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Many-body electron-electron interaction effects are theoretically considered in monolayer graphene from
a continuum effective field-theoretic perspective by going beyond the standard leading-order single-loop
perturbative renormalization group (RG) analysis. Given that the effective (bare) coupling constant (i.e., the
fine structure constant) in graphene is of order unity, which is neither small to justify a perturbative expansion nor
large enough for strong-coupling theories to be applicable, the problem is a difficult one, with some similarity
to (2+1)-dimensional strong-coupling quantum electrodynamics (QED). In this work, we take a systematic and
comprehensive analytical approach in theoretically studying graphene many-body effects, primarily at the Dirac
point (i.e., in undoped, intrinsic graphene), by going up to three loops in the diagrammatic expansion to both
ascertain the validity of a perturbative expansion in the coupling constant and to develop a RG theory that can
be used to estimate the actual quantitative renormalization effect to higher-order accuracy. Electron-electron
interactions are expected to play an important role in intrinsic graphene due to the absence of screening at
the Dirac (charge neutrality) point, potentially leading to strong deviations from the Fermi-liquid description
around the charge neutrality point where the graphene Fermi velocity should manifest an ultraviolet logarithmic
divergence because of the linear band dispersion. While no direct signatures for non-Fermi-liquid behavior
at the Dirac point have yet been observed experimentally, there is ample evidence for the interaction-induced
renormalization of the graphene velocity as the Dirac point is approached by lowering the carrier density.
We provide a critical comparison between theory and experiment, using both higher-order diagrammatic and
random phase approximation (i.e., infinite-order bubble diagrams) calculations, emphasizing future directions
for a deeper understanding of the graphene effective field theory. We find that while the one-loop RG analysis
gives reasonable quantitative agreement with the experimental data, both for graphene in vacuum and graphene
on substrates, particularly when dynamical screening effects and finite carrier density effects are incorporated in
the theory through the random phase approximation, the two-loop analysis reveals an interacting strong-coupling
critical point in graphene suspended in vacuum signifying either a quantum phase transition or a breakdown
of the weak-coupling renormalization group approach. By adapting a version of Dyson’s argument for the
breakdown of the QED perturbative expansion to the case of graphene, we show that in contrast to QED where
the asymptotic perturbative series in the coupling constant converges to at least 137 orders (and possibly to
much higher order) before diverging in higher orders, the graphene perturbative series in the coupling constant
may manifest asymptotic divergence already in the first or second order in the coupling constant, favoring the
conclusion that perturbation theory may be inadequate, particularly for graphene suspended in vacuum. We
propose future experiments and theoretical directions to make further progress on this important and difficult
problem. The question of convergence of the asymptotic perturbative expansion for graphene many-body effects
is discussed critically in the context of the available experimental results and our theoretical calculations.
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I. INTRODUCTION

Graphene, or more precisely monolayer graphene, is a two-
dimensional (2D) honeycomb lattice of carbon atoms with a
single-particle band structure [1] which in the long-wavelength
limit is linear and chiral: E±(q) = ±vF q, where ± refer to
the two chiral linear (conduction/valence) bands, q is the 2D
wave number (momentum), and vF the so-called graphene
(Fermi) velocity. (We use � = 1 throughout.) Graphene is
the most studied topic in physics during the 2005–2013 time
period, and the subject is well reviewed in the literature
[2,3]. Our interest in the current work is a theoretical study
of electron-electron interaction effects on graphene single-
particle properties, specifically the linear band dispersion, a
subject which was originally studied in the literature [4–7] long
before the current interest in graphene exploded following the

experimental work of Geim and Novoselov [8,9]. The specific
issues we want to explore in great detail in this work include
the role and importance of graphene many-body effects, the
renormalization of ultraviolet divergences, and the ability of a
perturbative RG analysis to accurately capture the signatures
of electron-electron interactions in real graphene systems. We
investigate these questions by going beyond the leading-order
one-loop RG analysis, which is necessitated by the fact that,
unlike in QED where the interaction strength is given by
the vacuum fine structure constant e2/�c ∼ 1

137 , the effective
coupling constant defining the interaction strength in graphene
is of order unity due to the smallness of the graphene Fermi
velocity vF ≈ c/300, defining its chiral linear dispersion. A
related question to be discussed in this paper in reasonable
depth is how well (or poorly) experimental data and theoretical
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many-body calculations agree with each other with respect
to the interaction-induced renormalization of the graphene
Fermi velocity, a question of fundamental importance in
understanding the quantitative aspects of graphene effective
field theory.

Intrinsic (i.e., undoped) graphene [10], our primary interest
in this work, is a seemingly simple system of two chiral, linear
electron-hole single-particle bands with the valence band
completely full, the conduction band completely empty, and
the Fermi level pinned precisely at the Dirac point (considered
to be at zero energy with the valence/conduction band states
occupying negative/positive energy states). The system is thus
a chiral, gapless semiconductor with a massless linear electron-
hole energy dispersion characterized by the Fermi velocity
vF . The long-wavelength single-particle theory is precisely
described by the chiral, massless (2+1)-dimensional Dirac-
Weyl equation. The relevant “spin” index for this effective
theory is, in fact, the pseudospin index arising from the two
sublattices of the 2D honeycomb lattice with pseudospin-
momentum locking leading to the long-wavelength description
being the massless 2D chiral Dirac equation. In addition
to the pseudospin index, graphene also has the usual spin
index with a twofold spin degeneracy and a valley index
(arising from the band structure effect at K , K ′ points of the
Brillouin zone), adding an additional valley degeneracy factor
of 2 (i.e., graphene has a fourfold single-particle ground-state
degeneracy).

The bare (i.e., unrenormalized) value of the Fermi velocity
vF is given by the basic tight-binding band structure calcu-
lation for intrinsic graphene to be roughly vF ∼ 108 cm/s ≈
c/300. This immediately leads to a bare coupling constant
defined by

α ≡ e2

κvF

= 2.2/κ, (1)

where κ is the background lattice dielectric constant arising
from the substrate on which the graphene layer resides. For
suspended graphene in vacuum, κ = 1, and thus α ≈ 2.2
for suspended graphene, whereas α ≈ 0.9 (0.4) for graphene
on SiO2 (BN) substrates, which are two common substrate
materials used in the experimental studies of graphene. It is
worth noting that these values of α for graphene on substrates
represent typical rather than precise values; the effective
dielectric constant κ can vary substantially between different
experiments. For example, the effective κ for graphene on a
BN substrate has been found to range from 2.5 to 8 depending
on the specific experimental setup [11,12]. We further note
that the standard definition of the dimensionless interaction
strength in a solid-state electronic material is the so-called
(dimensionless) Wigner-Seitz radius, universally referred to
as the rs parameter [13,14] and defined as rs = 〈PE〉/〈KE〉,
where 〈PE〉 and 〈KE〉 refer, respectively, to the average
ground-state Coulomb potential energy and the average kinetic
energy. For an ordinary parabolic dispersion 2D (3D) electron
gas system, rs depends on the 2D (3D) electron density n as
rs ∼ n−1/2 (n−1/3). In graphene, however, the linear dispersion
makes rs independent of carrier density, and it is easy to show
that rs = α = e2/(κvF ) for graphene, which is independent of
density. This density-independent constant interaction strength
of graphene sets it apart from regular metals and semiconduc-

tors in terms of electron-electron interaction effects, although
the interaction itself is the standard long-range 1/r Coulomb
interaction between two electrons in all of these systems.

In addition to the chiral, linear energy dispersion and the
density-independent coupling constant, graphene many-body
theories require an explicit ultraviolet momentum (i.e., short-
distance) cutoff because of the linear energy dispersion. Such
a momentum cutoff is unnecessary in the usual 2D or 3D
electron gas problem where the only divergence one needs
to worry about is the long-distance (i.e., low-momentum)
infrared divergence associated with the long-range nature of
the Coulomb interaction, which leads to a well-known infrared
logarithmic divergence in the self-energy at leading order (i.e.,
Hartree-Fock) in the bare Coulomb interaction. It has been
known for more than 50 years that the infrared log diver-
gence of the Hartree-Fock self-energy is regularized simply
by carrying out an expansion in the dynamically screened
Coulomb interaction, which is equivalent to the random phase
approximation (RPA) in which the infinite series of bubble
diagrams is summed up for the reducible polarizability and
the self-energy. The ultraviolet divergence in the graphene
self-energy is, however, present in both Hartree-Fock and RPA
theories, i.e., whether the perturbative expansion is carried
out in the bare interaction or in the dynamically screened
Coulomb interaction, introducing a α ln(kc/k) [or equivalently
α ln(Ec/E)] renormalization of the graphene Fermi velocity
akin to the corresponding logarithmic mass renormalization
in QED. Using weak-coupling RG (and noting the α ∝ v−1

F

relationship between the bare coupling constant and the
bare graphene velocity), the running of the renormalized
coupling and the renormalized Fermi velocity then imply
a logarithmic divergence of the graphene Fermi velocity as
the Dirac point is approached. One of the key questions we
explore in this work is how the higher-order corrections in the
coupling constant α modify the leading-order velocity (and
polarizability) renormalization in graphene. This question is
substantive since the bare coupling constant in graphene is not
small (α ∼ 1), and as such there is no a priori reason to trust
a weak-coupling leading-order perturbation theory.

The issue of higher-order corrections to graphene many-
body effects is not just of abstract theoretical interest since a
number of recent experimental studies [12,15,16] claim to have
directly observed the expected logarithmic renormalization of
the graphene Fermi velocity, obtaining, in fact, reasonable
quantitative agreement with the leading-order theoretical
results. In (3+1)-dimensional QED, of course, the celebrated
quantitative agreement between electron g-2 experiments and
high-order perturbative diagrammatic calculations [17,18] has
now been established up to an astounding 12 decimal places,
which is amazing, but understandable, since α ∼ 1

137 for QED,
and thus, the perturbation theory, although asymptotic in
nature, should give “correct” convergent results (at least) up
to 137 decimal places, in principle, before diverging at order
137 or above. In graphene, however, α ∼ 1, and therefore,
it is mysterious why theory and experiment should agree
at all quantitatively. Even a qualitative agreement between
theory and experiment in graphene necessitates (at least)
estimating the higher-order diagrams at some reasonable
level of quantitative accuracy so that one has some faith
in believing that the agreement between experimental data

235431-2



EFFECTIVE FIELD THEORY, THREE-LOOP . . . PHYSICAL REVIEW B 89, 235431 (2014)

and the leading-order theory is not just simply the magic of
data fitting with enough free (and adjustable) parameters (or
just a pure lucky coincidence), but is a real advance in our
fundamental understanding of the quantitative aspects of the
graphene effective field theory.

Our goal in the paper is to systematically go beyond the
leading-order perturbative theory to calculate the ultraviolet
divergent contributions to the graphene self-energy and polar-
izability function so that we can make some concrete quan-
titative statements about velocity and charge renormalization
in graphene using a perturbative expansion in the coupling
constant. Our goal is ambitious and difficult, but is clearly
necessary given that the coupling constant in relevant graphene
experiments is simply not perturbatively small for one to be
restricted to just the simple leading-order theory. We provide
complete technical details for our complex calculations so that
others may check our results and go beyond our calculations
as necessary.

The rest of this paper is organized as follows: In Sec. II,
we provide a background mentioning earlier work in the
literature on graphene many-body effects so that our extensive
calculations are set in the proper context; in Sec. III, we
provide our detailed higher-order two- and three-loop pertur-
bative self-energy and polarization results for the Coulomb
interaction, discussing the corresponding RG analysis and
questions of renormalizability; in Sec. IV, we critically discuss
the important issue of the comparison between theory and
experiment; in Sec. V, we discuss our results and open
questions along with the issue of the renormalizability of
the theory for a hypothetical zero-range electron-electron
interaction, contrasting it with the Coulomb interaction results
given in Sec. III; we conclude in Sec. VI. Two appendices
provide many technical details.

II. BACKGROUND

There has been substantial earlier work in the literature
on graphene many-body effects, which we briefly summarize
in the current section in order to put our work in the proper
context. This also seems to motivate our work, establishing its
necessity in spite of the substantial body of existing work on
this topic in the literature.

The existing many-body theoretic work on monolayer
graphene divides itself naturally into a number of different
categories arising from the complex and difficult nature of
the theoretical issues involved in the problem, where many
different approaches from complementary viewpoints can be
useful. The first category, and our work fits firmly into this
category, is the most obvious approach to the problem, spiritu-
ally following the classic perturbative field-theoretic approach
pioneered by Tomonaga, Schwinger, Feynman, and Dyson
more than 60 years ago [19–26]. Although it was already
known in the early 1950s [27] that the QED perturbative
series is only asymptotic and eventually diverges at very high
orders (order � 137), the perturbation series analysis of QED
has remained the most quantitatively successful theory ever
developed anywhere, with an astonishing 1 part in 1012 type
agreement achieved between the perturbative results [up to
O(α6)] and precision measurements [17,18]. For graphene,
the leading-order [i.e., O(α)] perturbative calculation coupled

with a weak-coupling RG analysis strictly at the Dirac point
was already carried out in the 1990s [5]. This leading-order
weak-coupling theory is equivalent to the many-body Hartree-
Fock approximation, i.e., the exchange self-energy calculation.
As such, the leading-order (in the bare coupling) theory fails
[10] at finite carrier density (i.e., finite chemical potential)
when the Fermi energy is no longer at the Dirac point since
it incorrectly predicts the presence of an infrared divergence
(induced by the long-range Coulomb interaction) at the Fermi
energy. This pathological feature of the leading-order theory
was corrected in Ref. [28] by summing the infinite series
of bubble diagrams so as to dynamically screen the bare
Coulomb interaction in the RPA theory. Similar analyses based
on RPA were also carried out by other groups [33], reaching
the same conclusions as Ref. [28]. Such an RPA theory is
devoid of the pathological infrared divergence of the leading-
order Hartree-Fock theory, and manifests only the ultraviolet
ln(Ec/EF ) divergence inherent in the QED nature of the
graphene problem. Thus, as the Dirac point is approached
(i.e., EF → 0), the ultraviolet logarithmic divergence in the
renormalized Fermi velocity becomes apparent and leads to
a running coupling constant α (∝ v−1

F ) which flows to zero
logarithmically, thus justifying the applicability of the weak-
coupling perturbative expansion in a heuristic manner. Thus,
RPA, which we will discuss in some detail in Sec. IV, remains
a powerful quantitative tool for studying graphene many-body
effects and comparing with experimental data, and indeed
there is substantial theoretical literature on the use of RPA for
calculating graphene many-body renormalization [10,28–41].

There is, however, an important shortcoming of both
Hartree-Fock and RPA theories which arises from the fact that
the bare interaction strength in graphene (i.e., α) is by no means
small, and therefore, a leading-order perturbation theory in α is
questionable. One can argue that RPA, in fact, becomes exact
in the limit in which the ground-state degeneracy N diverges,
where real graphene has N = 2, corresponding to the valley
degeneracy. From this point of view, the RPA theory developed
in Refs. [28,33] can be thought of as a nonperturbative theory
that coincides precisely with the leading-order 1/N expansion.
Several other works have employed the 1/N expansion as well,
focusing primarily on the case of intrinsic graphene [42–45],
and a subset of these works studied the influence of the critical
point at infinite coupling on the large-N theory [43,44]. In par-
ticular, the infinite-coupling critical point was predicted to give
rise to a modification of the graphene dispersion from E = vF k

to E ∼ kz with z < 1. Experiments typically report a renor-
malization of the graphene velocity rather than a nontrivial new
dynamical exponent z < 1, so the importance of the infinite-
coupling critical point has not been validated experimentally.

In addition to the extensive literature on the weak-coupling
perturbative expansion (including RPA which is still a weak-
coupling theory except for the perturbative expansion being in
the dynamically screened Coulomb interaction rather than the
bare interaction) and large-N theories, there is an extensive
literature on graphene many-body effects being studied purely
from the perspective of a strong-coupling theory [46–62].
Typically, three different approaches are used: (i) direct
numerical work using lattice QCD-type calculations [51–56];
(ii) using some sort of Schwinger-Dyson theory [57,58,63–66],
which involves solving an integral equation built from some
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infinite subset of (usually ladder-type) diagrams; and (iii)
mapping the strong-coupling problem onto some known
strong-coupling field-theoretic model (e.g., the Gross-Neveu
model [67]) through some ad hoc approximations [46,68].
All of these strong-coupling theories predict the existence of
a strong-coupling fixed point with the opening of an energy
gap at the Dirac point (i.e., the massless theory achieves a
mass through the spontaneous breaking of chiral symmetry)
provided the coupling constant is larger than some critical
value αc. There is no consensus on the value of αc in the
literature, with αc ∼ 1–10 being quoted by different authors.
We mention that α > 2.2 is unphysical for graphene since
κ � 1 always. It must be emphasized that the strong-coupling
theories are not yet validated by any experimental observations
since no one has reported the observation of any gap in
monolayer graphene at the Dirac point on any substrates or
in vacuum. Thus, in spite of their theoretical importance and
elegance, the strong-coupling graphene many-body theories
are all on shaky empirical grounds. This is in stark contrast
to the perturbative theories and RPA, which have been quite
successful in capturing the signatures of electron-electron
interactions observed in experiments, as will be discussed at
length in Sec. IV.

Our current work makes an attempt to bridge the gap
between the existing weak-coupling leading-order [i.e., O(α)]
graphene many-body theories and the strong-coupling theories
by going to O(α2) in the perturbation theory exactly and to
O(α3) approximately. Given that the most common values of
the graphene coupling strength (α ≈ 0.4–2.2) range around
unity, it is important to go beyond O(α) theories at least to
make sure that there is no manifest problem in the perturbation
series in higher orders. We calculate the polarizability and
the self-energy at the Dirac point exactly to O(α2), and
the self-energy approximately to O(α3). These results are
presented in detail in the next section.

There have been a few earlier theoretical attempts to go to
higher orders in graphene many-body perturbation theories,
often obtaining conflicting (and partial) results. For example,
Refs. [69,70] calculate the polarizability to O(α2), finding
different results. Our completely independent calculations
agree with Ref. [70], but not with Ref. [69]. The self-
energy correction to O(α2) has earlier been calculated by
Refs. [71,72]. We find that our O(α2) self-energy results
disagree with Ref. [72], albeit in a fairly minor way. The
O(α2) results of Ref. [71] are incomplete in that they only
include the zero-energy limit of the self-energy correction.
Our partial O(α3) self-energy calculations are provided mainly
to show explicitly that higher-order ultraviolet logarithmic
terms [e.g., ln2(Ec/E)] indeed arise in graphene at third order
as is necessary for the renormalizability of the theory at
higher orders. Our estimated O(α3) perturbative self-energy
corrections indicate that the graphene perturbative series is
probably asymptotic only up to O(α) terms, and as such, RPA
may very well be the best quantitative theory we can have, and
going to O(α2) or O(α3) may make the agreement between
theory and experiment actually worse since the expansion may
have already started diverging at O(α2)!

Given the highly technically demanding nature of our
O(α2) and O(α3) perturbative results and the fact that the
existing higher-order results in the literature disagree with each

other, we have decided to provide all the technical details of
our theory so that others can check our results for consistency.

