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Conventional and spin-related thermoelectric effects in transport through a magnetic tunnel junction with a
large-spin impurity, such as a magnetic molecule or atom, embedded into the corresponding barrier are studied
theoretically in the linear-response regime. The impurity is described by the giant spin Hamiltonian, with
both uniaxial and transverse magnetic anisotropy taken into account. Owing to the presence of the transverse
component of magnetic anisotropy, the spin of a tunneling electron can be reversed during scattering on the
impurity, even in the low-temperature regime. This reversal appears due to the exchange interaction of tunneling
electrons with the magnetic impurity. We calculate Seebeck and spin Seebeck coefficients, and analyze their
dependence on various parameters of the spin impurity and tunnel junction. In addition, conventional and spin
figures of merit as well as the electronic contribution to heat conductance are considered. We also show that pure
spin current can be driven by a spin bias applied to the junction with spin impurity, even if no electron transfer
between the electrodes can take place. The underlying mechanism employs single-electrode tunneling processes
(electrode-spin exchange interaction) and the impurity as an intermediate reservoir of angular momentum.
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I. INTRODUCTION

The potential success of novel spintronic nanoscopic
devices relies on a complete understanding of fundamental
mechanisms governing the transport of charge, spin, and
energy. In fact, the thermoelectric and thermomagnetic effects
have been the subject of research in condensed-matter physics
for nearly two centuries [1]. However, recently one observes
a renaissance of interest in the phenomena based on the
interplay of transport of charge, spin, and energy, especially in
nanoscopic systems [2–7].

In general, the thermoelectric phenomena in metals, such
as the Seebeck or Peltier effects (see Sec. II), stem from
the electron-hole asymmetry [1,6]. Whereas the consequences
of this fact were well understood for bulk and continuous
systems, the experiment of Smith et al. [8] demonstrating
the thermoelectric effect in a tunnel junction (formed by
two metallic electrodes separated by an oxide barrier) proved
that this is valid in principle also for mesoscopic systems
consisting of discrete subsystems—each of them being in
local equilibrium, but not necessarily in equilibrium with other
subsystems. The idea was further developed by Johnson and
Silsbee [9], who suggested that if at least one of the electrodes
is ferromagnetic and the junction is out of thermodynamic
equilibrium, not only do thermally stimulated voltages and
heat transport arise, but also electrically and thermally induced
magnetization currents can appear. Furthermore, they also
predicted the reciprocal effects, i.e., “magnetically” stimulated
electrical and thermal currents. Independently, a theory of
linear electrical and thermal transport between two metallic
reservoirs interconnected via ideal leads to an arbitrary
disordered system was developed by Sivan and Imry [10].
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The interest in thermoelectric properties of nanoscopic
systems, however, has been only awakened by first experiments
involving quantum dots [11–15], which have been followed by
numerous theoretical works covering the limits of both weak
[16–25] and strong [26–33] tunnel coupling between the dot
and electrodes. An important practical aspect accompanying
research on thermoelectric effects is their potential significance
for harnessing power dissipated as heat, and thus reducing the
loss of energy [34]. In this respect, a prospective candidate
as heat-voltage converters seem to be single molecules.
Experiments on molecular junctions employing a scanning
tunneling microscope (STM) setup and comprising up to a
few molecules [35–42] have shown that such systems remain
thermoelectrically responsive at temperatures as high as room
temperature, and their specific thermoelectric properties can
be to some extent tailored by chemical engineering. This, in
turn, has also triggered a significant interest in theoretical
description of thermoelectric transport through molecular
junctions [43–47]. It has been suggested that the efficiency
of such devices can be improved due to a violation of
the Wiedemann-Franz law occurring as a consequence of
the system’s energy quantization and Coulomb interactions
[26,29,48–51].

Since electrons—apart from charge—possess also a spin
degree of freedom, one should thus expect the interplay
between spin and heat currents leading to some interesting
thermoelectric phenomena [5]. In general, these can be
further distinguished into independent electron and collective
effects [6]. The former group comprises effects which can be
explained by a model of two independent spin channels, and
thus it is limited to systems where the spin-flip diffusion length
of conduction electrons is sufficiently long with respect to the
system’s length scale. On the other hand, in the case of the
effects belonging to the second group, the spin currents are
not simply only due to a particle current but they are also
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carried by magnon excitations [52–54]. Consequently, unlike
the independent electron effects which are limited to metallic
systems, the collective thermoelectric effects can arise not only
in metallic ferromagnets [55–57], but also in semiconducting
ferromagnets [58] or even in insulating magnets [59,60].

The spin-dependent thermoelectric effects, which are the
subject of the present paper, have been experimentally studied
in a variety of nanoscopic systems, such as magnetic tunnel
junctions [6,61–63], nanopillars [64–66], nonlocal spin-valve
devices [67,68], as well as multilayered [69,70] and gran-
ular [71] systems. Moreover, such effects have also been
extensively studied theoretically in magnetic tunnel junctions
[72–75], local [76] and nonlocal [77] spin valves, quantum dots
[78,79], wires [80], wells [81], or even in single-molecule-
magnet junctions [82,83]. Interestingly enough, it has been
predicted, for example, that spin-polarized thermoelectric
heat currents can reverse the magnetization direction of a
ferromagnet [84], which appears due to the spin-transfer torque
associated with purely thermal currents. This effect has been
later confirmed by experiment [85]. Recently, a thermoelectric
equivalent of spin accumulation, i.e., spin heat accumulation,
manifested as different effective temperatures for the spin-up
and spin-down electrons, has been observed in a nanopillar
spin valve [86,87].

In the present paper we focus on spin-dependent
thermoelectric effects that can arise in linear-response
transport through a nanoscopic junction in which an impurity
of spin S > 1/2 is embedded into a barrier. Unlike in the case
considered by Johnson and Silsbee, [9] spins of conduction
electrons tunneling through the junction can be reversed
owing to scattering on the impurity. Such spin-flip scattering
processes lead to exchange of angular momentum between the
conduction electrons and the impurity, which in turn allows for
the control of spatial orientation of the impurity’s spin [88–90].

In the linear-response regime and when no excitations are
permitted, the spin exchange processes can result in transitions
of the impurity only between degenerate spin states whose an-
gular momentum differs by the quantum of angular momentum
�. For a spin-isotropic impurity, where all 2S + 1 spin states
are degenerate, this means that all these states can in principle
contribute to transport. However, usually a spatial symmetry of
a high-spin system is broken by the presence of environment,
e.g., as for a magnetic atom placed on a surface [91], which
renders the system spin anisotropic. If only the uniaxial
anisotropy exists, the two ground spin states are separated by
an energy barrier. At sufficiently low temperatures, i.e., lower
than the zero-field splitting energy between the ground and
first excited doublets—being also the largest excitation energy
between two consecutive states, the impurity occupies then
only the ground-state spin doublet, and no direct transitions are
allowed between the doublet ground states. In consequence,
in the linear-response regime only spin-conserving transport
processes are possible. The situation changes when the
transverse magnetic anisotropy is present in the system, as
it allows for mixing of states with different Sz numbers. In
particular, for a half-integer spin one obtains a ground-state
Kramers’ doublet, as follows from time-inversion symmetry.

In this paper we consider the situation when no energy
excitations of the impurity are admitted. Thus, when the
impurity is anisotropic, the temperature is limited to the

thermal energies smaller than the impurity excitation energy,
and in particular the zero-field splitting energy. Accordingly,
only ground-state doublet is involved in the linear-response
regime. On the other hand, when the impurity is isotropic,
then all impurity states are degenerate and all are involved
in transport in the linear-response regime. Thus, the above
temperature restriction becomes irrelevant, similarly as in the
case of a junction with no impurity. In Sec. II we provide
some background on thermoelectric phenomena. Description
of thermoelectricity in transport through a junction with spin
impurity in the barrier is presented in Sec. III. Numerical
results and their discussion are given in Sec. IV, which
is followed by the section comprising final conclusions
(Sec. V).

II. BACKGROUND ON THERMOELECTRIC PHENOMENA

Before introducing the model system to be considered in
this paper and calculating the thermoelectric parameters of
interest, we find it instructive to present some fundamental
concepts regarding the conventional thermoelectricity (for a
more detailed discussion see, e.g., Refs. [1,4,92–95]), and then
their generalization to the corresponding spin thermoelectric
phenomena. For this purpose, let us consider a tunnel junction
in which two metallic electrodes (reservoirs of electrons)
are separated by a tunnel barrier. First, we consider the
case when spin voltage is irrelevant (conventional thermo-
electricity), and then we also include the spin voltage (spin
thermoelectricity).

A. Conventional thermoelectricity

When a constant voltage δV and thermal δT bias is
maintained across the junction, it results in a stationary
net flow of charge and heat [2,8,9,96]. Moreover, since
charge and energy are in fact both carried by electrons
(we do not consider here energy carried by phonons),
the corresponding charge IC and heat IQ currents are re-
lated, leading to a variety of thermoelectric effects and
relations.

In order to reveal relation between charge and heat
transport, let us first focus on the transport of electrons under
isothermal conditions, δT = 0. In such a case, the charge
current IC is driven exclusively by a voltage bias δV , and
the relevant transport coefficient is the well-known electrical
conductance G,

G =
(

IC

δV

)
δT =0

. (1)

However, even though δT = 0, there is a heat current as-
sociated with the electrical current, and this phenomenon is
referred to as the Peltier effect. The relevant relation between
heat IQ and charge IC currents is then described by the Peltier
coefficient �,

� =
(

IQ

IC

)
δT =0

. (2)

Another limiting situation appears when the heat transfer
through the system occurs due to thermal bias in the absence
of a charge current, IC = 0. The latter condition can be easily
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achieved when the system is in an electrically open circuit.
The electronic contribution to the thermal conductance κ is
then defined as

κ =
(

IQ

δT

)
IC=0

. (3)

Although the resultant flow of electrons is now equal to zero,
a voltage difference between the two reservoirs appears as
a result of thermal gradient. This phenomenon is known as
the Seebeck effect and is characterized by the thermopower
(Seebeck coefficient) S,

S = −
(

δV

δT

)
IC=0

. (4)

Note that in order to achieve the condition IC = 0 in an
electrically closed system, one needs to apply an external volt-
age compensating the charge current due to the temperature
gradient.

Finally, the overall thermoelectric efficiency of a system is
described by the so-called figure of merit ZT,

ZT = S2GT

κ
, (5)

which is a dimensionless quantity expressed in terms of the
experimentally measurable coefficients G, κ , and S. Note that
κ in Eq. (5) generally includes also the thermal conductance
due to phonons, which is not considered here.

B. Spin thermoelectricity

The concepts briefly described above can be further
generalized to the transport model based on two nonequivalent
spin channels [6]. Let us note first that charge transport in
ferromagnetic conductors is generally associated with a spin
current. Second, the electrochemical potentials for spin-up and
spin-down electrons can be different in the vicinity of an
interface between ferromagnetic and nonmagnetic materials
(i.e., up to distances of the order of the spin-flip diffusion
length) when the rate of electron scattering without spin flip
is significantly larger than the spin-flip rate. This appears
as spin accumulation at the interface [97,98]. The spin
accumulation (spin-dependent electrochemical potentials), in
turn, led to the concept of the so-called spin bias δVS.
Accordingly, the difference in electrochemical potentials of
the two electrodes in the spin-σ channel, δVσ , can be written
as δVσ = δV + ησ δVS, with η↑(↓) = ±1. Thus, with the use of
electrical and spin bias one can independently control electric
and spin currents. Moreover, in certain situations one can drive
pure spin current, i.e., spin current which is not associated with
any charge current. The occurrence of spin currents IS initiated
the concept of spin counterparts of the thermoelectric effects
discussed above.

Under isothermal conditions both charge IC and spin IS

currents can be controlled independently by voltage δV and
spin bias δVS. Hence, one can define a generalized conductance

matrix G as [78]

G ≡
(

G Gm

Gm
S GS

)

=

⎛⎜⎜⎜⎝
(

IC

δV

)
δT =0
δVS=0

(
IC

δVS

)
δT =0
δV =0(

IS

δV

)
δT =0
δVS=0

(
IS

δVS

)
δT =0
δV =0

⎞⎟⎟⎟⎠. (6)

Furthermore, in addition to the conventional Peltier coefficient
�, one can introduce a spin Peltier coefficient �S,

� =
(

IQ

IC

)
δT =0
δVS=0

and �S =
(

IQ

IS

)
δT =0
δV =0

. (7)

The former coefficient describes a heat flow associated with
an electrical current in the absence of spin voltage, whereas
the latter one represents the heat current associated with a
spin current for a zero voltage bias. Note that the definition of
the Peltier coefficient � is equivalent to that given by Eq. (2)
providing spin accumulation is disregarded and there is no spin
voltage.

