the following
Wimp/Wsf = 10−3.

1. Comparison of approximations

Figure 5 shows the temperature dependence of the transport
coefficients, comparing the full numerical result with the RTA
and the AA. We see that the RTA results tend to coincide
with the full calculation only at very high and very low
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FIG. 5. (Color online) Temperature dependence of transport coefficients for filling n = 2.05 and ellipticity parameters ξ = 1 and ξ = 2,
calculated with three different methods: Numerically (“exact”), semianalytically within the anisotropy approximation (“AA”) of Eqs. (19)–(21),
and within the RTA, Eqs. (12) and (13).

temperatures, where the scattering is nearly isotropic, see
Fig. 3. In the temperature range with strong anisotropy (20–
150 K) the deviations from the RTA are huge. On the other
hand, the AA shows qualitative agreement with the full results
over all temperatures and for both ellipticities. The agreement
is even quantitative for the resistivity. It is the worst for the
Nernst coefficient N but even here the positive and negative
extrema in N are predicted by the AA close to the correct
temperatures. For ξ = 1 the AA is slightly better than for ξ = 2
since the former value leads to less eccentric electron pockets.
The close agreement between the AA and the full numerical
results shows that the transport behavior does not sensitively
depend on the precise details of the anisotropic scattering,
and thus justifies our use of the approximate susceptibility in
Eq. (3).

Both the RTA and the full results show strong temperature
dependence. For the RTA, this can be traced back to the
nontrivial geometry of the Fermi pockets leading to the hot-
spot structure for high scattering anisotropies. However, as dis-
cussed in Sec. V B, forward-scattering corrections invalidate
the hot-spot picture for strong anisotropies. The temperature
dependence of the RTA results thus stems from the wrong
origin. The true temperature dependence can be understood on
the basis of the AA, which gives qualitatively correct results.
Here it is due to the strong temperature dependence of the
anisotropy parameters as ′

sθ shown in Fig. 3(b), i.e., it relies on
the corrections to the RTA in Eqs. (10) and (11) as well as
(19)–(21).

The differences between the RTA and the full results for
the resistivity and the Hall coefficient are consistent with the
predictions of Ref. [15] for two circular Fermi pockets. In
the resistivity we note that the expected enhancement and
reduction for high and low scattering anisotropies, respec-
tively, lead to a more pronounced change of slope compared
to the RTA. Although the difference between the RTA and
the full resistivity is relatively small compared to the large
corrections to the electron and hole contributions shown in

Fig. 4, these corrections have opposite signs and thus partially
compensate each other, as already found for circular Fermi
pockets in Refs. [14,15]. The predicted enhancement of the
Hall coefficient is also present [14,15]. However, the extremum
of the Hall coefficient in Fig. 5 is due to the maximum in
the scattering anisotropy (cf. Fig. 3) and is thus of different
origin than in Ref. [15], where a maximum in the Hall
coefficient was predicted for the case that the anisotropy
crosses a characteristic anisotropy level at which the mobilities
of holes and electrons are of equal magnitude but opposite
sign. We do not see any signatures of such a crossing in the
present results. For the thermoelectric effects, Fig. 5 shows
that the RTA results are even qualitatively incorrect, with
the Seebeck and Nernst coefficients showing the wrong sign
in the temperature range with strong scattering anisotropy.
According to Eqs. (24) and (27), the Seebeck coefficient
S is proportional to ∂ ln σxx/∂μ = −∂ ln ρ/∂μ. In the RTA
it stems from the shift of the hot spots with the chemical
potential, i.e., with doping. In the full results and the AA, it
is instead due to the change in the anisotropy parameters as ′

sθ

with the chemical potential. Figure 5 shows that for the chosen
parameters, the two effects contribute to S with opposite sign.
The full results for the Nernst coefficient N change sign
between the ellipticities ξ = 1 and ξ = 2. This effect is missed
by the RTA. We return to the Nernst coefficient below.

Qualitative differences between the RTA and the full
solution of the Boltzmann equation have also been reported
for single-band cuprate models with strongly anisotropic
scattering [18,27]. The physics discussed here, including the
inverted vector mean free path of minority carriers, rely on the
presence of multiple bands and Fermi pockets, though.

