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In the current work we present the complete results for the measurement of normal Casimir force between
a shallow and smooth sinusoidally corrugated gold coated sphere and a plate at various angles between the
corrugations using an atomic force microscope. All measured data were compared with the theoretical approach
using the proximity force approximation and theory based on derivative expansion. In both cases real material
properties of the surfaces and nonzero temperature were taken into account. Special attention is paid to the
description of electrostatic interactions between corrugated surfaces at different angles between corrugations
and samples preparation and characterization. The measured forces are found to be in good agreement with
the theory including correlation effects of geometry and material properties and deviate significantly from the
predictions of the proximity force approximation approach. This provides the quantitative confirmation for the
observation of diffraction-type effects that are disregarded within the PFA approach. The obtained results open
new opportunities for control of the Casimir effect in micromechanical systems.
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I. INTRODUCTION

The Casimir effect [1] has become well known due to
many potential applications in both fundamental physics and
nanotechnology. The most familiar is the attractive Casimir
force between two planar neutral conducting surfaces placed
in vacuum. Because the Casimir force goes inversely as a
large power of the distance between surfaces it is large at
submicron separations and plays an important role in micro-
and nanoelectromechanical systems (MEMS and NEMS). In
MEMS/NEMS devices a common failure mode is the collapse
of neighboring surfaces onto each other or the jump to contact
of moving components with adjacent surfaces due to the
Casimir force. This phenomenon is usually called stiction,
pull-in effect, or snap-down effect and has been a serious
problem in NEMS/MEMS operation [2–7]. In condensed
matter physics the Casimir effect finds application in the study
of the properties of thin films and critical phenomena [8,9].
The precision measurement of the Casimir force has also been
advanced as a powerful test for proposed hypothetical long-
range interactions, including corrections to the Newtonian
gravitational law at small distances predicted by the unified
gauge theories, supersymmetry, supergravity, and string theory
[10–12]. Hence, there is an important need for further research
on the Casimir effect motivated by the fact that it is finding new
applications in both fundamental science and engineering.

The Casimir effect is viewed as originating from the mod-
ification of the quantum vacuum photon fluctuation spectrum
due to the presence of boundaries such as the parallel plates.
This approach naturally suggests a strong dependence of the
force on the shape of the boundary. Many intriguing shape
dependencies have been predicted, including the possibility
of obtaining repulsive forces for ideal metal spheres [13,14]
and cubes [15–17]. These exotic shape dependencies are yet
to be tested. Uniformly corrugated surfaces provide a more
convenient platform to explore some key aspects of the shape
dependent Casimir force such as coherent diffraction like
scattering of zero point photons [18–27].

Alternately, the Casimir force can be viewed as the
collective interactions of the charge and current fluctuations
induced by the photons of the quantum vacuum on the
two bodies. At nonzero temperature, there is also a thermal
photon contribution. Uniformly corrugated surfaces are an
ideal system to explore the interplay of boundary shape and
the length scale of the charge and current fluctuations. The
coupled geometry and material dependence of the Casimir
force can be further enhanced by a measurement using two
corrugated surfaces. The forces between the two corrugated
surfaces can be studied with their axis aligned but as a function
of the phase shift [21–24] or as a function of angle between the
corrugation axis [28]. For understanding the role of coherent
diffraction like effects, the important experimental size scales
are corrugation period λ, and the separation between the
corrugations z. The vacuum and thermal photon wavelengths
of interest are those that correspond to separation distance
and the thermal wavelength λT = �c/kBT . These couple with
those representing the material reflectivity through the plasma
wavelength λp = 2πc/ωp and the free electron scattering
length λγ = 2πc/γ . The interplay of the different length
scales associated with the photon wavelengths and boundary
reflectivity, with the corrugation period and the angle between
the two corrugations, lead to a rich behavior in this system,
making it a promising probe of these coupled phenomena
[29–32]. The strong observed dependence of the Casimir force
on the corrugation angle means that this feature can be used
in adjusting and controlling the moving parts in proposed
micromechanical devices using corrugated surfaces and the
Casimir effect [33–35].

The normal Casimir force acting in the direction perpendic-
ular to the interacting surfaces has been the most investigated
aspect of the Casimir effect. This force component was
studied between smooth surfaces and measured using various
techniques such as the spring balance [36,37], the torsion
balance [38,39], the AFM [40–46], macroscopic oscillators
[47], and the microtorsion oscillator [4,5,48,49]. These studies
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have highlighted the material dependence of the Casimir force.
Agreement between the measured data is obtained only when
the material properties are taken into account. A key question
on the role of free electron dissipation remains to be understood
[39,44,49–58]. The optical modulation of the normal Casimir
force has been demonstrated [59] and optically transparent
boundaries have been used to cancel the Casimir force [60].

The normal Casimir force has also been studied between a
corrugated surface and a large spherical surface using the AFM
[20] and a microtorsional oscillator [25–27]. These studies
have pointed out the strong deviation of the measured Casimir
force from approximate approaches such as the proximity force
approximation (PFA) [61,62]. In the simple PFA, opposing
curved surfaces are then treated as infinitesimal parallel plates
and Casimir energy is found as an additive sum of the
corresponding local parallel plate energies. But Casimir forces
are nonadditive and the PFA neglects diffraction effects from
the curved boundaries and correlations from the interplay of
geometry, material properties, and temperature. In addition,
one-dimensional (1D) periodic structures such as corrugations
modify the collective coherence effects. The effect of using
two periodically corrugated surfaces has also been studied
using the lateral Casimir force [19,21–24,63]. In the lateral
Casimir force the force tangential to the two surfaces, induced
by a phase shift between the two aligned periodic corrugations,
is studied. For sinusoidal corrugation periods on the order of
the separation distance a strong deviation from PFA including
asymmetric force profiles were observed.