The definition of thermal conductivity in Eq. (3) holds also
in the present situation, when the additional constraint δVS = 0
is imposed,

κ =
(

IQ

δT

)
IC=0
δVS=0

. (8)

Interestingly, if spin accumulation can arise in the system,
thermal bias can induce not only an electrical voltage δV , but
also a spin voltage δVS . The latter effect is referred to as the
spin Seebeck effect. Consequently, along with the conventional
thermopowerS, one can formally define the spin thermopower
SS [19],

S = −
(

δV

δT

)
IC=0
δVS=0

and SS = −
(

δVS

δT

)
IC=0
δV =0

. (9)

To complete the discussion of spin-dependent effects, we note
that a spin analog of the figure of merit ZTS, see Eq. (5), can
be used to characterize the spin thermoelectric efficiency of a
system,

ZTS = 2e

�

S2
S |GS|T

κ
, (10)

with GS defined in Eq. (6) and the thermal conductivity κ

given by Eq. (8).
When a system is in an open circuit and there are no spin-

relaxation processes, then neither charge nor spin current can
flow through the system. Thus, one may alternatively define
the thermoelectric coefficients for IC = 0 and IS = 0 [78], i.e.,

S = −
(

δV

δT

)
IC=0
IS=0

and SS = −
(

δVS

δT

)
IC=0
IS=0

(11)

for the charge and spin thermopowers, and also

κ =
(

IQ

δT

)
IC=0
IS=0

. (12)
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for the heat conductance. Since to have zero spin current one
needs to apply a spin voltage, the charge thermopower may be
different from that determined from the conventional formula.
Note that this difference appears only when spin relaxation is
slow. In the following we will use the definitions (9).

III. THERMOELECTRICITY IN A MAGNETIC JUNCTION
WITH SPIN IMPURITY

A. Theoretical model

The system to be considered in the following consists of
two metallic—generally ferromagnetic—electrodes separated
by an insulating barrier. Tunneling of electrons between
the electrodes can appear either due to applied voltage
(electric or spin one) or due to a thermal bias; see Fig. 1(a).
Experimentally, the system can be either a simple planar
magnetic tunnel junction or a setup involving an STM tip as
one of the electrodes. Additionally, we assume that a magnetic
impurity is embedded in the barrier between the electrodes
[99–105], which scatters electrons traversing the barrier. The
total Hamiltonian of the system H thus consists of three terms,
H = Himp + Hel + HT, representing the impurity, electrodes,
and electron tunneling processes, respectively.

Here, we focus mainly on magnetic impurities character-
ized by a large spin number S, S > 1/2, whose behavior is
dominated by the presence of magnetic anisotropy. In general,
basic features of a large-spin magnetic impurity, represented by
a spin operator S = (Sx,Sy,Sz), are captured by the giant-spin
Hamiltonian [106],

Himp = −DS2
z + E

2
(S2

+ + S2
−), (13)

where the first and second terms denote the uniaxial and
transverse magnetic anisotropy, respectively, with D and E

standing for the corresponding anisotropy constants and S± =
Sx ± iSy . Since we are interested here in magnetic impurities
capable of information storage, we assume an energy barrier
for spin reversal, i.e., D > 0. In addition, also the transverse
anisotropy constant can be assumed to be positive, E > 0, and
the two magnetic anisotropy constants satisfy the condition
[106] 0 ≤ E/D ≤ 1/3. Next, we assume a half-integer spin
S. Due to the presence of transverse magnetic anisotropy, each
of the 2S + 1 eigenstates |χm〉 of the impurity Hamiltonian
(13), Himp|χm〉 = Eχm

|χm〉, is then a linear combination of the
eigenstates |m〉 of the spin operator Sz. Note the notation we
use for the eigenstates |χm〉, with the subscript m correspond-
ing to the Sz component of highest weight in the state |χm〉,
i.e., limE→0 |χm〉 = |m〉. Moreover, the eigenstates |χm〉 are
twofold degenerate (Kramers’ doublets) and form two uncou-
pled sets [107,108] {|χ±S∓2k〉}k=0,1,...,S−1/2. Thus, any eigen-
state |χm〉, for m = −S, . . . ,S, can generally be written as

|χm〉 =
∑

k∈Z, |m+2k|≤S

〈m + 2k|χm〉|m + 2k〉, (14)

where 〈m + 2k|χm〉 represents the overlap of the state
|m + 2k〉 with the eigenstate |χm〉. In particular, the eigenstates
constituting the ground-state Kramers’ doublet take the form

|χ−S〉 =
S−1/2∑
k=0

〈−S + 2k|χm〉| − S + 2k〉,
(15)

|χS〉 =
S−1/2∑
k=0

〈S − 2k|χm〉|S − 2k〉,.

from which one concludes that the system’s spin can be
trapped in one of two distinguishable spatial configurations
with respect to the zth axis, referred to also as the system’s

Left electrode Right electrode

easy axis

hard axis

z

x
y

Spin impurity

)b()a(

Right electrodeLeft electrode

(c)

FIG. 1. (Color online) (a) Schematic depiction of the system under consideration. Transport of electrons between the left and right electrodes
(q = L,R) appears due to an external bias voltage δV (μ0 is the electrochemical potential at equilibrium), and/or due to the difference δT

between electrodes’ temperatures Tq . Note that for the sake of clarity we assume here that spin accumulation is absent, and consequently
δVS = 0. Different temperatures of electrodes are delineated here with the use of the Fermi-Dirac distribution functions fq (ε), which are
smeared out dissimilarly around the electrochemical potentials μq of the electrodes. Right panel represents graphically some examples of
different possible spin-conserving (b) and spin-flip (c) electron tunneling processes. In particular, we specify that fine-dashed lines in (b) stand
for direct tunneling of electrons between the electrodes, while dotted lines in (c) symbolize single-electrode tunneling processes.
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easy axis.1 In the following, we will use the index m only
when necessary to avoid any confusion.

Electrodes are treated as reservoirs of itinerant and nonin-
teracting electrons, and are described by the Hamiltonian

Hel =
∑
qkσ

εqkσ a
q†
kσ a

q

kσ , (16)

with εqkσ denoting the conduction electron energy in the
qth electrode (q = L for the left and q = R for the right
electrode, respectively), k standing for a wave vector, and
σ being the electron-spin index. Furthermore, a

q†
kσ (aq

kσ ) is
the relevant electron creation (annihilation) operator for the
qth electrode. Generally, both electrodes are characterized by
a spin-dependent density of states (DOS),

∑
k δ(εq

kσ − ω) =
ρ

q
σ (ω). Importantly, for the problem under discussion DOS of

at least one of the electrodes has to be energy dependent and
asymmetric around the Fermi level in order to obtain a nonzero
thermopower. The magnetic properties of the qth electrode
will be described by the corresponding spin-polarization
coefficient, Pq , defined at the system’s Fermi level μ0 as

Pq = ρ
q

↑(μ0) − ρ
q

↓(μ0)

ρ
q

↑(μ0) + ρ
q

↓(μ0)
. (17)

Finally, electron tunneling processes between the elec-
trodes are described by the Appelbaum Hamiltonian
[88,89,109–112],

HT =
∑
qkk′α

{
Td a

q†
kαa

q̄

k′α +
∑
q ′β

Jqq ′ σ αβ · S a
q†
kαa

q ′
k′β

}
. (18)

In the equation above q should be understood as L ≡ R

and R ≡ L. Furthermore, σ = (σx,σy,σz) and σi (i = x,y,z)
denote the Pauli matrices. The first term of Eq. (18) represents
direct tunneling of electrons between the electrodes, while the
second term takes into account the fact that during tunneling
an electron can interact magnetically with the impurity either
via exchange coupling or direct dipolar interactions [103];
see Figs. 1(b) and 1(c). The former processes are then
described by the tunneling parameter Td, whereas the latter
ones are described by the exchange parameter Jqq ′ , with both
parameters assumed to be real, isotropic, and independent
of energy and electrodes’ spin polarization. It is convenient
to introduce the following parametrization for Td and Jqq ′ :
Td = αdK and Jqq ′ = νqνq ′J , with νq being a dimensionless
factor quantifying the coupling between the impurity’s spin
and the qth electrode, and J = αexK . Thus, K becomes
the key, experimentally relevant parameter [89,112], whereas
αex/αd establishes a relationship between the processes of
direct electron tunneling and those during which the spin of a
tunneling electron can be reversed.

1Note that for an integer spin S the ground state would be
split even in the absence of an external magnetic field, and as
a symmetric admixture of states |±S〉,| ± S ± 2〉, . . . ,|0〉 it would
prefer orientation in the plane perpendicular to the system’s easy
axis.

B. Transport characteristics

In the following we assume weak coupling between the
electrodes and the impurity. Charge, spin, and energy transport
can be then described within the approach based on the
corresponding master equation. Balance of respective flows
associated with tunneling of electrons (e < 0) out/to each
electrode gives the relevant currents in the following form (see
also Appendix A for a more explicit form of these expressions):

(i) charge current IC = (IL
C − IR

C )/2,

I
q

C = e
∑
kk′

∑
σσ ′

∑
χχ ′

Pχ

{
I |qkσ,χ〉

|qk′σ ′,χ ′〉 − I |qkσ,χ〉
|qk′σ ′,χ ′〉

}
; (19)

(ii) spin current IS = (IL
S − IR

S )/2,

I
q

S = �

2

∑
q ′

∑
kk′

∑
α

∑
χχ ′

Pχ

{
I |qk↑,χ〉

|q ′k′α,χ ′〉 − I |q ′kα,χ〉
|qk′↑,χ ′〉

− [
I |qk↓,χ〉

|q ′k′α,χ ′〉 − I |q ′kα,χ〉
|qk′↓,χ ′〉

]}
; (20)

(iii) heat current IQ = (IL
Q − IR

Q )/2,

I
q

Q =
∑
q ′

∑
kk′

∑
σσ ′

∑
χχ ′

Pχ

{(
ε

q

kσ − μq
σ

)
I |qkσ,χ〉

|q ′k′σ ′,χ ′〉

− (
ε

q ′
kσ + �χχ ′ − μ

q

σ ′
)
I |q ′kσ,χ〉

|qk′σ ′,χ ′〉
}
, (21)

where �χχ ′ = εχ − εχ ′ and

I |qkσ,χ〉
|q ′k′σ ′,χ ′〉 = W

|qkσ,χ〉
|q ′k′σ ′,χ ′〉fqσ

(
ε

q

kσ

)[
1 − fq ′σ ′

(
ε

q ′
k′σ ′

)]
. (22)

In Eqs. (19)–(21), Pχ represents the probability of finding
the impurity in the magnetic state |χ〉, and fqσ (ε) = {1 +
exp[(ε − μ

q
σ )/Tq]}−1 is the Fermi-Dirac distribution function

for the qth electrode, with Tq denoting the temperature
of the electrode expressed in units of energy (i.e., kB ≡
1). Moreover, the notation for the system’s complete state
|qkσ,χ〉 ≡ |qkσ 〉el ⊗ |χ〉imp is used, and the Fermi golden
rule transition rates are given by

W
|i〉
|j〉 = 2π

�
|〈j |Hint|i〉|2δ(Ej − Ei), (23)

where |i〉 and |j 〉 are the initial and final states, respectively,
while Ei and Ej denote the corresponding total energy
of the system. If, e.g., |i〉 = |qkσ,χ〉, then Ei = Eqkσ,χ =
ε

q

kσ + μ
q
σ + εχ , with ε

q

kσ being the conduction electron energy
measured with respect to the electrochemical potential μ

q
σ ,

ε
q

kσ ≡ ε
q

kσ − μ
q
σ , and εχ standing for the eigenenergy of the

impurity in the state |χ〉; see Fig. 1(a). Finally, the spin-
dependent electrochemical potential of the qth electrode can be
written as μ

q
σ = μ0 + eηq(δV + ησ δVS)/2, with ηL(R) ≡ ±1

and η↑(↓) = ±1, together with δV and δVS representing the
voltage and spin bias, respectively.

It is worthwhile to note that Eqs. (19) and Eq. (20) are
generally valid for arbitrary voltage and thermal bias. In
turn, Eq. (21) for the heat current is valid in the limit of
δV → 0 and δVS → 0. Moreover, the energy factor in Eq. (21)
corresponds to the energy measured from the spin-dependent
electrochemical potential μ

q
σ of the qth electrode.2 Finally,

2For other possible definitions of a heat current see Sec. 1.3 of
Ref. [1] or Sec. 3.9B of Ref. [92].
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it should be noticed that Eqs. (20) and (21) involve both
single- (q = q ′) and two-electrode (q = q ′) electron transfer
processes. In the case of energy transport, the single-electrode
processes contribute only if scattering on the impurity leads to
a change in the electron energy.

In order to make use of Eqs. (19)–(21) one also needs to
know the probabilities of finding the impurity in a specific
magnetic state |χ〉, which here are determined from the set of
stationary master equations

∀
χ

∑
χ ′

∑
qq ′

{
Pχ ′γ

qq ′
χ ′χ − Pχγ

qq ′
χχ ′

} = 0, (24)

with the probability normalization condition
∑

χ Pχ = 1.