2. Doping dependence

We now turn to the doping dependence of the transport
coefficients. Figures 6(a)–6(d) show the full solutions at dif-
ferent fillings, while Fig. 6(e) shows the current contributions
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FIG. 6. (Color online) (a) Resistivity, (b) Hall coefficient, (c) Seebeck coefficient, and (d) Nernst coefficient as functions of temperature for
different fillings n. (e) State-resolved current contributions for T = 100 K and 400 K for all fillings considered. Note the different color scales.

of states on the Fermi surfaces at the two temperatures T =
100 K and 400 K with strong and weak scattering anisotropy,
respectively. Note that the current contributions from the hole
pocket are negative for T = 100 K and n � 1.99, i.e., towards
the electron-doped side. On the hole-doped side, the scattering
is more isotropic due to the large discrepancy in size between
the electron and hole pockets.

At high temperatures, the transport coefficients all show
a smooth doping dependence resulting from the change in
the Fermi surfaces and velocities in the presence of mostly
isotropic scattering. In the intermediate temperature range,
where anisotropic scattering is strong, this is overlaid by
nontrivial doping dependence due to the forward-scattering
corrections.

The resistivity around T ≈ 100 K is largest for intermediate
fillings, for which the Fermi pockets are well nested. This is
because the narrow peaks in the spin susceptibilities at Qe1

and Qe2 lead to efficient scattering only for nested Fermi
pockets. The inefficiency of anisotropic scattering for small
and large n causes a rapid decrease in the resistivity with
doping, as shown in the inset in Fig. 6(a). Note that the

relative change in ρ with doping is much larger here than
at high temperatures. Since the Seebeck coefficient S is
proportional to ∂ ln σxx/∂μ = −∂ ln ρ/∂μ = −ρ−1∂ρ/∂μ, it
is sensitive to this relative change in ρ with μ or n and is,
therefore, strongly enhanced in the intermediate temperature
range with strong scattering anisotropy, as Fig. 6(c) clearly
shows.

For the Hall coefficient RH , Fig. 6(b), one would naively
expect the largest and smallest values for the most strongly
hole-doped and electron-doped cases, respectively, since elec-
trons and holes contribute with opposite signs. This is indeed
the case at T ≈ 400 K, where the scattering is nearly isotropic
and no negative current contributions occur. At T ≈ 100 K,
however, Fig. 6(b) shows a strong negative enhancement of RH

for intermediate filling. According to Fig. 6(e), the contribution
of the holes to the total current is negative in this range. In the
semiclassical picture this means that the holes drift in the
same direction as the electrons, reducing the charge current.
Irrespective of that, the magnetic field deflects the holes and
the electrons in the same direction. Hence, the inverted sign
of the hole contribution reduces the charge current without
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changing the Hall voltage. This gives rise to an enhancement
of the Hall coefficient defined as the Hall voltage relative to
the charge current.

The Nernst coefficient N plotted in Fig. 6(d) is highly
sensitive to small doping changes and also, as is evident from
Fig. 5, to changes in the band parameters. Equations (24)–(26)
and (28) show that

N = 3e

π2k2
BT

∂

∂μ

RH

ρ
= 3e

π2k2
BT

∂n

∂μ

∂

∂n

RH

ρ
. (31)

The Nernst coefficient is thus sensitive to the nonmonotonic
doping dependence of both ρ and RH . For the cases we
have considered, the contributions from ρ and RH usually
counteract each other. The complicated behavior of N , for
example the different sign of N for n = 2.05 compared to the
other fillings, is thus due to the quantitative competition of
the doping dependencies of ρ and RH and not to any clear
qualitative features in the Fermi surfaces or the scattering.
This suggests that the other coefficients might be more
advantageous as probes of the electronic system. However, the
detailed comparison of experimental transport coefficients and
calculations for realistic models remains work for the future.

