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Revealing Hofstadter spectrum for graphene in a periodic potential
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We calculate the energy bands for graphene monolayers when electrons move through a periodic electrostatic
potential in the presence of a uniform perpendicular magnetic field. We clearly demonstrate the quantum fractal
nature of the energy bands at reasonably low magnetic fields. We present results for the energy bands as functions
of both wave number and magnetic flux through the unit cells of the resulting moiré superlattice. The effects due
to pseudospin coupling and Landau orbit mixing by a strong scattering potential have been exhibited. At low
magnetic fields when the Landau orbits are much larger than the period of the modulation, the Landau levels are
only slightly broadened. This feature is also observed at extremely high magnetic fields. The density of states has
been calculated and shows a remarkable self-similarity like the energy bands. We estimate that for modulation
period of 10 nm the region where the Hofstadter butterfly is revealed is B � 2 T.
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I. INTRODUCTION

In recent experiments [1–3], graphene flake and bilayer
graphene were coupled to a rotationally aligned hexagonal
boron nitride substrate. The spatially varying interlayer elec-
trostatic potential gives rise to local symmetry breaking of the
carbon sublattice as well as a long-range moiré superlattice
potential in the graphene layer. At high magnetic fields, integer
conductance plateaus which were obtained at noninteger
filling factors were believed to be due to the formation of
the Hofstadter butterfly in a symmetry-broken Landau level.
These experiments were partially motivated by the pioneering
theoretical work of Azbel [4] and Hofstadter [5] on the
single-particle spectrum of a two-dimensional structure in the
presence of both a periodic potential and a uniform ambient
perpendicular magnetic field. In this case, the energies exhibit
a self-similar recursive energy spectrum. There are several
other effects due to the presence of boron nitride substrate.
The band gaps, which appear in graphene due to the substrate,
were theoretically modeled in [6]. The existence of a com-
mensurate state, when the crystal is adjusted by the presence
of the external periodic potential, has been investigated in [7].
Hofstadter fractal structures may also be realized in a variety of
systems, such as Jaynes-Cummings-Hubbard lattices [8]. We
should also mention a recent study of the energy spectrum of
Schrödinger electrons, subjected to general periodic potential
and magnetic field [9].

We note that the Hofstadter butterfly spectrum in moiré
superlattices has been demonstrated to be a possibility
for twisted bilayer graphene at achievable magnetic fields.
The opportunity to observe the Hofstadter pattern at lower
than previously predicted magnetic fields values provides
experimentalists with an alternative structure to observe the
Hofstadter butterfly. The band structure and the quantum Hall
effect for twisted bilayer graphene having various rotation
angles in the presence of magnetic field were investigated in
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[10–12]. The low-energy band, quantized into Landau levels
in accordance with the structure of the folded energy band,
evolves into a Hofstadter spectrum as the magnetic field is
increased. However, this effect which is also obtained in the
presence of modulation applied to a flat graphene sample
differs in a significant way from twisted bilayer graphene.
The reason is that only the component of magnetic field
perpendicular to the surface of twisted bilayer graphene has
any effect on the electrons thereby making its presence felt
nonuniformly unlike the case of modulated graphene. Landau
quantization of the electronic spectrum for twisted graphene
bilayers was also addressed in [13].

The fractal nature of the Hofstadter butterfly had captivated
researchers for many years [14–30]. The paper by Hofstadter
[5] was for the energy spectrum of a periodic square lattice
in the tight-binding approximation and subject to a perpen-
dicular magnetic field. Ever since that time, there have been
complementary calculations for the hexagonal lattice [14], the
two-dimensional electron gas (2DEG) with an electrostatic
periodic modulation potential [21,22,30], and even bilayer
graphene where different stacking of the two types of atoms
forming the sublattices was considered [31]. It has been
claimed that one may be able to observe evidence of the
existence of Hofstadter’s butterfly in such experimentally
measured quantities as density of states and conductivity of
the 2DEG [2,3,33].

The challenge facing experimentalists had been to carry
out experiments on 2D structures at achievable magnetic
fields where the Hofstadter butterfly spectrum is predicted.
However, both monolayer and bilayer graphene coupled to
hexagonal boron nitride provide a nearly ideal-sized periodic
modulation, enabling unprecedented experimental access to
the fractal spectrum [1–3].