III. PERTURBATION THEORY WITH BARE
COULOMB INTERACTION

It may be instructive to carry out a simple dimensional
analysis to explain why the graphene many-body problem in
condensed matter physics resembles a field-theoretic problem
with an ultraviolet logarithmic divergence in contrast to the
usual situation (i.e., parabolic electronic energy band disper-
sion) where such large momentum singularities are considered
to be fundamentally absent in solid-state systems by virtue
of the actual physical existence of a large momentum lattice
cutoff. This dimensional analysis also serves to distinguish
the graphene condensed matter effective field theory from
its relativistic quantum field-theoretic analogs, (3+1)- and
(2+1)-dimensional QED.

First, it must be emphasized that the Coulomb interaction
for graphene is a true 1/r-type Coulomb interaction (in
contrast to the ln r Coulomb interaction of the purely 2D
world) as in 3D systems since graphene is a 2D membrane
in the 3D world, and the electric field and potential lines exist
in the 3D world. Thus, the corresponding momentum space
interaction in graphene is 1/q, and not 1/q2, as it is in both
(3+1)D and (2+1)D QED. Second, the electron propagator in
graphene scales as 1/q (as in QED) for large momentum since
the energy dispersion is linear in momentum, distinguishing it
from the usual 1/q2 scaling at large momentum of the ordinary
parabolic-dispersion electron propagator. This distinguishes
graphene from typical solid-state systems. Graphene thus
shares features of both QED (in energy dispersion) and
solid-state physics (2D membrane in a 3D world with a
true ultraviolet cutoff qc ∼ 1/a, where a is the graphene
lattice constant associated with the existence of a physical
honeycomb lattice comprised of carbon atoms). In addition,
the bare Coulomb interaction in graphene is not retarded since
it is nonrelativistic by virtue of the graphene velocity vF being
only ∼c/300, in contrast to QED.

The fact that the Coulomb interaction for graphene scales
as 1/q in momentum space instead of 1/q2 is one of two
important differences between 2D graphene and (2+1)D QED
(the other important difference being the nonrelativistic nature
of the interaction due to vF 
 c). This difference leads to the
fact that the electron self-energy in graphene is logarithmically
divergent in the ultraviolet (large momentum) regime, unlike
(2+1)D QED, which is a superrenormalizable theory. On
the other hand, the ultraviolet behavior of the self-energy in
graphene coincides with that in (3+1)D QED because the
difference in the Coulomb interactions (1/q versus 1/q2)
is compensated by the difference in the number of spatial
dimensions. Technically speaking, the interaction in graphene
is marginal from a RG perspective rather than irrelevant [as it
is in (2+1)D QED]. Thus, graphene effective field theory has
the same logarithmic ultraviolet divergence with a running
effective coupling constant as in (3+1)D QED. Graphene
effective field theory is thus a (2+1)D theory that shares several
common features with (3+1)D QED.

What about the corresponding Schrödinger-type parabolic
energy dispersion situation common to most solid-state sys-
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tems (where no one ever worries about logarithmic ultraviolet
divergences or running coupling constants)? For a parabolic
electron energy dispersion, the large momentum structure of
the self-energy integrals (for the physical Coulomb interaction
going as 1/q or 1/q2 in 2D or 3D, respectively) goes as
the integral of dq/q2 in both 2D and 3D, thus rendering the
corresponding effective field theory superrenormalizable, with
the Coulomb interaction being irrelevant and the ultraviolet
cutoff a nonissue. If the 2D Coulomb interaction is assumed
to be 1/q2 (i.e., logarithmic electron-electron interactions
in real space instead of the physical 1/r interaction), then
both graphene with its linear energy dispersion and ordi-
nary solid-state systems with parabolic dispersion become
superrenormalizable field theories in two dimensions with no
ultraviolet divergences.

Thus, 2D graphene field theory, because of the linear
energy dispersion and the 1/r Coulomb interaction (both
are necessary), suffers from exactly the same ultraviolet
self-energy divergence as one faces in the usual (3+1)D QED,
except that the effective coupling constant is of order unity
rather than αQED ∼ 1

137 because of the fact that the graphene
velocity is vF ≈ c/300. We note that since the one-loop self-
energy correction enhances the graphene effective velocity
as one approaches the Dirac point (i.e., at lower momentum
or energy scales), it seems that the weak-coupling theory is
always applicable very close to the Dirac point since the
effective coupling approaches αQED at the Dirac point. This
argument (which has been repeatedly made in the literature),
while technically correct, is completely impractical since there
is absolutely no justification in constructing the graphene RG
flow starting with the one-loop self-energy calculation since
the measured effective coupling (determined via the velocity)
at experimentally relevant energy scales (corresponding to
carrier densities on the order of n ∼ 1012 cm−2) is not small
but instead of order one. Because of the logarithmically slow
running of the effective coupling, one would need to further
reduce the energy scale or carrier density by roughly six
orders of magnitude to achieve a factor of 10 reduction in
the coupling, a task which is far beyond current experimental
capabilities. Thus, even the fact that the effective running
coupling decreases with decreasing energy in the graphene
effective field theory may very well be an artifact of the
one-loop approximation which can not be justified for an
effective coupling of order unity. It might very well be
that the graphene theory at experimentally relevant energy
scales is more QCD-like rather than QED-like, and becomes
asymptotically free at high energy with the effective coupling
(velocity) going to infinity (zero) at the Dirac point. This is
the weak-coupling versus strong-coupling conundrum at the
heart of our work. We want to study the graphene effective
field theory at higher-loop orders to see the extent to which
a weak-coupling perturbative RG makes any sense at all
for a seemingly strong-coupling problem with α ∼ 1. Thus,
graphene is truly a strong-coupling QED problem where
experiments (so far) tend to indicate a weak-coupling behavior!

It may also be worthwhile to mention that for a hypothetical
short-range Coulomb interaction (i.e., a constant in momentum
space), the same dimensional analysis indicates that the
self-energy terms will have power-law divergences that scale
with the order of perturbation theory, leading to a horribly

complicated and possibly nonrenormalizable interacting the-
ory (see Appendix B for details). We emphasize that later in
the paper we make these dimensional arguments rigorous by
systematically carrying out the dimensional analysis to infinite
loop order, showing that the above conclusions remain valid
to all loop orders in the graphene effective field theory, but the
perturbation series in loops may only be asymptotic to the first
or the second loop orders for the actual physical values of the
graphene effective coupling constant.

Finally, what is the role of the nonrelativistic Coulomb
interaction in graphene (in QED of course the interaction is
manifestly relativistic)? It turns out that the nonrelativistic
(i.e., nonretarded) form of the Coulomb interaction plays
no important role in graphene except to assert that if the
weak-coupling theory remains valid with the graphene velocity
increasing logarithmically to arbitrarily low energy, then
the theory must eventually be cut off at an astronomically
low momentum scale where vF ∼ c, and relativistic effects
come into the theory at these exponentially (e−300 cm−1!)
small momentum scales. Thus, the effective coupling constant
reaches α ∼ 1

137 , and the graphene velocity becomes c, with
the RG flow saturating at that point.

We mention that the screening of the Coulomb interaction
(i.e., the insertion of polarization diagrams in the interaction
lines) does not change the above dimensional analysis at
the ultraviolet scale since screening is not operational at
high momenta. Screening does serve a very important pur-
pose however: it serves to eliminate the infrared divergence
associated with the bare Coulomb interaction at any finite
doping. Thus, the graphene theory at any finite carrier density
(again, a complication not arising in QED) must use the
screened Coulomb interaction and not the bare Coulomb
interaction in order to avoid logarithmically divergent infrared
singularities arising from the long-range nature of the bare
Coulomb interaction. Screening, however, plays no role in the
ultraviolet divergence and in the running coupling constant
of the graphene field theory since the logarithmic divergence
structure of the theory remains unaffected by screening, with
only the subleading terms being affected quantitatively.

In this section, we compute first-, second-, and third-order
corrections to the electron self-energy and vacuum polarization
using an effective field theory diagrammatic expansion that is
perturbative in the strength of the bare Coulomb interaction,
which is quantified by the effective graphene fine structure
constant α. The results are then used to determine the renor-
malized polarization, the Fermi velocity, and the running of
the effective coupling strength. We are particularly interested
in testing the reliability of perturbation theory in light of the
fact that the expansion parameter α is of order unity in real
graphene experiments.

First-order results for the Fermi velocity and vacuum
polarization have already been shown to give good qualita-
tive (and perhaps quantitative) agreement with experiments
[15,70]. We find that while second-order corrections improve
the agreement between theory and experiment in the case
of the vacuum polarization [70], second-order corrections to
the Fermi velocity lead to a strong-coupling critical point
at α = αc ≈ 0.78, suggesting either a phase transition or
a breakdown of perturbation theory when it is applied to
experimental setups with α > αc, such as graphene suspended
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in vacuum. We find support for the conclusion that perturbation
theory is failing for α > αc by estimating the order where
the perturbative asymptotic series in α begins to diverge
from the true result, finding that this happens around first
or second order. This evidence is also consistent with the
fact that no indication of a phase transition has been seen
in any experimental measurements of many-body effects in
single-layer graphene.

We further provide in this section a general analysis of
the divergence structure of the graphene effective field theory.
We show that only logarithmic ultraviolet divergences can
arise in higher-order corrections to the electron self-energy,
with higher powers of logarithms arising at third order and
above. Only the linear-log divergences contribute to the
renormalization of the Fermi velocity and effective coupling,
while all the higher-power log divergences can be determined
from the linear-log terms through a set of recursion relations,
which we derive explicitly. These recursion relations reveal
that if graphene is to remain renormalizable at higher orders,
it must be the case that ln2 divergences arise at third order,
while higher-power logarithmic divergences can not appear at
this order. We verify this explicitly by computing third-order
diagrams which are expected to be the most divergent, namely,
those which contain divergent self-energy subdiagrams.

Although several groups have already reported results
for the second-order polarizability [69,70], the electron self-
energy, and the velocity renormalization [71,72], these results
generally conflict with one another and with our own findings
as we discussed in the previous section. Because of these
disagreements, we felt it necessary to provide the full details
of our calculations in the main text and to point out the specific
places where our results agree or disagree with previous
findings as they occur. On the other hand, the first-order results
are well established in the literature; we include a detailed
review of these results as well for the sake of completeness and
because these results are used in the higher-order calculations.
We have attempted to keep the calculation of each diagram as
self-contained as possible for the sake of readability.

A. Conventions, Feynman rules, and useful identities

We follow the conventions of Ref. [43] and work with the
Euclidean action

S = −
N∑

a=1

∫
dt d2x(ψ̄aγ

0∂0ψa+vF ψ̄aγ
i∂iψa+A0ψ̄aγ

0ψa)

+ 1

2g2

∫
dt d3x(∂iA0)2. (2)

The fields ψ̄a are four-component fermion fields describing
electrons and holes, with a labeling the fermion species.
The number of species N is equal to 2 in real graphene,
corresponding to the spin degeneracy. vF denotes the Fermi
velocity. The γ ’s are Dirac matrices satisfying the Euclidean
Clifford algebra {γ μ,γ ν} = 2δμν , which will we choose as

γ 0 = σ3 ⊗ σ3, γ i = σi ⊗ I, (3)

where the σi are Pauli matrices. A useful identity involving the
gamma matrices is

Tr{γ μγ νγ ργ σ } = 4(δμνδρσ − δμρδνσ + δμσ δνρ). (4)

The coupling g2 is given by

g2 = 2

1 + ε

e2

ε0
= 4πe2

κ
, (5)

where e is the electric charge, ε0 is the vacuum permeability,
and ε and κ are two different definitions of the dielectric
constant of the substrate (SI and cgs units, respectively).
Combining these quantities with the Fermi velocity, we can
define an effective fine structure constant for graphene:

α ≡ g2

4πvF

= e2

2π (1 + ε)ε0vF

= e2

κvF

. (6)

We find it convenient to make use of the quasirelativistic
notation

/p = γ 0p0 + vF �γ · �p, p2 = p2
0 + v2

F | �p|2. (7)

The free-fermion propagator is

G0(p) = i

/p
= i /p

p2
, (8)

the effective propagator for the Coulomb interaction is

D0(p) = g2
∫

dpz

2π

1

p2
z + | �p|2 = g2

2| �p| , (9)

and the interaction vertex is iγ 0. Every closed fermion loop
contributes an overall minus sign to the value of the diagram.

B. One-loop electron self-energy

Both for the sake of completeness and to make our
conventions more transparent, we begin by rederiving the
result for the one-loop electron self-energy (Fig. 1), which
was originally computed in Ref. [5]. The diagram evaluates to


1(q) = −
∫

d3k

(2π )3
γ 0G0(k + q)γ 0D0(k)

= − ig2

2

∫
d3k

(2π )3
γ 0 /k + /q

(k + q)2
γ 0 1

|�k|

= − ig2

2

∫
d2k

(2π )2

1

|�k|γ
0ϒ(q,�k)γ 0, (10)

ϒ(q,�k) =
∫

dk0

2π

/k + /q

(k + q)2

=
∫

dk0

2π

[
vF (�k + �q) · �γ

k2
0 + v2

F |�k + �q|2 + k0γ
0

k2
0 + v2

F |�k + �q|2

]

= (�k + �q) · �γ
2|�k + �q| , (11)


1(q) = ig2

4

∫
d2k

(2π )2

1

|�k|
(�k + �q) · �γ

|�k + �q| . (12)

FIG. 1. One-loop correction to the electron self-energy.
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In order to perform the remaining integrals, we choose
the coordinate system such that �q = (|�q|,0) and adopt the
transformation to elliptical coordinates used in Ref. [70]:

kx = |�q|
2

(cosh μ cos ν − 1), ky = |�q|
2

sinh μ sin ν,

d2k = |�q|2
4

(cosh2 μ − cos2 ν)dμ dν, (13)

yielding


1(q) = ig2|�q|
32π2

γ ·
∫ 2π

0
dν

∫ μmax

0
dμ

× (1 + cos ν cosh μ, sin ν sinh μ). (14)

We have regulated the integral by including the cutoff μmax.
We would like to relate this cutoff to a more physical cutoff on
the momentum: � � |�k|. The mapping to elliptical coordinates
given above implies

|�k| = |�q|
2

(cosh μ − cos ν), (15)

so that

� = |�q|
2

(cosh μmax − cos ν)

⇒ μmax = cosh−1

(
2�

|�q| + cos ν

)
. (16)

The three integrals in (14) then evaluate to∫ 2π

0
dν

∫ μmax

0
dμ

=
∫ 2π

0
dν cosh−1

(
2�

|�q| + cos ν

)
= 2π ln(4�/|�q|) + O(|�q|2/�2),∫ 2π

0
dν cos ν

∫ μmax

0
dμ cosh μ

=
∫ 2π

0
dν cos ν

√(
2�

|�q| + cos ν

)2

− 1 = π+O(|�q|2/�2),∫ 2π

0
dν sin ν

∫ μmax

0
dμ sinh μ

=
∫ 2π

0
dν sin ν

(
2�

|�q| + cos ν

)
= 0. (17)

Plugging these results into (14), we obtain


1(q) = ig2|�q|
32π2

γ 1[2π ln(�/|�q|) + 4π ln 2 + π ] + O

( |�q|2
�2

)
→ ig2

16π
�q · �γ [

ln(�/|�q|) + 2 ln 2 + 1/2
] + O

( |�q|2
�2

)
.

(18)

In the final step, we have reverted to a general coordinate
system, i.e., �q = (qx,qy). We therefore have


1(q) = ig2

16π
�q · �γ ln(�/|�q|), (19)

where the finite part has been absorbed into a redefinition of
the ultraviolet cutoff �. Since the full two-point function is

given by

〈ψ(p)ψ̄(0)〉 = i

/p − i
(p)
, (20)

the one-loop self-energy leads to a renormalization of the
Fermi velocity:

vq ≡ v∗
F (q) = vF − i

1

|�q|2 Tr[�q · �γ
1(q)]

= vF + g2

16π
ln(�/|�q|) = vF

[
1 + α

4
ln(�/|�q|)

]
. (21)

The one-loop velocity renormalization of Eq. (21) can be
inverted using the definition of the graphene coupling constant
[Eq. (6)] to express the coupling itself at a momentum |�q| in
terms of the bare coupling α, which is to be interpreted as the
coupling strength at the ultraviolet cutoff momentum scale �

in Eq. (21):

αq = α

1 + α
4 ln(�/|�q|) . (22)

Equation (22), sometimes referred to as the equation for the
running coupling constant (i.e., a scale-dependent coupling
constant), connects the effective interaction strength at a
particular momentum scale |�q| with that at the ultraviolet
cutoff momentum �. Since the ultraviolet momentum scale
� is arbitrary and unknown (physically, it is of the order of
the inverse lattice spacing of graphene, but its precise value is
arbitrary), it is preferable to eliminate the unknown parameter
� from the theory by considering the relationship between
two momentum scales |�q| and |�k|, which is easily done by
writing two equations similar to Eqs. (21) and (22), but with |�q|
replaced by |�k|. It is then easy to eliminate the unknown cutoff
scale � from the equations to obtain the following relationship:

vq

vk

= αk

αq

= 1 + αk

4
ln(|�k|/|�q|). (23)

Equation (23) connects the physical velocity (and coupling
strength) at one momentum |�k| with that at another momentum
|�q| with no reference to the unknown ultraviolet scale �,
and is thus the appropriate equation for the running coupling
and the velocity renormalization in graphene up to one-loop
interaction corrections. We emphasize (this seems to have been
completely missed in the graphene literature) that Eq. (23) or
its equivalent counterpart in higher-loop orders, connecting the
graphene velocity at one scale with that at another scale, is the
correct formula to use in comparing theory and experiment in
graphene, and not Eq. (21) which has the unknown ultraviolet
cutoff explicitly in the formula. Of course, there is still the
problem of the theory being explicitly done for undoped
intrinsic graphene, whereas experiments are done as a function
of density in doped extrinsic graphene (and not as a function
of momentum in undoped graphene), but as discussed later
on in Sec. IV, the substitution of the density-dependent Fermi
momentum for |�q| and |�k| is justified by the RPA theory [28,33]
carried out for doped graphene [with the Fermi momentum
being proportional to the square root of density, Eqs. (21)–(23)
pick up an extra factor of 2 so that all the factors of 4 become
factors of 8, and the momenta |�k| and |�q| are replaced by two
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different densities n1 and n2]. Then, Eq. (23) connects the
graphene velocity or coupling strength at two distinct carrier
densities by the following equation:

v1

v2
= α2

α1
= 1 + α2

8
ln(n2/n1), (24)

where n1 and n2 are two distinct carrier densities with Fermi
velocities v1 and v2, respectively.