VI. CONCLUSIONS

We have studied transport in a two-band model relevant
for the iron pnictides, using the semiclassical Boltzmann
equation. Forward-scattering corrections due to anisotropic
interband scattering off spin fluctuations have been included.
Spin fluctuations have been described by a phenomenological
Millis-Monien-Pines susceptibility [21], with temperature-
dependent parameters chosen based on neutron-scattering
results for the pnictides [22]. Our analytical and numerical
investigations show that the anisotropic scattering gives rise
to unusual transport behavior. Most surprisingly, the hot spots
are not short circuited by the cold regions of the Fermi pockets
even for very strong scattering. The enhanced scattering rate
in the hot regions indeed leads to a short lifetime there, but this
effect is balanced by the enhanced vector mean free path due
to the anisotropic scattering. This breakdown of the concept of
hot and cold regions is not found in a simple RTA neglecting
forward-scattering corrections.

The nearly isotropic contribution of states around the Fermi
pocket to the transport, even for strongly elliptical electron
pockets, justifies the discussion of transport in terms of
isotropic mobilities for each pocket. However, as discussed
for the case of circular pockets [14,15], the mobility of
the minority carriers can turn negative in the regime of
highly anisotropic scattering. In the present work, negative
mobility corresponds to inverted vector mean free paths and
the resulting negative current contributions.

The contribution of hot spots to the transport and the
occurrence of negative currents are the main features that
distinguish the transport properties of pnictides from previ-
ously considered one-band systems with similarly anisotropic
scattering. In this work we have presented unusual temperature
and doping dependencies of various transport coefficients.
Beyond this, negative current contributions can also lead
to a negative magnetoresistance [15]. However, the present
model with two electron pockets and one hole pocket does not

show negative magnetoresistance in the considered parameter
range. Calculations of transport coefficients for more realistic
pnictide models are desirable to allow quantitative predictions.
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APPENDIX : DISCUSSION OF THE ANGULAR SHIFT

As discussed in the main text, the vector mean free path of
a state |s,θ〉 can be written as a power series in the anisotropy
parameter, where the term of order n contains the RTA vector
mean free path of a state reached by n hopping events towards
the closest hot spot. We have argued that the angular shift
towards the hot spot is a small effect for the vector mean
free path for realistic ellipticities of the electron pockets and
have therefore ignored it above. Here we explore this effect
analytically within a simple model. To get an estimate for the
upper limit of the correction to the vector mean free path,
it is sufficient to consider only a single electron pocket. Our
simple model consists of a circular hole Fermi pocket with
the Fermi wave number k and an elliptical electron Fermi
pocket described by the semimajor and semiminor axis ka =
k(1 − ε2)−1/4 and kb = k(1 − ε2)1/4, respectively, where ε is
the eccentricity of the ellipse. To focus on the shift effect we
assume constant anisotropy as ′

sθ = a. For two Fermi pockets
and constant anisotropy, Eq. (17) takes the form

�sθ = �
(0)
sθ + a �s̄θ̄ , (A1)

where h̄ = e, ē = h, and the RTA solution �(0) is given by
Eq. (12). Using simple trigonometry, we find that for the given
geometry, the difference between θ̄ and θ to leading order in
the eccentricity ε reads ε4

16 sin 4θ . Iterating Eq. (A1), we obtain
the solution for the electron pocket as

�eθ =
∞∑

n=0

a2n
(
�

(0)
eθn

+ a�
(0)
hθn

)
, (A2)

with

θn = θn−1 + ε4

16
sin 4θn−1 and θ0 = θ. (A3)

The solution for the hole pocket follows immediately from
Eqs. (A1) and (A2).

Replacing the discrete index n by a continuous variable, we
obtain

�eθ = − 2 ln a

1 − a2

∫ ∞

0
dn a2n

(
�

(0)
eθn

+ a�
(0)
hθn

) + R, (A4)

with a correction R. By splitting the integration range into
intervals [m,m + 1] with integer m, one can easily show that

|R| �
∑

n

a2n
∣∣(�(0)

eθn
+ a�

(0)
hθn

) − (
�

(0)
eθn+1

+ a�
(0)
hθn+1

)∣∣,
(A5)
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FIG. 7. (Color online) Effective angular shift �θ,γ for the state
θ = π/8 as a function of ε2 for different uniform anisotropies a. ε

represents the eccentricity of the electron pocket. The shift is directed
towards the hot spot at θ = π/4, hence the maximal value of �θ,γ /π

is 1/8. The insets indicate the shape of the electron pocket (solid line)
corresponding to various values of ε2.