The problem of a precise description of the Casimir effect
and the surface geometry, for two interacting corrugations,
remains nontrivial, which stimulates further investigation of
geometry dependence of the Casimir effect. The use of two
corrugations allows the additional parameter of the orientation
angle between them as a means to study the strongly
coupled geometry and material dependence. Changing the
corrugation orientation angle modifies the effective length of
the fluctuations. As remarked above sinusoidal corrugations
when made of real materials are of special interest because
they provide an additional system to better understand the
macroscopic effects of vacuum fluctuations and the coupling
between the material dependent characteristic length scales.
The experimental exploration of this problem might also be
helpful for clarifying how to simultaneously consider both
the dielectric properties of the interacting materials and their
deformed geometry with sufficient precision, as well as, for
estimation of uncertainties which can arise due to using the
approximation methods in the Casimir force calculations.
In this configuration both a normal and a lateral Casimir
force can be detected. The rotation in the orientation of the
two corrugations has also been proposed as a mechanism to
generate vacuum fluctuation induced torques [64].

In this paper we present the full description of experiment
and theory of the normal Casimir force acting between a
shallow and smooth sinusoidally corrugated sphere and a plate
covered with a gold layer at different crossing angles between
corrugations. Some of the results were briefly described in
Ref. [28]. We present the description of the experimental
procedure and the measurement in more complete detail. In
addition, details of the theory underlying the perturbative
computation of electrostatic force and the derivative expansion

of the Casimir force are included. The forces were measured
for corrugation periods of 570.5 nm and crossing angles from
0° to 2.4°. The measured forces at 300 K are compared with
the theory based on the derivative expansion including the
material properties with no fitting parameters. The derivative
expansion for smooth surfaces of the Casimir free energy is a
local expansion in terms of the gradient of the height profile
of the surfaces, regardless of the amplitude to distance ratio. It
provides the leading order correction to the PFA. It is shown
that inside the experimental error interval of 67% confidence
level the measured Casimir forces are in agreement with the
derivative expansion. For the corrugation wavelength used,
the Casimir force increases by 15% at the closest sphere-plate
separation point of 130 nm when the crossing angle between
corrugations goes from 0° to 2.4°. The experimental data are
also compared with theory based on PFA applied to both the
corrugations and the curvature of the sphere. The material
properties are included through the dielectric function as in
Eq. (28). The PFA approximates the force by F PFA =
2π R UPFA

corr , where UPFA
corr is the PFA approximation to the

Casimir free energy per unit area between two corrugated
but otherwise planar surfaces as given by the Lifshitz theory,
see Eqs. (15) and (18) below. Strong deviation from the PFA
theory is observed, pointing to the important role of geometry
even for the small and smooth corrugation amplitudes used.

The paper is organized as follows. In Sec. II the ex-
perimental setup, preparation, and characterization of the
samples are described. In Sec. III we describe the theory and
experimental procedure for electrostatic calibration. In Sec. IV
the experimental results of Casimir force measurements,
including the measurement errors, are presented. In Sec. V
the derivative expansion and PFA theory that describes the
normal Casimir force for the configuration of a gold-coated
sphere and a plate covered with sinusoidal corrugations is
presented. In Sec. VI the theory developed is compared with
the measurement results. We end with the conclusion in
Sec. VII.

II. EXPERIMENTAL SETUP AND SAMPLE
CHARACTERIZATION

The experimental apparatus used in this study is described
elsewhere [46]. Here we provide an abridged description and
refer readers to Ref. [46] for additional details. An exception
is made with regard to the force sensor, which is different
from the one used previously [46]. A schematic diagram of
the experimental setup is shown in Fig. 1.

A standard AFM was used for the force measurements.
It was placed in oil-free high vacuum chamber at pressure
below 10−6 Torr and room temperature. The calibration of
an AFM piezotransducer movement was done with a fiber
interferometer described elsewhere [65]. The AFM was tuned
to work in contact mode for measuring vertical cantilever
deflection for every 0.2 nm movement of the piezoactuator.
For reducing mechanical noise, the system was maintained on
an optical table, and a sand damper box, to prevent coupling
of the low-frequency noise from the mechanical and turbo
pumps, was used. Liquid N2 cooling was used to further lower
the noise and to stabilize the laser power in the AFM.
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FIG. 1. Schematic of the experiment setup.

To perform the Casimir force measurement, two aligned
corrugated surfaces were required. This was achieved by
imprinting a gold coated sphere onto a grating template as
discussed below. Diffraction gratings with uniaxial sinusoidal
corrugations and a 300 nm Au coating (from Horiba Jobin
Yvon) was chosen as the first surface. The diffraction gratings
were made on Pyrex glass and had a 300 nm Au coating. The
same diffraction grating was used as a template for imprinting
the corrugations on the top of the sphere as it is described
below. The grid surface was examined by an AFM and found to
have a very homogeneous sinusoidal corrugation with a period
of � = 570.5 ± 0.2 nm and an amplitude A1 = 40.2 ± 0.3 nm.
The three-dimensional (3D) surface topography of the grating
as measured with the AFM is shown in Fig. 2(a). A minor
suboscillation of 1–2 nm amplitude with a stochastic mean and
110–140 nm period resulting from the manufacturing is also
observed. In Fig. 2(b) a typical cross section of the topography
in Fig. 2(a) is depicted. These measurements were made after
acquisition of the force data.

A �1 × 1 cm2 size of the diffraction grating was gently cut
using a circular diamond cutter and the surface was checked for
attached debris using an optical microscope. Then additional
cleaning of the grating sample was done using the following
procedure. First, the grating sample was sonicated in sulfur-
free soap water for 10 min. After this, the piece was rinsed with
DI water to remove soap and again sonicated in methanol and
ethanol for 10 min each, respectively. During the sonication
process care was taken to delicately hold the sample far away
from the container boundaries. Finally, it was dried with pure
nitrogen and again examined with an optical microscope to
check for surface damages. After confirming that the grating
sample surface does not contain microscopic damages, it was
fixed onto a rotation stage. The stage with the sample grating
was mounted on the top of the AFM piezoscanner (see Fig. 1).
To provide electrical contact to the grating sample a thin copper
wire was soldered to the edge of the grating using indium wire
as a solder. This grating sample was used as a template for in
situ imprinting of the corrugations on the bottom surface of an
Au coated sphere of a specially prepared cantilever.

(a)

FIG. 2. (Color online) (a) An AFM scan of the grating surface
showing the sinusoidal corrugations. (b) A typical section of the
grating surface along a y = const plane. The solid line is a sine
function obtained from the fit.