In formulating a theoretical framework for the energy band
structure for a periodically modulated energy band structure
in a uniform magnetic field, one may adopt the procedure of
Hofstadter by using Harper’s equation which may be viewed
as a tight-binding approximation of the Schrödinger equation.
Additionally, assuming that the magnetic flux through the unit
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cell of the periodic lattice is a rational fraction p/q of the
flux quantum in conjunction with the Bloch condition for the
wave function, one obtains a p × p Hamiltonian matrix to
determine the energy eigenvalues since one only needs to solve
the problem in a unit cell. Hofstadter himself was concerned
about ever reaching magnetic fields where the rich self-similar
structure of the butterfly would be experimentally observed
due to the estimated high fields required to achieve this.

In this Rapid Communication, we supplement the recent
experimental work on graphene by first presenting a formalism
for calculating the energy band structure when an electrostatic
modulation potential is applied to a flat sheet in the presence of
a reasonably low perpendicular magnetic field. These results
are then employed in a calculation of the density of states
(DoS). Our results may be verified experimentally since the
DoS is directly proportional to the quantum capacitance [32].
The DoS may also be obtained from magnetic susceptibility
measurements. For a review of related energy band structure
studies, see [29]. We also compare our results with those for
a modulated two-dimensional electron gas and discuss the
difference. The papers by Hunt et al. [1], Dean et al. [2], and
Ponomarenko et al. [3] provided some encouragement that the
Hofstadter butterfly can be realized and a theoretical formalism
for the energy band structure of graphitic materials should
be welcome. Our method of calculations for the Hofstadter
spectrum may be extended to explain the ballistic transport
properties, presented in Refs. [1–3] to complement our results
for DoS.

II. GENERAL FORMULATION OF THE PROBLEM

In the presence of a uniform perpendicular magnetic field
B0 and periodic two-dimensional electrostatic modulation
potential defined by [30]

V(x, y) = V0

[
cos

(
πx

dx

)
cos

(
πy

dy

)]2N

, (1)

where N = 1, 2, . . . is an integer determining the size of the
scatterers, the parameter V0 is the modulation amplitude, and
dx, dy are the modulation periods in the x and y directions,
respectively, we rewrite the Hamiltonian operator as

H =
[

V(x,y) p̂x + eB0yx̂0 + ıp̂y

p̂x + eB0yx̂0 − ıp̂y V(x,y)

]
. (2)

For this new system, the magnetic flux per unit cell is � =
B0(dxdy), which is assumed to be a rational fraction of the flux
quantum �0 = �/e; i.e., β ≡ �/�0 = p/q, where p and q

are prime integers. Furthermore, we choose the first Brillouin
zone defined by |kx | � π/dx and |ky | � π/(qdy).

By using the Bloch-Peierls condition, the wave function of
this system may be expanded as

�±
�; n,�k||

(x, y)= 1√
2Ny

∞∑
s=−∞

eiky�
2
B (sp+�)K1�

K,±
n,kx−(sp+�)K1

(x, y),

(3)

where �k|| = (kx, ky), Ny = Ly/(qdy) is the number of unit
cells, which are spanned by b1 = (dx, 0) and b2 = (0, qdy),
in the y direction, Ly (→ ∞) is the sample length in the y

direction, K1 = 2π/dx is the reciprocal lattice vector in the

x direction, and � = 1, 2, . . . , p is a new quantum number
for labeling split p subbands from a kx-degenerated Landau
level in the absence of modulation. The above wave function
satisfies the usual Bloch condition:

�±
�; n,�k||

(x + dx, y + qdy)=eikxdx eikyqdy �±
�; n,k|| (x, y). (4)

Since the wave functions at K and K ′ points are decoupled
from each other for monolayer graphene, which is different
from bilayer graphene [34], we can write out explicitly the
full expression for the wave function at these two points. A
tedious but straightforward calculation yields the magnetic
band structure for this modulated system as a solution of
the eigenvector problem M

⊗ �A(�k||) = 0 with the coefficient

matrix
↔
M given by

{M}j, j ′ = [
Eμ

n − ε(�k||)
]
δn,n′δ�,�′δ

(n)
μ,μ′ + V�′,n′,μ′

�,n,μ (�k||), (5)

where δ
(n)
μ,μ′ = 1 for n = 0 and δ

(n)
μ,μ′ = δμ,μ′ for n > 0, j =

{n, �, μ} is the composite index, and { �A(�k||)}j = Aμ

n,�(�k||)
is the eigenvector. The eigenvalue εν(�k||) of the system is

determined by Det{ ↔
M} = 0. Here we calculate V�′,n′,μ′

�,n,μ (�k||) as
the Fourier transform. The detailed derivation of these matrix
elements could be found in [35].