The golden rule transition rate γ
qq ′
χχ ′ = ∑

kk′
∑

σσ ′ I |qkσ,χ〉
|q ′k′σ ′,χ ′〉

between two different spin states |χ〉 and |χ ′〉 accompanying
tunneling of a single electron between the electrodes q and q ′
is given by

γ
qq ′
χχ ′ = 2π

�
K2

(
αqq ′

ex

)2 ∑
σσ ′

�
(0)qq ′
σσ ′ (�χχ ′)

{
δσ ′σ

[
δσ↓|S−

χ ′χ |2

+ δσ↑|S+
χ ′χ |2] + δσ ′σ

∣∣Sz
χ ′χ

∣∣2}
, (25)

where α
qq ′
ex ≡ αexνqνq ′ , Sk

χ ′χ ≡ 〈χ ′|Sk|χ〉 for k = z,±, and

�
(n)qq ′
σσ ′ (�χχ ′) =

∫
dωρq

σ (ω)ρq ′
σ ′(ω + �χχ ′ )(ω − μ0)n

× fqσ (ω)[1 − fq ′σ ′(ω + �χχ ′ )]. (26)

We remind that Eqs. (19)–(20) are valid for arbitrary T

and also in the nonlinear regime, while Eq. (21) is valid for
δV → 0 and δVS → 0, with no restriction on δT . Below we
will linearize these equations with respect to all variables,
i.e., with respect to δV , δVS , and δT . Apart from this, we
restrict our considerations to the regime of low T , T � (2S −
1)D. However, the latter restriction is essential only in the
anisotropic case, D > 0, and is irrelevant for the isotropic case
(D = E = 0) and for the case of no impurity in the barrier.

C. Linear-response regime: Kinetic coefficients

In the regime of linear response with respect to the voltage
δV , spin voltage δVS, and thermal bias δT , the formulas for
charge (IC), spin (IS), and heat (IQ) currents can be written in
the following general form [1,92]:⎛⎝IC

IS

IQ

⎞⎠=
⎛⎝ e2L00 e2L01 eL02/T

e�L10/2 e�L11/2 �L12/(2T )
eL20 eL21 L22/T

⎞⎠⎛⎝δV

δVS

δT

⎞⎠, (27)

where Lnk are the relevant kinetic coefficients that satisfy the
Onsager relation [113,114], Lnk = Lkn. Interestingly enough,
by assuming additionally T � (2S − 1)D (for D > 0), then
only the impurity’s ground-state doublet |χ±S〉 plays a role, as
the transitions to excited spin states are energetically forbid-
den. Nevertheless, due to the transverse magnetic anisotropy,
spin-flip scattering processes within this ground doublet are
still allowed.

The explicit form of the kinetic coefficients in Eq. (27)
can be obtained by linearization of the expressions (19)–(21)
for the currents, IC, IS, and IQ (for a detailed derivation see

Appendix B). For convenience, we write these coefficients in
the form

L=
⎛⎝L00 L01 L02

L10 L11 L12

L20 L21 L22

⎞⎠≡

⎛⎜⎜⎝
L(c)

00 L(s)
01 L(c)

02

L(s)
10 L(ss)

11 L(s)
12

L(c)
20 L(s)

21 L(c)
22

⎞⎟⎟⎠, (28)

with the elements of the matrix given by

L(c)
nk =

∑
σ

Lσ
nk + L(c)

nk,↓↑, L(s)
nk =

∑
σ

ησLσ
nk + L(s)

nk,↓↑,

L(ss)
nk =

∑
σ

Lσ
nk + L(ss)

↓↑ , (29)

and

Lσ
nk = π

�

K2

T
ϑ1

∑
χ

[
αd + ησαLR

ex Sz
χχ

]2F (δn2+δk2)LR
σσ , (30)

L(c)
nk,↓↑ = π

�

K2

T

{
ϑ3

(
αLR

ex

)2 ∑
σ

F (δn2+δk2)LR
σσ

−ϑ2�
(
αLR

ex

)4 ∑
σσ ′

ησησ ′F (δn2)LR
σσ F (δk2)LR

σ ′σ ′

}
, (31)

L(s)
nk,↓↑ = −π

�

K2

T
ϑ2�

(
αLR

ex

)2
×

∑
qσ

ηqησ

(
αqq

ex

)2F (δn2+δk2)LR
σσ F (0)qq

↑↓ , (32)

L(ss)
↓↑ = π

�

K2

T

{
ϑ3

∑
q

(
αqq

ex

)2F (0)qq

↑↓

−ϑ2�
∑
qq ′

ηqηq ′
(
αqq

ex

)2(
αq ′q ′

ex

)2F (0)qq

↑↓ F (0)q ′q ′
↑↓

}
, (33)

where F (n)qq ′
σσ ′ = T φ

(n,0)qq ′
σσ ′ = �

(n)qq ′
σσ ′ (0)|eq, see Eqs. (26) and

(B7), and the subscript “eq” means the quantity to be taken at
δV = δVS = δT = 0. Furthermore, in the above equations �

is defined as

� =
[ ∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′
↑↓ (0)

∣∣
eq

]−1

, (34)

while ϑn (n = 1,2,3) is defined in Table I for isotropic and
anisotropic spins. We remind that in the anisotropic case (D =
0 and E = 0) only the two degenerate states of lowest energy
are included in the sums over χ due to the condition T �
(2S − 1)D, whereas in the isotropic case (D = E = 0) all

TABLE I. Explicit expressions for the auxiliary coefficients ϑn,
where �± = |S+

χ−SχS
|2 ± |S−

χ−SχS
|2.

ϑn

n Isotropic spin impurity Anisotropic spin impurity

1 2
2S+1 1

2 4
3 S(S + 1)

�2−
�+

3 4
3 S(S + 1) �+
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states are taken into account as they all are degenerate and the
condition T � (2S − 1)D is irrelevant.

The kinetic coefficients consist of two terms; see Eqs. (29).
The first term originates from electron tunneling with con-
served electron spin, while the second term in each coefficient
takes into account tunneling associated with reversal of
electron spin (and thus also with a change in magnetic
state of the impurity). Note that for an anisotropic spin
impurity with vanishing transverse magnetic anisotropy, E →
0 while D > 0, one finds S±

χ−SχS
= 0 and thus only the

components Lσ
nk of the kinetic coefficients in Eqs. (29)

survive, whereas the terms given by Eqs. (31)–(33) turn
to zero.

To find numerical values of the kinetic coefficients Lnk ,
we need to calculate all the factors of the type F (n)qq ′

σσ ′ .
The key problem is that this requires evaluation of energy
integrals involving DOS of electrodes, which in general can
be an arbitrary function of energy. Taking into account the
fact that transport properties at low temperature and in the
linear-response regime are determined by the electrodes’ DOS
in the vicinity of the equilibrium electrochemical potential μ0,
we expand the spin-dependent DOS of the qth electrode into
a series,

ρq
σ (ω) =

∑
k

[
ρ

q
σ (μ0)

](k)

k!
(ω − μ0)k, (35)

with

[
ρq

σ (μ0)
](k) = ∂kρ

q
σ (ω)

∂ωk

∣∣
ω=μ0

. (36)

This, in turn, allows for calculating the energy integrals in
question,

F (n)qq ′
σσ ′ =

∑
kl

[
ρ

q
σ (μ0)

](k)

k!

[
ρ

q ′
σ ′(μ0)

](l)

l!

×
∫

dω(ω − μ0)n+k+lf (ω)[1 − f (ω)]

=
∑
kl

[
ρ

q
σ (μ0)

](k)

k!

[
ρ

q ′
σ ′(μ0)

](l)

l!
�n+k+lT

n+k+l+1,

(37)

where

�n = (−1)n/2+1(1 − 21−n)(2π )nBn, (38)

and Bn stands for the Bernoulli number. It can be noticed that
�n = 0 if n is an odd number, while first several even terms
are �0 = 1, �2 = π2/3, �4 = 7π4/15, �6 = 31π6/21, etc.

Having found all the kinetic coefficients, one can calcu-
late the experimentally measurable coefficients discussed in
Sec. II, which are directly related to the kinetic coefficients. In
particular, Eqs. (1)–(9) can be expressed in terms of the kinetic
coefficients Lnk as follows.

(i) Conductances:

G = e2L00 = G↑ + G↓ + G
(c)
↓↑,

Gm = e2L01 = G↑ − G↓ + G
(s)
↓↑,

(39)

Gm
S = e�

2
L10 = �

2e
[G↑ − G↓ + G

(s)
↓↑],

GS = e�

2
L11 = �

2e
[G↑ + G↓ + G

(ss)
↓↑ ],

where Gm and Gm
S are related as Gm

S = (�/2e)Gm. Above,
Gσ = e2Lσ

00 is the electric conductance of the spin-σ channel
due to spin conserving electron tunneling between the left
and right electrodes, whereas G

(c)
↓↑ = e2L(c)

00,↓↑ and G
(s/ss)
↓↑ =

e2L(s/ss)
↓↑ represent a contribution to conductance stemming

from tunneling with spin-flip processes. Note that for the (ss)
component we have only single-electrode processes. Such
processes modify the spin state of the molecule without
transferring any charge across the junction, or in other words,
they transfer spin without transferring charge.

(ii) Peltier coefficients: using the notation � ≡ �0 and
�S ≡ �1, one can write

�n =
[
− 1

|e|
]δn0

[
2

�

]δn1L2n

Lnn

for n = 0,1. (40)

(iii) Thermal conductance:

κ = 1

T

[
L22 − (L02)2

L00

]
. (41)

(iv) Thermopowers: using the notation S ≡ S0 and SS ≡
S1, one finds

Sn = − 1

|e|T
Ln2

Lnn

for n = 0,1. (42)

IV. RESULTS AND DISCUSSION

As already mentioned in the Introduction, thermoelectric
effects become revealed when DOS is energy dependent
around the Fermi level and there is a particle-hole asymmetry.
In the conceptually simplest case assumed here, DOS in one
electrode is constant on the energy scale of interest, while the
DOS of the other electrode is a linear function of energy. For
this reason, the DOS of the left electrode in the vicinity of the
Fermi level is assumed to be constant and spin dependent,

ρL
σ (ω) ≈ ρL

σ (μ0) = ρL

2
[1 + ησPL], (43)

whereas the right electrode is assumed to be nonmagnetic with
the DOS linearly dependent on energy around the Fermi level,

ρR
σ (ω) ≈ ρR

σ (μ0) + [
ρR

σ (μ0)
](1)

(ω − μ0)

= ρR

2
[1 + xR(ω − μ0)], (44)

with xR ≡ [ρR(μ0)](1)/ρR , where we took into account that
[ρR

↑ (μ0)](1) = [ρR
↓ (μ0)](1) = [ρR(μ0)](1)/2. In the above equa-

tions ρL and ρR denote the total DOS at the Fermi level in the
left and right electrodes, respectively. The above approxima-
tions correspond to a situation where the left electrode has
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a relatively flat DOS around the Fermi level, while the right
electrode is characterized by DOS with a steep slope at the
Fermi level. Although the coefficient xR can in general be
both positive and negative, the DOS has to be a non-negative
function of energy, ρR

σ (ω) ≥ 0. This imposes some restrictions
on the energy range where this approximation is applicable.
Moreover, since the electrons and holes are distributed around
the Fermi level in the energy window of the order of T ,
this imposes also the following condition on the temperature:
xRT � 1.

Taking the above into account, one finds

F (n)LR
σσ ′ = 1

4
ρRρL[1 + ησPL]

×{�nT
n+1 + xR�n+1T

n+2}. (45)

Since we have assumed that the right electrode is nonmagnetic,
the second spin index in F (n)LR

σσ ′ plays in fact no role, and thus
we omit it henceforth,

F (0)LR
σ = 1

4
ρLρR[1 + ησPL]T ,

F (1)LR
σ = π2

12
ρLρRxR[1 + ησPL]T 3, (46)

F (2)LR
σ = π2

12
ρLρR[1 + ησPL]T 3.

Analogous expressions can be derived for single-electrode F
functions,

F (0)LL
↑↓ = (ρL)2

4

[
1 − P 2

L

]
T ,

(47)

F (0)RR
↑↓ = (ρR)2

4

[
1 + π2

3
x2

RT 2

]
T .