The force sensor was prepared in the following way. A
polystyrene sphere of radius 100 μm was attached to the tip
of a 320 μm long triangular silicon-nitride cantilever with a
nominal spring constant of order 0.01 N/m using conductive
silver epoxy. Using the cantilever with triangle configuration
allowed us to suppress the lateral Casimir effect that can
lead to the torsional deflection (rotation) of the cantilever.
The torsional spring constant of the triangle cantilever is
much larger than that corresponding to the bending making
it sensitive to detecting the normal Casimir force, while
simultaneously suppressing the effect of the lateral Casimir
force. To improve the adhesion of the sphere, the cantilever
with the freshly attached sphere was placed under a heat lamp
(250 W) at a distance of about 10 cm for 30 min and then placed
in a vacuum chamber for 24 h to let all volatile gas molecules
evaporate. After the sphere was secured, the cantilever-sphere
system was coated with a 10 nm Cr layer followed by a 20 nm
Al layer and finally with a 110 ± 1 nm Au layer using an
oil-free thermal evaporator at 10−7 Torr vacuum. To provide a
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(a)

FIG. 3. (Color online) (a) An AFM scan of the surface of the
sphere showing the imprinted sinusoidal corrugations. (b) A typical
section of the grating surface along a y = const plane. The solid line
shows a sine function obtained from the fit.

uniform coating of the metals, there was rotation of the sensor
during the coating process. The radius of the Au-coated sphere
was determined using a SEM to be R = 99.6 ± 0.5 μm. After
the sensor preparation was complete, it was inserted into the
AFM cantilever holder and the AFM was placed inside the
vacuum chamber for force measurements.

Next the in situ printing of the corrugations on the sphere
bottom using the fixed diffraction grating on the sphere was
done. After the chamber pressure reached 10−7 Torr, the
grating sample was moved using a stepper motor to just touch
the bottom of the sphere. The whole process was visually
monitored, using a telescope and CCD camera attached to its
output. The image was displayed on a large screen to precisely
monitor the moment of sphere-plate contact. A metal stylus
with a rounded end was slowly approached to the top side of the
sphere using a second stepper motor to gently touch the sphere
(see Fig. 1). Then the AFM piezoelectric tube was extended
to its maximum length. As a result, the sphere was squeezed
between the grating and the stylus end leading to the imprint
of the corrugations onto the sphere bottom. It was confirmed

FIG. 4. Scanning electron micrograph of the imprint of the
corrugations on the sphere.

that the radius or ellipticity of the sphere remained unchanged.
After the imprinting process, the metal stylus was removed
and the force measurements were started. The topography
of the imprinted corrugations measured using an AFM after
completion of the force measurements is shown in Fig. 3(a).
In Fig. 3(b) the profile of the corrugations perpendicular to the
axis is fit to a sinusoid and the amplitude was found to be A2 =
14.6 ± 0.3 nm. The amplitude was relatively uniform as shown.
A scanning electron image of the imprinted corrugations is
shown in Fig. 4. The size of imprinted area was measured to
be about Lx � Ly � 14 μm.

Special attention was paid to the evaluation of the inhomo-
geneities (roughness) of the corrugations on the grating sample
and imprinted sphere. Here we use the procedure described in
Ref. [24]. The stochastic roughness was obtained from AFM
topography measurements with the same procedure for both
surfaces. Here we compared the measured surface profile of
the corrugations [circles in Figs. 2(b) and 3(b)] with a sine
function [solid line in Figs. 2(b) and 3(b)]. Following this, we
calculated the difference between the experimentally measured
data points and the sine function and the corresponding rms
deviation between the two. This was repeated at 20 different
corrugation periods and the variance describing the stochastic
roughness was found to be equal to δ1 = 2.9 nm and δ2 =
1.9 nm for the corrugated plate and sphere, respectively.

For changing the orientation angle between the corruga-
tions, the corrugated plate was rotated using a stage controlled
with a stepper motor. The stepper motor was actuated by rect-
angular pulses from a function generator and the control of the
pulses was monitored using an oscilloscope. Prior to the mea-
surements, the stepper motor was independently calibrated and
the uncertainty in the rotation angle was determined to be 0.1°.
The Casimir forces between the corrugations were measured at
the crossing angles of θ = 0°, 1.2°, 1.8°, and 2.4°, respectively.

III. ELECTROSTATIC INTERACTION

The deflection of the cantilever in response to a force
between the corrugated sphere and plate is calibrated using the
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electrostatic force. The calibration allows the determination
of the values of such parameters as the cantilever spring
constant σ , average separation distances on contact z0, and
the residual potential difference V0 between the sphere and
the corrugated plate. These parameters are obtained as a result
of comparison of experimentally measured electrostatic force
with a theoretical model of electrostatic interaction between
sphere and plate.

The total force between the corrugated sphere and plate is
given by the sum of electric and Casimir forces. The cantilever
deflection signal due to the total force can be represented in
the form

Sdef(z) = Ftot(z)

σ ′ = Fel(z) + FCas(z)

σ ′

= X(z)

σ ′ (Vi − V0)2 + FCas(z)

σ ′ , (1)

where FCas and Fel = X(z)(Vi − V0)2 are the Casimir and
electrostatic forces between the corrugated sphere and plate,
which are the functions of sphere-plate separation z. Here z

is measured from the mean values of the two corrugations.
Even when both corrugations are grounded there is a residual
potential V0 which is present between the surfaces due to
the different surface work functions of the sphere and plate
materials. This value of V0 can result from the different paths
taken to the ground, the polycrystalline nature of the Au
coating, or contaminants. The expression for the coefficient
X(z) is discussed below. The term σ ′ � σm is the calibration
constant of the cantilever measured in units of force per unit
deflection (pN/mV), where σ is the cantilever spring constant
and m is the cantilever deflection in units of nm per unit
photodetector signal.

