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The electronic properties of graphene under any arbitrary uniaxial strain field are obtained by an exact mapping
of the corresponding tight-binding Hamiltonian into an effective one-dimensional modulated chain. For a periodic
modulation, the system displays a rich behavior, including quasicrystals and modulated crystals with a complex
spectrum, including gaps and peaks at the Fermi energy and localization transitions. All these features are
explained by the incommensurate or commensurate nature of the potential, which leads to a dense filling by
diffraction spots of the reciprocal space in the former case. The essential features of strain are made specially
clear by analyzing a special momenta that uncouples the model into dimers.
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Graphene is a two-dimensional (2D) carbon crystal [1].
This atom-thin elastic membrane has amazing physical prop-
erties [1–4]. Notably, graphene has the highest known interval
of elastic response (up to 20% of the lattice parameter [5]). The
tailoring of its electronic properties by controlled mechanic
deformation is a field known as “straintronics” [6–9]. Also,
graphene seems to be the ideal candidate to replace Si
in transistors. However, when graphene grows in top of
a substrate with different lattice parameters or structure,
strain and corrugation appear [10]. The understanding of how
strain affects the graphene’s electronic properties is clearly a
fundamental issue, still in the process of development [11–17].
How strain affects the electronic spectrum and wave functions?
By mapping the limiting case of any uniaxial strain to an
effective one-dimensional Hamiltonian, we prove that the
answer is unexpectedly rich. As we will see, in certain
circumstances strain promotes a quasiperiodic fractal elec-
tronic behavior due to the complex self-similar structure of
the reciprocal space. Furthermore, it is known that a fractal
behavior can be obtained in rotated bilayer graphene under
magnetic fields [18–21]. Here we prove that a similar effect
can be achieved by strain in single-layer graphene. Such effect
should be generated by growing graphene in top of a crystal
with a slightly different lattice parameter, as is now technically
feasible [20]. As is known, this leads to a periodic strain [10].
Then a quasiperiodic behavior should be obtained when the
ratio of lattice parameters becomes incommensurate. Other
two-dimensional materials like MoS2 or NiSe2 are expected
to present the same effect [22–24].

Let us start with a zigzag graphene nanoribbon, as shown
in Fig. 1, with a uniaxial strain applied in the y direction.
Although our methodology can be applied for uniaxial strain
in the zigzag or arm chair directions, here we will concentrate
only in one kind, since we want to bring out the essential
features of the model.

The new positions of the carbon atoms are r ′ = r + u(y),
where r = (x,y) are the unstrained coordinates of the atoms
and u(y) = (0,u(y)) is the corresponding displacement. The
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electronic properties of graphene are well described by a one
orbital next-nearest neighbor tight-binding Hamiltonian in a
honeycomb lattice, given by [4]

H = −
∑
r ′,n

tr ′,nc
†
r ′cr ′+δ′

n
+ H.c., (1)

where r ′ runs over all sites of the deformed lattice and δ′
n are

the corresponding vectors that point to the three next nearest
neighbors of r ′. For unstrained graphene, δ′

n = δn, where

δ1 = a

2
(
√

3,1), δ2 = a

2
(−

√
3,1), δ3 = a(0, − 1). (2)

The operators c
†
r ′ and cr ′+δ′

n
correspond to creating and

annihilating electrons on lattice sites. The hopping integral
tr ′,n depends upon strain, which induces bond length changes
that increase or decrease the overlap between wave func-
tions. Such variation with the distance can be calculated
from [25,26] tr ′,n = t0exp[−β|δ′

n|/a − 1)], where β ≈ 3, t0 ≈
2.7eV corresponds to nonstrained pristine graphene, and a

is the bond length, which will be taken as a = 1 in what
follows.