In consequence, the above assumptions allow us to write
the matrix L in the form

L =

⎛⎜⎜⎜⎜⎜⎝
L0 Ls

π2

3
xRT 2L0

Ls L1
π2

3
xRT 2Ls

π2

3
xRT 2L0

π2

3
xRT 2Ls L2

⎞⎟⎟⎟⎟⎟⎠, (48)

with Ln (for n = 0,1,2,s) having the form

Ln = �λP
δns

L

[
π2

3
T 2

]δn2[
Tsc + T (n)

sf

]
, (49)

where � = πK2ρ2/� with ρ ≡ ρL, and λ = ρR/ρL. Further-
more,

Tsc ≡ (αd )2 + ϑ1

2

(
αLR

ex

)2 ∑
χ

(
Sz

χχ

)2
(50)

represents the spin-conserving part of the kinetic coefficients.
The first term of Tsc corresponds to the direct tunneling of
electrons between the electrodes, whereas the second term
accounts for two-electrode tunneling processes during which
electrons traversing the barrier interact via exchange coupling
with the impurity, keeping, however, their spin orientation
unchanged. On the other hand, the spin-flip part T (n)

sf stands

for all tunneling processes (including both single- and two-
electrode ones) in which the spin of an electron becomes
reversed due to scattering on the spin impurity,

T (0)
sf = (

αLR
ex

)2{ϑ3

2
− ϑ2P

2
L

(
αLR

ex

)2(̃
αex

)2 }
, (51)

T (1)
sf = (

αLR
ex

)2 ϑ3(α+
ex)2

2(̃αex)2

+ 1

4(̃αex)2
{ϑ3(α+

ex)4 − ϑ2(α−
ex)4}, (52)

T (2)
sf = (

αLR
ex

)2{ϑ3

2
− π2

3
x2

RT 2 ϑ2P
2
L

(
αLR

ex

)2
(̃αex)2

}
, (53)

T (s)
sf = −(

αLR
ex

)2 ϑ2(α−
ex)2

2(̃αex)2
, (54)

where

(̃αex)2 = 2
(
αLR

ex

)2 + (α+
ex)2 (55)

and

(α±
ex)2 = 1

λ

(
αLL

ex

)2[
1 − P 2

L

] ± λ
(
αRR

ex

)2[
1 + π2

3
x2

RT 2

]
. (56)

When deriving the above formulas, we also took into account
that � = 4/λTρ2(̃αex)2. One can notice that the effective
coefficients (α±

ex)2 have a clear physical meaning, namely they
represent a contribution from single-electrode spin-exchange
tunneling processes. In turn, such processes involving two
different electrodes (i.e., for electrons traversing the junction)
are described by (αLR

ex )2. Interestingly enough, it can be
immediately seen that, unlike other coefficients, T (1)

sf apart
from the part corresponding to tunneling of electrons between
the left and right electrodes includes also the term originating
from single-electrode tunneling processes. The physical notion
of this observation will be discussed in detail in further
sections.

Employing the above form of the L matrix, Eq. (48), one
obtains the following.

(i) Conductances:

G =
⎛⎝ e2L0 e2Ls

e�

2
Ls

e�

2
L1

⎞⎠. (57)

(ii) Peltier coefficients:

� = − π2

3|e|xRT 2 and �S = −2|e|
�

Ls

L1
�. (58)

(iii) Thermal conductance:

κ = 1

T

[
L2 −

(
π2

3
xRT 2

)2

L0

]
. (59)

(iv) Thermopowers:

S = − π2

3|e|xRT and SS = Ls

L1
S = Gm

S

GS
S. (60)
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(v) Figures of merit:

ZT = L0
(

π2

3

)2
x2

RT 4

L2 − L0
(

π2

3

)2
x2

RT 4
(61)

and

ZTS = L2
s

L1L0
ZT = −2|e|

�

(
Gm

S

)2
GGS

ZT. (62)

Combining Eqs. (58) and (60), one straightforwardly gets
the Thompson’s second relation [114] and its spin analog,
which in general establish a connection between the respective
Peltier and Seebeck effects,

� = ST and �S = −2|e|
�

SST . (63)

Since the conventional Peltier coefficient � and thermopower
S are independent of the specific properties of the spin impu-
rity, such as a spin number and values of uniaxial and transverse
magnetic anisotropy constants, in the following discussion
we focus exclusively on its spin-dependent counterparts. In
addition, because spin-dependent Peltier coefficient �S is
generally related to a spin-dependent thermopower SS via
Eq. (63), we focus mainly only the latter one.

A. Absence of magnetic impurity

The above formulas are general in the sense that they apply
to anisotropic and isotropic impurities. Before considering
these two situations, it is instructive to analyze first the simplest
case of a magnetic tunnel junction (MTJ) without spin impurity
in the barrier, which essentially corresponds to setting αex = 0
in the above formulas. In such a case the kinetic coefficients
take a simple form,

L0 = L1 = 1

PL

Ls = 3

π2T 2
L2 = �λ(αd)2. (64)

Assuming αd = 1, one can write the conductance matrix
for MTJ as follows:

GMTJ = �λ

⎛⎝ e2 e2PL

e�

2
PL

e�

2

⎞⎠. (65)

Since �λ = πK2ρLρR/�, the conductance matrix GMTJ in the
model under consideration is proportional to the product of the
DOS at the Fermi level in the two electrodes and to the square
of the direct tunneling parameter Td ≡ K . In turn, the thermal
conductance is given by

κMTJ = π2

3
�λT

[
1 − π2

3
x2

RT 2

]
= L0G

MTJT [1 + |e|xR�],

(66)

where the first term represents the Wiedemann-Franz (WF)
law that relates the thermal and electrical conductances as
κ = L0GT , with L0 = π2/(3e2) being the Lorentz number
(recall that in this paper we set kB ≡ 1). The WF law applies
for instance to transport in Fermi-liquid bulk metals, but it
generally breaks down in nanoscopic systems [51,115], though
it can be recovered in the situation when the system reaches
an effective Fermi-liquid state, e.g., as in strongly correlated

quantum dots when the Kondo effect occurs [26,29,116]. Due
to the presence of the second term in Eq. (66), the WF law
in the current situation is generally violated. However, this
deviation is rather small in the applicability range of the model,
xRT � 1.

As mentioned above, the thermopower S is independent of
the presence of the impurity, and is given by the formula (60).
It is also worth noting that the formula for thermopower SMTJ,
Eq. (60), obeys Mott’s formula [10,117]

SMTJ = −|e|L0T
∂ ln G(ω)

∂ω

∣∣∣∣
ω=μ0

, (67)

which can be checked by inserting G(ω) =
(e2πK2/�)

∑
σ ρL

σ (ω)ρR
σ (ω) into Eq. (67), with ρ

L/R
σ (ω)

given by Eqs. (43) and (44). Next, with the use of Eq. (64),
one finds the spin thermopower

SMTJ
S = PLSMTJ, (68)

with SMTJ given by Eq. (60), and the figures of merit

ZTMTJ =
π2

3 x2
RT 2

1 − π2

3 x2
RT 2

and ZTMTJ
S = P 2

L ZTMTJ. (69)

As one can easily note, the parameter playing a major
role in the formulas above is xR describing the linear term
in the Taylor expansion of DOS in the right electrode,
Eq. (44). Employing the expression for a thermopower S,
Eq. (60), the order of magnitude for xR can be deduced from
available experimental works on thermoelectric transport in
magnetic tunnel junctions and molecular junctions. Recent
experiments on the MgO- [62,64,118–120] and Al2O3-based
[61,63] junctions show that at room temperature |S| can vary
between a few tens of μV/K and several mV/K [63,119], with
typical values oscillating around 50–200 μV/K. These agree
with theoretical values found from analytical considerations
for magnon-assisted tunneling [73] and those obtained from ab
initio studies [121]. On the other hand, in molecular junctions
with a single fullerene molecule (i.e., C60, PCBM or C70)
[41,42] or an aromatic molecule [35–40] embedded, S has
been observed not to exceed usually 30 μV/K at room tem-
perature. Interestingly enough, theoretical predictions [45,46]
for some molecules from the latter group suggest that by tuning
a chemical potential one can reach |S| as large as 150 μV/K.
Consequently, assuming a typical value of |S| at room temper-
ature to be of the order of 100 μV/K, we find |xR| ∼ 10 eV−1.

In Fig. 2 we present the thermal conductance κMTJ, ther-
mopower SMTJ, and figure of merit ZTMTJ as a function of xRT

(effectively as a function of temperature) for several values of
the parameter xR . From the corresponding formulas follows
that the dependence on xRT is roughly linear in the temperature
range where the description is valid, xRT � 1. Moreover, this
dependence is independent on xR for thermopower and figure
of merit, as follows from the corresponding analytical formula,
and is also clearly seen in Figs. 2(b) and 2(c). The situation is
different for the thermal conductance, where different values
of the parameter xR correspond to different curves, as can
be clearly seen in Fig. 2(a). This is due to the prefactor T

in Eq. (66). Note that the spin thermopower SMTJ
S is now

proportional to SMTJ; see Eq. (68).
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FIG. 2. (Color online) Dependence of the thermal conductance
κMTJ, thermopower SMTJ, and figure of merit ZTMTJ on xRT (effec-
tively on temperature) for a junction without a magnetic impurity,
shown for several values of the parameter xR which describes
the linear term in the Taylor expansion of the right electrode’s
DOS around the Fermi level. The spin thermopower SMTJ

S is now
proportional to SMTJ.

B. Magnetic impurity with spin S

Let us now turn to the situation with the spin impurity in
the barrier. Transport properties of the system depend then
on a number of parameters, including the asymmetry of the
coupling between the impurity and electrodes, quantified in
the following by νas ≡ νR/νL and the ratio λ = ρR/ρL of the
electrodes’ DOS at the Fermi level. In order to facilitate the
discussion, we introduce an additional auxiliary parameter A,
defined as

A = λν2
as, (70)

which describes an effective asymmetry of the junction
containing a spin impurity.

The conductance matrix G, see Eq. (57), can be formally
separated into two parts as G = Gsc + Gsf . The first term
expressed in terms of the asymmetry parameters has the form

Gsc = TscGMTJ

= �

{
λ + ϑ1

2
α2

exν
4
LA

∑
χ

(
Sz

χχ

)2
}⎛⎝ e2 e2PL

e�

2
PL

e�

2

⎞⎠
(71)

and represents the contribution from spin-conserving electron
tunneling processes, with GMTJ given by Eq. (65). The second

term, in turn, takes the form

Gsf = �α2
exν

4
L

⎛⎝ e2T̃ (0)
sf e2PLT̃ (s)

sf

e�

2
PLT̃ (s)

sf

e�

2
T̃ (1)

sf

⎞⎠ (72)

and is the contribution to the conductance which stems from
spin-flip scattering of electrons on the spin impurity, with

T̃ (0)
sf = ϑ3

2
A − ϑ2

A2P 2
L

A[A + 2] + [
1 − P 2

L

] , (73)

T̃ (1)
sf = ϑ3

2
A

A2 + [
1 − P 2

L

]
A[A + 2] + [

1 − P 2
L

]
+ 1

4
[ϑ3 − ϑ2]

A4 + [
1 − P 2

L

]2

A[A + 2] + [
1 − P 2

L

]
+ 1

2
[ϑ3 + ϑ2]

A2
[
1 − P 2

L

]
A[A + 2] + [

1 − P 2
L

] , (74)

T̃ (s)
sf = ϑ2

2
A

A2 − [
1 − P 2

L

]
A[A + 2] + [

1 − P 2
L

] . (75)

In general, the processes of spin-flip scattering on the impu-
rity correspond to opening new channels for transport through
the junction. In the case of the spin-conserving scattering
processes all the 2S + 1 channels become available for an
isotropic spin impurity, and each impurity state |χ〉 gives a pos-
itive contribution to the conductance, (ϑ1/2)(α2

exν
4
LA)(Sz

χχ )2 ≥
0. For an anisotropic impurity, in turn, only two channels
contribute to the conductance (recall the assumption discussed
above). The situation is more complicated for spin-flip scat-
tering processes; see Eqs. (73)–(75), which lead to mixing of
spin channels.

The thermal conductance, in turn, is given by the following
formula:

κ

κMTJ
= 1 + α2

exν
4
Lν2

as

{
ϑ1

2

∑
χ

(
Sz

χχ

)2 + ϑ3

2

}
. (76)

Finally, the thermopower S is given by Eq. (60), while the
figure of merit can be written as

ZT

ZTMTJ = 1 − 2α2
exν

4
L

2λTsc + ϑ3α2
exν

4
LA

× ϑ2A2P 2
L

A[A + 2] + [
1 − P 2

L

] . (77)

The spin thermopower SS, Eq. (60), is determined by S and
the ratio Gm

S /GS, while the spin figure of merit ZTS, Eq. (62),
depends on ZT and the ratio (Gm

S )2/(GGS). Both, SS and ZTS

can be expressed in terms of the asymmetry parameter A, but
the corresponding formulas are cumbersome and will not be
presented here.