A. Theory

The coefficient X(z) of the theoretical electric force in
Eq. (1) can be obtained in the following way. We employ
a perturbative expansion to compute the electrostatic energy
per area A between two corrugated plates located at z = H1(r)
and z = H2(r). It is given by

Uel = ε0

2A

∫
A

d2r
∫ H2(r)

H1(r)
dz(∇�)2, (2)

where the potential � obeys

∇2� = 0, �|z=H1(r) = 0, �|z=H2(r) = V, (3)

such that the surfaces have a voltage difference of V � Vi −V0.
Solving Laplace’s equation perturbatively in the height profiles
yields the general expression for the energy of two surfaces
H1(r) = h1(r) and H2(r) = z + h2(r) to second order in the
height profiles hj (r),

Uel = ε0V
2

2

1

z
+ ε0V

2

z2

1

A

∫
d2k

(2π )2

[
k

2
coth(kz)

× (|h̃1|2 + |h̃2|2) − ke−kz

1 − e−2kz
(h̃1h̃

∗
2 + h̃2h̃

∗
1)

]
, (4)

where k is the in-plane wave vector of the Fourier transformed
height profiles h̃j (k). We have assumed that the spatial average
of hj (r) vanishes.

To study two corrugated surfaces, which have amplitudes
A1 and A2, corrugation wavelength �, and crossing angle θ

between the corrugation axes, we consider the two profiles

h1(r) = A1 cos(2πx/�),
(5)

h2(r) = A2 cos[2π (x cos θ − y sin θ )/�],

so that the Fourier transforms of the profiles are propor-
tional to δ(k − kj ) + δ(k + kj )with k1 = (2π/�)x̂ and k2 =
(2π/�)x̂ cos θ − (2π/�)ŷ sin θ . Hence one has the integrals∫

d2k
(2π )2

(|h̃1|2 + |h̃2|2) = 2π2[δ(k1 − k1) + δ(k2 − k2)],

(6)∫
d2k

(2π )2
(h̃1h̃

∗
2 + h̃2h̃

∗
1) = 2π2δ(k1 − k2),

where the δ functions for a plate of finite area A = LxLy are
given by

2π2δ(k1 − k1) = LxLy (7)

and

2π2δ(k1 − k2) =
∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dyei 2π

�
[x(1−cosθ)−y sin θ]

= sin[πLx(1 − cos θ )/�]

π (1 − cos θ )/�

× sin[(πLy sin θ )/�]

(π sin θ )/�
. (8)

Using Eqs. (4), (6), (7), and (8), we get for the electrostatic
energy per area for small values of θ ,

Uel = ε0V
2

2

1

z
+ 1

2

ε0V
2

z2

[
π

�

(
A2

1 + A2
2

)
coth(2πz/�)

− 4πA1A2

�

e−2πz/�

1 − e−4πz/�

sin(πLyθ/�)

πLyθ/�

]
. (9)

Equation (9) was compared with a numerical computation
of the electrostatic force using a finite element method for
separations between 160 and 400 nm and for angles between
0° and 2.4°, and was shown to agree to better than 1%.

The usual PFA yields for the electrostatic force between a
flat plate and a sphere of radius R the result

F PFA
el = 2πRUel (10)

assuming that R � z. Since in the present experiment R is
also much larger than all other geometric length scales, we
can apply Eq. (10) to the corrugated surfaces and combine it
with Eq. (9) to obtain the coefficient X(z) in Eq. (1). For small
values of θ it becomes

X(z) = πε0R

z
+ πε0R

z2

[
π

�

(
A2

1 + A2
2

)
coth(2πz/�)

− 4πA1A2

�

e−2πz/�

1 − e−4πz/�

sin(πLyθ/�)

πLyθ/�

]
, (11)

where PFA requires z � R and perturbation theory assumes
A1,A2 � z,�. The ratio z/� can be arbitrary.
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B. Experimental calibration

The calibration parameters were independently obtained
for each value of crossing angle θ using the electrostatic force.
For that purpose, the following measurement procedures were
done. For application of voltages to the corrugated plate it was
connected to a voltage supply operating with 1 μV resolution.
To protect the sample surfaces from current surges when the
surfaces come in contact, a 1 k� resistor is connected in
series with the voltage supply. The cantilever with the attached
corrugated sphere is grounded. To eliminate the adverse effect
of electrical ground loops all the ground connections were
unified and tied to the AFM ground.

The electrostatic force between the corrugated plate and
sphere as a function of the separation z is measured for 11
different voltages Vi applied to the corrugated plate. A range of
voltages from −40 to −145 mV were applied to the corrugated
plate. The mean separation z between the bottom of the sphere
and the corrugated plate is varied by applying voltages to the
AFM piezo. For this purpose a 0.05 Hz continuous triangular
voltage was applied leading to the piezo extension represented
by zpiezo. Prior to all measurements, zpiezo was calibrated
interferometrically [65]. Starting at a maximum separation of
2 μm, the corrugated plate was moved towards the sphere
and the cantilever deflection recorded every 0.2 nm. The net
change in the corrugated sphere-plate separation is a sum
of that from the piezo and the small contribution from the
cantilever deflection and is given by [46]

z = zpiezo + mSdef + z0, (12)

where mSdef is the change in separation distance due to
cantilever deflection and z0 is the average separation on contact
of the two corrugated surfaces. All distances are referenced to
the mean value of the corrugations. Although cantilever deflec-
tions were acquired every 0.2 nm of zpiezo, the data analysis
was done only for interpolated values at every 1 nm step.

After the deflection Sdef due to total forces were measured,
the first step was to subtract any mechanical drift of the
photodetector system with respect to the cantilever. For
distances larger than 1.7 μm, the force between the Au
sphere and grid is below the instrumental sensitivity. At these
separations, the noise is larger than the signal and in the
absence of systematic errors the signal should average to
zero and have no dependence on the corrugated sphere-plate
separation. Therefore, any linear alteration in signal Sdef is due
to the mechanical drift of the cantilever-photodiode system.
Such a linear drift was present even in the absence of the
corrugated sphere and plate. To subtract this systematic drift
the following procedure outlined in Ref. [66] was used. Sdef

at distances larger than 1.7 μm was fit to a straight line, and
the straight line was subtracted from the measured Sdef at all
separation distances to correct for the effects of photodiode
mechanical drift. This subtraction led to the mean deflection
signal at large distances being equal to zero. This procedure
was repeated for all experimental measurements. The next step
was to precisely determine the point of corrugated sphere-plate
contact and the cantilever deflection coefficient m as described
in Ref. [66]. The value of m was determined to be 102.1 ±
0.5 nm/unit deflection signal. The obtained value of m was
used to calculate the change in separation mSdef due to