The existence of the logarithm in Eqs. (21)–(24) is entirely
due to the linear graphene dispersion, which leads to properties
at the ultraviolet scale (very high momentum or very high den-
sity) being reflected in the corresponding velocity or running
coupling at very low momentum or carrier density, something
that usually does not happen in ordinary Fermi liquids with
parabolic energy dispersion. We emphasize that our discussion
above connecting the infrared and the ultraviolet scales in
graphene did not refer at all to a RG flow or beta function,
although the same results can also be obtained by constructing
the graphene effective beta function and integrating it. We
do not think that it is necessary to appeal to a RG analysis
to discuss the results derived in Eqs. (21)–(24); in fact, we
believe that the graphene effective field theory is a beautiful
example of the innate simplicity of the RG analysis developed
by Wilson which was designed specifically to handle large
log divergences in a theory through the systematic use of a
momentum cutoff and then eliminating the cutoff in terms
of effective physical quantities calculated at physical scales.
Invoking the RG terminology to discuss the graphene one-loop
calculation does not in any way give us any deeper insight than
the simple analysis given above; the two are in fact completely
equivalent since they deal with the logarithmic divergence
in the theory arising from the linear dispersion, leading to
the influence of the ultraviolet cutoff scale showing up in the
infrared through a logarithmic divergence without the explicit
presence of the arbitrary ultraviolet cutoff itself showing up in
the theory. In the rest of this paper, we will critically investigate
the extent to which the same remains true in higher-order
calculations, which is necessitated by the graphene coupling
constant being of O(1) in real laboratory systems.

C. Vacuum polarization function bubble diagram

We also review the calculation of the vacuum polarization
bubble diagram [5] shown in Fig. 2 as this diagram will enter
into our two-loop calculations later on. This diagram translates
to the expression

�B(q) = N

∫
d3k

(2π )3
Tr[γ 0G0(k)γ 0G0(k + q)]

= −N

∫
d3k

(2π )3
Tr

[
γ 0 /k

k2
γ 0 /k + /q

(k + q)2

]
. (25)

FIG. 2. One-loop bubble correction to the vacuum polarization.

The trace over gamma matrices evaluates to

Tr[γ 0γ μγ 0γ ν] = 4(2δ0μδ0ν − δμν), (26)

leading to

�B(q) = −4N

∫
d3k

(2π )3

× k0(k0 + q0) − v2
F
�k · (�k + �q)(

k2
0 + v2

F |�k|2)[(k0 + q0)2 + v2
F |�k + �q|2]

. (27)

Performing the integral over k0, we find

�B(q) = −2NvF

∫
d2k

(2π )2

|�k| + |�k + �q|
v2

F (|�k| + |�k + �q|)2 + q2
0

×
[

1 −
�k · (�k + �q)

|�k||�k + �q|

]
. (28)

We again choose the coordinate system such that �q = (|�q|,0)
and transform to elliptical coordinates:

kx = |�q|
2

(cosh μ cos ν − 1), ky = |�q|
2

sinh μ sin ν,

d2k = |�q|2
4

(cosh2 μ − cos2 ν)dμ dν, (29)

yielding

�B(q) = −Ng2vF |�q|3
4π2

∫ ∞

0
dμ

∫ 2π

0
dν

cosh μ sin2 ν

q2
0 + v2

F |�q|2 cosh2 μ
.

(30)

The integrals are trivial, and we obtain

�B(q) = −N

8

|�q|2√
q2

0 + v2
F |�q|2

. (31)

Performing the analytic continuation q0 → −iω, this becomes
the well-known result

�B(q) = −N |�q|
8vF

1√
1 − y2

, (32)

where we have defined

y ≡ ω

vF |�q| . (33)

D. One-loop vertex diagram

Here, we will consider the remaining one-loop diagram,
namely, the vertex diagram shown in Fig. 3. We will not

FIG. 3. One-loop correction to the vertex function.
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compute this diagram explicitly since the result is not needed
for our higher-order calculations of the vacuum polarization
and electron self-energy. However, we do wish to demonstrate
that this diagram has no ultraviolet divergences as part of our
general analysis of the divergence structure of the graphene
effective field theory. The vertex diagram evaluates to

V1(p,q) = ig2

2

∫
d3k

(2π )3
γ 0 /p + /k

(p + k)2
γ 0 /q + /k

(q + k)2
γ 0 1

|�k| . (34)

This integral has a potential logarithmic divergence which can
be isolated by setting p = q = 0 in the integrand. We then
obtain

V1,div = ig2

2

∫
d3k

(2π )3
γ 0 /k

k2
γ 0 /k

k2
γ 0 1

|�k|

= ig2

2

∫
d3k

(2π )3

1

|�k|k4

(
k2

0γ
0 − 2vF k0�k · �γ − v2

F |�k|2γ 0
)

= 0. (35)

The final expression vanishes due to the integration over k0,
demonstrating that the vertex function is ultraviolet finite. We
will comment further on this result in our general discussion
of ultraviolet divergences later on in Sec. III I.

E. Self-energy correction to vacuum polarization function

1. Computing the diagram

In this section and the next, we compute the two-loop
corrections to the vacuum polarization function. The results
can be used to calculate corrections to the dielectric function
and to test the conjecture that all ultraviolet divergences can
be absorbed into the renormalized Fermi velocity and electron
field strength. These corrections were previously computed in
Refs. [69,70], with conflicting results. Our calculation of the
first two-loop correction, given in this section, finds agreement
with Ref. [70].

The diagram corresponding to the self-energy correction
to the vacuum polarization function is shown in Fig. 4 and
evaluates to the expression

�SE(q)

= N

∫
d3k

(2π )3
Tr[γ 0G0(k)γ 0G0(k + q)
1(k + q)G0(k + q)]

= Ng2

16π

∫
d3k

(2π )3
Tr

[
γ 0 /k

k2
γ 0 /k + /q

(k + q)2
(�k + �q) · �γ /k + /q

(k + q)2

]
× ln(�/|�k + �q|). (36)

FIG. 4. Two-loop self-energy correction to the vacuum
polarization.

We begin by focusing on the trace of gamma matrices, which
can be expressed as

Tr[γ 0γ μγ 0γ νγ iγ λ]

= δμ0Tr[γ 0γ νγ iγ λ] − (1 − δμ0)Tr[γ μγ νγ iγ λ]

= 4δμ0(δν0δiλ + δλ0δiν)

− 4(1 − δμ0)(δμνδiλ − δμiδνλ + δμλδiν), (37)

where μ,ν,λ = 0,1,2 and i = 1,2. To arrive at the second line
above, we made use of the identity in Eq. (4). The expression
for �SE(q) therefore breaks up into a sum of five contributions:

T1 = Ng2vF

4π

∫
d3k

(2π )3

k0(k0 + q0)|�k + �q|2
k2(k + q)4

ln(�/|�k + �q|),

T2 = T1,

T3 = −Ng2v3
F

4π

∫
d3k

(2π )3

�k · (�k + �q)|�k + �q|2
k2(k + q)4

ln(�/|�k + �q|),

T4 = Ng2vF

4π

∫
d3k

(2π )3

�k · (�k + �q)

k2(k + q)2
ln(�/|�k + �q|)),

T5 = T3. (38)

The function �SE(q) is then given by

�SE(q) = 2T1 + 2T3 + T4. (39)

The k0 integrals appearing in the above approximations can be
evaluated directly:

I1 ≡
∫

dk0

2π

k0(k0 + q0)(
k2

0 + v2
F |�k|2)[(k0 + q0)2 + v2

F |�k + �q|2]2

= 1

4vF |�k + �q|
v2

F (|�k| + |�k + �q|)2 − q2
0[

v2
F (|�k| + |�k + �q|)2 + q2

0

]2 ,

I3 ≡
∫

dk0

2π

1(
k2

0 + v2
F |�k|2)[(k0 + q0)2 + v2

F |�k + �q|2]2

= v2
F (|�k| + |�k + �q|)2(|�k| + 2|�k + �q|) + |�k|q2

0

4v3
F |�k||�k + �q|3[v2

F (|�k| + |�k + �q|)2 + q2
0

]2 ,

I4 ≡
∫

dk0

2π

1

(k2
0 + v2

F |�k|2)[(k0 + q0)2 + v2
F |�k + �q|2]

= |�k| + |�k + �q|
2vF |�k||�k + �q|[v2

F (|�k| + |�k + �q|)2 + q2
0

] , (40)

yielding

�SE(q) = −Ng2vF

4π

∫
d2k

(2π )2
[−2|�k + �q|2I1

+ (2v2
F |�k + �q|2I3 − I4)�k · (�k + �q)] ln(�/|�k + �q|)

= −Ng2

8π

∫
d2k

(2π )2

�k · (�k + �q) − |�k||�k + �q|
|�k|

×
[
v2

F (|�k| + |�k + �q|)2 − q2
0

][
v2

F (|�k| + |�k + �q|)2 + q2
0

]2 ln(�/|�k + �q|). (41)
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In order to perform the remaining integrals, we first change
variables according to �k → −�k − �q, and we choose the
coordinate system such that �q = (|�q|,0). We then transform
to elliptical coordinates defined by

kx = |�q|
2

(cosh μ cos ν − 1), ky = |�q|
2

sinh μ sin ν,

d2k = |�q|2
4

(cosh2 μ − cos2 ν)dμ dν (42)

to obtain

�SE(q)

= Ng2|�q|3
128π3

∫ ∞

0
dμ

∫ 2π

0
dν ln

[
2�

|�q|(cosh μ− cos ν)

]

× sin2 ν(cosh μ− cos ν)
v2

F |�q|2 cosh2 μ− q2
0[

v2
F |�q|2 cosh2 μ+ q2

0

]2 . (43)

We first focus on the term proportional to ln(�/|�q|):

Ng2|�q|3
128π3

∫ ∞

0
dμ

∫ 2π

0
dν ln(�/|�q|) sin2 ν(cosh μ − cos ν)

× v2
F |�q|2 cosh2 μ − q2

0[
v2

F |�q|2 cosh2 μ + q2
0

]2

= Ng2|�q|3
128π2

ln(�/|�q|)
∫ ∞

0
dμ cosh μ

× v2
F |�q|2 cosh2 μ − q2

0[
v2

F |�q|2 cosh2 μ + q2
0

]2

= Ng2|�q|
256πv2

F

ln(�/|�q|) 1

[1 + (q0/vF |�q|)2]3/2

= Nα|�q|
64vF

ln(�/|�q|) 1

[1 − (ω/vF |�q|)2]3/2
, (44)

where we have performed the analytic continuation q0 → −iω.
Note that this analytic continuation must be performed after
the integration over μ and ν; otherwise, the final expression
in Eq. (44) only holds if ω < vF |�q|. The above result for
the coefficient of the logarithmic divergence [Eq. (44)] agrees
with that obtained in Ref. [70]. It should also be noted that an
apparent factor of 2 difference comes from different definitions
of the fermion degeneracy factor N . In that reference, real
graphene corresponds to N = 4, whereas here it corresponds
to N = 2. It is also worth noting that the factor sin2 ν

appearing in the integrand of Eq. (43) is missing in Eq. (35) of
Ref. [70]. However, this appears to be merely a typo; this factor
effectively produces an additional factor of 1

2 which appears
to have been included in the final result (19) of that paper.

Returning to the full expression for the self-energy correc-
tion to the vacuum polarization, we may write

�SE(q) = Nα|�q|
32πvF

[
π

2

1

(1 − y2)3/2
ln(�/|�q|) + Ia(y)

]
, (45)

with

Ia(y) ≡ 1

π

∫
dμ dν ln

[
2

cosh μ − cos ν

]
× sin2 ν(cosh μ − cos ν)

cosh2 μ + y2

(cosh2 μ − y2)2
(46)

and

y ≡ ω

vF |�q| . (47)

Ia(x) can be expressed analytically as [70]

Ia(x) = 1

3

1 + 2x2

1 − x2
− x

6

5 − 2x2

1 − x2
ln

(
1 − x

1 + x

)
− π

12

3 − 12 ln 2 + 6x2 − 4x4

(1 − x2)3/2

− i

(1 − x2)3/2

[
π2

4
− Li2(x + i

√
1 − x2)

+ Li2(−x − i
√

1 − x2) + iπ

2
ln(x + i

√
1 − x2)

]
,

(48)

where Li2(z) denotes the dilogarithm function. In conclusion,
the result for �SE(q) [Eq. (45)] is equal to the result obtained in
[70]. Reference [69] also computes the self-energy correction
to the vacuum polarization, but considers only the static limit
y = 0. In that reference, the constant term 2

π
Ia(0) is absorbed

into the definition of �. However, as pointed out in Ref. [70],
absorbing this constant into � is inconsistent with the original
definition of �, which was set by the one-loop electron self-
energy calculation given above. We therefore follow Ref. [70]
in retaining this constant contribution.

2. Renormalization

In the one-loop calculations, we have seen that only the
electron self-energy is ultraviolet divergent, meaning that only
the Fermi velocity is renormalized to first order, and not,
for example, the electric charge as well. It is expected that
this trend will persist to higher orders. This can already be
checked at second order using the result we have just obtained
for the self-energy correction to the vacuum polarization. In
particular, this correction should combine with the first-order
bubble diagram contribution in such a way that the ln(�/|�q|)
divergence is naturally absorbed into a renormalization of the
Fermi velocity, i.e., the bare velocity vF is effectively replaced
by the one-loop expression for vq [Eq. (21)] in the one-loop
vacuum polarization [70]. Here, we verify explicitly that this
is indeed the case.

Recall that the bubble diagram contribution is

�B(q) = −N |�q|
8vF

1√
1 − y2

, (49)

while the self-energy contribution is

�SE(q) = Nα|�q|
64vF

1

(1 − y2)3/2
ln(�/|�q|) + Nα|�q|

32πvF

Ia(y).

(50)
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The net contribution to the vacuum polarization function from
the self-energy diagram receives an extra factor of 2 due to the
symmetry of the diagram. We therefore consider

�B(q) + 2�SE(q) = −N |�q|
8vF

[
1√

1 − y2
− α

4

1

(1 − y2)3/2

× ln(�/|�q|) − α

2π
Ia(y)

]
. (51)

First, consider the static limit y = 0 [69]. Renormalization
amounts to the second (divergent) term in Eq. (51) getting
absorbed into the first such that vF is replaced by vq :

1 − α

4
ln(�/|�q|) → vF

vq
(52)

⇒ �B(�q,ω = 0) + 2�SE(�q,ω = 0) → −N |�q|
8vq

+ · · · .

This replacement seems to assume that α
4 ln(�/|�q|) can be

treated as a small quantity, so that

1

1 + α
4 ln(�/|�q|) ≈ 1 − α

4
ln(�/|�q|). (53)

However, we have already assumed that the ultraviolet cutoff
satisfies � � |�q|, so one can not assume that this is a
small quantity. This replacement is more properly justified
by systematically expanding the bare coupling α in terms of
the renormalized coupling

αq ≡ g2

4πvq

= α

1 + (α/4) ln(�/|�q|) . (54)

This expansion is easily constructed up to second order:

α = αq + α2
q

4
ln(�/|�q|) + O

(
α3

q

)
. (55)

This expansion is sensible and works even for large ln(�/|�q|)
since in this limit α2

q ln(�/|�q|) ∼ αq is still small. Using this
expansion, we can justify the above approximation:

1

vF

(
1 − α

4
ln(�/|�q|)

)
= 4πα

g2

(
1 − α

4
ln(�/|�q|)

)
= 4παq

g2

(
1 + αq

4
ln(�/|�q|) + O

(
α2

q

))
×

(
1 − αq

4
ln(�/|�q|) +O

(
α2

q

))
= 4παq

g2

(
1 + O

(
α2

q

)) = 1

vq

+ O
(
α3

q

)
. (56)

The basic procedure works even if we do not restrict
attention to the static limit [70]. In general, renormalization
amounts to throwing away the log term and replacing all
occurrences of vF by vq :

�B(q) + 2�SE(q) → −N |�q|
8vq

[
1√

1 − x2
− αq

2π
Ia(x)

]
,

(57)

where

x ≡ ω

vq |�q| . (58)

To check explicitly that this is the correct prescription, let us
first define the “small” quantity

ξ1 ≡ α

4
ln(�/|�q|), (59)

so that the variables y and x are related by

y = x[1 + ξ1] + O(α2). (60)

We first focus on the disappearance of the log term. Begin by
expressing the y dependence of �B in terms of x:

[1 − y2]−1/2 ≈ [1 − x2 − 2ξ1x
2 + O(α2)]−1/2

≈ (1 − x2)−1/2

[
1 + ξ1

x2

1 − x2

]
+ O(α2). (61)

Similarly, the y dependence of the log term in �SE can be
expressed as

− ξ1[1 − y2]−3/2 ≈ −ξ1[1 − x2]−3/2 + O(α2). (62)

Combining these two results gives

[1 − y2]−1/2 − ξ1[1 − y2]−3/2

≈ (1 − x2)−1/2

[
1 + ξ1

x2

1 − x2
− ξ1

1

1 − x2

]
+ O(α2)

= (1 − x2)−1/2[1 − ξ1] + O(α2). (63)

Finally, using that

1

vF

[1 − ξ1] ≈ 1

vq

, (64)

we see that the log term effectively disappears and vF is
replaced by vq to arrive at Eq. (57).

A similar analysis can be performed for the finite term in
Eq. (51). However, this is now completely trivial since the
finite term is proportional to α:

αIa(y) ≈ αIa(x) + O(α2) ≈ α(1 − ξ1)Ia(x) + O(α2). (65)

Again, the (1 − ξ1) factor combines with the overall 1/vF in
Eq. (51) to produce 1/vq .

In summary, the renormalization prescription of absorbing
ultraviolet divergences into the Fermi velocity appears to be
self-consistent in both the static and nonstatic regimes. Note
that this result already implies that the second two-loop correc-
tion to the vacuum polarization, namely the vertex correction,
is ultraviolet finite since the self-energy correction has fully
accounted for the renormalization of the Fermi velocity in
the expression for the one-loop vacuum polarization. The
finiteness of the vertex correction is verified explicitly in the
next section.