which is obviously of higher order in ε2 because of Eq. (A3).
Substituting n = 4 ln(1 + z)/ε4 we obtain

�eθ = 1

1 − a2

∫ ∞

0
dz γ

(
1

1 + z

)γ+1(
�

(0)
eθ(z) + a�

(0)
hθ(z)

)
,

(A6)

with

γ ≡ 8
ln(1/a)

ε4
(A7)

and

θ (z) ≡ 1

2
arctan[(z + 1) tan 2θ ]. (A8)

In the integral in Eq. (A6), the factor γ [1/(1 + z)]γ+1 acts as a
distribution function which is normalized to unity and becomes

a δ function in the limit of zero ellipticity, i.e., for γ → ∞.
Hence, the largest shifts are achieved for small values of γ ,
which, according to Eq. (A7), correspond to large scattering
anisotropy and large ellipticity.

The shift also depends on the position on the Fermi pocket.
There is no shift at the hot spots θ = (2n − 1) π/4, and at
the cold spots θ = nπ/2. The largest shift can be expected
to occur between the hot and cold spots, in the vicinity of
(2n − 1) π/8.

We can make further analytical progress by expanding the
vector (�(0)

eθ(z) + a�
(0)
hθ(z)) to linear order in θ (z). This is best

justified if the total angular shift is small, i.e., if we start with
θ close to a hot spot. However, the total shift can never be
larger than π/4 so that the approximation always gives at least
qualitatively correct results for not excessive eccentricities.
Equation (A6) can then be written as

�eθ = 1

1 − a2

(
�

(0)
e,θ+�θ,γ

+ a�
(0)
h,θ+�θ,γ

)
,

(A9)

with the effective angular shift

�θ,γ =
∫ ∞

0
dz γ

( 1

1 + z

)γ+1
θ (z) − θ

∼= sin 4θ

32

ε4

ln(1/a)
+ sin 8θ

512

[
ε4

ln(1/a)

]2

+ O

{[
ε4

ln(1/a)

]3}
. (A10)

By neglecting the shift �θ,γ = 0, we would obtain the analog
of Eqs. (19)–(21) for the case of constant anisotropy and a
single electron pocket.

In Fig. 7 we plot the angular shift at θ = π/8 for different
anisotropies as a function of the eccentricity squared ε2.
Realistic scattering anisotropies hardly exceed the value a =
0.95, for which the shift is small up to ε2 ≈ 0.5. Stronger
ellipticities might, however, lead to significant corrections.
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[10] S. Arsenijević, H. Hodovanets, R. Gaál, L. Forró, S. L. Bud’ko,

and P. C. Canfield, Phys. Rev. B 87, 224508 (2013).
[11] E. C. Blomberg, M. A. Tanatar, R. M. Fernandes, I. I. Mazin,

B. Shen, H.-H. Wen, M. D. Johannes, J. Schmalian, and
R. Prozorov, Nature Commun. 4, 1914 (2013).

[12] R. M. Fernandes, E. Abrahams, and J. Schmalian, Phys. Rev.
Lett. 107, 217002 (2011).