In the following we distinguish between the case of
isotropic (D = E = 0) and anisotropic (D = 0 and E = 0)
spin impurity, and we begin the discussion with the former
case.
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1. The isotropic case (D = E = 0)

For an isotropic spin impurity, D = E = 0, the above
formulas can be further simplified. Taking into account the
explicit form of the parameters ϑn (see Table I), one obtains

T̃ (0)
sf = T̃ (1)

sf = 2

3
S(S + 1)A

A2 + [1 + 2A]
[
1 − P 2

L

]
A[A + 2] + [

1 − P 2
L

] , (78)

T̃ (s)
sf = 2

3
S(S + 1)A

A2 − [
1 − P 2

L

]
A[A + 2] + [

1 − P 2
L

] . (79)

Let us consider first the situation of a fully symmetric junction,
i.e., when λ = 1 (the symmetry with respect to DOS, ρL =
ρR) and νas = 1 (the symmetry with respect to the coupling
between the impurity and electrodes, νL = νR = 1), which
corresponds to A = 1. The above formulas reduce then to the
following ones:

T̃ (0)
sf = T̃ (1)

sf = 2

3
S(S + 1)

4 − 3P 2
L

4 − P 2
L

, (80)

T̃ (s)
sf = 2

3
S(S + 1)

P 2
L

4 − P 2
L

, (81)

so that the conductance matrix takes the form

G = �

{
1 + 1

3
S(S + 1)α2

ex

}⎛⎝ e2 e2PL

e�

2
PL

e�

2

⎞⎠

+ 2

3
�S(S + 1)α2

ex

⎛⎜⎜⎜⎝
e2 4 − 3P 2

L

4 − P 2
L

e2 P 2
L

4 − P 2
L

e�

2

P 2
L

4 − P 2
L

e�

2

4 − 3P 2
L

4 − P 2
L

⎞⎟⎟⎟⎠. (82)

Here, the first and second terms represent the spin-conserving
and spin-flip parts of the conductance, respectively. In turn,
the heat conductance can be written as

κ

κMTJ
= 1 + S(S + 1)α2

ex. (83)

The formulas above have been used to get some numerical
results to be discussed below. In the case of spin thermopower
and spin figure of merit, on the other hand, to obtain the
numerical results we used the general expressions (60)–(62).

The corresponding results for a symmetric junction, A = 1
with λ = νas = 1, are shown in Fig. 3, where all the elements of
the conductance matrix G, electronic contribution to the heat
conductance κ , spin thermopower SS, and figures of merit
ZT and ZTS, normalized to the corresponding quantities for
MTJ without impurity, are shown as a function of the spin
number S for indicated values of the polarization factor PL.
Note that the electrical conductance G is proportional to the
spin conductance GS, and the nondiagonal conductance Gm is
proportional to Gm

S . For the lowest value of S, i.e., S = 1/2,
the contributions from direct tunneling and exchange terms are
comparable and the total conductances are rather small. The
role of exchange term in the tunneling Hamiltonian increases
with increasing S and the conductances grow as ∼S2 with
increasing S. This behavior is clear as the tunneling probability
with exchange interaction between the electron and impurity
is effectively proportional to S2; see the tunneling Hamiltonian
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FIG. 3. (Color online) Diagonal (a) and nondiagonal (b) ele-
ments of the conduction matrix G, electronic contribution to the heat
conductance κ (c), spin thermopower SS (d), figure of merit ZT (e),
and spin figure of merit ZTS (f) shown as functions of the impurity spin
number S for several values of the left electrode’s spin-polarization
parameter PL. Note that the points correspond to spin numbers while
the lines serve merely as a guide for eyes. Remaining parameters:
T = 1 K, xR = 10 eV−1, αd = αex = 1, λ = 1, and νL = νR = 1, so
that A = 1 (i.e., the junction is fully symmetric with respect to DOS
and exchange coupling).

given by Eq. (18). Worth noting is that the nondiagonal
conductances (Gm and Gm

S ) achieve their maximal values for
PL = 1, while the diagonal ones (G and GS) for PL = 0, as one
might expect. Additionally, if the left electrode is nonmagnetic
(PL = 0) the nondiagonal components of the conductance
matrix G vanish.

Unlike the electric conductance G, the electronic contri-
bution to the heat conductance κ , shown in Fig. 3(c), is
independent of the polarization PL, though it grows with
S similarly as G does. By contrast, the spin thermopower
and both figures of merit are decreased in comparison to the
corresponding values for MTJ without the impurity. However,
the reduction in the values of SS and ZTS is inversely
proportional to the spin polarization of the left electrode, i.e.,
for PL → 0 one obtains SS/SMTJ

S → 0 and ZTS/ZTMTJ
S → 0,

whereas the conventional (charge) figure of merit ZT is
generally diminished as PL grows. Interestingly, the spin
thermopower becomes reduced with increasing spin number
S, which appears due to enhanced spin mixing by spin-flip
transmission processes. The corresponding spin figure of merit
becomes also suppressed with increasing spin number.

Let us now look in more detail at the case of an asymmetric
junction, A = 1. Figure 4 presents the relative conductance
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FIG. 4. (Color online) Analogous to Fig. 3, but now the quantities
under consideration are presented for different values of the parameter
λ describing the asymmetry of DOS at the Fermi level on opposite
sides of the junction. In addition, we assume that the spin impurity
is more coupled to the right electrode, i.e., 2νL = νR = 1, so that the
effective asymmetry parameter A is related to λ as A = 4λ. Except
PL = 0.5, all other parameters are as in Fig. 3.

matrix elements, heat conductance, spin thermopower, and
figures of merit as a function of spin number S, similarly as in
Fig. 3 but for different values of the parameters describing
the junction asymmetry. First of all, one can immediately
notice that the relative diagonal conductances, i.e., charge
(G/GMTJ) and spin (GS/GMTJ

S ) ones shown in Fig. 4(a), are
only weakly affected by the change in asymmetry parameters
assumed in Fig. 4. This dependence is much more pronounced
for relative nondiagonal elements of the conductance matrix
in Fig. 4(b), also cf. Eqs. (78) and (79), where a significant
asymmetry of the junction leads to an increase of the relevant
components of G. Apart from this, the variation of all the
conductances with the spin number S resembles that observed
earlier in Fig. 3, so it will not be discussed here. On the
other hand, according to Eq. (76) and Fig. 4(c), the relative
heat conductance is independent of the asymmetry parameter
A. However, one should bear in mind that κMTJ as well as
elements of the conductance matrix GMTJ are actually sensitive
to the asymmetry of the electrodes’ DOS at the Fermi level
characterized by λ; see Eqs. (66) and (65).

The relative spin thermopower, shown in Fig. 4(d), depends
remarkably on the asymmetry parameters: whereas in the
limit of large A [i.e., A � 1; see open circles in Fig. 4(d)]
SS/SMTJ

S ≈ const, regardless of the value of spin number
S, for small A [i.e., 0 < A � 1, triangles in Fig. 4(d)] SS

significantly varies with S and it can even change its sign.
Employing Eq. (60) one derives

SS

SMTJ
S

= Gm
S

GS
= PL

Xsc + A2−[1−P 2
L]

A[A+2]+[1−P 2
L]

Xsc + A2+[1+2A][1−P 2
L]

A[A+2]+[1−P 2
L]

, (84)

where the coefficient Xsc is given by

Xsc = 3λ + S(S + 1)α2
exν

4
LA

2S(S + 1)α2
exν

4
LA

. (85)

Since when plotting Fig. 4 we assumed that the parameter νas,
describing the asymmetry of coupling between the impurity
and electrodes, is kept constant, it means that A can in fact be
identified with λ. As a result, the disparate behavior of the spin
thermopower can be understood on the basis of the inequality
of ρL and ρR . It is clear from Eqs. (71)–(75) that whereas
the spin-conserving parts of spin conductances depend on
the DOSs of electrodes in a straightforward way, Gm

S,sc =
PLGS,sc ∝ ρLρR , its spin-flip counterparts exhibit a nontrivial
dependence on these two parameters. Because SS ∝ Gm

S /GS
[note that SMTJ is only proportional to xR(ρR)], its sensitivity
to variations of the ratio ρR/ρL therefore originates from the
spin-flip electron transport; see Eq. (84). In particular, for large
A corresponding to ρR � ρL, one gets

Gm
S,sf

GMTJ
S

= PL

GS,sf

GMTJ
S

= 2

3
PLS(S + 1)α2

exν
4
Lν2

as, (86)

while for small A corresponding to ρR � ρL,

Gm
S,sf

GMTJ
S

= −PL

GS,sf

GMTJ
S

= −2

3
PLS(S + 1)α2

exν
4
Lν2

as, (87)

so that in the limit of very large S the following approximate
expression for the spin thermopower is found:

lim
largeA

SS/SMTJ
S = PL,

(88)

lim
smallA

SS/SMTJ
S = −1

3
PL.

Interestingly, one finds SS = 0 when Gm
S = 0, which means

that the vanishing of the spin thermopower in Fig. 4(d) occurs
for parameters precluding the flow of spin current when an
electric bias is applied, i.e., the corresponding electric current
is not spin polarized.

In order to complete the above discussion of how the
asymmetry of the junction with a magnetic impurity affects its
thermoelectric properties, we show in Fig. 5 the dependence
of relevant thermoelectric coefficients on both the asymmetry
parameters λ and νas. The white dashed lines signify there the
case of A = 1, separating the regions of large A (A > 1) and
small A (A < 1). One can note that the conventional figure of
merit ZT departs from the corresponding value ZTMTJ for an
empty junction only when A only slightly differs from 1.

2. The anisotropic case (D �= 0 and E �= 0)

Let us now consider the general case of anisotropic
magnetic impurity, D = 0 and E = 0. Owing to the transverse
anisotropy, electrons tunneling through the barrier can reverse
its spin orientation in the linear-response and low-temperature
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FIG. 5. (Color online) Analogous to Fig. 4, but now the quantities
under consideration are plotted as a function of the effective
asymmetry parameter A. This is achieved by varying parameters
λ and νas (to be precise, we change νL while keeping νR = 1). The
white dashed line represents A = 1. Note that the case of a fully
symmetric junction, i.e., for A = 1 with λ = νas = 1, corresponds in
each plot to the point with coordinates (λ = 1,νL = 1). Except for
PL = 0.5 and S = 5, all parameters as in Fig. 4.

regimes, as we have already mentioned above. We recall that
for the anisotropic case we assume that only the states of the
ground doublet |χ±S〉 participate in transport, which basically
means that results of this section apply for T � (2S − 1)D.
The corresponding numerical results for the conductance
matrix elements, heat conductance, spin thermopower, and
both figures of merit are presented in Fig. 6 for a repre-
sentative value of the uniaxial anisotropy constant D and
several indicated values of the transverse anisotropy E. For
comparison, we also show there the corresponding results for
the case of D = E = 0. Since the matrix elements |S±

χ−SχS
|

and accordingly the coefficients ϑn for n = 2,3 (see Table I)
are usually small, the diagonal and nondiagonal conductances
as well as the heat conductance are almost independent
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FIG. 6. (Color online) Analogous to Fig. 3, but now the quantities
under consideration are plotted for the case of an anisotropic
spin impurity with D = 100 μeV and indicated values of the
transverse magnetic anisotropy E. Except PL = 0.5 and T = 0.1 K,
all parameters are as in Fig. 3. For comparison, black dots representing
the situation of an isotropic (D = E = 0) spin impurity are also
presented.

on the transverse anisotropy. However, they differ from the
corresponding parameters in the limit of isotropic impurity.
This difference is relatively small in the case of diagonal
conductance matrix elements and the heat conductance, but
becomes remarkable for nondiagonal conductance elements.
This may be accounted for by taking into account that though
the summation is now over two states of lowest energy, the
corresponding occupation probability for the two states is
accordingly enhanced as the excited states are not occupied
for T � (2S − 1)D.

Similarly, the spin thermopower and figures of merit are
also weakly dependent on the transverse anisotropy, but
significantly differ from the corresponding parameters in the
isotropic limit. The spin thermopower and both figures of merit
are enhanced in comparison to those in the limit of D = E = 0.
Interestingly, the dependence of spin thermopower and figures
of merit on the spin number S in the anisotropic case is
different from that in the isotropic one. These parameters
initially increase with increasing S for small values of S, and
then become independent on S with a further increase in S.
This difference follows from the fact that only two states of
lowest energy are included in the anisotropic case due to the
energy barrier, while all spin states of the impurity are taken
into account in the isotropic case as they all are degenerate.
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C. Limit of no charge transport between different electrodes

Analysis of Eqs. (49)–(54) leads to the interesting conclu-
sion that even if no transport of electrons is allowed between
two different electrodes, i.e., for αd = 0 and αLR

ex = 0, one
can still have nonzero transport of spin, which is stimulated
by a spin bias δVS, for the contribution to Gsf from T (1)

sf
[specifically, see the second term of Eq. (52)] remains nonzero,

GS = e�

2
�α2

exν
4
L

{
1

4
[ϑ3 − ϑ2]

A4 + [
1 − P 2

L

]2

A2 + [
1 − P 2

L

]
+ 1

2
[ϑ3 + ϑ2]

A2
[
1 − P 2

L

]
A2 + [

1 − P 2
L

]}
. (89)

The nonzero spin current in the absence of charge current
appears due to single-electrode tunneling processes. In par-
ticular, of key importance are the processes in which an
electron scattering on the impurity spin changes its spin and
thus transfers to/from the impurity a quantum of angular
momentum. If a spin bias is applied, such processes transfer
effectively angular momentum from one electrode to the
impurity, and then from impurity to the other electrode. This,
in turn, gives rise to a resultant spin current flowing through
the junction. One may say that spin angular momentum is
effectively pumped between the electrodes without actual
charge transport across the junction. It is worth noting that
the crucial role in the process under discussion is played by
the spin impurity which serves as an intermediate reservoir of
angular momentum [122].