F. Vertex correction to vacuum polarization function

The diagram corresponding to the two-loop vertex correc-
tion to the vacuum polarization is shown in Fig. 5. This diagram

235431-11



BARNES, HWANG, THROCKMORTON, AND DAS SARMA PHYSICAL REVIEW B 89, 235431 (2014)

FIG. 5. Two-loop vertex correction to the vacuum polarization.

evaluates to

�V (q) = −N

∫
d3k

(2π )3

∫
d3p

(2π )3
D0(k − p)

× Tr[γ 0G0(k)γ 0G0(p)γ 0G0(p + q)γ 0G0(k + q)]

= −g2N

2

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× Tr

[
γ 0 /k

k2
γ 0 /p

p2
γ 0 /p + /q

(p + q)2
γ 0 /k + /q

(k + q)2

]
. (66)

The γ -matrix trace in the integrand is

Tr[γ 0γ μγ 0γ νγ 0γ ργ 0γ σ ]

= 4δμ0δρ0(2δν0δσ0 − δνσ ) − 4δμ0δρ �=0(δν0δρσ + δσ0δνρ)

− 4δμ �=0δρ0(δμνδσ0 + δμσ δν0)

+ 4δμ �=0δρ �=0(δμνδρσ − δμρδνσ + δμσ δνρ). (67)

We therefore have nine contributions

R1 ≡ −4g2N

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× k0p0(p0 + q0)(k0 + q0)

k2p2(p + q)2(k + q)2
,

R2 ≡ 2g2N

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|
k0(p0 + q0)p(k + q)

k2p2(p + q)2(k + q)2
,

R3 ≡ 2g2Nv2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× k0p0( �p + �q) · (�k + �q)

k2p2(p + q)2(k + q)2
,

R4 ≡ 2g2Nv2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× k0(k0 + q0) �p · ( �p + �q)

k2p2(p + q)2(k + q)2
,

R5 ≡ 2g2Nv2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× (p0 + q0)(k0 + q0)�k · �p
k2p2(p + q)2(k + q)2

,

R6 ≡ 2g2Nv2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

× p0(p0 + q0)�k · (�k + �q)

k2p2(p + q)2(k + q)2
,

R7 ≡ −2g2Nv4
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

×
�k · �p( �p + �q) · (�k + �q)

k2p2(p + q)2(k + q)2
,

R8 ≡ 2g2Nv2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

×
�k · ( �p + �q)p · (k + q)

k2p2(p + q)2(k + q)2
,

R9 ≡ −2g2Nv4
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k − �p|

×
�k · (�k + �q) �p · ( �p + �q)

k2p2(p + q)2(k + q)2
. (68)

As before, we first perform the integrations over k0 and p0.
There are three basic integrals over these frequencies that
appear in the Ri :

Qu
1 ≡

∫
du0

2π

u0(u0 + q0)(
u2

0 + v2
F |�u|2)[(u0 + q0)2 + v2

F |�u + �q|2]

= vF (|�u| + |�u + �q|)
2
[
v2

F (|�u| + |�u + �q|)2 + q2
0

] , (69)

Qu
2 ≡

∫
du0

2π

u0(
u2

0 + v2
F |�u|2)[(u0 + q0)2 + v2

F |�u + �q|2]

= − q0

2vF |�u + �q|[v2
F (|�u| + |�u + �q|)2 + q2

0

] , (70)

Qu
3 ≡

∫
du0

2π

1(
u2

0 + v2
F |�u|2)[(u0 + q0)2 + v2

F |�u + �q|2]

= |�u| + |�u + �q|
2vF |�u||�u + �q|[v2

F (|�u| + |�u + �q|)2 + q2
0

] . (71)

The Ri can be expressed in terms of these three functions:

R1 ≡ −4g2N

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|Q
k
1Q

p

1 ,

R2 ≡ 2g2N

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
× [

Qk
1Q

p

1 + v2
F �p · (�k + �q)Qk

2(Qp

2 + q0Q
p

3 )
]
,

R3 ≡ 2g2Nv2
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
× ( �p + �q) · (�k + �q)Qk

2Q
p

2 ,

R4 ≡ 2g2Nv2
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p| �p · ( �p + �q)Qk
1Q

p

3 ,

R5 ≡ 2g2Nv2
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
�k · �p(

Qk
2 + q0Q

k
3

)
× (

Q
p

2 + q0Q
p

3

)
,

R6 ≡ 2g2Nv2
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
�k · (�k + �q)Qk

3Q
p

1 ,
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R7 ≡ −2g2Nv4
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
�k · �p

× ( �p + �q) · (�k + �q)Qk
3Q

p

3 ,

R8 ≡ 2g2Nv2
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
�k · ( �p + �q)

× [(
Qk

2 + q0Q
k
3

)
Q

p

2 + v2
F �p · (�k + �q)Qk

3Q
p

3

]
,

R9 ≡ −2g2Nv4
F

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
�k · (�k + �q)

× �p · ( �p + �q)Qk
3Q

p

3 . (72)

Adding together these contributions, we find

�V (q) = −2g2N

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
{
Qk

1Q
p

1 − v2
F

[ �p·( �p + �q)Qk
1Q

p

3 + �k·(�k + �q)Qk
3Q

p

1

]
− v2

F [�k· �p + �k·( �p + �q) + �p·(�k + �q) + ( �p + �q)·(�k + �q)]Qk
2Q

p

2

− v2
F q0[�k· �p + �p·(�k + �q)]Qk

2Q
p

3 − v2
F q0[�k· �p + �k·( �p + �q)]Qk

3Q
p

2

+ v2
F

[−q2
0
�k· �p + v2

F
�k· �p( �p + �q)·(�k + �q) + v2

F
�k·(�k + �q) �p·( �p + �q) − v2

F
�k·( �p + �q) �p·(�k + �q)

]
Qk

3Q
p

3

}
. (73)

First collect all the terms proportional to q2
0 :

− v2
F [�k· �p + �k·( �p + �q) + �p·(�k + �q) + ( �p + �q)·(�k + �q)]Qk

2Q
p

2

− v2
F q0[�k· �p + �p·(�k + �q)]Qk

2Q
p

3 − v2
F q0[�k· �p + �k·( �p + �q)]Qk

3Q
p

2 − v2
F q2

0
�k· �pQk

3Q
p

3

=−q2
0

4

1[
v2

F (|�k| + |�k + �q|)2 + q2
0

][
v2

F (| �p| + | �p + �q|)2 + q2
0

]( �k· �p
|�k|| �p| − �p·(�k + �q)

|�k + �q|| �p| −
�k·( �p + �q)

|�k|| �p + �q| + (�k + �q)·( �p + �q)

|�k + �q|| �p + �q|

)
. (74)

The remaining terms are proportional to v2
F and sum to

Qk
1Q

p

1 − v2
F

[ �p·( �p + �q)Qk
1Q

p

3 + �k·(�k + �q)Qk
3Q

p

1

] + v4
F [�k· �p( �p + �q)·(�k + �q) + �k·(�k + �q) �p·( �p + �q) + �k·( �p + �q) �p·(�k + �q)]Qk

3Q
p

3

=v2
F

4

(|�k| + |�k + �q|)(| �p| + | �p + �q|)[
v2

F (|�k| + |�k + �q|)2 + q2
0

][
v2

F (| �p| + | �p + �q|)2 + q2
0

] {(|�k|2 + �k·�q − |�k||�k + �q|)(| �p|2 + �p·�q − | �p|| �p + �q|)

+ �k· �p|�q|2 − (�k·�q)( �p·�q)} 1

|�k|| �p||�k + �q|| �p + �q| . (75)

Combining these two results gives

�V (q) = −g2N

2

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k − �p|
1[

v2
F (|�k| + |�k + �q|)2 + q2

0

][
v2

F (| �p| + | �p + �q|)2 + q2
0

]
×

{
− q2

0

( �k· �p
|�k|| �p| − �p·(�k + �q)

|�k + �q|| �p| −
�k·( �p + �q)

|�k|| �p + �q| + (�k + �q)·( �p + �q)

|�k + �q|| �p + �q|

)
+ v2

F

(|�k| + |�k + �q|)(| �p| + | �p + �q|)
|�k|| �p||�k + �q|| �p + �q|

× [�k· �p|�q|2 − (�k·�q)( �p·�q) + (|�k|2 + �k·�q − |�k||�k + �q|)(| �p|2 + �p·�q − | �p|| �p + �q|)]
}
. (76)

This result agrees with Eq. (34) of Ref. [70]. Note that an apparent discrepancy by a factor of 2 is accounted for by the different
definitions of the fermion degeneracy N . To proceed further, we again make use of elliptic coordinates:

kx = |�q|
2

(cosh μ cos ν − 1), ky=|�q|
2

sinh μ sin ν,

px = |�q|
2

(cosh μ′ cos ν ′ − 1), py=|�q|
2

sinh μ′ sin ν ′, (77)

d2kd2p = |�q|4
16

(cosh2 μ− cos2 ν)(cosh2 μ′ − cos2 ν ′)dμ dν dμ′dν ′,

and set �q=(|�q|,0). The Coulomb propagator becomes

1

|�k − �p| = 2

|�q|√cosh(μ+ μ′) − cos(ν + ν ′)
√

cosh(μ− μ′) − cos(ν − ν ′)
, (78)
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the additional overall factor in the integrand becomes

1[
v2

F (|�k| + |�k + �q|)2 + q2
0

][
v2

F (| �p| + | �p + �q|)2 + q2
0

] = 1(
v2

F |�q|2 cosh2 μ+ q2
0

)(
v2

F |�q|2 cosh2 μ′ + q2
0

) , (79)

the factor proportional to q2
0 reads as

−q2
0

( �k· �p
|�k|| �p| − �p·(�k + �q)

|�k + �q|| �p| −
�k·( �p + �q)

|�k|| �p + �q| + (�k + �q)·( �p + �q)

|�k + �q|| �p + �q|

)

=−4q2
0

sin ν sin ν ′

(cosh2 μ− cos2 ν)(cosh2 μ′ − cos2 ν ′)
(cosh μ cosh μ′ sin ν sin ν ′ + cos ν cos ν ′ sinh μ sinh μ′), (80)

and the factor multiplying v2
F is

v2
F

(|�k| + |�k + �q|)(| �p| + | �p + �q|)
|�k|| �p||�k + �q|| �p + �q| [�k· �p|�q|2 − (�k·�q)( �p·�q) + (|�k|2 + �k·�q − |�k||�k + �q|)(| �p|2 + �p·�q − | �p|| �p + �q|)]

= 4v2
F |�q|2 cosh μ cosh μ′ sin ν sin ν ′

(cosh2 μ− cos2 ν)(cosh2 μ′ − cos2 ν ′)
(sin ν sin ν ′ + sinh μ sinh μ′). (81)

Combining all these results gives

�V (q) = − N |�q|α
16π3vF

∫
dμ dμ′dν dν ′

√
cosh(μ+ μ′) − cos(ν + ν ′)

√
cosh(μ− μ′) − cos(ν − ν ′)

cosh μ cosh μ′ sin ν sin ν ′

(cosh2 μ− y2)(cosh2 μ′ − y2)

×[(sin ν sin ν ′ + sinh μ sinh μ′) + y2(sin ν sin ν ′ + tanh μ tanh μ′ cos ν cos ν ′)], (82)

with y = iq0/(vF |�q|). This result differs from Eq. (37) of Ref. [70]: in that reference, the factor multiplying y2 in the numerator
contains a term cosh μ cosh μ′, whereas in the above result, this term is replaced by sin ν sin ν ′.

The integrals over ν and ν ′ in Eq. (82) can be performed exactly. To do these integrals, it helps to first define

σ ≡ ν + ν ′, τ ≡ ν − ν ′, dν dν ′=1/2 dσ dτ. (83)

Since

sin ν sin ν ′ = sin[(σ + τ )/2] sin[(σ − τ )/2]=−1/2(cos σ − cos τ ),

cos ν cos ν ′ = cos[(σ + τ )/2] cos[(σ − τ )/2] = 1/2(cos σ + cos τ ), (84)

and ∫ 2π

0
dν

∫ 2π

0
dν ′f (ν + ν ′,ν − ν ′) =

[∫ 2π

0
dσ

∫ σ

0
dτ +

∫ 4π

2π

dσ

∫ 4π − σ

0
dτ

]
f (σ,τ ) =

∫ 2π

0
dσ

∫ 2π

0
dτf (σ,τ ), (85)

if f (±σ + 2π, ± τ + 2π ) = f (σ,τ ), the integrals over ν and ν ′ amount to computing the following three integrals:

I1 =
∫ 2π

0
dν

∫ 2π

0
dν ′ sin ν sin ν ′

√
cosh(μ+ μ′) − cos(ν + ν ′)

1√
cosh(μ− μ′) − cos(ν − ν ′)

= −1

2
√

w+w−
∫ 2π

0
dσ

∫ 2π

0
dτ

cos σ − cos τ√
1 − w+ cos σ

√
1 − w− cos τ

, (86)

I2 =
∫ 2π

0
dν

∫ 2π

0
dν ′ sin2 ν sin2 ν ′

√
cosh(μ+ μ′) − cos(ν + ν ′)

1√
cosh(μ− μ′) − cos(ν − ν ′)

= 1

4
√

w+w−
∫ 2π

0
dσ

∫ 2π

0
dτ

(cos σ − cos τ )2

√
1 − w+ cos σ

√
1 − w− cos τ

, (87)

I3 =
∫ 2π

0
dν

∫ 2π

0
dν ′ sin ν sin ν ′ cos ν cos ν ′

√
cosh(μ+ μ′) − cos(ν + ν ′)

1√
cosh(μ− μ′) − cos(ν − ν ′)

=−1

4
√

w+w−
∫ 2π

0
dσ

∫ 2π

0
dτ

cos2 σ − cos2 τ√
1 − w+ cos σ

√
1 − w− cos τ

, (88)
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with w± ≡ sech(μ ± μ′). These integrals can be performed with the help of the following results:

J0(w) =
∫ 2π

0
du

1√
1 − w cos u

= 4√
1 + w

K

(
2w

1 + w

)
, (89)

J1(w) =
∫ 2π

0
du

cos u√
1 − w cos u

= − 4
√

1 + w

w
E

(
2w

1 + w

)
+ 4

w
√

1 + w
K

(
2w

1 + w

)
, (90)

J2(w) =
∫ 2π

0
du

cos2 u√
1 − w cos u

= −8
√

1 + w

3w2
E

(
2w

1 + w

)
+ 4(2 + w2)

3w2
√

1 + w
K

(
2w

1 + w

)
, (91)

where K and E are complete elliptic integrals of the first and second kind:

K(z)=
∫ π/2

0

dθ√
1 − z sin2 θ

, E(z)=
∫ π/2

0
dθ

√
1 − z sin2 θ. (92)

In terms of the Ji , the Ii are

I1 = − 1
2

√
w+w− [J1(w+)J0(w−) −J0(w+)J1(w−)] ,

I2 = 1
4

√
w+w−[J2(w+)J0(w−) − 2J1(w+)J1(w−) + J0(w+)J2(w−)], (93)

I3 = − 1
4

√
w+w−[J2(w+)J0(w−) −J0(w+)J2(w−)].

In terms of the Ii , the vertex correction reads as

�V (q) = − N |�q|α
16π3vF

∫
dμ dμ′ cosh μ cosh μ′

(cosh2 μ− y2)(cosh2 μ′ − y2)
[I1 sinh μ sinh μ′ + (1 + y2)I2 + y2I3 tanh μ tanh μ′]. (94)

We can make the following coordinate transformation:

a ≡ μ+ μ′, b ≡ μ− μ′, w+ = sech(a), w− = sech(b). (95)

The symmetries μ ↔ μ′ and μ′ ↔ − μ′ of the integrand translate to b ↔ − b and a ↔ b, allowing us to express the integration
limits as ∫ ∞

0
dμ

∫ ∞

0
dμ′f (μ,μ′) = 1

2

∫ ∞

0
da

∫ a

− a

db f ′(a,b) =
∫ ∞

0
da

∫ a

0
db f ′(a,b) = 1

2

∫ ∞

0
da

∫ ∞

0
db f ′(a,b). (96)

We then have

�V (q) = −N |�q|α
8vF

Ib(y), (97)

with

Ib(y) ≡ 1

2π3

∫ 1

0

∫ 1

0
dw+dw−

w+ + w−√
1 − w2+

√
1 − w2−

1

4w2+w2−y4 − 4w+w−(1 + w+w−)y2 + (w+ + w−)2

×
[
w− − w+
2w+w−

I1(w+,w−) + (1 + y2)I2(w+,w−) + y2 w− − w+
w+ + w−

I3(w+,w−)

]
. (98)

We have checked numerically that this double integral appears
to agree with the plot shown in Fig. 2(a) of Ref. [70]
despite the differences occurring at intermediate steps of
the respective calculations and the different forms of the
final expressions. We therefore conclude that our final result
for the dielectric function coincides with that obtained in
Ref. [70], where it is shown that the second-order corrections
lead to an improvement in comparing the theoretical results
to experimentally measured values. In the next section, we
will see that this improvement does not persist in the case
of the Fermi velocity, at least for graphene suspended in
vacuum.

G. Two-loop corrections to electron self-energy
and a strong-coupling quantum critical point

We now move on to our calculation of the second-order
corrections to the electron self-energy. Our results differ from
previous results reported in Refs. [71,72]. In the course of the
calculations, we indicate the specific points at which these
differences arise. Our results for the electron self-energy are
used to compute the renormalized Fermi velocity and the
running of the effective coupling to second order, where
we find a critical point αc in the RG flow, signifying either
a breakdown of perturbation theory or a quantum phase
transition.
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FIG. 6. Two-loop self-energy correction to the electron self-
energy.

1. Two-loop rainbow correction to self-energy

The first potential two-loop correction to the electron self-
energy is shown in Fig. 6. This diagram evaluates to


2b(q) = −
∫

d3k

(2π )3
D0(q − k)γ 0G0(k)
1(k)G0(k)γ 0

= ig4

32π

∫
d3k

(2π )3

1

|�q − �k| ln(�/|�k|)γ 0 /k

k2
�k · �γ /k

k2
γ 0.

(99)

Straightforward algebra reveals that the integral over k0

vanishes identically:∫
dk0

2π

1

k4
γ 0(k0γ

0 + vF
�k · �γ )�k · �γ (k0γ

0 + vF
�k · �γ )γ 0

= �k · �γ
∫

dk0

2π

k2
0 − v2

F |�k|2(
k2

0 + v2
F |�k|2)2 = 0. (100)

Therefore, the full contribution vanishes identically:


2b(q) = 0. (101)

2. Two-loop vertex correction to self-energy

Reduction to a quadruple integral. The second two-loop
correction to the electron self-energy is shown in Fig. 7. This
diagram has the value


2a(q) =
∫

d3k

(2π )3

∫
d3p

(2π )3
D0(q − k)D0(q − p)

× γ 0G0(k)γ 0G0(k + p − q)γ 0G0(p)γ 0

= − ig4

4

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q − �k|
1

|�q − �p|

× γ 0 /k

k2
γ 0 /k + /p − /q

(k + p − q)2
γ 0 /p

p2
γ 0. (102)

The product of gamma matrices in the integrand can be
expanded as

γ 0γ μγ 0γ νγ 0γ ργ 0

= δμ0δν0δρ0γ 0 − δμ0δν0(1 − δρ0)γ ρ

− δμ0(1 − δν0)δρ0γ ν − δμ0(1 − δν0)(1 − δρ0)γ νγ ργ 0

− (1 − δμ0)δν0δρ0γ μ − (1 − δμ0)δν0(1 − δρ0)γ μγ ργ 0

− (1 − δμ0)(1 − δν0)δρ0γ μγ νγ 0

+ (1 − δμ0)(1 − δν0)(1 − δρ0)γ μγ νγ ρ, (103)

FIG. 7. Two-loop vertex correction to the electron self-energy.

which leads to


2a(q)

= −ig4

4

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q − �k|
1

|�q − �p|
1

k2p2(k + p − q)2

× {
k0p0(k0 + p0 − q0)γ 0 − vF k0(k0 + p0 − q0) �p· �γ

− vF k0p0(�k + �p − �q)· �γ − v2
F k0γ

0(�k + �p − �q)· �γ �p· �γ
− vF p0(k0 + p0 − q0)�k· �γ − v2

F (k0 + p0 − q0)γ 0�k· �γ �p· �γ
− v2

F p0γ
0�k· �γ (�k + �p − �q)· �γ + v3

F
�k· �γ (�k + �p − �q)· �γ �p· �γ }

.