245106-10

http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104117
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104117
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104117
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104117
http://dx.doi.org/10.1088/1367-2630/10/6/063021
http://dx.doi.org/10.1088/1367-2630/10/6/063021
http://dx.doi.org/10.1088/1367-2630/10/6/063021
http://dx.doi.org/10.1088/1367-2630/10/6/063021
http://dx.doi.org/10.1088/0953-8984/22/7/072201
http://dx.doi.org/10.1088/0953-8984/22/7/072201
http://dx.doi.org/10.1088/0953-8984/22/7/072201
http://dx.doi.org/10.1088/0953-8984/22/7/072201
http://dx.doi.org/10.1103/PhysRevB.80.054517
http://dx.doi.org/10.1103/PhysRevB.80.054517
http://dx.doi.org/10.1103/PhysRevB.80.054517
http://dx.doi.org/10.1103/PhysRevB.80.054517
http://dx.doi.org/10.1080/14786435.2012.729866
http://dx.doi.org/10.1080/14786435.2012.729866
http://dx.doi.org/10.1080/14786435.2012.729866
http://dx.doi.org/10.1080/14786435.2012.729866
http://dx.doi.org/10.1140/epjb/e2009-00267-3
http://dx.doi.org/10.1140/epjb/e2009-00267-3
http://dx.doi.org/10.1140/epjb/e2009-00267-3
http://dx.doi.org/10.1140/epjb/e2009-00267-3
http://dx.doi.org/10.1209/0295-5075/87/17005
http://dx.doi.org/10.1209/0295-5075/87/17005
http://dx.doi.org/10.1209/0295-5075/87/17005
http://dx.doi.org/10.1209/0295-5075/87/17005
http://dx.doi.org/10.1103/PhysRevB.83.092507
http://dx.doi.org/10.1103/PhysRevB.83.092507
http://dx.doi.org/10.1103/PhysRevB.83.092507
http://dx.doi.org/10.1103/PhysRevB.83.092507
http://dx.doi.org/10.1103/PhysRevB.80.014517
http://dx.doi.org/10.1103/PhysRevB.80.014517
http://dx.doi.org/10.1103/PhysRevB.80.014517
http://dx.doi.org/10.1103/PhysRevB.80.014517
http://dx.doi.org/10.1103/PhysRevB.81.115121
http://dx.doi.org/10.1103/PhysRevB.81.115121
http://dx.doi.org/10.1103/PhysRevB.81.115121
http://dx.doi.org/10.1103/PhysRevB.81.115121
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevB.85.024536
http://dx.doi.org/10.1103/PhysRevB.85.024536
http://dx.doi.org/10.1103/PhysRevB.85.024536
http://dx.doi.org/10.1103/PhysRevB.85.024536
http://dx.doi.org/10.1103/PhysRevB.85.064522
http://dx.doi.org/10.1103/PhysRevB.85.064522
http://dx.doi.org/10.1103/PhysRevB.85.064522
http://dx.doi.org/10.1103/PhysRevB.85.064522
http://dx.doi.org/10.1103/PhysRevB.87.224508
http://dx.doi.org/10.1103/PhysRevB.87.224508
http://dx.doi.org/10.1103/PhysRevB.87.224508
http://dx.doi.org/10.1103/PhysRevB.87.224508
http://dx.doi.org/10.1038/ncomms2933
http://dx.doi.org/10.1038/ncomms2933
http://dx.doi.org/10.1038/ncomms2933
http://dx.doi.org/10.1038/ncomms2933
http://dx.doi.org/10.1103/PhysRevLett.107.217002
http://dx.doi.org/10.1103/PhysRevLett.107.217002
http://dx.doi.org/10.1103/PhysRevLett.107.217002
http://dx.doi.org/10.1103/PhysRevLett.107.217002


TRANSPORT IN MULTIBAND SYSTEMS WITH HOT SPOTS . . . PHYSICAL REVIEW B 89, 245106 (2014)

[13] A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry, H.-P.
Cheng, and P. J. Hirschfeld, Phys. Rev. B 83, 184516 (2011).

[14] L. Fanfarillo, E. Cappelluti, C. Castellani, and L. Benfatto, Phys.
Rev. Lett. 109, 096402 (2012).

[15] M. Breitkreiz, P. M. R. Brydon, and C. Timm, Phys. Rev. B 88,
085103 (2013).

[16] R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).
[17] A. Rosch, Phys. Rev. Lett. 82, 4280 (1999).
[18] H. Kontani, Rep. Prog. Phys. 71, 026501 (2008).
[19] P. M. R. Brydon, J. Schmiedt, and C. Timm, Phys. Rev. B 84,

214510 (2011).
[20] I. Eremin and A. V. Chubukov, Phys. Rev. B 81, 024511 (2010).
[21] A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167

(1990).