Numerical results on the spin conductance GS in the
absence of charge transport are shown in Fig. 7 as a function
of the asymmetry parameters for both isotropic (D = E = 0)
and anisotropic (D = 0 and E = 0) situations. For the sake
of conceptual simplicity, we focus the discussion on the
possibly smallest, and nontrivial from the point of view of
magnetic anisotropy, half-integer value of the impurity spin
S = 3/2. Furthermore, in order to assess the efficiency of the
spin-transport processes under consideration, we relate GS to
the spin conductance GMTJ

S = (e�/2)�λ of a bare junction, i.e.,
without an impurity (recall Sec. IV A). In that case, however,
transport of spin between electrodes occurs entirely as a result
of the charge transfer, whereas at present no tunneling of
electrons across the junction takes place.

First of all, it can be noticed that for the isotropic spin
impurity the maximum value of GS/GMTJ

S is reached for
A = 1, whereas for the anisotropic one at this point only a
local maximum develops. The origin of this difference can be
explained as follows. From the analysis of Eq. (89) it stems
that the magnetic properties of the spin impurity enter the
expression exclusively via the coefficients ϑ2 and ϑ3; see
Table I. Importantly, in the isotropic case ϑ2 = ϑ3 =
(4/3)S(S + 1), so that only the second term of Eq. (89)
survives, and for S = 3/2 we obtain [ϑ3 + ϑ2]/2 = 5. On
the other hand, in the anisotropic case ϑ2 = ϑ3, and using
definitions given in Table I we find

1
4 [ϑ3 − ϑ2] = |S+

χ−SχS
|2|S−

χ−SχS
|2,

(90)
1
2 [ϑ3 + ϑ2] = |S+

χ−SχS
|4 + |S−

χ−SχS
|4,
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FIG. 7. (Color online) Spin transport in the absence of electron
tunneling between left and right electrodes for the impurity of spin
S = 3/2. (a),(b) Linear-response spin conductance GS shown as
a function of the parameters λ (the asymmetry of right/left DOS
at the Fermi level) and νL (the coupling of the spin impurity to
the left electrode) for the spin polarization of the left electrode
PL = 0.5. Note that for practical reasons, here we normalize GS

by its value GMTJ
S = (e�/2)�λ for the case of a junction without the

impurity. However, one should bear in mind the crucial difference
between GS and GMTJ

S , namely that the latter is associated with
charge transport whereas the former is not. Panels (c) and (d)
present cross sections of (a) and (b), respectively, for indicated values
of νL. (e),(f) Spin conductance GS plotted for different values of
the spin-polarization parameter PL and νL = 0.5. Left/right panel
corresponds to the isotropic/anisotropic spin impurity. Except for
T = 0.1 K and νR = 1, all parameters are as in Fig. 3.

with

|S+
χ−SχS

|2 =
(
D − √

D2 + 3E2
)2

D2 + 3E2
, (91)

and

|S−
χ−SχS

|2 = 9E2

D2 + 3E2
. (92)

We emphasize that the two above formulas hold only for S =
3/2, and no generalization to an arbitrary S is possible. For the
anisotropy parameters D and E used in the right panel of Fig. 7
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we get [ϑ3 − ϑ2]/4 ≈ 0.008 and [ϑ3 + ϑ2]/2 ≈ 0.4. It can
also be easily checked that the absence of transverse magnetic
anisotropy (E = 0) leads to |S±

χ−SχS
|2 = 0. In consequence, for

A ≈ 1 the first term of GS, Eq. (89), contributes negligibly.
The situation changes notably when A differs significantly
from 1 and the term in question becomes determinative. The
key observation is that whereas for the isotropic spin impurity
the maximal value of the spin conductance GS = GMTJ

S is
achieved only for a symmetric junction (A = 1 for λ = νas =
1) and GS < GMTJ

S otherwise, see Figs. 7(a) and 7(c), for the
anisotropic spin impurity it is possible to obtain GS > GMTJ

S by
allowing for the asymmetry of the junction; see Figs. 7(b) and
7(d). As a result, the pumping of angular momentum between
electrodes via the anisotropic spin impurity without charge
transport seems to be more effective than the spin transport
associated with charge transport in a conventional magnetic
tunnel junction. In addition, it is interesting to note that the
spin conductance decreases with increasing spin polarization
PL of the electrode, and achieves maximum for zero spin
polarization of the left electrode, PL = 0.

V. SUMMARY AND CONCLUSIONS

We have considered electronic transport and thermoelectric
properties of a magnetic tunnel junction with a single magnetic
impurity embedded in the barrier. This corresponds, for
instance, to a magnetic tip above a molecule located on
a substrate. The molecule was described by a giant spin
Hamiltonian with uniaxial and transverse components of
magnetic anisotropy, while the tunneling Hamiltonian was
taken in the form which included direct tunneling between
the electrodes as well as tunneling with exchange interaction
between the electrons and molecule.

The key objective was a description of spin related effects
in electronic transport and thermoelectricity, like spin Peltier
and spin Seebeck effects. The analysis was limited to a linear-
response regime and elastic-scattering processes. A particular
attention was paid to the role of spin-flip scattering of electrons
on the impurity during tunneling between the electrodes.
Two situations were distinguished: isotropic, D = E = 0, and
anisotropic, D = 0 and E = 0, ones. To exclude inelastic
tunneling processes, the temperature in the anisotropic case
was limited to temperatures smaller than the zero-field splitting
energy.

We have shown that the transverse anisotropy (for an
anisotropic spin impurity) has a minor influence on the charge
and spin conductance as well as on the thermal conductance
and thermoelectric parameters (spin thermopower and spin

figure of merit). However, these transport and thermoelectric
coefficients differ from the corresponding ones in the isotropic
case, and this difference is especially remarkable for the non-
diagonal elements of the conductance matrix. The difference
in the conductances stems from the anisotropy barrier which
appears in the anisotropic case and which limits the number
of states participating in spin-conserving transport processes.
In the case of an isotropic spin impurity, on the other hand,
all states contribute to transport. It is also worth noting that
the ratio of thermal conductance in the isotropic case to the
thermal conductance of a bare junction (i.e., without a spin
impurity) is independent of the electrode’s polarization. The
corresponding ratio for diagonal and nondiagonal elements
of the conductance matrix depend on spin polarization PL,
and this ratio for nondiagonal elements reaches maximum for
PL = 1, while for diagonal elements for PL = 0.

As a special case, we have also analyzed the situation
when a spin current stimulated by a spin bias can flow
through the junction in the absence of a charge current. This
corresponds to the situation when the external electrodes are
exchange-coupled to the molecule, and there are no electron
tunneling processes (neither direct nor with scattering on the
impurity) between left and right electrodes. Spin current can
then flow through the molecule in a biased system due to
single-electrode tunneling processes, and thus this spin current
is not associated with any charge transport. Interestingly, it has
been shown that in the case of an asymmetric junction, where
the asymmetry is either due to different DOSs at the Fermi level
in both electrodes or due to different exchange coupling of
the impurity with electrodes, the mechanism of spin transport
under discussion can be more efficient than spin transport
associated with charge transfer between electrodes in a conven-
tional magnetic tunnel junction, i.e., without a spin impurity.
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APPENDIX A: EXPRESSIONS FOR CURRENTS

Equations (19)–(21) can be written in a more explicit form.
After changing summations with respect to wave vectors to
integration over energy one obtains

IC = e
2π

�

∑
αβ

∑
χχ ′

|〈Rβ,χ ′|Hint|Lα,χ〉|2
∫

dω ρL
α (ω)ρR

β (ω + �χχ ′)

×{PχfLα(ω)[1 − fRβ(ω + �χχ ′ )] − Pχ ′fRβ(ω + �χχ ′ )[1 − fLα(ω)]}, (A1)

IS = �

2

2π

�

∑
χχ ′

{∑
α

ηα|〈Rα,χ ′|Hint|Lα,χ〉|2
[
Pχ

∫
dωρL

α (ω)ρR
α (ω + �χχ ′)fLα(ω)[1 − fRα(ω + �χχ ′ )]

−Pχ ′

∫
dωρL

α (ω)ρR
α (ω + �χχ ′ )fRα(ω + �χχ ′)[1 − fLα(ω)]

]
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+
∑

q

ηq |〈q ↓ ,χ ′|Hint|q ↑ ,χ〉|2
[
Pχ

∫
dωρ

q

↑(ω)ρq

↓(ω + �χχ ′ )fq↑(ω)[1 − fq↓(ω + �χχ ′)]

−Pχ ′

∫
dωρ

q

↑(ω)ρq

↓(ω + �χχ ′)fq↓(ω + �χχ ′)[1 − fq↑(ω)]

]}
, (A2)

IQ =2π

�

∑
αβ

∑
χχ ′

|〈Rβ,χ ′|Hint|Lα,χ〉|2
∫

dωρL
α (ω)ρR

β (ω + �χχ ′)

×
{
Pχ

(
ω + 1

2
�χχ ′ − μ0 − 1

2
(ηα − ηβ)eδVS

)
fLα(ω)[1 − fRβ(ω + �χχ ′ )]

− Pχ ′

(
ω + 1

2
�χχ ′ − μ0 − 1

2
(ηα − ηβ)eδVS

)
fRβ (ω + �χχ ′)[1 − fLα(ω)]

}
− 2π

�

∑
q

∑
αβ

∑
χχ ′

ηqPχ |〈qβ,χ ′|Hint|qα,χ〉|2
∫

dωρq
α (ω)ρq

β (ω + �χχ ′ )

×
(

1

2
�χχ ′ + 1

4
ηq(ηα − ηβ)eδVS

)
fqα(ω)[1 − fqβ(ω + �χχ ′ )]. (A3)

APPENDIX B: DERIVATION OF THE
KINETIC COEFFICIENTS

In order to derive the linear-response expressions for the
charge (IC ≡ I0), spin (IS ≡ I1) and heat (IQ ≡ I2) currents,
one has to linearize them with respect to the voltage bias δV ,
spin bias δVS, as well as temperature difference δT ,

In ≈ ∂In

∂δV

∣∣∣∣
eq

δV + ∂In

∂δVS

∣∣∣∣
eq

δVS + ∂In

∂δT

∣∣∣∣
eq

δT , (B1)

for n = 0,1,2, where the subscript “eq” means equilibrium
situation, i.e., δV = δVS = δT = 0. According to Eq. (27)
the formulas for the charge, spin, and heat currents can be
expressed in terms of the kinetic coefficients Lnk as

In = eδn0

(
�

2

)δn1
[
eLn0x0 + eLn1x1 + 1

T
Ln2x2

]
. (B2)

In the equation above, the shorthand notation x0 ≡
δV , x1 ≡ δVS, and x2 ≡ δT has been introduced.

From Eq. (B1), it becomes clear that in order to derive the
kinetic coefficients one has to calculate the relevant derivatives
of Eqs. (19)–(21) [or essentially its integral versions given
by Eqs. (A1)–(A3)], which in general is a nontrivial task
since it requires the knowledge of the explicit form of the
probabilities Pχ . Since we are interested in the linear-response
regime and elastic contributions to transport processes, we
take into account only degenerate ground states if their energy
separation from excited states is significantly larger than the
thermal energy. For an isotropic spin impurity of arbitrary spin
number S, the analytical solution can be then found without
any further approximations regarding the impurity spectrum
(see Appendix B1). On the other hand, for an anisotropic
half-integer spin impurity (S > 1/2) exhibiting magnetic
anisotropy, the problem can be significantly simplified for
sufficiently low temperatures, T � (2S − 1)D, by truncating
the impurity spectrum to the ground-state Kramers’ doublet,
so that only transitions within the doublet |χS〉 and |χ−S〉 can
occur (see subsection 2 of this Appendix). One can find the
kinetic coefficients to have the general form

Lnk = 2π

�
K2

∑
χχ ′

[
T δk2

eδk0+δk1

( ∑
σσ ′

(ησ δσσ ′)δn1Wχχ ′
σσ ′

∫
dω ρL

σ (ω)ρR
σ ′(ω)

{(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
f (ω)[1 − f (ω)]

+Pχ

∣∣∣∣
eq

∂

∂xk

(fLσ (ω)[1 − fRσ ′(ω)])
∣∣
eq − Pχ ′

∣∣
eq

∂

∂xk

([1 − fLσ (ω)]fRσ ′(ω))
∣∣
eq

}
+ δn1

∑
q

ηq

(
αqq

ex

)2|S+
χ ′χ |2

∫
dω ρ

q

↑(ω)ρq

↓(ω)

{(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
f (ω)[1 − f (ω)]

+Pχ

∣∣∣∣
eq

∂

∂xk

(fq↑(ω)[1 − fq↓(ω)])|eq − Pχ ′
∣∣
eq

∂

∂xk

([1 − fq↑(ω)]fq↓(ω))|eq

})
− δn2δk1

1

2

∑
q

∑
σ

(
αqq

ex

)2
(δσ↑|S+

χ ′χ |2 − δσ↓|S−
χ ′χ |2)Pχ

∣∣
eq

∫
dω ρq

σ (ω)ρq

σ (ω)f (ω)[1 − f (ω)]