III. NUMERICAL RESULTS AND DISCUSSION

The Hofstadter spectrum evolves from degenerate Landau
levels as the magnetic field is increased when applied to either
modulated graphene or the 2DEG. This modification does
not result in isomorphic graphs in the sense that one may
be mapped onto the other with one-to-one correspondence. In
particular, the highest energy levels expand at different rates
for the two systems. Figure 1 shows that for a 2DEG, the
lowest perturbed Landau subband which originates from the
unperturbed n = 0 Landau level merges with the emerging

FIG. 1. (Color online) Energy band structure of a weakly mod-
ulated 2DEG as a function of magnetic flux ratio p/q. Panel (a)
presents the four lowest Landau subbands for chosen modulation
strengthV0 = 0.5 �ωc, N = 10, and kx = ky = 0.3 in units of 2π/dx .
Panel (b) shows the detailed band structure of the n = 4 Landau level
for a 2DEG. Panel (c) shows a zoom-in of the low-field portion of the
two lowest levels for a 2DEG, demonstrating self-repeated structures
for all levels and magnetic field.
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FIG. 2. (Color online) Band structure of strongly modulated
graphene as a function of magnetic flux ratio p/q. Panel (a) gives
the lowest few Landau subbands from both valence and conduction
bands for a chosen modulation V0 = 2.0 �ωc and kx = ky = 0.3/dx .
Panels (b) and (c) show details of the band structure of the n = +2
and n = +3 Landau levels. The levels are not mixed.

butterfly spectrum at the highest magnetic field compared
to the n = 1,2,3,4 Landau levels in the conduction band.
The onset of the butterfly takes place around p/q = 1/5
which would correspond to a magnetic field B ≈ 2 T for
dx = dy = 10 nm. Modulated 2DEG is special in the sense that
for weak V0 the Landau subbands do not overlap, which is in
contrast with graphene where the overlap always takes place,
except for the few lowest subbands, which are shown in Fig. 2.
Furthermore, our calculations have shown that for graphene
the symmetry between the valence and conduction bands
is destroyed by modulation. There is always mixing of the
subbands regardless of the value for V0. The lowest subband
is shifted upward like the other subbands but is not widened
as much as the higher subbands. The feature of self-similarity
is also apparent in the excited subbands at intermediate and
high magnetic fields. There is only a shift and broadening of
the subbands in the low and high magnetic field regimes for
modulated 2DEG. We note that in order to obtain self-repeated
fractal Hofstadter pattern, which obviously reveals a pattern
of symmetry, we ought to plot the energy subbands using a
scaling procedure outlined as follows: En = {εn − V0C2

n(1 +
An)[(2N )!/(N !)2]2/42N}(�ωc)−1, where An = (1 − δn,0) and
Cn = δn,0 + (1 − δn,0)/

√
2, where 2N is the power of the

modulation potential function and V0 is the modulation
amplitude. This scaling is appropriate for modulated electronic
systems. A similar prescription for the 2DEG Hofstadter bands
was used in [30], although the corresponding eigenvalue equa-
tion is different. This discussion is applicable for nonscaled
subbands.

The results of our calculations for the energy eigenvalues
of modulated graphene as a function of magnetic flux appear
in Fig. 2. For weak magnetic fields, the Landau levels in
both valence and conduction bands are slightly broadened into
narrow subbands but shifted upward by the perturbing potential
V0. Another effect due to modulation is to cause these unscaled
Landau subbands to have negative slope at weak magnetic

FIG. 3. (Color online) Band structure of a modulated graphene
monolayer as a function of magnetic (flux ratio p/q). Panel (a)
demonstrates the lowest few Landau subbands from both valence
and conduction bands for a chosen modulation V0 = 5.0 �ωc and
kx = ky = 0.3. Panels (b) and (c) show the structure of (n = +2) and
(n = +3) Landau levels. The levels are mixed.

fields which then broaden enough at higher magnetic fields to
produce Landau orbit mixing, reflecting the commensurability
effect for the magnetic and lattice Brillouin zones. In Fig. 3,
we demonstrate a Hofstadter dispersion plot for the case when
at least two Landau levels are mixed, featuring a larger fractal
self-repeated structure, which incorporates more than one
energy level.