FIG. 5. The deflection signal Sdef as a function of the applied
voltage V at a fixed separation of 135 nm between the sphere and the
plate. The line is the best fit of the data by parabolic dependence [see
Eq. (1)].

the cantilever deflection. This with Eq. (12) determines the
corrugated sphere-plate separation z up to the value of z0

(which is constant for the complete set of measurements).
The same electrostatic force dataset were used for determin-

ing the residual contact potential V0, the cantilever calibration
constant σ ′, and the average separation on contact z0. The
parabolic dependence of the electrostatic force [Eq. (1)] on
the applied voltage Vi for a fixed separation z was used in the
determination of these quantities. The first step in the process
is the determination of V0 and the parabola curvature β(z) �
X(z)/σ ′ at every corrugated sphere-plate separation z. An ex-
ample is shown in Fig. 5 where the deflection signal Sdef mea-
sured at the corrugated sphere-plate separation z = 135 nm
as a function of the applied voltage is shown as squares. This
dependence was best χ2 fitted with parabolas (Fig. 5, line) to
determine the value of V0, the parabola vertex, and the value
of the coefficient β(z) � X(z)/σ ′, the parabola curvature. The
curvature of the parabola depends on the cantilever calibration
constant σ ′ and the average separation on contact z0. The same
procedure was repeated at each separation and β(z) obtained as
a function of z. Some values of β(z) for θ = 0° are 14.86 ± 0.06,
13.86 ± 0.06, 8.06 ± 0.06, and 4.26 ± 0.06 V−1, at separation
distances of 145, 155, 265, and 500 nm, respectively. From
best χ2 fitting of the experimentally obtained β(z) by X(z)/σ ′,
where X(z) is determined by Eq. (11), we obtained the values
of σ ′ and z0.

It is important to check if V0 changes with the corrugated
sphere-plate separation z. Figures 6(a)–6(d) show the V0

obtained at all separations z for the four different crossing
angles used in the experiment. The presence of contaminants
on the corrugated sphere and plate would lead to V0 changing
systematically with the separation z [67–72]. The V0 is found
to be independent of separation and crossing angle. To check
for possible systematic errors in the determination of σ ′ and z0,
the following procedure was done [66]. First, the experimental
β(z) was fitted from the closest corrugated sphere-plate
position to an endpoint zend = 1000 nm, and the values of z0

and σ ′ were determined. Then the endpoint was decreased by
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FIG. 6. The residual potential difference V0 between the sphere and the plate surfaces as a function of separations for (a) 0°, (b) 1.2°,
(c) 1.8°, and (d) 2.4° crossing angle between corrugations.

100 nm and the fitting was repeated, i.e., smaller range of z

values were used in the fitting procedure. That was repeated
for 13 values of the endpoint each less than the previous by 100
nm at large zend and 50 nm at small zend. The dependencies
of σ ′(zend) and z0(zend) are shown in Figs. 7 and 8 for all
crossing angles θ . Both are constant within the random errors
and independent of the value of zend chosen. The independence
of these two parameters on separation indicates the absence
of separation distance calibration and other uncontrolled sys-
tematic errors. The same distance independency of calibration
parameters were observed for all crossing angles θ . From the
value of z0 the absolute separation distance can be determined
and the value of σ ′ is used to convert Sdef to a force for each θ

separately. The corresponding mean values of the parameters
that were used for force calibration with the errors at 67%
confidence level are given in the Table I.

IV. CASIMIR FORCE MEASUREMENT

Using the cantilever calibration parameters above, the
Casimir force was calculated from the subtraction of the
electrostatic force from the total measured force Eq. (1)

as FCas(z) = σ ′Sdef(z) − X(z)(Vi − V0)2, where Vi are
the applied voltages to the corrugated plate while the
sphere remains grounded. We applied 11 voltages Vi and
at each voltage the cantilever deflection Sdef(z) was mea-
sured 10 times as a function of the corrugated sphere plate
separation z.

This cantilever deflection Sdef(z) corresponds to that of the
total force, Casimir and electrostatic. The mean value of FCas

as a function of z (with a step of 1 nm) calculated from 110
individual values of the total force are shown as crosses in
Fig. 9. The size of the cross corresponds to the horizontal and
vertical total (random plus systematic) experimental errors at
67% confidence level. From Fig. 9 it can be observed that the
magnitude of the Casimir force increases with the orientation
angle. The Casimir force at a distance of 130 nm increases in
the order 84.9, 88.8, 92.5, and 97.8 pN for orientation angles
of 0°, 1.2°, 1.8°, and 2.4°, respectively, for a total change of
15%. At a separation of 150 nm, the same forces are equal to
55.7, 57.8, 59.2, and 62.1 pN corresponding to a net increase
of 11%. Note that this angle dependence is a finite size effect.
For larger angles beyond 2.4°, the multiple crossings of the
corrugations will lead to negligible angle dependence.
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FIG. 7. The separation on contact z0 between the sphere and the plate surfaces as a function of the endpoint zend for (a) 0°, (b) 1.2°,
(c) 1.8°, and (d) 2.4° crossing angle between corrugations.

The error analysis of the experimental data was done as
described in Refs. [44,46,73] for 67% confidence level. The
variance of the mean value of Casimir force obtained from
110 measured force curves was found to be independent
of corrugated sphere-plate separation. The mean values of
the variance was found to be equal to 0.51, 0.45, 0.49, and
0.49 pN for the crossing angles 0°, 1.2°, 1.8°, and 2.4°,
respectively. These values can be considered as random errors
in the Casimir force measurements if we choose the 67%
confidence level. For the 110 measurements, the degree of
freedom is equal to 109. The systematic error in the measured
forces is determined by [73] the instrumental noise (including
the background noise) and errors in calibration. The latter is
largely influenced by the errors in the measurement of the
separation distances. Thus the systematic error is naturally
separation dependent and increases at short distances. At the
shortest separation, the maximum value of the systematic error
in the Casimir force determination was found as 0.79 pN
for θ = 0° and the minimum as 0.73 pN for θ = 1.8°. To
get the total absolute experimental error for the uncertainty
in the measurement of the Casimir force, we quadratically
added the random and systematic errors. An illustration of
the typical dependence of the total error in the Casimir force

determination on the corrugated sphere-plate separation is
given in Fig. 10 for the crossing angle of θ = 1.2°. The total
error changes within the range from 0.88 to 0.78 pN as a
function of the separation. In the same graph we plotted the
random and systematic error dependencies on the corrugated
sphere-plate separation. The relative total experimental error in
the Casimir force measurement increases with increasing the
separation distance. For example, for the separation distances
z = 127, 200, and 300 nm it was found to increase as (a) 1%,
3.2%, and 10.3% for the θ = 0°, (b) 0.9%, 3.2%, and 10.6%
for the θ = 1.2°, (c) 0.9%, 3.2%, and 10.1% for the θ = 1.8°,
and (d) 0.8%, 3.1%, and 10% for the θ = 2.4°.