(104)

As usual, we first perform the integrals over the energies k0

and p0:

B1 ≡
∫

dk0

2π

∫
dp0

2π

k0p0(k0 + p0 − q0)

M(k,p)

= 1

4

q0

q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
, (105)

B2 ≡
∫

dk0

2π

∫
dp0

2π

k0(k0 + p0 − q0)

M(k,p)

= 1

4

|�k| + | �p| + |�k + �p − �q|
| �p|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

] , (106)

B3 ≡
∫

dk0

2π

∫
dp0

2π

k0p0

M(k,p)

= − 1

4

|�k| + | �p| + |�k + �p − �q|
|�k + �p − �q|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

] ,

(107)

B4 ≡
∫

dk0

2π

∫
dp0

2π

k0

M(k,p)

= 1

4v2
F

q0

| �p||�k + �p − �q|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
] ,

(108)

B5 ≡
∫

dk0

2π

∫
dp0

2π

p0(k0 + p0 − q0)

M(k,p)

= 1

4

|�k| + | �p| + |�k + �p − �q|
|�k|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

] , (109)

B6 ≡
∫

dk0

2π

∫
dp0

2π

k0 + p0 − q0

M(k,p)

= − 1

4v2
F

q0

|�k|| �p|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
] ,

(110)

B7 ≡
∫

dk0

2π

∫
dp0

2π

p0

M(k,p)

= 1

4v2
F

q0

|�k||�k + �p − �q|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
] ,

(111)
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B8 ≡
∫

dk0

2π

∫
dp0

2π

1

M(k,p)
= 1

4v2
F

|�k| + | �p| + |�k + �p − �q|
|�k|| �p||�k + �p − �q|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

] , (112)

with

M(k,p) ≡ (
k2

0 + v2
F |�k|2)(p2

0 + v2
F | �p|2)[(k0 + p0 − q0)2 + v2

F |�k + �p − �q|2]. (113)

We then have


2a(q) = − ig4

4

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
{
B1γ

0 − B2vF �p· �γ − B3vF (�k + �p − �q)· �γ −B4v
2
F γ 0(�k + �p − �q)· �γ �p· �γ

− B5vF
�k· �γ − B6v

2
F γ 0�k· �γ �p· �γ − B7v

2
F γ 0�k· �γ (�k + �p − �q)· �γ + B8v

3
F
�k· �γ (�k + �p − �q)· �γ �p· �γ }

. (114)

The γ 0 component of this is

1

4
Tr[γ 0
2a(q)] = − ig4

16

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
{
4B1 − 4B4v

2
F �p·(�k + �p − �q) − 4B6v

2
F
�k· �p − 4B7v

2
F
�k·(�k + �p − �q)

}
= − ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
1

q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2

×
{

1 − �p
| �p| ·

�k + �p − �q
|�k + �p − �q| +

�k
|�k| ·

�p
| �p| −

�k
|�k| ·

�k + �p − �q
|�k + �p − �q|

}
, (115)

while the spatial components are

1

4
Tr[γ i
2a(q)] = − ig4

16

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
{−4B2vF pi − 4B3vF (ki + pi − qi) − 4B5vF ki

+ 4B8v
3
F [ki �p·(�k + �p − �q) − ki + pi − qi)�k· �p +pi

�k·(�k + �p − �q)]
}

= − ig4vF

16

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
|�k| + | �p| + |�k + �p − �q|

q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2

×
{
− ki

|�k| − pi

| �p| + ki + pi − qi

|�k + �p − �q| + ki(| �p|2 − �p·�q) + pi(|�k|2 − �k·�q) + qi
�k· �p

|�k|| �p||�k + �p − �q|

}
. (116)

If we choose the coordinates such that �q = (|�q|,0), then it becomes apparent that the terms of the integrand which are proportional
to ky or py are odd functions of these variables, implying that these terms vanish upon integration. We may then make the
replacement ki → qi

�k·�q/|�q|2, and similarly for pi . The total integral is therefore proportional to qi :

1

4
Tr[γ i
2a(q)] = − ig4qivF

16|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
|�k| + | �p| + |�k + �p − �q|

q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2

×
{

−
�k·�q
|�k| − �p·�q

| �p| + (�k + �p − �q)·�q
|�k + �p − �q| + | �p|2�k·�q + |�k|2 �p·�q + |�q|2�k· �p − 2(�k·�q)( �p·�q)

|�k|| �p||�k + �p − �q|

}
. (117)

Extracting the divergence in the temporal part. To extract the divergent logarithm term in the temporal part of the two-loop
self-energy [Eq. (115)], we must examine the behavior of the quadruple integral in the region |�k|,| �p| � |�q|. In this regime, the
integral reduces to

1

4
Tr[γ 0
2a(q)] = − ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�k|
1

| �p|
1

q2
0 + v2

F (|�k| + | �p| + |�k + �p|)2

{
1 − �p·(�k + �p)

| �p||�k + �p| −
�k·(�k + �p)

|�k||�k + �p| +
�k· �p

|�k|| �p|

}
,

(118)

where we have discarded terms which become odd under the change of variable �k → − �k, �p → − �p in the limit of large |�k|,| �p|.
It helps to consider each of the four terms above separately:

�1 = − ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

S(k,p)

|�k|| �p| , �2 = ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

�p·(�k + �p)S(k,p)

|�k|| �p|2|�k + �p| ,

(119)

�3 = ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

�k·(�k + �p)S(k,p)

|�k|2| �p||�k + �p| , �4 = − ig4q0

16

∫
d2k

(2π )2

∫
d2p

(2π )2

�k· �pS(k,p)

|�k|2| �p|2 ,
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with

S(k,p) ≡ 1

q2
0 + v2

F (|�k| + | �p| + |�k + �p|)2
. (120)

It is clear that �2 = �3, so we need to only compute one
of these integrals. In each of �1,�3,�4, we first perform
the integration over �p. This is facilitated by choosing the
coordinate system such that �k = (|�k|,0) and then switching
to elliptic coordinates:

px=|�k|
2

(cosh μ cos ν − 1), py=|�k|
2

sinh μ sin ν, (121)

for which

| �p| = |�k|
2

(cosh μ− cos ν), |�k + �p| = |�k|
2

(cosh μ+ cos ν),

|�k| + | �p| + |�k + �p| = |�k|(cosh μ+ 1), (122)

d2p = |�k|2
4

(cosh2 μ− cos2 ν)dμ dν = | �p||�k + �p|dμ dν.

We then have

�1 = − ig4q0

128π2

∫
d2k

(2π )2

∫ ∞

0
dμ

∫ 2π

0
dν

× cos ν + cosh μ

q2
0 + v2

F |�k|2(1 + cosh μ)2
,

�3 = ig4q0

128π2

∫
d2k

(2π )2

∫ ∞

0
dμ

∫ 2π

0
dν (123)

× 1 + cos ν cosh μ

q2
0 + v2

F |�k|2(1 + cosh μ)2
,

�4 = − ig4q0

128π2

∫
d2k

(2π )2

∫ ∞

0
dμ

∫ 2π

0
dν

× cos ν + cosh μ

q2
0 + v2

F |�k|2(1 + cosh μ)2

cosh μ cos ν − 1

cosh μ− cos ν
.

Next, we restore �k to being a general vector �k = (|�k|,0) →
(kx,ky), and switch to polar coordinates |�k| and θk . The
integrations over θk are trivial, while the integrations over ν

can be performed exactly, with the result

�1 = − ig4q0

128π2

∫ ∞

0
dμ

∫ �

0
d|�k| |�k| cosh μ

q2
0 + v2

F |�k|2(1 + cosh μ)2
,

�3 = ig4q0

128π2

∫ ∞

0
dμ

∫ �

0
d|�k| |�k|

q2
0 + v2

F |�k|2(1 + cosh μ)2
,

�4 = ig4q0

128π2

∫ ∞

0
dμ

∫ �

0
d|�k| |�k|e−2μ

q2
0 + v2

F |�k|2(1 + cosh μ)2
.

(124)

The integration over |�k| is the same in each case and evaluates
to ∫ �

0
d|�k| |�k|

q2
0 + v2

F |�k|2(1 + cosh μ)2

=
ln

[
1 + v2

F �2

q2
0

(1 + cosh μ)2
]

2v2
F (1 + cosh μ)2

. (125)

Plugging this result into the above expressions for �1,�3,�4,
assuming vF � � |q0|, and keeping only the term proportional
to ln(vF �/|q0|) yields

�1 = − ig4q0

128π2v2
F

(∫ ∞

0
dμ

cosh μ

(1 + cosh μ)2

)
ln(vF �/|q0|)

= − ig4q0

192π2v2
F

ln(vF �/|q0|),

�3 = ig4q0

128π2v2
F

(∫ ∞

0
dμ

1

(1 + cosh μ)2

)
ln(vF �/|q0|)

= ig4q0

384π2v2
F

ln(vF �/|q0|),

�4 = ig4q0

128π2v2
F

(∫ ∞

0
dμ

e−2μ

(1 + cosh μ)2

)
ln(vF �/|q0|)

= ig4q0

32π2v2
F

(ln 2 − 2/3) ln(vF �/|q0|). (126)

We see that �1 + 2�3 = 0, so that the divergence of
Tr[γ 0
2a(q)] comes solely from �4. We may rewrite �4 in
the following way:

�4 = ig4q0

32π2v2
F

(ln 2 − 2/3) ln(vF �/|q0|)

→ ig4q0

32π2v2
F

(ln 2 − 2/3) ln(�/|�q|). (127)

Here, we have restored the renormalization scale |�q| in the
argument of the log divergence with the expectation that
this dependence on |�q| arises from the integration region we
have neglected, namely, the |�k| � |�q| region. In particular,
it must be the case that this region produces a term of the
form ln[|q0|/(vF |�q|)] as follows from two simple observations
regarding the integral in Eq. (115). The first observation is that
this integral can be rewritten as a dimensionless function of two
dimensionless parameters vF �/|q0| and vF |�q|/|q0|. The above
calculation shows that the large-|�k| portion of the integral
depends only on the former parameter, while the small-|�k|
portion depends only on the latter. The second observation is
that Eq. (115) is finite in the static limit q0 → 0, implying that
the apparent divergence of ln(vF �/|q0|) in this limit must be
canceled by a similar term coming from the small-|�k| region.
The only possible term that would cancel this divergence
is ln[|q0|/(vF |�q|)], leaving behind ln(�/|�q|). We therefore
arrive at the following expression for the divergent term in
the temporal part of 
2a(q):

1

4
Tr[γ 0
2a(q)] = ig4q0

32π2v2
F

(ln 2 − 2/3) ln(�/|�q|)

= i
3 ln 2 − 2

6
α2q0 ln(�/|�q|). (128)

Extracting the divergence in the spatial part. To extract the
divergent logarithm term in the spatial part of the two-loop
self-energy [Eq. (117)], we must examine the behavior of the
quadruple integral in the region |�k|,| �p| � |�q|. It helps to first
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redefine �k → �k + �q:

1

4
Tr[γ i
2a(q)] = − ig4qivF

16|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�k|
1

|�q − �p|
|�k + �q| + | �p| + |�k + �p|

q2
0 + v2

F (|�k + �q| + | �p| + |�k + �p|)2

{
− (�k + �q)·�q

|�k + �q|

− �p·�q
| �p| + (�k + �p)·�q

|�k + �p| + | �p|2(�k + �q)·�q + |�k + �q|2 �p·�q + |�q|2�k· �p − 2(�k·�q)( �p·�q) − |�q|2 �p·�q
|�k + �q|| �p||�k + �p|

}
. (129)

We then make the following expansions in the large momentum limit:

|�k + �q| ≈ |�k| +
�k·�q
|�k| ,

1

|�k + �q| ≈ 1

|�k| −
�k·�q
|�k|3 ,

1

| �p − �q| ≈ 1

| �p| + �p·�q
| �p|3 ,

|�k + �q| + | �p| + |�k + �p|
q2

0 + v2
F (|�k + �q| + | �p| + |�k + �p|)2

≈ 1

q2
0 + v2

F (|�k| + | �p| + |�k + �p|)2

[
|�k| + | �p| + |�k + �p| + q2

0 − v2
F (|�k| + | �p| + |�k + �p|)2

q2
0 + v2

F (|�k| + | �p| + |�k + �p|)2

�k·�q
|�k|

]

≡ Q(�k, �p) + R(�k, �p)
�k·�q
|�k| . (130)

We then have

1

4
Tr[γ i
2a(q)] = − ig4qivF

16|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�k|| �p|

(
1 + �p·�q

| �p|2
) [

Q(�k, �p) + R(�k, �p)
�k·�q
|�k|

]

×
{

− �p·�q
| �p| + (�k + �p)·�q

|�k + �p| − (�k + �q)·�q
|�k|

(
1 −

�k·�q
|�k|2

)
+ | �p|(�k + �q)·�q

|�k||�k + �p|

(
1 −

�k·�q
|�k|2

)
+ |�k| �p·�q

| �p||�k + �p|

(
1 +

�k·�q
|�k|2

)

+ |�q|2�k· �p
|�k|| �p||�k + �p|

(
1 −

�k·�q
|�k|2

)
− 2

(�k·�q)( �p·�q)

|�k|| �p||�k + �p|

(
1 −

�k·�q
|�k|2

)
− |�q|2 �p·�q

|�k|| �p||�k + �p|

(
1 −

�k·�q
|�k|2

)}
. (131)

The terms that scale as the inverse fourth power in the momenta
�k, �p give rise to a logarithmic divergence. These are the terms
we are interested in. There are also terms in Eq. (131) which
scale as the inverse third power and so would seem to produce
a linear divergence. However, these terms vanish identically
as can be seen by performing a coordinate transformation
�k → − �k, �p → − �p. We isolate each of the terms which
contribute to the logarithmic divergence in the following series
of integrals:

�1 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|

(
(�k·�q)2

|�k|3 − |�q|2
|�k|

)
, (132)

�2 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
| �p|

|�k + �p|

(
(�k·�q)2

|�k|3 − |�q|2
|�k|

)
,

(133)

�3 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p| , (134)

�4 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
|�q|2(�k· �p)

|�k|| �p||�k + �p| , (135)

�5 = −2
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p| = −2�3,

(136)

�6 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

|�k|| �p|2 , (137)

�7 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
( �p·�q)2

| �p|3 , (138)

�8 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
( �p·�q)(�k + �p)·�q

| �p|2|�k + �p| , (139)

�9 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p| = �3, (140)

�10 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|| �p|
|�k|( �p·�q)2

| �p|3|�k + �p| , (141)

�11 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|| �p|
(�k·�q)2

|�k|2 , (142)

�12 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

|�k|| �p| , (143)

�13 =
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|| �p|
(�k·�q)(�k + �p)·�q

|�k||�k + �p| , (144)

�14 =
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|| �p|
| �p|(�k·�q)2

|�k|2|�k + �p| , (145)

�15 =
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|| �p|
(�k·�q)( �p·�q)

| �p||�k + �p| . (146)

In each of these integrals, we first choose the coordinate
system such that �k = (|�k|,0) and then replace �p by elliptic
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coordinates:

px = |�k|
2

(cosh μ cos ν − 1), py = |�k|
2

sinh μ sin ν, (147)

for which

| �p| = |�k|
2

(cosh μ− cos ν), |�k + �p| = |�k|
2

(cosh μ+ cos ν),

|�k| + | �p| + |�k + �p| = |�k|(cosh μ+ 1), (148)

d2p = |�k|2
4

(cosh2 μ− cos2 ν)dμ dν = |�k||�k + �p|dμ dν.

Under this coordinate transformation, we also have

Q(�k, �p) → |�k|(cosh μ+ 1)

q2
0 + v2

F |�k|2(cosh μ+ 1)2
≡ Q̃(μ,|�k|),

R(�k, �p) → q2
0 − v2

F |�k|2(cosh μ+ 1)2[
q2

0 + v2
F |�k|2(cosh μ+ 1)2

]2 ≡ R̃(μ,|�k|). (149)

After making this coordinate transformation, we first perform
the integrations over ν, which can all be done exactly. We then
restore �k to a general vector by making the replacements

qx →
�k·�q
|�k| , qy →

√
|�q|2 − (�k·�q)2

|�k|2 . (150)

The integration over �k is then expressed in terms of polar
coordinates |�k| and θ , where θ is defined by �k·�q = |�k||�q| cos θ .
All the θ integrations are easily done, and we arrive at the
following expressions for the integrals:

�1 = − |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|) cosh μ, (151)

�2 = −�1, (152)

�3 = −|�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|)e−μ, (153)

�4 = 2�3, (154)

�5 = −2�3, (155)

�6 = �3, (156)

�7 = −|�q|2
4π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|)[coth μ− 1/2], (157)

�8 = |�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|), (158)

�9 = �3, (159)

�10 = |�q|2
4π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|)cschμ, (160)

�11 = − |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k|R̃(μ,|�k|)|�k| cosh μ, (161)

�12 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k|R̃(μ,|�k|)|�k|e−2μ, (162)

�13 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k|R̃(μ,|�k|)|�k|, (163)

�14 = −�11, (164)

�15 = −|�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k|R̃(μ,|�k|)|�k|e−μ. (165)

We separately combine the contributions containing Q̃ and
those containing R̃ to obtain the following formula for the
spatial part of the two-loop self-energy:

1

4
Tr[γ i
2a(q)] = −ig4qivF

128π2

{∫ ∞

0
dμ[2 − 3e−μ − 2 coth μ+ 2cschμ]

∫ �

0
d|�k|Q̃(μ,|�k|)

+ 2
∫ ∞

0
dμ e−μ sinh2(μ/2)

∫ �

0
d|�k||�k|R̃(μ,|�k|)

}
. (166)

The integrations over |�k| can be performed exactly:∫ �

0
d|�k|Q̃(μ,|�k|) =

ln
[
1 + v2

F �2

q2
0

(cosh μ+ 1)2
]

2v2
F (cosh μ+ 1)

, (167)

∫ �

0
d|�k||�k|R̃(μ,|�k|) =

2v2
F �2(cosh μ+ 1)2 − {

q2
0 + v2

F �2(cosh μ+ 1)2
}

ln
[
1 + v2

F �2

q2
0

(cosh μ+ 1)2
]

2v2
F

[
q2

0 + v2
F �2(cosh μ+ 1)2

]
(cosh μ+ 1)2

. (168)

We assume vF �/|q0| � 1 for simplicity. We may then neglect the 1 in the argument of the logarithm and keep track of only
the term proportional to ln(vF �/|q0|):∫ �

0
d|�k|Q̃(μ,|�k|)→ ln(vF �/|q0|)

v2
F (cosh μ+ 1)

→ ln(�/|�q|)
v2

F (cosh μ+ 1)
, (169)
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∫ �

0
d|�k||�k|R̃(μ,|�k|) → − ln(vF �/|q0|)

v2
F (cosh μ+ 1)2

→ − ln(�/|�q|)
v2

F (cosh μ+ 1)2
. (170)

In the final step, we restore the renormalization scale |�q| in the
argument of the log divergence following the same reasoning
as in the case of the temporal part of 
2a(q) discussed above.

The remaining integrals over μ evaluate to∫ ∞

0
dμ

2 − 3e−μ − 2 coth μ+ 2 cschμ

cosh μ+ 1
= 4 − 6 ln 2,

−
∫ ∞

0
dμ

e−μ sinh2(μ/2)

(cosh μ+ 1)2
= 4/3 − 2 ln 2.