[22] D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis,
A. Schneidewind, K. Hradil, D. Haug, C. T. Lin, B. Keimer,
and V. Hinkov, Nat. Phys. 6, 178 (2010).

[23] S. O. Diallo, D. K. Pratt, R. M. Fernandes, W. Tian, J. L.
Zarestky, M. Lumsden, T. G. Perring, C. L. Broholm, N. Ni,
S. L. Bud’ko, P. C. Canfield, H.-F. Li, D. Vaknin, A. Kreyssig,
A. I. Goldman, and R. J. McQueeney, Phys. Rev. B 81, 214407
(2010).

[24] M. J. Rice, Phys. Rev. 159, 153 (1967).
[25] E. H. Sondheimer, Proc. R. Soc. London Ser. A 268, 100

(1962).
[26] P. L. Taylor, Proc. R. Soc. London Ser. A 275, 200 (1963).
[27] D. I. Pikulin, C.-Y. Hou, and C. W. J. Beenakker, Phys. Rev. B

84, 035133 (2011).

245106-11

http://dx.doi.org/10.1103/PhysRevB.83.184516
http://dx.doi.org/10.1103/PhysRevB.83.184516
http://dx.doi.org/10.1103/PhysRevB.83.184516
http://dx.doi.org/10.1103/PhysRevB.83.184516
http://dx.doi.org/10.1103/PhysRevLett.109.096402
http://dx.doi.org/10.1103/PhysRevLett.109.096402
http://dx.doi.org/10.1103/PhysRevLett.109.096402
http://dx.doi.org/10.1103/PhysRevLett.109.096402
http://dx.doi.org/10.1103/PhysRevB.88.085103
http://dx.doi.org/10.1103/PhysRevB.88.085103
http://dx.doi.org/10.1103/PhysRevB.88.085103
http://dx.doi.org/10.1103/PhysRevB.88.085103
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1103/PhysRevB.84.214510
http://dx.doi.org/10.1103/PhysRevB.84.214510
http://dx.doi.org/10.1103/PhysRevB.84.214510
http://dx.doi.org/10.1103/PhysRevB.84.214510
http://dx.doi.org/10.1103/PhysRevB.81.024511
http://dx.doi.org/10.1103/PhysRevB.81.024511
http://dx.doi.org/10.1103/PhysRevB.81.024511
http://dx.doi.org/10.1103/PhysRevB.81.024511
http://dx.doi.org/10.1103/PhysRevB.42.167
http://dx.doi.org/10.1103/PhysRevB.42.167
http://dx.doi.org/10.1103/PhysRevB.42.167
http://dx.doi.org/10.1103/PhysRevB.42.167
http://dx.doi.org/10.1038/nphys1483
http://dx.doi.org/10.1038/nphys1483
http://dx.doi.org/10.1038/nphys1483
http://dx.doi.org/10.1038/nphys1483
http://dx.doi.org/10.1103/PhysRevB.81.214407
http://dx.doi.org/10.1103/PhysRevB.81.214407
http://dx.doi.org/10.1103/PhysRevB.81.214407
http://dx.doi.org/10.1103/PhysRevB.81.214407
http://dx.doi.org/10.1103/PhysRev.159.153
http://dx.doi.org/10.1103/PhysRev.159.153
http://dx.doi.org/10.1103/PhysRev.159.153
http://dx.doi.org/10.1103/PhysRev.159.153
http://dx.doi.org/10.1098/rspa.1962.0128
http://dx.doi.org/10.1098/rspa.1962.0128
http://dx.doi.org/10.1098/rspa.1962.0128
http://dx.doi.org/10.1098/rspa.1962.0128
http://dx.doi.org/10.1098/rspa.1963.0164
http://dx.doi.org/10.1098/rspa.1963.0164
http://dx.doi.org/10.1098/rspa.1963.0164
http://dx.doi.org/10.1098/rspa.1963.0164
http://dx.doi.org/10.1103/PhysRevB.84.035133
http://dx.doi.org/10.1103/PhysRevB.84.035133
http://dx.doi.org/10.1103/PhysRevB.84.035133
http://dx.doi.org/10.1103/PhysRevB.84.035133