V. THEORY OF CASIMIR FORCE BETWEEN
CORRUGATIONS

To compare the experiment with the theoretical Casimir
calculations, we need to take into account the geometric
features, the finite temperature, and real material properties.
The important geometric features to consider are the sphere-
plate geometry, the corrugations on both the sphere and the
plate, and the angle of orientation between the two corrugated
surfaces. In this approach, to apply the derivative expansion,
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FIG. 8. The calibration constant σ ′ as a function of the endpoint zend for (a) 0°, (b) 1.2°, (c) 1.8°, and (d) 2.4° crossing angle between
corrugations.

the PFA is used to treat the curvature of the sphere, and
relates the force to the energy per unit area as F Der =
2πRUcorr, where the energy of two corrugated plates Ucorr is
calculated using the derivative expansion introduced by Fosco
et al. [74] for scalar fields and Bimonte et al. [61,75] for the
electromagnetic field in the presence of perfect conductors
and dielectric materials. The latter calculation takes into
account the material properties and finite temperatures as well
as the corrugations. We expect that a first order derivative
expansion is sufficient since the derivative of the surface

TABLE I. The mean value of residual electrostatic potential V0,
the closest separation distance z0, and the cantilever calibration
constant σ ′ for each measured crossing angle θ .

θ (deg) V0 (mV) z0 (nm) σ ′ (pN/mV)

0 −90.2 ± 1.3 126.2 ± 0.4 1.35 ± 0.02
1.2 −89.5 ± 1.1 126.5 ± 0.4 1.34 ± 0.02
1.8 −89.9 ± 1.3 126.3 ± 0.4 1.34 ± 0.02
2.4 −89.7 ± 1.2 126.7 ± 0.4 1.35 ± 0.02

profiles is of order 14.6/570.5 �0.026 and 40.2/570.5 �0.070,
respectively.

Consider two almost flat periodic surfaces separated by an
average distance z. Let h1(x,y) and h2(x,y) be the position
dependent height profiles of the surfaces. The total local
separation between the plates in the z direction is then

H (x,y) = z + h1(x,y) − h2(x,y). (13)

Following [61] we can write the average energy per unit
area between two slowly curving surfaces as

Ucorr = 1

A

∫
A

d2x

{
U (H ) + α(H )∇H · ∇H

− 1

2
[HU ′(H ) − U (H )]∇h1 · ∇h2

}
, (14)

where A is the area of integration, U (H ) and U ′(H ) are the
Casimir energy per unit area between two perfectly flat parallel
plates separated by a distance H and its first derivative, and
α(H ) is a coefficient that is given by the derivative expansion
(see below).
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FIG. 9. The mean values of measured Casimir forces are shown
as crosses for different orientation of the corrugations. The forces
from the top to the bottom correspond to orientation angles of 0°,
1.2°, 1.8°, and 2.4°, respectively. The size of the crosses represents
the total error at 67% confidence level. Separations distances from
127 to 230 nm are shown. The solid lines represent the theoretical
Casimir forces F Der calculated in Sec. V using derivative expansion.
No fitting parameters are used in the comparison of theory and
experiment.

For two corrugated surfaces with an angle θ between the
corrugations, the height profiles are explicitly given by Eq. (5).
The first term in Eq. (14) corresponds to the traditional PFA.
While there is some θ dependence for infinite sized systems
due to the derivative terms in Eq. (14), a separate stronger θ

dependence of the Casimir energy between corrugated plates
can be found for finite sized plates. For any infinite sizes plates
and any nonzero value of the angle θ , the PFA energy per unit
area between two plates is given by the integral over a unit

FIG. 10. The random (dashed line), systematic (open circles), and
total (solid line) errors in the measured Casimir force determined at
a 67% confidence level are shown as functions of separation z for the
1.2° crossing angle.

cell,

UPFA
corr = sin θ

�2

∫ �

0
dx

∫ �+x cos θ
sin θ

x cot θ
dy U [(H (x,y)], (15)

where the prefactor is the inverse of the area of the parallel-
ogram unit cell, and the limits of integration cover a single
unit cell. Under the change of variables x′ = x, y′ = x cos θ −
y sin θ , the distance H (x,y) and the limits of integration become
independent of θ , and the Jacobian of the transformation
cancels the sin θ from the area of the parallelogram. Therefore,
in order to obtain a θ dependence to leading order, we
must consider that at least one of the plates is of finite
extent.

Assuming that one of the corrugated plates has dimensions
LxLy , by substituting the profile functions into Eq. (14), we
see that the integral will be highly oscillatory in both x and
y unless Ly sin θ/� is of order unity. In the case where
Ly sin θ/� is much larger than 1, the integral given in Eq. (14)
can be approximated by the integral over a single unit cell,
and for the same reasons given above there will be no θ

dependence. Therefore, we can assume that Ly sin θ is of
the same order as �. Since the plate is large enough to
contain many periods (Ly � �), the angle must be very small
(sin θ � 1). We can simplify the profile function h2 by using
the small angle approximation

h2(x,y) = A2 cos[2π (x − yθ )/�]. (16)

The final result of the Casimir energy per unit area between
two corrugated surfaces is obtained using Eq. (14) where the
limits of integration are explicitly given by