(171)

The result for the divergent term in the spatial part of the
two-loop self-energy is then

1
4 Tr[γ i
2a(q)] = i(ln 2 − 2/3)α2vF qi ln(�/|�q|). (172)

The full value of the diagram in Fig. 7 is finally


2a(q) = i(ln 2 − 2/3)α2 [
1
2q0γ

0 + vF �q· �γ ]
ln(�/|�q|).

(173)

This result disagrees with both Refs. [71,72]. It disagrees with
Ref. [71] because that reference did not include the correction
coming from the temporal part, although the expression for
the spatial part obtained in that reference does agree with the
present result. On the other hand, Ref. [72] obtained a different
result for the spatial part, although the result for the temporal
part found in that reference does agree with the present result.

3. Two-loop bubble correction to self-energy

The two-loop bubble correction to the self-energy is shown
in Fig. 8. This diagram evaluates to


2c(q) = −
∫

d3k

(2π )3
γ 0G0(q − k)γ 0�B(k)[D0(k)]2, (174)

where �B(q) is the result for the one-loop bubble diagram
given in Eq. (32). We therefore have


2c(q) = iNg4

32

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
√

k2
γ 0. (175)

Extracting the divergence in the temporal part. The temporal
part of 
2c(q) is

1

4
Tr[γ 0
2c(q)] = iNg4

128

∫
d3k

(2π )3

qμ − kμ

(q − k)2
√

k2
Tr[γ μγ 0]

= iNg4

32

∫
d3k

(2π )3

q0 − k0

(q − k)2
√

k2
. (176)

FIG. 8. Two-loop bubble correction to the electron self-energy.

To evaluate the integral over k, it helps to remove the square
root in the denominator using the identity

1√
k2

= 2

π

∫ ∞

0

dz

z2 + k2
. (177)

We then have

1

4
Tr[γ 0
2c(q)] = iNg4

16π

∫ ∞

0
dz

∫
d3k

(2π )3

q0 − k0

(q − k)2(z2 + k2)
.

(178)

Next, we introduce a Feynman parameter via the identity

1

AB
=

∫ 1

0

dw

[wA+ (1 − w)B]2
, (179)

yielding

1

4
Tr[γ 0
2c(q)] = iNg4

16π

∫ ∞

0
dz

∫ 1

0
dw

∫
d3k

(2π )3

× q0 − k0

[w(q − k)2 + (1 − w)(z2 + k2)]2
. (180)

We can simplify the denominator by changing variables to
k̃ = k − wq to obtain

1

4
Tr[γ 0
2c(q)] = iNg4

16π

∫ ∞

0
dz

∫ 1

0
dw

∫
d3k̃

(2π )3

× (1 − w)q0 − k̃0

[k̃2 + w(1 − w)q2 + (1 − w)z2]2

= iNg4q0

16π

∫ ∞

0
dz

∫ 1

0
dw

∫
d3k̃

(2π )3

× 1 − w

[k̃2 + (1 − w)(wq2 + z2)]2
. (181)

In the last step, we discarded the k̃0 in the numerator because
that term is odd under a change of sign of k̃ and so vanishes
identically. The integral over k̃ is now easily done using
spherical coordinates, with the result

1

4
Tr[γ 0
2c(q)]

= iNg4q0

128π2v2
F

∫ ∞

0
dz

∫ 1

0
dw

√
1 − w√

wq2 + z2

= iNg4q0

128π2v2
F

∫ ∞

0
dz

1

q3
[−qz + (q2 + z2) tan−1(q/z)].

(182)

Note that here q =
√

q2
0 + v2

F |�q|2. The integral over z is of
course ultraviolet divergent, and the upper integration limit
must be replaced by a finite cutoff. Since z has units of energy,
the natural choice for this cutoff is q�/|�q|. The integral can
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be done exactly:∫ q�/|�q|

0
dz

1

q3
[−qz + (q2 + z2) tan−1(q/z)]

= �

6|�q|3 [π�2 − 2�|�q| + 3π |�q|2

− 2(3|�q|2 +�2) tan−1(�/|�q|)] + 1

3
ln(1 + �2/|�q|2)

= 2

3
ln(�/|�q|) + 8

9
+ O(|�q|2/�2). (183)

We therefore obtain

1

4
Tr[γ 0
2c(q)] = iNg4q0

128π2v2
F

[
2

3
ln(�/|�q|) + 8

9

]
= iα2q0

6
[ln(�/|�q|) + 4/3]. (184)

Extracting the divergence in the spatial part. The spatial
part of 
2c(q) is

1

4
Tr[γ i
2c(q)] = iNg4

128

∫
d3k

(2π )3

qμ − kμ

(q − k)2
√

k2
Tr[γ iγ 0γ μγ 0]

= − iNg4

128

∫
d3k

(2π )3

qμ − kμ

(q − k)2
√

k2
Tr[γ iγ μ]

= − iNg4

32

∫
d3k

(2π )3

qi − ki

(q − k)2
√

k2
. (185)

The final expression is almost identical to Eq. (176), and the
same integration steps can be followed, with the result

1

4
Tr[γ i
2c(q)] = − iα2vF qi

6
[ln(�/|�q|) + 4/3]. (186)

Therefore, we have


2c(q) = iα2

6
[q0γ

0 − vF �q· �γ ][ln(�/|�q|) + 4/3]. (187)

The spatial part agrees with that found in Ref. [71]. However,
that work does not appear to include the temporal part. Both the
spatial and temporal parts agree with those found in Ref. [72].
Combining Eqs. (101), (173), and (187), the full two-loop
self-energy is then


2(q) = 
2a(q) + 
2b(q) + 
2c(q)

= iα2

[(
1

2
ln 2 − 1

6

)
q0γ

0 +
(

ln 2 − 5

6

)
vF �q· �γ

]
× ln(�/|�q|). (188)

In this result, we have neglected all finite contributions to the
electron self-energy as they do not affect the renormalization
of the Fermi velocity, which is calculated in the next section. A
proper justification for neglecting the finite terms is somewhat
subtle and will be postponed until Sec. III I 5 since we must
first derive some general properties of the divergence structure
of the graphene field theory.

4. Renormalization of the Fermi velocity to order α2

We now use the result we have just obtained for the second-
order electron self-energy to compute the corresponding

correction to the renormalization of the Fermi velocity and
the running of the effective coupling. For brevity of notation,
let us define the following quantities:

ξ1 ≡ − i

4vF |�q|2 Tr[�q· �γ
1(q)],

ξ2t ≡ − i

4q0
Tr[γ 0
2(q)], (189)

ξ2x ≡ − i

4vF |�q|2 Tr[�q· �γ
2(q)].

The two-point function may then be expressed as

〈ψ(p)ψ̄(0)〉 = i{[1 + ξ2t ]γ
0p0 + [1 + ξ1 + ξ2x]vF �γ · �p}−1

= i[1 + ξ2t ]
−1{γ 0p0 + [1 + ξ1 + ξ2x

− ξ2t + O(α3)]vF �γ · �p}−1. (190)

This then implies that the second-order correction to the
renormalization of the Fermi velocity reads as

vq = vF [1 + ξ1 + ξ2x − ξ2t ] . (191)

Using Eq. (188), we have the following explicit forms of the
parameters:

ξ1 = α

4
ln(�/|�q|),

ξ2t = 3 ln 2 − 1

6
α2 ln(�/|�q|), (192)

ξ2x = (ln 2 − 5/6)α2 ln(�/|�q|).
Combining these expressions, we obtain

vq = vF

{
1 +

[
α

4
+

(
1

2
ln 2 − 2

3

)
α2

]
ln(�/|�q|)

}
. (193)

This disagrees with the result quoted in Ref. [71] because the
contribution from the temporal part of the two-loop self-energy
was not included in that reference. We therefore conclude that
the velocity renormalization formula obtained in Ref. [71]
[Eq. (12) of that reference] is incorrect. Equation (193) also
disagrees slightly with the result obtained in Ref. [72] due
to the discrepancy between the respective results for the self-
energy correction 
2a , as discussed above.

We would like to convert the above expression for vq

into a proper RG flow; this would allow us to compare the
renormalized velocity at two different, arbitrary momentum
scales. We begin by writing the renormalized coupling:

αq = α

1 + (f1α + f2α2) ln(�/|�q|) , (194)

with

f1 = 1

4
, f2 = 3 ln 2 − 4

6
. (195)

This expression can be inverted to obtain a systematic
expansion of the bare coupling α in terms of the renormalized
coupling:

α = αq + f1α
2
q ln(�/|�q|) + [

f2 ln(�/|�q|)

+ f 2
1 ln2(�/|�q|)]α3

q + O
(
α4

q

)
. (196)
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Writing a similar expansion, but with q replaced by a different
momentum k, and equating the two expansions allows us to
obtain an expansion for αk in terms of αq :

αk − αq = f1α
2
q ln(|�k|/|�q|) + [f2 ln(|�k|/|�q|)

+ f 2
1 (ln2(�/|�q|) − ln2(�/|�k|)

− 2 ln(|�k|/|�q|) ln(�/|�k|))]α3
q + O

(
α4

q

)
. (197)

Dividing both sides by |�k| − |�q| and taking the limit |�k| → |�q|,
we find

|�q| dαq

d|�q| = α2
q(f1 + f2αq). (198)

Thus, we may define a beta function for the effective coupling:

β(αq) = α2
q(f1 + f2αq). (199)

Integrating the RG flow equation, we obtain

ln(|�q|/|�k|) = αq − αk

f1αqαk

+ f2

f 2
1

ln

(
αk(f1 + f2αq)

αq(f1 + f2αk)

)
. (200)

Given the effective coupling αk at moment scale |�k|, this
equation allows us to predict the coupling at a different scale
|�q|. We may convert this to a similar relation for the Fermi
velocities:

ln(|�q|/|�k|) = − 4π

f1g2
(vq − vk) + f2

f 2
1

ln

(
g2f2 + 4πf1vq

g2f2 + 4πf1vk

)
.

(201)

When the two scales are close to each other, |�k| ≈ |�q|, this
relation can be approximately expressed as

vq ≈ vk

[
1 + (

f1αk + f2α
2
k

)
ln(|�k|/|�q|)]. (202)

It is interesting to note that when sign(f1f2) = −1, there is
an interacting fixed point of the RG flow:

αc = −f1/f2. (203)

This is indeed the case for the values of f1 and f2 we obtained
earlier:

αc = 3

8 − 6 ln 2
≈ 0.78. (204)

The existence of this critical point is one of the main results
of this work. This result means that if the flow begins at
high energy/momentum at a value of α such that α < αc,
then the theory becomes weakly interacting in the infrared,
as is the case when only the leading-order term in the beta
function is retained. On the other hand, if α > αc initially,
then the theory flows to a strongly interacting fixed point in the
infrared, indicating that either a phase transition has occurred,
or that perturbation theory is failing at these larger values of
the coupling.

It is important to note that the value of αc we have obtained,
0.78, lies in the middle of the spectrum of values of α

relevant for experiments, where graphene on a BN substrate
corresponds to α ≈ 0.4, while for graphene in vacuum, α ≈
2.2. This implies that if the critical point is physical, then a
quantum phase transition should occur in suspended graphene.
Since no such phase transition has been seen in experiments,

this suggests that the critical point we have found is more
likely unphysical and indicative of a breakdown of perturbation
theory. Further evidence for such a breakdown will be given
in the next section, where we perform a semiclassical analysis
to estimate the order at which the perturbative series ceases to
be asymptotic. A more complete discussion of comparisons to
experiment will be given in Sec. IV.

H. Estimating the breakdown of perturbation theory

It is generally the case that a perturbative field theory expan-
sion does not converge, and instead constitutes an asymptotic
series approximation to a physical quantity, implying that any
such expansion will inevitably begin to fail if calculations are
carried out to sufficiently high order. In light of the critical point
discovered in the previous section, we would like to estimate
the order at which graphene perturbation theory begins to fail
to check if it is in fact this failure which gives rise to the critical
point and not a real phase transition.

We can obtain an estimate following Dyson’s argument
[27] for the breakdown of perturbative QED. In that context,
Dyson argued that the point in parameter space where the
electric charge vanishes can not be analytic since the theory
in which the Coulomb interaction between electrons is taken
to be attractive rather than repulsive does not have a stable
ground state. The latter follows from the observation that the
total energy can be made arbitrarily negative by producing
a sufficiently large number of electron/positron pairs and
grouping all the electrons in one region of space and all the
positrons in another, distant region of space. If the number
N of electron/positron pairs is sufficiently large, the potential
energy will dominate the kinetic energy of the particles since
the kinetic energy scales like N , while the potential energy
scales like N2. This implies that there is a critical number Nc

of such pairs beyond which the pressure due to the zero-point
motion of the electrons is insufficient to counteract the inward
pull of the Coulomb force, leading to a collapse of the electron
cloud. In terms of the real theory with a repulsive Coulomb
interaction between electrons, this instability manifests itself
as a failure of perturbation theory at higher orders where the
number of virtual electrons appearing in a typical Feynman
diagram is comparable to Nc.

Dyson’s argument applies equally well to our effective
graphene theory. We may therefore estimate the order at
which perturbation theory breaks down by considering a
gas of massless two-dimensional electrons with an attractive
Coulomb interaction and determining the critical number of
electrons Nc beyond which the gas collapses on itself. This
problem is very similar to that of gravitational collapse of a
star, in which case Nc corresponds to the Chandrasekhar limit
[73,74]. Our approach will therefore be to adapt the standard
semiclassical derivation of the Chandrasekhar limit to the case
of graphene electrons. In the context of QED, this approach
was recently advocated for in Ref. [75]. To make the discussion
as transparent as possible, we first review the gravitational
problem.

1. Review of the Chandrasekhar limit

Consider a gas of massless neutral spin- 1
2 fermions in three

spatial dimensions interacting pairwise under the Newtonian
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gravitational potential

U = −β

r
, (205)

where r is the distance between two particles and β = Gm2.
There exists a critical number of fermions Nc such that for
N < Nc, the system is in a stable configuration in which the
gravitational attraction is balanced by the outward pressure
due to the Pauli exclusion principle, while for N > Nc, no
such stable configuration exists, and the fermion gas implodes,
forming a black hole. We wish to calculate Nc.

For simplicity, we assume that the fermions form a
static ball of radius r0, and that the number density can be
characterized by ρ(r), with

N = N (r0) = 4π

∫ r0

0
dr r2ρ(r). (206)

When the system is in equilibrium, it can be described
semiclassically by the Lane-Emden equation

r2P ′(r) + βN (r)ρ(r) = 0, (207)

where P (r) is the pressure of the gas at radius r from the center.
This equation is obtained simply from the condition that the
gravitational attraction must balance the outward pressure on
an infinitesimal volume element at each radius r inside the gas.
In order to solve this equation for ρ(r), we must first determine
the equation of state P (ρ). This can be determined by using
the ultrarelativistic result for the relation between pressure and
average momentum:

P = cρ

3
〈p〉, (208)

where c is the speed of light. Combining this with the
expression for the density of a three-dimensional Fermi gas
in terms of the Fermi momentum pF ,

ρ = p3
F

3π2
, (209)

we obtain

P = cp3
F

9π2

4π
∫ pF

0 dpp3

4π
3 p3

F

= c(3π2)1/3

4
ρ4/3. (210)

Using this equation of state, we can rearrange Eq. (207) to read
as

x2f 3(x) + d

dx

(
x2 d

dx
f (x)

)
= 0, (211)

where we have defined dimensionless quantities f and x via

ρ = ρcf
3 (212)

and

x ≡
(

π

3

)1/6
√

β

c
ρ1/3

c r. (213)

Here, ρc is some characteristic density that we have introduced
solely for the purpose of rendering f (x) dimensionless. In
terms of f (x), the number of particles can be written as

N =
√

3π

2

(
c

β

)3/2 ∫ x0

0
dx x2f 3(x)

= −
√

3π

2

(
c

β

)3/2

x2
0f ′(x0). (214)

From Eq. (211), it is straightforward to see that if f (x) is a
solution, λf (λx) is also a solution for any real constant λ.
Therefore, it suffices to solve Eq. (211) with initial conditions
f (0) = 1, f ′(0) = 0 since solutions with other values of f (0)
can be obtained from this solution by choosing λ appropriately.
These observations also make it clear that N is independent
of the initial conditions, implying that there is a unique value
of N corresponding to the critical value. Solving Eq. (211)
numerically and plugging the result into Eq. (214) yields

Nc = 3.097 97

(
c

β

)3/2

. (215)

The uniqueness of this result is due to the fact that we are
working in the ultrarelativistic limit; in order to obtain stable
configurations with N < Nc, we would need to move away
from the ultrarelativistic regime. Since there can not be stable
solutions for N > Nc, we see that Nc is a critical value beyond
which the fermion gas collapses. This value of Nc is the
Chandrasekhar limit [73,74]. This expression was used in
Ref. [75] to estimate that perturbative QED breaks down at
approximately the 5000th order.

2. Breakdown of graphene perturbation theory

We can apply the same steps for a gas of electrons (with
fourfold degeneracy coming from spin and valley degrees
of freedom) in two dimensions with a repulsive Coulomb
interaction, in which case we have β → e2/κ . The number
of electrons is given by

N = N (r0) = 2π

∫ r0

0
dr rn(r), (216)

where n(r) is the number density. Since the form of the
interaction is the same as in the previous subsection, the
stability equation remains the same except that now the
pressure P (r) is a force per unit length:

r2P ′(r) + βN (r)n(r) = 0. (217)

We can obtain the equation of state from the relations (again
using the ultrarelativistic limit, but with c → vF )

P = vF n

2
〈p〉, n = p2

F

π
, (218)

with the result

P = vF

√
π

3
n3/2. (219)

Plugging this into Eq. (217) and defining

u ≡ 2
√

πnc

β

vF

r = 2α
√

πncr, n(r) ≡ h2(u)nc, (220)

we find

uh2(u) + d

du

(
u2 d

du
h(u)

)
= 0, (221)

while the number of electrons is

N = 1

2α2

∫ u0

0
du uh2(u) = − 1

2α2
u2

0h
′(u0). (222)
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Solving Eq. (221) numerically and plugging the result into
Eq. (222), we obtain the critical number of electrons:

Nc = 0.701 14/α2. (223)

For graphene suspended in vacuum with α = 2.2, we find
Nc = 0.14, while for α = 0.5, we obtain Nc = 2.8. This
behavior is more or less consistent with our perturbative RG
analysis, assuming that the critical point we obtained earlier
signifies the breakdown of graphene perturbation theory at
second order. Of course, α measures the ratio of the potential
energy of an electron pair relative to the kinetic energy, so it
is not surprising that when α ∼ 1, the vacuum is becoming
unstable to electron/positron pair creation even with only one
or two virtual electrons present when the Coulomb interaction
is attractive. Given that the breakdown appears to happen at
very low order, it should be possible to perform a more precise
analysis since this corresponds to solving a few-body problem.
We leave this to future work.