In Fig. 4, we present the dispersion curves as a function
of kxdx for chosen value of V0 and two pairs of values of p

and q corresponding to two different magnetic field strengths.
In each case, there are p Landau subbands; q/p determines
the number of oscillation periods in the first Brillouin zone
for each of these subbands. Both the valence and conduction
subbands are shifted upward but the conduction subbands are
proportionately shifted more than the valence subbands for
each corresponding Landau label for the unmodulated struc-
ture. This shift is increased when the modulation amplitude
is increased. The original zero-energy Landau level is only
slightly broadened and is the least affected by V0. If the
sign of the modulation amplitude is reversed to correspond
to an array of quantum dots, then the subbands are all shifted
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FIG. 4. (Color online) Energy dispersion as functions of kxdx for
graphene and 2DEG with chosen values of modulation potential V0

and magnetic flux p/q in units of the flux quantum. The energy is
scaled in terms of vF

√
Be�.

downward from their positions for an unmodulated monolayer
graphene.

We also calculate and display the density-of-states plots,
which demonstrate the general magnetic field dependence of
the Hofstadter spectrum, showing the general fractal structures
independent of the specific values of the wave vector �k‖. Based
on the calculated eigenenergy εν(�k||), we can further calculate
the electron density of states in this system, given by

ρ(ε, B0) = 1

2π2qdxdy

∑
ν

∫ π/dx

−π/dx

dkx

×
∫ π/(qdy )

−π/(qdy )
dky

/π

[ε − εν(�k||)]2 + 2
, (6)

where  represents the level broadening. Making use of our
calculated energy eigenvalues εν(�k), we further determine
the electron density of states for monolayer graphene in the
presence of a uniform perpendicular magnetic field.

A plot of the density of states as a function of magnetic
field basically reproduces the Hofstadter self-repeating fractal
structure, averaged over all allowed values of �k. In our
calculations, the delta function is chosen as a Lorentzian. This
leads to the finite width for the density of states for various
values of energy ε. In this regard, one should look at Ref. [36],
in which the density of states has been calculated for carbon
nanotubes for the various cases of magnetic field strength and
orientation.

Figure 5 shows ρ(ε,B) B. We chose this specific set of
results obtained for the density-of-states to demonstrate the
effect due to the modulation in order to show how the
Hofstadter structure may be suppressed by the strong δ-like
peaks at low magnetic fields.

0.10 0.200.12 0.14 0.16

0.15 0.17 0.19 0.21 0.25

FIG. 5. (Color online) Density-of-states plots for modulated
2DEG and graphene. Panel (a) shows the density of states for a 2DEG
with modulation V0 = 0.5 �ωc and modulation parameter N = 5.
Panel (b) demonstrates the corresponding situation for graphene with
V0 = 1.5 �ωc and N = 3. For both (a) and (b), the density-of-states
amplitude is increased proportionally to the value of magnetic field
in order to make the Hofstadter structure visible at large fields.

With regard to the effect of the electrostatic modulation
on the Hofstadter spectrum, we would like to comment on
how the standard Dirac cone type of energy dispersion would
be modified in the presence of modulation only, without the
magnetic field. This situation could be described by the follow-
ing Hamiltonian: HV = σ · p + V(x,y)I with V(x,y) given in
Eq. (1) and I is the unit matrix. Obviously, we are dealing
with the continuous spectrum, accompanied generally by a
strong anisotropic dependence on kx and ky wave numbers.
The wave function, corresponding to such periodic potential
also satisfied the Bloch condition (4). Such a Hamiltonian with
a periodic potential in one dimension was considered in [37].
Their results show that new zero energy states emerge and
the wave function corresponds to an overdamped particle in a
periodic potential. These zero energy solutions in fact represent
new Dirac points. The presence of the zero-averaged wave
number gaps as well as extra Dirac points in the band structure
for the graphene-based one-dimensional superlattices were
also found in [38]. The effect of nonhomogeneous magnetic
and electric fields was addressed in [39]. Consideration of
one-dimensional modulation, as discussed in Ref. [40], could
lead to novel energy dispersions.

IV. CONCLUSIONS

In summary, the well established Dirac fermion model is
utilized to investigate the Landau level spectra of monolayer
graphene in the presence of a periodic electrostatic potential.
The intrinsic pseudospins from different Landau orbits which
mix effectively give rise to multiple splitting of Landau
levels. By incorporating Bloch wave function characteristics,
we established an eigenvalue equation which yields fractal
self-similar structure for the allowed energy band structure
determined by the orbital pseudospin and magnetic field
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signatures. In our calculations for the density of states, the
physical origins of self-similarity are clearly established as
being accessible experimentally. In particular, the emergence
of Hofstadter’s butterfly spectrum lies within a reasonable
range of magnetic field that is currently available. Our
numerical results clearly demonstrate magnetic field control
of the energy density locations of the charge carriers and
provide a basis for future experiments where regions of high

absorption and conductivity may be observed at certain field
strength. On the contrary, in the absence of magnetic field, the
density-of-state lines are aligned next to each other.
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