For strain in one direction, we can map exactly the
Hamiltonian into an effective one dimensional system as
the nanoribbon is made from cells of four nonequivalent
atoms [27] with coordinates r ′ = (x,y ′(m)

s ), where s = 1,2,3,4
and m denotes the number of the cell, as sketched out in Fig. 1.
For graphene without strain, the positions in the y direction
are given by y

(m)
1 = 3m, y

(m)
2 = 3m + 1/2, y

(m)
3 = 3m + 3/2,

and y
(m)
4 = 3m + 2. On each of these sites, a strain field u(y) is

applied, resulting in new positions y ′(m)
s = y(m)

s + u(m)
s where

u(m)
s is a short hand notation for u(y(m)

s ). For uniaxial strain, the
symmetry along the nonstrained x direction is not broken. Thus
the solution of the Schrödinger equation H�(r ′) = E�(r ′) for
the energy E has the form �(r ′) = exp(ikxx)ψs(m), where kx

is the wave vector in x direction and ψs(m) is only a function
of y ′(m)

s , where s and m label the sites along the zigzag path in
the vertical direction, as indicted in Fig. 1. Taking into account
that for each bond that cross the dotted lines in Fig. 1, we need
to add a phase exp(±ikx

√
3/2) for the wave function, it is easy
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FIG. 1. (Color online) Mapping of zigzag strained graphene into
a chain. The directions x and y are defined at the left. The strain in the
y direction is sketched out using a wavy curve, while the boundaries
of the unitary cell in the x direction are shown with dots. Inside
the cell, four kinds of inequivalent sites appear (shown in different
colors), denoted by y(m)

s . The effective Hamiltonian of the zigzag
path in the y direction that joins sites y(m)

s can be mapped into the
chain that appears below, where the label j corresponds to the site
along the zigzag path as indicated. For the special momenta kx =
π/

√
3, the model breaks down into dimers, represented by bold links

in the chain.

to obtain the following Schrödinger equation,

Eψ1(m) = c(kx)t (m)
1 ψ2(m) + t

(m−1)
4 ψ4(m − 1),

Eψ2(m) = t
(m)
2 ψ3(m) + c(kx)t (m)

1 ψ1(m),
(3)

Eψ3(m) = c(kx)t (m)
3 ψ4(m) + t

(m)
2 ψ2(m),

Eψ4(m) = t
(m)
4 ψ1(m + 1) + c(kx)t (m)

3 ψ3(m),

where c(kx) = 2 cos(
√

3kx/2) and t (m)
s = t0exp[−β(u(m)

s+1 −
u(m)

s )δy

s+1,s]. Here, δ
y

s+1,s denotes the y components of each
of the three vectors δ1,δ2,δ3 that join sites with y coordinates
y(m)

s and y
(m)
s+1 for unstrained graphene. In this formula, one

needs to apply the conditions y
(m)
5 = y

(m+1)
1 and y

(m)
0 = y

(m−1)
4

at the boundary of each cell. Furthermore, the sequence of y(m)
s

can be written as y(j ) = {3j + [1 − (−1)j /2]}/4, where j is
an integer that labels the site number along the zigzag path in
the y axis, given by j = 4(m − 1) + s. Finally, one can write
a Hamiltonian H (kx) without any reference to cells of four
sites,

H (kx) =
∑

j

[t2j c
†
2j+1c2j + c(kx)t2j+1c

†
2j+2c2j+1] (4)

with t[4(m−1)+s] = t (m)
s . This gives

tj = t0 exp

[
−β

3 + (−1)j+1

4
(uj+1 − uj )

]
, (5)

FIG. 2. (Color online) Spectrum as a function of σ for λ = 2
and φ = (4/3)πσ considering the exponential dependence of tr ′,n,
obtained by solving the Schrödinger’s equation for a system of 200
atoms, using 300 grid points for sampling kx and with periodic
boundary conditions. The inset presents a blow up near zero energy.
The different colors represent the localization participation ratio
α(E).

where it is understood that uj is just the displacement of the
j th atom along the vertical zigzag path, i.e., uj ≡ u(m)

s . Now
H (kx) describes a chain for any arbitrary uniaxial strain, as
indicated in Fig. 1.

The exact mapping can serve as a test for approximate
theories of strain in graphene. Consider, for example, an
oscillating strain u(y) = (2/3)(λ/β) cos[(8π/3)σ (y − 1/2) +
φ] of the type expected when graphene grows on top of a
material with a different lattice [10].