]
, (B3)
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where the summation for the isotropic case is over all spin states, while for the anisotropic case it is over the two degenerate
states of lowest energy, and

Wχχ ′
σσ ′ = δσ ′σ δχ ′χ

[
α2

d + 2ησαdα
LR
ex Sz

χχ

] + (
αLR

ex

)2{
δσ ′σ

∣∣Sz
χ ′χ

∣∣2+δσ ′σ [δσ↓|S−
χ ′χ |2+δσ↑|S+

χ ′χ |2]
}
. (B4)

To show that Eq. (B3) indeed represents the kinetic coefficient, one should additionally prove that it satisfies the Onsager relation.
For this purpose, let us begin with calculating the derivatives involving the Fermi-Dirac distribution functions of electrodes,

∂

∂xk

(fqσ (ω)[1 − fq ′σ ′(ω)])
∣∣
eq = ∂fqσ (ω)

∂xk

∣∣∣∣
eq

−
(

∂fqσ (ω)

∂xk

∣∣∣∣
eq

+ ∂fq ′σ ′(ω)

∂xk

∣∣∣∣
eq

)
f (ω), (B5)

where we used that fqσ (ω)
∣∣
eq ≡ f (ω) = {1 + exp[(ω − μ0)T −1]}−1, and

∂fqσ (ω)

∂xk

∣∣∣∣
eq

= ηqη
δk1
σ

eδk0+δk1

2T δk2
(ω − μ0)δk2 [−f ′(ω)], (B6)

with f ′(ω) ≡ ∂f (ω)/∂ω. Next, we define an auxiliary function

φ
(n,k)qq ′
σσ ′ =

∫
dωρq

σ (ω)ρq ′
σ ′(ω)(ω − μ0)n[−f ′(ω)][f (ω)]k, (B7)

obeying the symmetry relation φ
(n,k)qq ′
σσ ′ = φ

(n,k)q ′q
σ ′σ , and we employ the identity f (ω)[1 − f (ω)] = T [−f ′(ω)], which in

consequence allows for writing

Lnk = π

�
K2

∑
χχ ′

[∑
σσ ′

(ησ δσσ ′)δn1Wχχ ′
σσ ′

{(
ηδk1

σ Pχ

∣∣
eq + η

δk1
σ ′ Pχ ′

∣∣
eq

)
φ

(δn2+δk2,0)LR
σσ ′ + 2T 1+δk2

eδk0+δk1

(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
φ

(δn2,0)LR
σσ ′

}

+ δn1

∑
q

ηq

(
αqq

ex

)2|S+
χ ′χ |2

{
ηq(Pχ |eq − (−1)δk1Pχ ′ |eq)φ(δk2,0)qq

↑↓ + 2T 1+δk2

eδk0+δk1

(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
φ

(0,0)qq

↑↓

}

− δn2δk1T
∑

q

∑
σ

(
αqq

ex

)2
(δσ↑|S+

χ ′χ |2 − δσ↓|S−
χ ′χ |2)Pχ

∣∣
eqφ

(0,0)qq

σσ

]
. (B8)

We point out that the equations above have been simplified
by noting that Pχ |eq − Pχ ′ |eq = 0 (i.e., at equilibrium) for
any pair of degenerate states |χ〉 and |χ ′〉 [for details see the
discussion below].

In the next step we have to find the linear coefficients
of the Taylor expansion for the probabilities with respect
to voltage and spin bias, as well as to temperature differ-
ence. We discuss the derivation procedure separately for the
case of an isotropic spin impurity (Appendix B 1) and an
anisotropic spin impurity with magnetic anisotropy (Appendix
B 2), where only the Kramers’ ground doublet is taken into
consideration.

1. Isotropic spin impurity S

As described in Sec. III B, the probabilities of finding the
impurity in a specific spin state can be found by means of
the set of stationary master equations; see Eq. (24). Because
the Hamiltonian of the impurity is rotationally invariant in the
present case, one can conveniently use the eigenvalues m of
the zth component of the spin operator Sz to label the spin
states, i.e., |χ〉 ≡ |m〉, so that

∀
m
Pm−1γm−1,m + Pm+1γm+1,m − Pm(γm,m−1 + γm,m+1) = 0,

(B9)

with transition rates given by

γm,m−1 = 2π

�
K2C−

m

∑
qq ′

(
αqq ′

ex

)2
�

(0)qq ′
↓↑ (0),

γm−1,m = 2π

�
K2C−

m

∑
qq ′

(
αqq ′

ex

)2
�

(0)qq ′
↑↓ (0),

with C±
m ≡ S(S + 1) − m(m ± 1). (B10)

Using Eq. (B9) together with the probability normalization
condition

∑
m Pm = 1, one obtains

PS =
[

1 +
2S−1∑
m=0

m∏
k=0

γS−k,S−1−k

γS−1−k,S−k

]−1

and

∀
m=S

Pm = PS

S−1−m∏
k=0

γm+1+k,m+k

γm+k,m+1+k

, (B11)

and after taking into account Eq. (B10),

Pm = YS−m

1 + ∑2S−1
m=0 Ym+1

with

Y ≡
∑

qq ′
(
α

qq ′
ex

)2
�

(0)qq ′
↓↑ (0)∑

qq ′
(
α

qq ′
ex

)2
�

(0)qq ′
↑↓ (0)

. (B12)
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By noting that at equilibrium the function �
(n)qq ′
σσ ′ (0), see Eq. (26), exhibits the following symmetry property:

�
(n)qq ′
σσ ′ (0)

∣∣
eq = �

(n)q ′q
σ ′σ (0)

∣∣
eq, (B13)

one obtains Y|eq = 1, which allows for writing the equilibrium probabilities and the corresponding derivatives in the following
form:

Pm|eq = 1

2S + 1
and

∂Pm

∂xk

∣∣∣∣
eq

= −m
∂Y
∂xk

∣∣∣∣
eq

= −m

∑
qq ′

(
α

qq ′
ex

)2[ ∂�
(0)qq′
↓↑ (0)
∂xk

|eq − ∂�
(0)qq′
↑↓ (0)
∂xk

|eq
]

∑
qq ′

(
α

qq ′
ex

)2
�

(0)qq ′
↑↓ (0)|eq

. (B14)

Finally, employing that

∂�
(0)qq ′
σσ (0)

∂xk

∣∣∣∣
eq

= eδk0+δk1

2T δk2

[
ηqη

δk1
σ φ

(δk2,0)qq ′
σσ − (

ηδk1
σ ηq + η

δk1
σ ηq ′

)
φ

(δk2,1)qq ′
σσ

]
, (B15)

we get the explicit expression for the difference of probabilities’ derivatives,

∂Pm

∂xk

∣∣∣∣
eq

− ∂Pm′

∂xk

∣∣∣∣
eq

= m − m′

2S + 1
�

eδk0+δk1

T δk2

{
(δk0 + δk2)

(
αLR

ex

)2 ∑
σ

ησφ
(δk2,0)LR
σσ + δk1

∑
q

ηq

(
αqq

ex

)2
φ

(δk2,0)qq

↑↓

}
, (B16)

with

� =
[ ∑

qq ′

(
αqq ′

ex

)2
�

(0)qq ′
↑↓ (0)

∣∣
eq

]−1

. (B17)

Next, by noting that for m = m′ holds,

Wmm′
σσ ′ = (

αLR
ex

)2
δσ ′σ {δσ↓δm,m′+1C+

m′ +δσ↑δm′,m+1C+
m}, (B18)

and
∑

m C+
m = (2/3)S(S + 1)(2S + 1), we arrive at the final formula for the kinetic coefficient:

Lnk =π

�
K2

[
2

2S + 1

∑
mm′

∑
σσ ′

(ησ δσσ ′)δn1+δk1Wmm′
σσ ′ φ

(δn2+δk2,0)LR
σσ ′

− (δn0 + δn2)(δk0 + δk2)
4

3
S(S + 1)�T

(
αLR

ex

)4 ∑
σσ ′

ησησ ′φ
(δn2,0)LR
σσ φ

(δk2,0)LR

σ ′σ ′

− [(δn0 + δn2)δk1 + δn1(δk0 + δk2)]
4

3
S(S + 1)�T

(
αLR

ex

)2 ∑
qσ

ηqησ

(
αqq

ex

)2
φ

(δn2+δk2,0)LR
σσ φ

(0,0)qq

↑↓

− δn1δk1

{
4

3
S(S + 1)�T

∑
qq ′

ηqηq ′
(
αqq

ex

)2(
αq ′q ′

ex

)2
φ

(0,0)qq

↑↓ φ
(δk2,0)q ′q ′
↑↓ − 4

3
S(S + 1)

∑
q

(
αqq

ex

)2
φ

(0,0)qq

↑↓

}]
. (B19)

It can be easily seen that the expression above is symmetric with respect to exchanging the indices n and k, and hence it satisfies
the Onsager relation.

2. Anisotropic spin impurity S > 1/2

A similar derivation as above can be performed for the
case of an anisotropic spin impurity with both uniaxial and
transverse components of magnetic anisotropy. Provided that
only the Kramers’ doublet states |χS〉 and |χ−S〉 participate in
the transport, the general expression for the probabilities of
finding the impurity spin in either of these two states can be
easily found from Eq. (24) and the normalization condition for
probability,

PχS
= γχ−SχS

γ
and Pχ−S

= γχSχ−S

γ
(B20)

with γ = γχ−SχS
+ γχSχ−S

. From Eq. (25) one gets for m = ±S

γχmχ−m
=2π

�
K2

∑
qq ′σ

(
αqq ′

ex

)2
�

(0)qq ′
σσ (0)[δσ↓|S−

χ−mχm
|2

+ δσ↑|S+
χ−mχm

|2], (B21)

and

γ = 2π

�
K2

∑
ξ=±

∣∣Sξ
χ−SχS

∣∣2∑
qq ′σ

(
αqq ′

ex

)2
�

(0)qq ′
σσ (0). (B22)

Using the symmetry property of �
(n)qq ′
σσ ′ (0)

∣∣
eq, see Eq. (B13), one can show that

γχSχ−S
|eq = γχ−SχS

|eq = 1
2γ |eq and,consequently, PχS

|eq = Pχ−S
|eq = 1

2 . (B23)
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Furthermore, employing Eqs. (B20) and (B23), one finds for m = ±S

∂Pχm

∂xk

∣∣∣∣
eq

= 1

γ |eq

[
∂γχ−mχm

∂xk

∣∣∣∣
eq

− 1

2

∂γ

∂xk

∣∣∣∣
eq

]
, (B24)

from where it immediately follows that

∂Pχm

∂xk

∣∣∣∣
eq

− ∂Pχ−m

∂xk

∣∣∣∣
eq

= 1

γ
∣∣
eq

[
∂γχ−mχm

∂xk

∣∣∣∣
eq

− ∂γχmχ−m

∂xk

∣∣∣∣
eq

]
. (B25)

Using then Eq. (B15), one obtains

∂Pχm

∂xk

∣∣∣∣
eq

− ∂Pχ−m

∂xk

∣∣∣∣
eq

= −1

2
sgnz(χm)

�−
�+

�
eδk0+δk1

T δk2

{
(δk0 + δk2)

(
αLR

ex

)2 ∑
σ

ησφ
(δk2,0)LR
σσ + δk1

∑
q

ηq

(
αqq

ex

)2
φ

(δk2,0)qq

↑↓

}
, (B26)

where sgnz(χm) ≡ sgn(Sz
χmχm

) and �± = |S+
χ−SχS

|2 ± |S−
χ−SχS

|2.
Finally, before we write the final expression for the kinetic coefficient, let us note that for a half-integer spin impurity (in the

absence of an external magnetic field) Sz
χSχ−S

= Sz
χ−SχS

= 0 and S±
χ±Sχ±S

= 0, which allows for the following identities to be used
in Eq. (B8): ∑

χχ ′
Wχχ ′

σσ ′

(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
= (

αLR
ex

)2
δσ ′σ ησ�−

(
∂PχS

∂xk

∣∣∣∣
eq

− ∂Pχ−S

∂xk

∣∣∣∣
eq

)
, (B27)

and ∑
χχ ′

|S+
χ ′χ |2

(
∂Pχ

∂xk

∣∣∣∣
eq

− ∂Pχ ′

∂xk

∣∣∣∣
eq

)
= �−

(
∂PχS

∂xk

∣∣∣∣
eq

− ∂Pχ−S

∂xk

∣∣∣∣
eq

)
. (B28)

Accordingly, the formulas for the kinetic coefficients take the general forms:

Lnk = π

�
K2

[ ∑
χχ ′

∑
σσ ′

(ησ δσσ ′)δn1+δk1Wχχ ′
σσ ′ φ

(δn2+δk2,0)LR
σσ ′

− (δn0 + δn2)(δk0 + δk2)
�2

−
�+

�T
(
αLR

ex

)4 ∑
σσ ′

ησησ ′φ
(δn2,0)LR
σσ φ

(δk2,0)LR

σ ′σ ′

− [(δn0 + δn2)δk1 + δn1(δk0 + δk2)]
�2

−
�+

�T
(
αLR

ex

)2 ∑
qσ

ηqησ
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. (B29)

As previously, it can also be easily checked that the Onsager relation holds.
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[80] T. Rejec, A. Ramšak, and J. H. Jefferson, Phys. Rev. B 65,

235301 (2002).