I. Divergence structure of graphene effective field theory

The classic BPHZL theorem states that for a general
renormalizable field theory, physical observables can be
rendered finite by introducing a finite number of counterterms,
one for each divergence appearing in superficially divergent
amplitudes [76–80]. This theorem immediately implies that
an arbitrary amplitude in the graphene effective field theory
can be made finite by renormalizing a finite number of
parameters in the Lagrangian. Determining which and how
many parameters must run with the coupling in order for the
renormalization procedure to work requires a detailed analysis
of the divergence structure of the theory. In the following, we
will show that there are three superficially divergent classes
of diagrams, two of which potentially exhibit both linear
and logarithmic divergences, while the third can have only
logarithmic divergences. Nominally, this would suggest that
we may need several different parameters to absorb these
divergences if we also take into account the fact that the
temporal and spatial components of the electron self-energy
can diverge independently. However, there is an expectation
that all these divergences can be removed to arbitrarily high
order in the perturbative expansion by renormalizing only the
Fermi velocity and electron field strength. Since we have
already seen that the renormalization of the electron self-
energy requires the renormalization of both these quantities, in
order for these parameters to absorb all possible divergences
in the graphene theory, it would have to be the case that all
such divergences can be traced back to divergent self-energy
corrections or possibly to divergent vertex corrections as well
since the vertex can be renormalized through the field strength
renormalization. We would like to demonstrate this explicitly.

1. General diagram statistics

The superficial degree of divergence of a Feynman diagram
is defined to be the total power of momenta in the numerator of
the integrand minus the power of momenta in the denominator.
Defining the number of independent loops in the diagram to be
L, and the number of internal photon (Coulomb) propagators
and fermion propagators to be P and F , respectively, the

superficial degree of divergence D is easily seen to be

D = 3L − F − P, (224)

in the case of Dirac fermions in 2+1 dimensions interacting via
an effective 2D Coulomb interaction. For a general Feynman
diagram in this theory, the number of loops can be expressed
in terms of the number of vertices by observing that in the
position space Feynman rules, every propagator contributes
an integration over a distinct three-momentum, every vertex
comes with an associated delta function, and an extra delta
function imposes total momentum conservation. Therefore,

L = F + P − V + 1. (225)

A general diagram with E external lines must also obey the
topological identity

2(F + P ) + E = 3V. (226)

The above three relations together imply the following simple
result for the superficial degree of divergence of a diagram
with E external legs:

D = 3 − E. (227)

This result immediately implies that diagrams contributing
to either the electron self-energy or the vacuum polarization
have D = 1, while diagrams contributing to the vertex function
(with two external electron lines and one external photon) have
D = 0, as do diagrams with three external photon lines (e.g.,
the triangle diagram). All other diagrams in the theory have
D < 0, and are thus superficially convergent. Diagrams with
three external photon lines vanish identically due to charge-
conjugation invariance (under which the gauge field acquires
a minus sign) [81]. We therefore have three types of diagrams
whose divergence structure will dictate the renormalization
procedure.

2. Absence of linear divergences in electron self-energy

Using the simple relation between the superficial degree
of divergence and the number of external lines [Eq. (227)],
we have just seen that diagrams contributing to the electron
self-energy have D = 1. This result can also be derived
another way by making further observations about the structure
of diagrams contributing to the electron self-energy. These
additional observations will allow us to show that all such
diagrams never exhibit linear divergences, instead possessing
at most logarithmic divergences.

We begin by noticing that for diagrams contributing to the
electron self-energy, every vertex is connected to one photon
propagator while every photon propagator joins two distinct
vertices, so that we have

V = 2P, (228)

which implies

L = F − P + 1. (229)

Furthermore, it is not hard to convince oneself that the
additional relation also holds for this class of diagrams:

L = P. (230)
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This relation can be seen by imagining that every diagram
contributing to the self-energy is built up by starting from
the fermion propagator and adding photon propagators and
fermion loops, one at a time. Since every additional photon
propagator either creates a new loop or joins a new fermion
loop to the diagram, we see that L = P . Using Eqs. (229) and
(224), this result immediately implies

F = 2P − 1 (231)

and

D = 1. (232)

The former relation means that every diagram contributing to
the electron self-energy contains an odd number of fermion
propagators, while the latter means that every such diagram
superficially has at most a linear divergence, as we have
already seen. However, since every diagram contains an odd
number of fermion propagators, it is easy to show that this
linear divergence always cancels, leaving at most a logarithmic
divergence. This can be seen by noting that when one expands
the integrand of a diagrammatic contribution in the limit where
all loop momenta are taken to be large, the leading term is
independent of the external momentum q. Since the number
of fermion propagators is odd, this leading term will be odd
under the operation in which all the signs of the loop momenta
are flipped. Since the measures of the loop integrations are
invariant under this operation, as are the Coulomb propagators,
this leading term must vanish, eliminating the possibility
of a linear divergence. The absence of linear divergences
in diagrams contributing to the electron self-energy means
that these diagrams are at most logarithmically divergent.
Diagrams containing divergent subdiagrams will generally
diverge like the power of a logarithm.

3. Linear divergences in corrections to vacuum polarization

In the previous subsection, we showed that there are no
linear divergences arising from diagrams that contribute to the
electron self-energy. Therefore, if it is true that all divergences
are due to divergent self-energy or vertex corrections, then
we would expect that no linear divergences appear anywhere
in the theory. We have seen that linear divergences also
potentially arise in diagrams that contribute to the vacuum
polarization function, i.e., diagrams with two external photon
lines (which have D = 1), as well as diagrams which contain
these diagrams as subdiagrams. The fact that linear divergences
do not arise in contributions to the electron self-energy strongly
implies that no linear divergences are present in any subdia-
gram, and since all vacuum polarization corrections appear as
subdiagrams in some electron self-energy contributions, this
suggests that linear divergences do not arise in any vacuum
polarization corrections either. However, it is still possible
that a certain symmetry results in an exact cancellation of
self-energy diagrams that contain linearly divergent vacuum
polarization subdiagrams even if these subdiagrams do not
themselves vanish identically. Therefore, it is worth taking a
closer look at this issue.

We have seen in Sec. III C that the one-loop vacuum polar-
ization has neither linear nor logarithmic divergences, while in
Sec. III E we showed one of the two-loop corrections contained

a logarithmic divergence coming from the appearance of the
one-loop electron self-energy as a subdiagram. It was further
shown that this logarithmic divergence could be absorbed into
a redefinition of the Fermi velocity, demonstrating the absence
of charge renormalization up to second order. In the course of
these calculations, however, it was not made clear why linear
divergences did not appear in either the one-loop or two-loop
corrections to the vacuum polarization, nor is it clear whether
such divergences can arise in higher-order corrections. Let
us first consider why there was no linear divergence in the
one-loop vacuum polarization. This diagram has the value

�B(q) = −N

∫
d3k

(2π )3
Tr

[
γ 0 /k

k2
γ 0 /k + /q

(k + q)2

]
. (233)

The leading linear divergence can be extracted by taking the
limit q → 0. In this limit, the integral can be shown to vanish
because of the integration over the loop frequency k0:∫ ∞

−∞
dk0

k2
0 − v2

F |�k|2
k4

= 0. (234)

This identity also ensures the absence of a linear divergence
in the two-loop vertex correction to the vacuum polarization.
The above identity is one of a family of identities:∫ ∞

−∞
dk0

(3 − 2m)k2
0 + v2

F |�k|2
k2m

= 0, (235)

where m � 2 is an integer. It can also be shown that the
absence of a linear divergence in the two-loop self-energy
correction to the vacuum polarization is due to the identity
with m = 3. Thus, these identities ensure the absence of linear
divergences in first- and second-order perturbation theory. This
family of integral identities is also responsible for the fact that
the one-loop vertex diagram is finite. Furthermore, it leads
to the vanishing of the rainbow diagram corrections to the
electron self-energy. One of these identities also gives rise
to the vanishing of a third-order correction to the electron
self-energy, as shown in Appendix A 4. These identities also
play an important role for nonrenormalization theorems in
the context of ladder-diagram expansions [66]. It is not clear
whether the appearance of these identities is due to a hidden
symmetry of the theory or whether these identities continue to
ensure the cancellation of linear divergences at higher orders
in perturbation theory. We will thus leave it as a conjecture that
it is these identities that allow all divergences to be attributed
to electron self-energy or vertex corrections.

4. Recursion relation for coefficients of divergences

In this section, we show that only linear-log divergences
in electron self-energy diagrams contribute to the Fermi
velocity renormalization (and to the running of the effective
coupling). We also show that higher-power log divergences are
completely determined by the linear-log terms and explicitly
derive the recursion relations that govern this dependence.

The fact that only logarithmic divergences appear in the
expansion of the electron self-energy means that we may write
the following expansion for the Fermi velocity and effective
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coupling:

vμ

vF

= α

αμ

= 1 +
∞∑

n=1

Fn(α) lnn(�/μ), (236)

where we have introduced the shorthand notation μ = |�q|
for the renormalization scale, so that vμ and αμ denote the
renormalized Fermi velocity and coupling, respectively. This
expression can be inverted to obtain an expansion for the bare
coupling in terms of the renormalized coupling:

α = αμ +
∞∑

n=1

Gn(αμ) lnn(�/μ), (237)

where Gn can be calculated systematically as a power series
in αμ, with the coefficients given by combinations of the
coefficients appearing in similar expansions of the Fn. In
particular, one finds

G1(αμ) = αμF1(αμ), (238)

G2(αμ) = G23α
3
μ + G24α

4
μ + G25α

5
μ + · · ·

= F 2
11α

3
μ + (3F11F12 + F23)α4

μ

+ (
2F 2

12 + 4F11F13 + F24
)
α5

μ + . . . , (239)

where, e.g.,

F1(α) = F11α + F12α
2 + F13α

3 + . . . . (240)

In terms of the notation introduced earlier, f1, f2, for the
coefficients of the first- and second-order terms in the Fermi
velocity expansion, we have simply F11 = f1, F12 = f2.

The fact that the bare coupling α is independent of the
renormalization scale μ means that we can differentiate
Eq. (237) with respect to μ and then multiply by μ everywhere
to obtain

0 = μα′
μ − G1 + μα′

μ

dG1

dαμ

ln(�/μ) − 2G2 ln(�/μ)

+μα′
μ

dG2

dαμ

ln2(�/μ) − 3G3 ln2(�/μ) + . . . , (241)

where the prime denotes differentiation with respect to μ.
Since the renormalized coupling αμ is independent of the
cutoff, it must be the case that the coefficients of each power
of ln(�/μ) vanish separately, leading to the following set of
relations:

μα′
μ = G1(αμ), (242)

G2(αμ) = 1

2
μα′

μ

dG1

dαμ

, (243)

G3(αμ) = 1

3
μα′

μ

dG2

dαμ

, (244)

...

Gn(αμ) = 1

n
μα′

μ

dGn−1

dαμ

. (245)

We see that the beta function for the coupling β(αμ) is
determined solely by the coefficient of the ln(�/μ) term in
the expansion of the bare coupling [Eq. (237)], which in turn
is determined by the coefficient of the ln(�/μ) term in the
expansion of the Fermi velocity in terms of the bare coupling
[Eqs. (236) and (238)]. The coefficients of all higher powers
of ln(�/μ) are fully determined by β(αμ):

G1(αμ) = β(αμ) = F11α
2
μ +F12α

3
μ + F13α

4
μ + . . . , (246)

Gn(αμ) = β(αμ)

n

dGn−1

dαμ

, n > 1. (247)

These relations between the different Gn imply relations
among the coefficients appearing in the Fn, i.e., the coefficients
appearing in the perturbative expansion of the Fermi velocity.
Going up to fifth order in perturbation theory, we find explicitly
the following:

From G2:

F22 = 0, F23 = − 1
2F11F12, F24 = − 1

2F 2
12 − F11F13,

F25 = − 3
2 (F12F13 + F11F14). (248)

From G3:

F33 = 0, F34 = − 5
3F 2

11F12 − 4F11F23, (249)

F35 = − 25
6 F11F

2
12 − 4F 2

11F13 − 5F12F23 − 5F11F24.

From G4:

F44 = 0, F45 = − 43
12F 3

11F12 − 10F 2
11F23 − 5F11F34.

(250)

For example, the second equation in (248) shows that the
coefficient of the ln2(�/μ) term in the third-order result for
the Fermi velocity is completely determined by the first- and
second-order coefficients of the ln(�/μ) term. In Sec. III J,
we will verify explicitly that such terms arise at third order
as required by the recursion relation. The first equation in
(248) implies that there is no ln2(�/μ) divergence term at
order α2, as we have already seen in our explicit calculation
of the two-loop Fermi velocity renormalization. In the next
subsection, we will see that the condition F22 = 0 is in fact
required by the standard theorem on the renormalization
scheme independence of the first two terms of the beta function
for the effective coupling. The first equation of (249) states that
no ln3(�/μ) divergence terms can arise at third order. We will
check this explicitly in Sec. III J.

5. Redefining � at higher orders in α and scheme dependence

We now finally return to the question of why we can
neglect the finite part of the second-order self-energy. We
raised this issue briefly at the end of Sec. III G, but postponed
addressing it until after we presented some general properties
of the divergence structure of the perturbation theory. In
particular, it may not be clear why we can neglect the finite
contributions since we have already given a precise definition
of the ultraviolet cutoff � when we computed the first-order
self-energy 
1(q). Once this definition is made, we must take
care to maintain consistency with this definition, and it may
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not be immediately obvious why we can absorb a new constant
into � when we compute 
2(q). To be more precise, suppose
that we have not absorbed any constants into � at all, and
consider the renormalized Fermi velocity to second order
in α:

vq = vF {1 + αf1[ln(�/|�q|) + C1]+ α2f2[ln(�/|�q|) +C2]}.
(251)

Here, C1 and C2 are the finite parts of 
1 and 
2, respectively,
and we have found above that

f1 = 1

4
, f2 = 3 ln 2 − 4

6
. (252)

When we computed 
1 in Sec. III B, we absorbed C1 into the
definition of �. If we then absorb C2 into �, it would appear
that we have an inconsistency since the �’s appearing in 
1

and 
2 would not be the same.
In order to understand how to resolve this apparent

discrepancy, it helps to first make a few observations about
the scheme dependence of the renormalization procedure.
Suppose that we have computed the self-energy to all orders
to obtain a renormalized velocity of the form

vq

vF

= 1 + C̃(α) + F1(α) ln(�/|�q|)

+ F2(α) ln2(�/|�q|)) + . . . , (253)

where C̃(α) is the all-orders finite contribution, where we know
that

F1(α) = f1α + f2α
2 + O(α3), (254)

and where we have used the result that the self-energy and
hence the Fermi velocity can be expressed in terms of a
power series in ln(�/|�q|). Because of the appearance of
higher-power logarithms, if we change the definition of �,
then the coefficients Fn of the logarithms will get modified.
As we explained in the previous subsection, the beta function
β(αq) is determined by F1, so that it too will be modified by a
redefinition of �. However, since the higher-power logarithms
occur only at third order and higher, the first two terms of
β(αq) = αqF1(αq) will remain invariant. This is a reflection of
the well-known scheme independence of the two lowest-order
terms in the beta function. Here, we see that it was necessarily
the case that higher powers of divergent logarithms appear
only at third order and above since otherwise the standard
scheme-independence theorem would be violated.

When we choose to expand the Fermi velocity as in
Eq. (236) (i.e., where the finite term has been completely
absorbed into the cutoff), then we are supposing that we first
redistributed the finite part according to

vq

vF

= 1 +
∞∑

n=1

Fn(α)[ln(�/|�q|) + C(α)]n, (255)

in the process fixing the definitions of the Fn to all orders
(where the Fn in this scheme obey the recursion relations
derived in the previous subsection), and then we absorbed
the all-orders constant C(α) into �. This quantity also has a
power-series expansion in α:

C(α) = C1 + α(C2 − C1) + O(α2), (256)

where C1 and C2 were defined above. It is then apparent that
the cutoff � naturally gets redefined at every order in α, and
that it is not the finite contribution at order α that gets absorbed
into the � appearing in the self-energy at that order, but rather
a combination of all the finite contributions occurring up to
and including that order. What this means effectively is that
we simply ignore the finite contributions appearing in the self-
energy at every order in α.

J. Three-loop corrections to electron self-energy

There are 16 distinct diagrams contributing to the electron
self-energy at third order; these are displayed in Fig. 9. Note
that diagrams (b), (d), (k), and (l) each represent a pair of
diagrams that are related by symmetry and thus give equal
contributions to the self-energy. In our first- and second-order
calculations, we have seen that the graphene effective field
theory renormalizes through the renormalization of the Fermi
velocity and electron field strength. In this section, we will
test whether the theory continues to be renormalizable at third
order by computing the leading ultraviolet divergences at this
order. In particular, we saw in Sec. III I 4 that the coefficient
of the ln2 divergence at third order is fully determined by the
coefficients of the log divergences arising at first and second
order. Therefore, on general grounds it must be the case that
ln2 ultraviolet divergences arise at third order, while higher
powers of log should not arise at this order. We will confirm this
expectation by calculating the leading divergences in several
of the diagrams shown in Fig. 9.

Our first- and second-order results show that, at least up to
those orders, ultraviolet divergences only arise in corrections
to the electron self-energy. Therefore, among the 16 diagrams
depicted in Fig. 9, we expect that the strongest ultraviolet
divergences will come from those diagrams which contain
divergent self-energy subdiagrams. Nominally, there are eight
such diagrams, corresponding to those labeled (a), (b), (c),
(e), (g), (i), (j), (l) in Fig. 9. However, it is clear that diagram
(a) vanishes identically since it contains the two-loop rainbow
diagram as a subdiagram, and we have already shown that this

FIG. 9. Distinct diagrams contributing to third-order electron
self-energy.
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diagram vanishes identically in Sec. III G 1:


3a(q) = 0. (257)

Also notice that diagram (g) would appear to have a ln3

divergence since it contains two logarithmically divergent
subdiagrams, potentially violating the recursion relations
derived in Sec. III I 4, which would in turn endanger the renor-
malizability of the theory. However, we show in Appendix A 4
that diagram (g) vanishes identically,


3g(q) = 0, (258)

thus avoiding this potential danger and leaving only six
nontrivial diagrams containing divergent subdiagrams at third
order. [Also note that diagrams (n) and (o) vanish identically
due to Furry’s theorem [81].] The leading divergences of
diagrams (b), (c), (e), (i), (j), (l) are computed explicitly in
Appendix A, and we summarize the results here:


3b(q) = i

[
− 1

480
q0γ

0 + 1

128

(
−29

5
+ 8 ln 2

)
vF �q· �γ

]
×α3 ln2(�/|�q|) + . . . ,


3c(q) = − i

16

(
ln 2 − 2

3

)
α3vF �q· �γ ln2 (�/|�q|) + . . . ,


3e(q) = i

[
1

8

(
41

60
− ln 2

)
q0γ

0

+ 1

128

(
247

15
− 24 ln 2

)
vF �q· �γ

]
×α3 ln2(�/|�q|) + . . . , (259)


3i(q) = − iN

480
(4q0γ

0 − 3vF �q· �γ )α3 ln2 (�/|�q|) + . . . ,


3j (q) = − iN

96
vF �q· �γα3 ln2 (�/|�q|) + . . . ,


3l(q) = − iN

240
(3q0γ

0 − vF �q· �γ )α3 ln2(�/|�q|) + . . . ,

where the ellipsis in each case represents subleading ln (�/|�q|)
terms. These results demonstrate explicitly that the expected
ln2 divergences are indeed present at third order, and they are
strongly indicative that no ln3 divergences arise at this order,
as is fully consistent with the analysis presented in Sec. III I 4
and with the overall renormalizability of the graphene effective
field theory at higher orders.