Figure 2 shows the complex spectrum of H as a function of
σ , revealing a behavior that is akin to the Hofstadter butterfly
that appears in the Harper model [28]. The most surprising
result is the appearance of gaps around the Femi level E = 0
for some values of σ . We can get a better understanding by
using a linear approximation for tr ′,n, assuming a small strain
as usual in straintronics. Under such approximation, Eq. (5)
becomes

tj

t0
= 1 + λξ (j + 1) sin(πσξ (j )) sin(2πσj + φ), (6)

where ξ (j ) = 1 + [(−1)j /3].
The resulting Hamiltonian describes one-dimensional qua-

sicrystals for irrational σ , and modulated crystals for rational
σ . Although the model resembles an off-diagonal Harper
model [29], there is an important extra modulation provided by
ξ (j + 1) sin (πσξ (j )). In Fig. 3, we present the resulting bands
as a function of kx and the corresponding density of states
(DOS) for σ = 0 (pure graphene), 3τ/4, and 3/4, where τ is
the golden ratio τ = (

√
5 − 1)/2. Several interesting features

are observed. The first is the disappearance of the Dirac cone
for cases (c) and (e), observed around E = 0 for pure graphene.
In case (c), degenerate states appear at E = 0 and the DOS
is spiky. On the other hand, in case (f) the DOS is smooth.
Only the Van Hove singularities observed for E = ±1 in
pure graphene move and split in two. It is also interesting
the behavior of the spectrum as a function of λ for a given
σ . In Figs. 4(a) and 4(b), we present the cases σ = 3τ/4 and
σ = 3/4. For σ = 3/4, a gap opens above a certain critical
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FIG. 3. (Color online) Band structure (left column) and density
of states (right column) using φ = (4/3)πσ and λ = 2 for, (a) and (b)
unstrained graphene lattice, (c) and (d) strained graphene with σ ≈
3τ/4, (e) and (f) strained graphene with σ = 3/4. Spikes appear for
cases (c) and (d), while a gap is seen in (e) and (f) at E = 0. Observe
in (e) and (f) how the DOS is similar to linear chains perturbed by a
small interaction.

λC , while for σ = 3τ/4, no gaps are seen. Let us explain this
rich behavior.

An analysis of Fig. 3(e) suggests that for σ = 3/4,
the behavior is akin to a system of two disconnected
chains. Such analysis is confirmed by evaluating Eq. (5)
using σ = 3/4. In this particular case, the strain has the
same period as the four site cells, thus t (m)

s turns out
to be independent of m, and t (m)

s = 1 − 4(λ/3) sin(3πs/2).
The corresponding band edges are given by a matrix
of 4 × 4 whose solutions, in terms of the parameters
λ and kx , are E(λ,kx) = ±[

√
1 + (8λ/9)2 cos2 (

√
3kx/2) ±

2 cos (
√

3kx/2)]. A gap opens when λ > λC = 9
√

3/8. For
λ = λM = 9/4, the system behaves as two disconnected
strips of triangular cells, explaining the observed spectrum
of Fig. 3(e). The gap (
) goes as 
 ∝ (λ − λC) as confirmed
by Fig. 4(b).

Figures 3(c) and 4(a) are even more interesting. Here the
strain is incommensurate with the four site cell period. The
system is thus quasiperiodic. As is well known, perturbation

FIG. 4. (Color online) Energy spectrum of graphene under uni-
axial sinusoidal strain in the linear approximation as a function of
λ for (a) σ = (3τ/4) and (b) σ = 3/4. In (b), a gap opens for
λ > λC = 9

√
(3)/8, while for λ = 9/4 the system breaks down

into disconnected strips of triangular cells. The colors represent
the localization participation ratio α(E). Notice the transition at
λ = λM . The phase was taken as φ = (4/3)πσ , and periodic boundary
conditions were used.

theory can not be used at any order, since the problem is akin
to the small divisor problem due to the dense appearance
of diffraction peaks in reciprocal space [30]. This fact is
important since if a Fourier expansion of the operator cr ′

is performed as cr ′ = ∑
k exp[k · (r + u(r))]ck, where k

is a reciprocal vector, then one needs to consider a dense
distribution [30,31] in

∑
k exp[k · u(r)] for incommensurate

cases. This explains the spiky DOS, since for each diffraction
spot, a singularity appears [31,32]. To overline this, let us
work out a particular example.

For the value kx = π/
√

3, we have that c(kx) = 0. This
is valid for any λ or σ . The corresponding Hamiltonian
H (kx = π/

√
3) given by Eq. (4) becomes just a model for

disconnected dimers, represented in the chain of Fig. 1 as bold
lines. The eigenvalues are obtained from an effective 2 × 2
matrix, from where E(kx = π/

√
3) = ±t2l , with l an integer.