235438-20

http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1103/PhysRevB.79.081302
http://dx.doi.org/10.1103/PhysRevB.79.081302
http://dx.doi.org/10.1103/PhysRevB.79.081302
http://dx.doi.org/10.1103/PhysRevB.79.081302
http://dx.doi.org/10.1103/PhysRevB.82.045412
http://dx.doi.org/10.1103/PhysRevB.82.045412
http://dx.doi.org/10.1103/PhysRevB.82.045412
http://dx.doi.org/10.1103/PhysRevB.82.045412
http://dx.doi.org/10.1016/j.physleta.2010.11.023
http://dx.doi.org/10.1016/j.physleta.2010.11.023
http://dx.doi.org/10.1016/j.physleta.2010.11.023
http://dx.doi.org/10.1016/j.physleta.2010.11.023
http://dx.doi.org/10.1103/PhysRevB.84.201307
http://dx.doi.org/10.1103/PhysRevB.84.201307
http://dx.doi.org/10.1103/PhysRevB.84.201307
http://dx.doi.org/10.1103/PhysRevB.84.201307
http://dx.doi.org/10.1103/PhysRevB.85.155423
http://dx.doi.org/10.1103/PhysRevB.85.155423
http://dx.doi.org/10.1103/PhysRevB.85.155423
http://dx.doi.org/10.1103/PhysRevB.85.155423
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1209/epl/i2001-00559-8
http://dx.doi.org/10.1209/epl/i2001-00559-8
http://dx.doi.org/10.1209/epl/i2001-00559-8
http://dx.doi.org/10.1209/epl/i2001-00559-8
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevB.66.045301
http://dx.doi.org/10.1103/PhysRevB.66.045301
http://dx.doi.org/10.1103/PhysRevB.66.045301
http://dx.doi.org/10.1103/PhysRevB.66.045301
http://dx.doi.org/10.1103/PhysRevB.73.075307
http://dx.doi.org/10.1103/PhysRevB.73.075307
http://dx.doi.org/10.1103/PhysRevB.73.075307
http://dx.doi.org/10.1103/PhysRevB.73.075307
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://dx.doi.org/10.1103/PhysRevB.82.113306
http://dx.doi.org/10.1103/PhysRevB.82.113306
http://dx.doi.org/10.1103/PhysRevB.82.113306
http://dx.doi.org/10.1103/PhysRevB.82.113306
http://dx.doi.org/10.1103/PhysRevB.88.085313
http://dx.doi.org/10.1103/PhysRevB.88.085313
http://dx.doi.org/10.1103/PhysRevB.88.085313
http://dx.doi.org/10.1103/PhysRevB.88.085313
http://dx.doi.org/10.1088/1367-2630/15/10/105023
http://dx.doi.org/10.1088/1367-2630/15/10/105023
http://dx.doi.org/10.1088/1367-2630/15/10/105023
http://dx.doi.org/10.1088/1367-2630/15/10/105023
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1126/science.1137149
http://dx.doi.org/10.1126/science.1137149
http://dx.doi.org/10.1126/science.1137149
http://dx.doi.org/10.1126/science.1137149
http://dx.doi.org/10.1021/nl072738l
http://dx.doi.org/10.1021/nl072738l
http://dx.doi.org/10.1021/nl072738l
http://dx.doi.org/10.1021/nl072738l
http://dx.doi.org/10.1021/nl803814f
http://dx.doi.org/10.1021/nl803814f
http://dx.doi.org/10.1021/nl803814f
http://dx.doi.org/10.1021/nl803814f
http://dx.doi.org/10.1021/nl9013875
http://dx.doi.org/10.1021/nl9013875
http://dx.doi.org/10.1021/nl9013875
http://dx.doi.org/10.1021/nl9013875
http://dx.doi.org/10.1063/1.3291521
http://dx.doi.org/10.1063/1.3291521
http://dx.doi.org/10.1063/1.3291521
http://dx.doi.org/10.1063/1.3291521
http://dx.doi.org/10.1021/nl203634m
http://dx.doi.org/10.1021/nl203634m
http://dx.doi.org/10.1021/nl203634m
http://dx.doi.org/10.1021/nl203634m
http://dx.doi.org/10.1021/nl2014839
http://dx.doi.org/10.1021/nl2014839
http://dx.doi.org/10.1021/nl2014839
http://dx.doi.org/10.1021/nl2014839
http://dx.doi.org/10.1021/nl400579g
http://dx.doi.org/10.1021/nl400579g
http://dx.doi.org/10.1021/nl400579g
http://dx.doi.org/10.1021/nl400579g
http://dx.doi.org/10.1103/PhysRevB.67.241403
http://dx.doi.org/10.1103/PhysRevB.67.241403
http://dx.doi.org/10.1103/PhysRevB.67.241403
http://dx.doi.org/10.1103/PhysRevB.67.241403
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1103/PhysRevB.72.165426
http://dx.doi.org/10.1021/nl901554s
http://dx.doi.org/10.1021/nl901554s
http://dx.doi.org/10.1021/nl901554s
http://dx.doi.org/10.1021/nl901554s
http://dx.doi.org/10.1103/PhysRevB.79.245125
http://dx.doi.org/10.1103/PhysRevB.79.245125
http://dx.doi.org/10.1103/PhysRevB.79.245125
http://dx.doi.org/10.1103/PhysRevB.79.245125
http://dx.doi.org/10.1088/1367-2630/15/10/105004
http://dx.doi.org/10.1088/1367-2630/15/10/105004
http://dx.doi.org/10.1088/1367-2630/15/10/105004
http://dx.doi.org/10.1088/1367-2630/15/10/105004
http://dx.doi.org/10.1103/PhysRevB.72.205107
http://dx.doi.org/10.1103/PhysRevB.72.205107
http://dx.doi.org/10.1103/PhysRevB.72.205107
http://dx.doi.org/10.1103/PhysRevB.72.205107
http://dx.doi.org/10.1103/PhysRevB.72.245315
http://dx.doi.org/10.1103/PhysRevB.72.245315
http://dx.doi.org/10.1103/PhysRevB.72.245315
http://dx.doi.org/10.1103/PhysRevB.72.245315
http://dx.doi.org/10.1103/PhysRevB.78.161406
http://dx.doi.org/10.1103/PhysRevB.78.161406
http://dx.doi.org/10.1103/PhysRevB.78.161406
http://dx.doi.org/10.1103/PhysRevB.78.161406
http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevB.81.214418
http://dx.doi.org/10.1103/PhysRevB.81.214418
http://dx.doi.org/10.1103/PhysRevB.81.214418
http://dx.doi.org/10.1103/PhysRevB.81.214418
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1016/j.ssc.2009.10.045
http://dx.doi.org/10.1016/j.ssc.2009.10.045
http://dx.doi.org/10.1016/j.ssc.2009.10.045
http://dx.doi.org/10.1016/j.ssc.2009.10.045
http://dx.doi.org/10.1103/PhysRevB.83.224401
http://dx.doi.org/10.1103/PhysRevB.83.224401
http://dx.doi.org/10.1103/PhysRevB.83.224401
http://dx.doi.org/10.1103/PhysRevB.83.224401
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1038/nature10224
http://dx.doi.org/10.1038/nature10224
http://dx.doi.org/10.1038/nature10224
http://dx.doi.org/10.1038/nature10224
http://dx.doi.org/10.1038/nmat3076
http://dx.doi.org/10.1038/nmat3076
http://dx.doi.org/10.1038/nmat3076
http://dx.doi.org/10.1038/nmat3076
http://dx.doi.org/10.1038/ncomms1748
http://dx.doi.org/10.1038/ncomms1748
http://dx.doi.org/10.1038/ncomms1748
http://dx.doi.org/10.1038/ncomms1748
http://dx.doi.org/10.1103/PhysRevLett.107.177201
http://dx.doi.org/10.1103/PhysRevLett.107.177201
http://dx.doi.org/10.1103/PhysRevLett.107.177201
http://dx.doi.org/10.1103/PhysRevLett.107.177201
http://dx.doi.org/10.1103/PhysRevB.86.024436
http://dx.doi.org/10.1103/PhysRevB.86.024436
http://dx.doi.org/10.1103/PhysRevB.86.024436
http://dx.doi.org/10.1103/PhysRevB.86.024436
http://dx.doi.org/10.1038/nnano.2012.2
http://dx.doi.org/10.1038/nnano.2012.2
http://dx.doi.org/10.1038/nnano.2012.2
http://dx.doi.org/10.1038/nnano.2012.2
http://dx.doi.org/10.1103/PhysRevLett.105.136601
http://dx.doi.org/10.1103/PhysRevLett.105.136601
http://dx.doi.org/10.1103/PhysRevLett.105.136601
http://dx.doi.org/10.1103/PhysRevLett.105.136601
http://dx.doi.org/10.1063/1.4717752
http://dx.doi.org/10.1063/1.4717752
http://dx.doi.org/10.1063/1.4717752
http://dx.doi.org/10.1063/1.4717752
http://dx.doi.org/10.1103/PhysRevB.73.024419
http://dx.doi.org/10.1103/PhysRevB.73.024419
http://dx.doi.org/10.1103/PhysRevB.73.024419
http://dx.doi.org/10.1103/PhysRevB.73.024419
http://dx.doi.org/10.1103/PhysRevB.73.052410
http://dx.doi.org/10.1103/PhysRevB.73.052410
http://dx.doi.org/10.1103/PhysRevB.73.052410
http://dx.doi.org/10.1103/PhysRevB.73.052410
http://dx.doi.org/10.1103/PhysRevB.54.15273
http://dx.doi.org/10.1103/PhysRevB.54.15273
http://dx.doi.org/10.1103/PhysRevB.54.15273
http://dx.doi.org/10.1103/PhysRevB.54.15273
http://dx.doi.org/10.1103/PhysRevB.63.224419
http://dx.doi.org/10.1103/PhysRevB.63.224419
http://dx.doi.org/10.1103/PhysRevB.63.224419
http://dx.doi.org/10.1103/PhysRevB.63.224419
http://dx.doi.org/10.1103/PhysRevB.66.134424
http://dx.doi.org/10.1103/PhysRevB.66.134424
http://dx.doi.org/10.1103/PhysRevB.66.134424
http://dx.doi.org/10.1103/PhysRevB.66.134424
http://dx.doi.org/10.1063/1.1519730
http://dx.doi.org/10.1063/1.1519730
http://dx.doi.org/10.1063/1.1519730
http://dx.doi.org/10.1063/1.1519730
http://dx.doi.org/10.1103/PhysRevB.85.094401
http://dx.doi.org/10.1103/PhysRevB.85.094401
http://dx.doi.org/10.1103/PhysRevB.85.094401
http://dx.doi.org/10.1103/PhysRevB.85.094401
http://dx.doi.org/10.1103/PhysRevB.79.174426
http://dx.doi.org/10.1103/PhysRevB.79.174426
http://dx.doi.org/10.1103/PhysRevB.79.174426
http://dx.doi.org/10.1103/PhysRevB.79.174426
http://dx.doi.org/10.1038/nphys1767
http://dx.doi.org/10.1038/nphys1767
http://dx.doi.org/10.1038/nphys1767
http://dx.doi.org/10.1038/nphys1767
http://dx.doi.org/10.1103/PhysRevB.80.195409
http://dx.doi.org/10.1103/PhysRevB.80.195409
http://dx.doi.org/10.1103/PhysRevB.80.195409
http://dx.doi.org/10.1103/PhysRevB.80.195409
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1103/PhysRevB.65.235301
http://dx.doi.org/10.1103/PhysRevB.65.235301
http://dx.doi.org/10.1103/PhysRevB.65.235301
http://dx.doi.org/10.1103/PhysRevB.65.235301


SPIN-DEPENDENT THERMOELECTRIC EFFECTS IN . . . PHYSICAL REVIEW B 89, 235438 (2014)

[81] D. G. Rothe, E. M. Hankiewicz, B. Trauzettel, and M. Guigou,
Phys. Rev. B 86, 165434 (2012).

[82] R.-Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing,
Phys. Rev. Lett. 105, 057202 (2010).

[83] Z. Zhang, L. Jiang, R. Wang, B. Wang, and D. Xing, Appl.
Phys. Lett. 97, 242101 (2010).

[84] M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Phys.
Rev. Lett. 99, 066603 (2007).

[85] H. Yu, S. Granville, D. P. Yu, and J.-Ph. Ansermet, Phys. Rev.
Lett. 104, 146601 (2010).

[86] F. Dejene, J. Flipse, G. Bauer, and B. J. van Wees, Nat. Phys.
9, 636 (2013).

[87] I. Vera-Marun, B. van Wees, and R. Jansen, Phys. Rev. Lett.
112, 056602 (2014).

[88] M. Misiorny and J. Barnaś, Phys. Rev. B 75, 134425
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