1

A

∫
A

d2x → 1

�Ly

∫ �

0
dx

∫ Ly/2

−Ly/2
dy, (17)

and the profiles functions are given by Eqs. (5), (13), and
(16). Errors in Lx have negligible effect, as the average
over one period is the same as over many periods. We have
computed the error in the force introduced by a 0.5 μm
error in Ly and found it to be 0%, 1%, 1.6%, and 1.5%
for angles of 0°, 1.2°, 1.8°, and 2.4°, respectively, at a mean
separation of 100 nm. The effects of finite temperature and
material properties are contained in the functions U (H ),
U ′(H ), and α(H ). The function U (H ) is given by the Lifshitz
formula

U (H ) = kBT
∑
n�0

′∑
p

∫
d2k

(2π )2
ln[1 − rp(iζn,k)e−2Hκ ],

(18)

where kB is Boltzmann’s constant, T is the temperature, p

is the polarization (in this paper for TM polarizations p =
1 and for TE polarizations p = 2), ζn is the nth Matsubara
frequency, rp(iζ n,k) are the Fresnel reflection coefficients, k

is the magnitude of the k vector, and κ =
√

ζ 2/c2 + k2 is the
Wick rotated wave number in vacuum. The function U ′(H )
can be simply calculated as the partial derivative of Eq. (18)
with respect to H . The coefficient α(H ) can be calculated
from the small k expansion of the kernel G̃(k) of the second
order perturbation theory in the height profile. It is given
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by [61]

α(H ) = 1

2

∂2

∂k2
G̃(k)

∣∣∣∣
k=0

= kBT

2

∑
n�0

′ ∫ d2k′

(2π )2

∂2

∂k2
x

[f s1(ζn,k′,k′ + k)

+ f s2(ζn,k′,k′ + k)]

∣∣∣∣
k=0

, (19)

with

f s1(ζ,k,k′) =
∑
p,p′

2
κrp(iζ,k)e−2Hκ

1 + r2
p(iζ,k)e−2Hκ

κ ′rp(iζ,k′)e−2Hκ ′

1 + r2
p(iζ,k′)e−2Hκ ′

×Bpp′ (ζ,k,k′)Bp′p(ζ,k′,k), (20)

f s2(ζ,k,k′) = −
∑

p

κrp(iζ,k)e−2Hκ

1 + r2
p(iζ,k)e−2Hκ

B2,pp(ζ,k,k; k′).

(21)

The functions Bpp ′ and B2,pp are obtained by expanding the
scattering matrix perturbatively in the height field [61,76,77].
The material properties enter the calculation via the dielectric
function ε(iζ ) that is included in both the Fresnel reflection
coefficients rp and the functions Bpp ′ and B2,pp. For com-
pleteness sake they are given here explicitly. The reflection
coefficients are

r1(iζ,k) = ε(iζ )κ − κ̄

ε(iζ )κ + κ̄
, (22)

r2(iζ,k) = κ − κ̄

κ + κ̄
, (23)

where κ̄ =
√

ε(iζ )ζ 2/c2 + k2 is the Wick rotated wave num-
ber in the material. The first function Bpp is given by

Bpp′ (ζ,k,k′) = d1(ζ,k)

(
k·k′
kk′ + ε(iζ ) kk′

κ̄ κ̄ ′
ẑ·k×k′

kk′
ẑ·k×k′

kk′ − k·k′
kk′

)
d1(ζ,k′),

(24)

where the indices p = 1,2 and p′ = 1,2 number the element
of the matrix B, and

d1(ζ,k) =
√

ε(iζ ) − 1

( κ̄
ε(iζ )κ+κ̄

0

0 ζ/c

κ+κ̄

)
. (25)

The second functions B2,pp are for TM and TE polarizations,
respectively,

B2,11(ζ,k,k; k′) = 2
ε(iζ ) − 1

[ε(iζ )κ + κ̄]2

[
ε(iζ ) − 1

ε(iζ )κ ′ + κ̄ ′

(
ε(iζ )k2k′2

− κ̄2 (k · k′)2

k2

)
+ 2ε(iζ )

κ ′ + κ̄ ′

ε(iζ )κ ′ + κ̄

× κ(k · k′) + ε(iζ )κ̄ζ 2/c2 + κ̄(κ ′ − κ̄ ′)
]
,

(26)

B2,22(ζ,k,k; k′) = 2
[ε(iζ ) − 1]ζ 2/c2

(κ + κ̄)2

[
ε(iζ ) − 1

ε(iζ )κ ′ + κ̄ ′

×
(

(k · k′)2

k2
− k′2

)
+ κ̄ − κ̄ ′ + κ ′

]
.

(27)

The theoretical computation of the Casimir forces is
performed with realistic properties of Au at 300 K. The
dielectric function of Au was expressed using a six-oscillator
model for the core electrons and the Drude model for the free
electrons, which on the imaginary frequency axis is given by

ε(iζ ) = 1 + ω2
p

ζ (ζ + γ )
+

6∑
i=1

fi

ω2
p + ζ 2 + ζgi

. (28)

For Au we use the plasma frequency ωp = 9 eV/�, the
relaxation frequency γ = 0.035 eV/�, and the oscillator
constants gi from Ref. [49]. Small roughness corrections were
taken into account as described in Ref. [24].

VI. COMPARISON BETWEEN EXPERIMENT
AND THEORY

The comparison of the experimental data with theory
is shown in Fig. 9. No fitting parameters are used in the
comparison of theory and experiment. At the start of the
experiment, i.e., θ = 0°, the corrugations on the sphere and
plate are considered to be in perfect registry with the valleys in
the former directly above the peaks of the latter due to the in situ
imprint procedure used [21,22,24]. This means that for θ > 0°,
the peaks on the two corrugations approach each other leading
to an increase in the magnitude of the attractive force observed.
Good agreement between experiment and theory is found for
all the crossing angles between the corrugations. We illustrate
the coupled geometry and material dependence of the Casimir
force from the corrugated plate-sphere system in two different
ways. In Fig. 11 the deviation from PFA is explored by plotting
the ratio of the experimental data to the force obtained from
PFA (corresponding to UPFA

corr ). The deviations at the shortest
common separation 127 nm, where the relative experimental
error are small, are 7.7%, 4.7%, 2.3%, and 1.8% for the angles
θ = 0°, 1.2°, 1.8°, and 2.4°, respectively. This is consistent with
our theoretical computations which indicate that the magnitude
of the deviation saturates at �2% for crossing angles >2° at the
smallest separation for these corrugation parameters. Note that
these deviations are observed even with the shallow smooth
small amplitude corrugations on the sphere used. Due to the
size of the error bars at the larger separations, no definitive
observations on the change with z for the different crossing
angles can be made. Alternatively, one can observe the role
of the diffraction like correlation effects and the interplay
of the material properties on the geometry of the periodic
corrugations by comparing the difference force obtained by
subtracting the theoretical PFA force (corresponding to UPFA

corr at
300 K) from the measured values. This is displayed in Fig. 12.
Here the difference between the experimental data and the
PFA is compared to the difference force between the derivative
expansion and the PFA, corresponding to Ucorr − UPFA

corr both
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FIG. 11. The ratio of measured Casimir forces (presented in Fig. 9) to the force calculated using PFA at (a) θ = 0°, (b) θ = 1.2°,
(c) θ = 1.8°, and (d) θ = 2.4°.