Using Eq. (6), the eigenvalues are E(kx = π/
√

3) = ±[1 +
(2/3)λ sin(4πσ/3) sin(4πσ l + φ)]. In the case of unstrained
graphene, E(kx = π/

√
3) = ±1. These two values correspond

to the highly degenerate peaks observed in the DOS of
Fig. 3(b). Each peak has a degeneracy N/2, where N is the
number of atoms in the zigzag path. These peaks are associated
with a Van Hove singularity, since standing waves due to
diffraction appear [31–33]. For σ = 3/4, E(kx = π/

√
3) =

±1. The degeneracy remains, as seen in Fig. 3(e), although it
does not produce peaks because all other states are also highly
degenerate. However, for irrational σ , the factor sin(4πσ l + φ)
behaves as a pseudorandom number generator which fills in
a dense way the interval [30] [−1,1]. The degeneracy is thus
lifted. The spectral type is pure point and contained in the
intervals [−1 − 2λ/3, − 1 + 2λ/3] and [1 − 2λ/3,1 + 2λ/3],
leading to a gap of size 4λ/3 if λ < 3/2. The splitting is evident
at the middle of kx axis in Fig. 3(c), and when compared
with Figs. 3(a) and 3(e). What happens to the wave-function
localization? For irrational σ , the eigenfunctions are localized
in dimers on the y direction. Obviously, since all E(kx =
π/

√
3) are different, an infinite number of reciprocal vectors

are needed to generate the corresponding wave functions.
Thus, even in this simple case the usual perturbation theory
breaks down. However, for rational σ , the eigenvalues are
degenerate. Any linear combination of the wave function in
dimers is a solution, leading to delocalized states around
kx = π/

√
3. Such behavior is revealed by calculating the

normalized participation ratio, defined as [34]

α(E) = ln
∑N

j=1 |ψ(j )|4
ln N

. (7)

The factor α(E) is a measure of localization. In Figs. 2
and 4, the colors indicate the value of α(E). For Fig. 2,
a fractal behavior reveals how localization depends on the
number theory properties of σ . In Fig. 4(b), the case σ = 3/4
does not present appreciable changes, as expected from the
previous discussion. Only at λ = λM there is a localization
transition as a consequence of the breaking into disconnected
chains, leading to the vertical red line observed in Fig. 4(b).
The case σ = 3τ/4 shows the expected localization around
E = ±1 as λ → ∞.

Finally, it is worthwhile mentioning how some of the
observed effects are related with the zigzag states reported
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in graphene nanoribbons [35–37] and topological states [38].
In particular, the DOS in the irrational case resembles the case
of narrow graphene nanoribbons [35]. The reason for this is
simple. For irrational σ , there are sites j in which tj ≈ 0,
since tj mimics a random number generator. In such sites,
the lattice is almost decoupled in the y direction, producing
many effective nanoribbons of different widths. This leads to
singularities that are strikingly similar to narrow nanoribbons,
as observed inFig. 3(d). In fact, a similar phenomena happens
for rational σ and big λ. For example, if σ = 3/4 and λ = λD ,
tj is zero at the end of the unitary one dimensional cell and
we obtain many effective nanoribbons, but this time all with
the same four atom width. In a similar way, the states at the
Fermi energy can be explained in many different way: as zigzag
states [35] due to an effective decoupling in nanoribbons, as an
imbalance in the number of atoms in each bipartite lattice [33]
or as strictly confined states [33]. These states have a toplogical
nature, as we have verified by changing φ and using different
boundary conditions.

In conclusion, we have provided an exact mapping into a
one dimensional chain for any uniaxial strain in graphene.
For a periodic strain, effective quasiperiodic or modulated
crystals systems were obtained. Due to the dense nature of
the reciprocal space, the spectrum and localization properties
presented a fractal pattern. Gaps, singularities, and localized
states were observed. These features can not be predicted
by simple perturbation theory techniques. The quasiperiodic
nature of the problem found here, suggests the paramount
importance of disorder due to the intrinsic instability of such
spectra [39–42] and the possibility of building equivalent
superlattices [43]. In future work, we will study edge states,
since they are expected to present a nesting of topologi-
cal length scales, given by the Chern numbers, within a
fractal pattern, as observed in the Harper and Fibonacci
models [38].

This work was supported by DGAPA-PAPIIT IN-102513
and by DGTIC-NES center.
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