at 300 K. The error bars (at 67% confidence level) represent
the data and the theoretical difference is represented by the
solid line. For clarity of observation only data at every 3 nm
separation are shown in the figure. One can observe that there
is a significant deviation of the experimental data from the
theory based on simple PFA which ignores correlation effects.
The difference is a measure of the diffraction like correlation
effects. For the separation of 130 nm the absolute deviation is
5.9, 4.2, 2.1, and 0.98 pN for crossing angles θ = 0°, 1.2°, 1.8°,
and 2.4°, respectively. Note that while the magnitude of the
force (Fig. 9) increases with crossing angle the difference force
has the opposite relationship. The solid lines in Fig. 12 which
represents the deviation of the derivative expansion from PFA
are in good agreement with the deviation from PFA observed
in the experiment. The agreements show that the derivative
expansion is a good approach for understanding the complete
Casimir force between two corrugated surfaces.

The role of the diffraction like correlation effects can be
understood in relative isolation from the material dependence
by comparing the same difference of the measured force
from PFA to the theoretical difference force computed by
subtracting the PFA force from that obtained using the

derivative expansion for ideal metal corrugated surfaces at
300 K. The theoretical difference is shown as a dotted line in
Fig. 12. The difference between the dashed and solid lines is a
measure of the theoretical material dependence. In Fig. 12(a)
the ideal metal result deviates from the observed difference
force. The apparent agreement in Fig. 12(b) is a numerical
coincidence and is part of a trend, where the theoretical force
difference for an ideal metal increases with crossing angle.
The difference is clearer for the other angles as shown in
Figs. 12(c) and 12(d). It should be noted that this is only
a difference between forces, and the total Casimir force is
always larger for the perfect metal. To explore the role of
temperature the ratio of the experimental data to the force
from the derivative expansion at 300 and 0 K is shown in
the inset to Fig. 12. The data are found to be consistent with
300 K particularly at the smaller crossing angles.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, we have experimentally demonstrated the
angle dependence of the normal Casimir force between a
corrugated plate and corrugated sphere. An Au coated plate
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FIG. 12. The difference Casimir force �FCas = Fexpt − F PFA represented as crosses corresponding to error bars at 67% confidence level for
corrugation orientation angles of (a) 0°, (b) 1.2°, (c) 1.8°, and (d) 2.4°. The solid line is the corresponding difference between the two theories
F Der − F PFA calculated in Sec. V, which is a measure of the correlation effects. Significant deviation from the PFA is observed and the good
agreement with the theory based on derivative expansion is found with no fitting parameter. The dashed line is the theoretical difference for
ideal metal corrugated surfaces at 300 K. The data are presented every 3 nm for clarity. Insets in (a) and (b) show the ratio of the data to the force
from the derivative expansion at 300 (black squares) and 0 K (gray circles); the same ratios for the angles 1.8° and 2.4° were indistinguishable.

with sinusoidal grating of period 570 nm and an amplitude
of 40.2 nm was used as one surface. A pressure imprinting
procedure was used to transfer the corrugations to the bottom
of an Au coated sphere resulting in aligned corrugations with
the peaks of the corrugated plate corresponding to valleys
in the imprint on the sphere. The normal Casimir force was
measured at different crossing angles between the corrugations
which was achieved by rotating the corrugated plate. The
residual potential and the mean separation on contact between
the two corrugations were verified to be independent of
separation. Both random and systematic errors were found
and combined to give a total error, which was used in the
comparison. The random error was found to be indepen-
dent of separation between the corrugations. The systematic
error increased at smaller separation due to the distance
dependence of the electrostatic force used in the calibration.
The theoretical calculation of the electrostatic force was
verified numerically to better than 1%. The measured Casimir

force was shown to increase by 15% at 130 nm separation
when the orientation angle between corrugations increased
from 0° to 2.4°. The measurements were found to be in
agreement with theory based on the derivative expansion
which includes the diffraction like correlation effects and the
real material properties of the Au surfaces. The comparison
between experiment and theory were made with error bars
representing the 67% confidence level. No fitting parameters
were used in the comparison. The role of the correlation
effects and material properties were explored by different
comparisons to the PFA, which ignores the complex interplay
of the boundary geometry. The ratio of the measured Casimir
force to that from PFA showed a deviation as large as 7.7% for
a crossing angle of 0° at the shortest separation even for the
shallow corrugations used. The deviations due to the coupled
correlation and material properties were also examined by
comparing the difference of the measured force and PFA
to the difference of the theoretical force from the derivative
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expansion and PFA. The agreement between the experimental
difference force and that of the derivative expansion theory
with real material properties included, demonstrate the in-
terplay of the correlation effects of the geometry with the
dielectric properties of the boundary. The role of the material
properties was independently assessed by a comparison to
the derivative expansion theory using ideal metals. The role
of temperature in the measured force was studied and the
experimental results were shown to be more consistent with
the derivative expansion theory at 300 K. The results give an
experimental verification of the derivative expansion approach
to calculating the Casimir force. These results indicate that the
angle dependent Casimir force for two oriented corrugations is
an important system for understanding the nontrivial combined

interactions of geometry, material properties, and temperature.
This demonstration of the normal Casimir force between
corrugated surfaces will find applications in adjusting and
controlling the functionality of closely spaced moving parts
of micromachines in the nanotechnology industry.
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