We can test whether we have obtained all of the ln2

contributions at third order by making use of the second
relation given in Eq. (248): F23 = − 1

2F11F12. Defining the
quantities ξ3t and ξ3x in analogy with the second-order analysis
of Sec. III G 4, it is straightforward to show that

F23α
3 ln2(�/|�q|) = ξ3x − ξ3t − ξ1ξ2t , (260)

where ξ1, ξ2t , and ξ2x were defined in Eq. (192). Recalling the
values of F11 and F12 from Sec. III G 4, namely, F11 = 1

4 and
F12 = 1

2 ln 2 − 2
3 , we find

F23 = 1
12 − 1

16 ln 2, (261)

which implies

ξ3x − ξ3t = (
1
24 + 1

16 ln 2
)
α3 ln2(�/|�q|). (262)

On the other hand, summing up the results shown in Eq. (259)
for N = 2, we obtain the following net difference between the
spatial and temporal components

ξ3x − ξ3t = (
1
12 − 1

16 ln 2
)
α3 ln2(�/|�q|). (263)

The fact that this last result differs from the correct answer
[Eq. (262)] indicates that additional ln2 terms must arise
from some of the other diagrams in Fig. 9, in particular
from diagrams which do not contain divergent subdiagrams.
These additional terms must be parametrically small given that
Eqs. (262) and (263) differ by only a few percent. It is most
likely the case that these additional contributions arise from
diagrams containing higher-order vertex corrections, namely,
diagrams (h) and (k) in Fig. 9. We leave the explicit verification
that additional ln2 contributions exist to future work.

To give an example of a linear-logarithmic divergence, we
consider the simplest such contribution, which is provided by
diagram (p). This diagram can easily be calculated from the
full RPA self-energy correction, as shown in Appendix A. We
quote the result here for convenience:


3p(q) = iπ2α3

32
[−q0γ

0 + 2vF �q · �γ ] ln(�/|�q|). (264)

It is clear that this contribution is in no sense small when α ∼
1, suggesting that the third-order corrections to the electron
self-energy and velocity are again likely to be comparable to
the first-order results, as were the second-order corrections. It
is possible that the additional contributions to the linear-log
divergence coming from the remaining diagrams in Fig. 9
will lead to some cancellations, but in the absence of special
symmetries and given the lack of such cancellations at second
order, we believe that 
3p is indicative of the magnitude of
the full third-order correction. Therefore, the full third-order
contribution to the velocity renormalization could significantly
alter the value of the coupling at the quantum critical point αc

we obtained from the two-loop analysis above.
We conclude the perturbation theory analysis by making a

few general comments regarding the structure of higher-order
diagrams. First of all, it must be the case that at higher orders
in perturbation theory, the divergence structure of the theory
is such that at nth order, logarithmic divergences of the form
lnm(�/|�q|) arise, where m � n − 1. This follows immediately
from the recursion relation analysis developed in Sec. III I 4
and is required by the renormalizability of the theory. Thus,
at fourth order, for example, the most divergent terms will
scale as ln3(�/|�q|); some of the diagrams contributing to this
leading divergence are shown in Fig. 10. We further anticipate
that the generalized rainbow or “sunrise” diagrams, of which
Figs. 9(a) and 9(g) are examples, will continue to vanish at
higher orders in perturbation theory. This class of diagrams
consists of all graphs that do not contain fermion loops and
are such that, if every Coulomb line is drawn above the main
fermion line, then no two Coulomb lines cross. Of course, any
diagram containing a sunrise diagram as a subdiagram will also
vanish. Furthermore, Furry’s theorem will continue to hold at
higher orders, so that any diagram containing a fermion loop
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FIG. 10. Examples of diagrams contributing ln3 divergent terms
to the fourth-order electron self-energy.

connected to an odd number of Coulomb lines will vanish as
well.

IV. COMPARISON WITH EXPERIMENTS

Although the coupling constant α in graphene being of
order unity (e.g., α ≈ 0.4,0.8,2.2 for graphene on BN, SiO2,
vacuum respectively) in relevant experimental systems of
interest indicates that perhaps a weak-coupling perturbative
expansion in the coupling constant is not the appropriate
theoretical tool to use for a quantitative understanding of
the data, the fact is that many recent detailed experimental
studies [11,12,15,16,82–96] have been carried out to study
graphene many-body effects which are then (almost always)
successfully compared with the leading-order perturbation
theory. This presents a conundrum that, in spite of α being not
particularly small, it appears that perturbative theoretic results
are in good agreement with a wide variety of experimental
results. In particular, there is absolutely no signature in any
reported experimental data of a strong-coupling quantum
phase transition or a gap opening near the Dirac point. Thus,
the weak-coupling perturbative analysis appears to be at least
in qualitative agreement with all existing experimental results
on graphene, putting our current work in the proper context of
graphene phenomenology.

In comparing theory and experiment, we first mention a
key issue which is not always appreciated in the literature
(particularly in experimental publications claiming agreement
between theory and experiment). Many-body theories (or in
general, any theory) restricted precisely to intrinsic graphene
(i.e., undoped pristine graphene with the chemical potential
at the Dirac point) are, by their very construction, about a
hypothetical and idealized system which can not exist in a
laboratory. All real systems are extrinsic (i.e., doped) graphene
with a finite chemical potential (and finite carrier density).
Thus, experimental results should only be compared with
theories for extrinsic graphene with a finite Fermi level. Of
course, at finite temperatures, when kBT > EF , there is no
essential difference between intrinsic and extrinsic graphene
[97], but such a theory must incorporate qualitative finite-
temperature effects for it to be realistic.

Thus, the only existing theory enabling a direct quantitative
comparison with experiment is RPA since the Hartree-Fock
theory (i.e., the leading-order self-energy in the bare Coulomb
interaction) has a pathological infrared divergence at the Fermi
energy which is due to the long-range nature of the Coulomb

FIG. 11. The RPA self-energy is obtained by summing the
infinite series of bubble diagrams, which have the structure depicted
here. There is one such diagram in each order of the perturbative
expansion, where the nth-order diagram contains n − 1 fermion
loops (“bubbles”). The sum of all such diagrams (over all orders)
is equivalent to a one-loop expansion in the dynamically screened
Coulomb interaction. Details for the RPA self-energy calculation can
be found in Refs. [28,30,41].

interaction and which gets regularized by the screening effect
in RPA (see Fig. 11), giving a meaningful result at the Fermi
energy. This is easily seen by writing out the leading-order (in
α) results for the renormalized graphene velocity in various
theories:

v∗
F (E)

vF

= 1 + α

4
ln(Ec/E), (265)

v∗
F (EF )

vF

= 1 − α

π

(
5

3
+ ln α

)
+ α

4
ln(Ec/EF ), (266)

v∗
F (E)

vF

= 1 + α

4(1 + πα/2)
ln(Ec/E), (267)

v∗
F (EF )

vF

= 1 + α

{
1

4
ln(Ec/EF ) − 1 − 1

4
ln

(
1 + 4α

4α

)}
.

(268)

Equations (265)–(268) above correspond respectively to the
leading-order (in the bare interaction) single-loop result at
the Dirac point [5], the analytical RPA result [obtained by
summing the series of diagrams depicted in Fig. 11 and
expanding to O(α)] at a finite Fermi energy EF (or at the
finite Fermi momentum kF ) [28], the leading-order result in
the statically screened Coulomb interaction at the Dirac point
[15], and the RPA result obtained for a finite Fermi energy
at k = 0 [28]. We emphasize that, whereas Eqs. (266) and
(268) correspond to a realistic situation with a finite Fermi
energy EF , Eqs. (265) and (267) correspond manifestly to the
Dirac point for the undoped intrinsic system where the concept
of a Fermi energy does not apply. Therefore, any carrier
density-dependent graphene Fermi velocity measurement, as,
for example in Ref. [15], where one simply substitutes EF ∝
kF ∝ √

n so that the ln(Ec/EF ) term becomes 1
2 ln(nc/n),

can only be described by Eqs. (266) and (268), and not by
Eqs. (265) and (267). This makes complete sense because
neither the concept of a Fermi energy nor the concept of a
carrier density applies to the Dirac point [i.e., Eqs. (265) and
(267)], where the ultraviolet ln(Ec/E) term only describes a
flow where energy (not the density) is changing, but Eqs. (266)
and (268) indeed describe the dependence of the renormalized
Fermi velocity on the carrier density. This subtle point has
not often been appreciated in the literature, and often pure
Dirac point intrinsic theories which give v∗

F (E) have been
utilized in comparing theory with experiment simply by
interpreting v∗

F ≡ v∗
F (EF ) ≡ v∗

F (n), which has no a priori
theoretical justification at the Dirac point where the concept
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of a changing carrier density or Fermi energy does not apply
since EF ∝ n ≡ 0 at the Dirac point! We emphasize, as has
already been discussed in Ref. [10], the simple leading-order
formula (265) being equivalent to the Hartree-Fock self-energy
expression, does not apply at the Fermi energy [i.e., one can
not just put E = EF in Eq. (265)] because of the intrinsic
infrared divergence of the Coulomb interaction.

We should also emphasize that RPA, being the infinite-order
sum of the bubble diagrams (and thus the leading-order
expansion in the dynamically screened effective interaction,
see Fig. 11), represents the correct leading-order result in
an expansion in the coupling constant α, whereas the loop
expansion in the bare interaction represents the leading-
order result only in the most ultraviolet divergent term, as
represented by the product α ln(Ec/E) in Eq. (265). There
are nondivergent corrections in α which are missed by the
loop expansion, but which are correctly captured in RPA,
as is evident in Eqs. (266) and (268). Such nondivergent
corrections are of course not important at (or close to) the
Dirac point (i.e., for hypothetical intrinsic graphene), which
is the (experimentally inaccessible) quantum-critical infrared
fixed point in the problem, but away from the Dirac point (i.e.,
for any realistic experimental situations where the system is
extrinsic, and has a finite chemical potential and finite doping),
such nondivergent many-body corrections could very well
be quantitatively important depending on the details of the
situation (e.g., carrier density, the value of α itself, etc.). In
particular, in the very high-energy (or high-density) limit,
the divergent contribution vanishes logarithmically, but the
nondivergent RPA contributions still provide a many-body
correction to the graphene velocity renormalization.

With the above comments in mind we note, however, that
the leading ultraviolet divergence in all the theoretical formulas
for the interacting Fermi velocity is, of course, exactly the same
ln(Ec/E) term, as necessarily follows from the fundamental
renormalizability of the underlying graphene effective field
theory. This indicates that perhaps purely on a heuristic level
(and perhaps without any rigorous theoretical justification),
one can replace ln(Ec/E) by 1

2 ln(nc/n) in all of the above
formulas, noting that EF ∝ √

n. Such a heuristic procedure
may not be unreasonable when the ultraviolet divergence
dominates the velocity renormalization over all the subleading
terms [for example, the other terms in the RPA expansion of
Eq. (266)]. In comparing experiments with theories, this is the
procedure we adopt below when we use pure intrinsic graphene
Dirac point theories with the experimental data giving the
velocity as a function of carrier density.

In Fig. 12, we show a comparison between several theo-
retical results and the rather impressive experimental data of
Ref. [15] on the renormalized Fermi velocity as a function of
carrier density for graphene suspended in vacuum. We choose
this particular experiment because this experiment reports a
large velocity renormalization covering a large (exceeding
two orders of magnitude) density range, and thus this is the
experiment which is most suitable for the possible observation
of the ultraviolet divergence associated with the logarithmic
term in the theory.

In Fig. 12, we compare the experimental data with six
independent theoretical results. Three of them are given in
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FIG. 12. (Color online) Comparison of the experimental results
(squares) from Ref. [15] for the effective cyclotron mass versus
carrier density for graphene suspended in vacuum (α = 2.2) with
six different theoretical predictions: (a) the one-loop RPA result
for extrinsic graphene given in Eq. (266) and first computed in
Ref. [28]; (b) the one-loop (bare Coulomb interaction) result for
intrinsic graphene given in Eq. (265), which was first calculated
in Ref. [5] and rederived in the current work in Sec. III B; (c) the
two-loop with geometric resummation result for intrinsic graphene
first derived in this work and given in Eq. (269); (d) the one-loop
result with the statically screened Coulomb interaction for intrinsic
graphene quoted in Eq. (267) and used in Ref. [15]; (e) the full
RPA off-shell solution obtained in Ref. [41] by solving Dyson’s
equation for the self-energy self-consistently; (f) the full RPA on-shell
solution obtained in Ref. [41] by solving Dyson’s equation for the
self-energy (with the noninteracting energy inserted) numerically. In
all cases, we have used that the effective cyclotron mass is related to
the renormalized Fermi velocity via m∗ = √

πn/v∗
F and have made

the replacement ln(Ec/E), ln(Ec/EF ) → 1
2 ln(nc/n) as explained

in the text, with nc = 1015 cm−2. m0 is the free-electron mass, and
the bare velocity is taken to be vF = 108 cm/s.

Eqs. (265)–(267) above, respectively, and the other three
are full RPA on-shell theory, full RPA off-shell theory, and
our two-loop theory given in Sec. III of this paper. We
leave out Eq. (268) above in the experimental comparison
since this formula provides the RPA velocity renormalization
in extrinsic graphene at k = 0, where quasiparticles are ill
defined. The full RPA theory for extrinsic graphene has been
described elsewhere by two of the authors [28,30,41], where
the word “full” implies an exact numerical calculation of
the RPA many-body self-energy without any expansion in
α involved. The leading-order analytic expansion in α of
the full RPA theory gives Eq. (266) for both on-shell and
off-shell approximations, which respectively refer to using
just the noninteracting energy in the Dyson equation for
the self-energy (“on-shell”) or the full numerical solution
of the RPA self-energy with the Dyson equation solved
self-consistently. We refer to Refs. [28,30,41] for the full
details of the extrinsic graphene RPA many-body theory.
Finally, we mention that the two-loop results used in Fig. 12 for
experimental comparison require a geometric resummation of
our direct intrinsic two-loop results given in Sec. III since the
direct two-loop self-energy has a strong-coupling divergence
for α > 0.78 (as discussed in Sec. III), and the experimental
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system under consideration here [15] is graphene suspended
in vacuum where α = 2.2 (>0.78). The relevant two-loop
formula with a geometric series resummation gives

v∗
F (E) = vF

[
1 + α

4

{
1 +

(
8

3
− 2 ln 2

)
α

}−1

ln(Ec/E)

]
.

(269)

It is easy to see that the leading-order expansion in α of
the denominator on the right-hand side of Eq. (269) leads
to our two-loop velocity renormalization [Eq. (193)] derived
in Sec. III. Here, we have assumed a geometric resummation
in order to avoid the unphysical negative velocity result (for
α = 2.2) that the naive two-loop result would imply.

To compare theory and experiment, we do the heuris-
tic replacement of E → √

n for all the intrinsic theories
[Eqs. (265), (267), and (269)] and use the approximate
EF ∼ √

n replacement in the extrinsic RPA theories. The most
important features of the comparison between theories and the
experimental data in Fig. 12 are the following:

(i) In general, the RPA results provide the best quantitative
agreement with the experimental data [98], as is expected since
it is indeed the best available theoretical formalism for extrinsic
graphene at finite carrier density.

(ii) Including two-loop corrections substantially improves
the agreement between experiment and the intrinsic theory
compared with the corresponding one-loop result although,
given the number of approximations involved in the compar-
ison (e.g., replacing energy by the square root of the density
and the geometric resummation of the two-loop self-energy
result), one can not quite be sure that this improvement at the
two-loop level is not a mere coincidence.

(iii) The on-shell numerical RPA approximation appears
to be decisively in disagreement with the experimental data,
indicating the necessity for the full self-consistent solution of
the Dyson integral equation for extrinsic graphene.

(iv) In general, the logarithmic increase in the experimental
Fermi velocity seems to be apparent in the data as predicted
by all graphene theories by virtue of the underlying ultraviolet
divergence in the Dirac-Weyl massless chiral effective field
theories, but the current data can not definitively confirm or
rule out the presence of additional terms such as the subleading
contributions which are present in the extrinsic RPA theories.

(v) More accurate quantitative data over a much broader
range of carrier density would be necessary for the decisive
observation of the log-divergent terms and our calculated
higher-loop self-energy results presented in this work, al-
though the results shown in Fig. 12 indicate that the existing
data of Ref. [15] are indeed consistent with the higher-loop
perturbative corrections discussed in this work.

We make three final comments about our comparison
between theory and the experiment of Ref. [15]. First, the ex-
periment of Ref. [15] actually measures the low-field cyclotron
effective mass, and not the graphene Fermi velocity, and
we have uncritically assumed that the operational procedure
used in Ref. [15] to convert the cyclotron effective mass to
an effective Fermi velocity by assuming the noninteracting
relationship between cyclotron frequency and Fermi velocity
remains valid (which is probably a reasonable assumption for
extrinsic graphene since it is a Landau Fermi liquid at all

carrier densities). Second, the experimental data (particularly
in the context of its comparison with the various perturbation
theoretic results shown in Fig. 12) show no indication of any
strong-coupling behavior in terms of the opening of a gap
or any other quantum phase transition which would be the
hallmark of the strong-coupling behavior. This indicates that
there is strong empirical evidence in the existing experimental
data for monolayer graphene being a weak-coupling pertur-
bative system. This is particularly true in the context of the
fact that the data of Ref. [15] shown in Fig. 12 not only
represent the measured many-body corrections in graphene
at the lowest carrier density (i.e., closest to the Dirac point),
but also for the most strongly interacting graphene system
(i.e., graphene in vacuum with κ = 1) with α = 2.2 being
the maximum allowed value of the bare coupling strength
in graphene. The final comment is that one can substantially
improve upon the comparison shown in Fig. 12 by eliminating
the unknown (and somewhat arbitrary) cutoff density nc in
favor of two distinct carrier densities n1 and n2, at which the
measured Fermi velocities v∗

F (n1) and v∗
F (n2) can be compared

with respect to the theoretical results. One can then vary n1

or n2 (or both) over the range of experimentally available
densities to obtain detailed statistics about how various theories
compare quantitatively with the measured data. Such a detailed
statistical quantitative analysis of experimental data compared
with the theory is clearly beyond the scope of the current
theoretical work, but we have actually carried out some of this
statistical analysis using the limited set of data points shown in
Fig. 12, finding good agreement with the RPA off-shell theory,
showing at least tentatively that in the current experimental
situation, the logarithmic ultraviolet term is present, but the
subleading nondivergent terms are quantitatively important.

Similar conclusions can also be drawn in the context of
graphene on a BN substrate, for which experimental data
are available in the Supplemental Material of Ref. [15]. A
comparison of these data with the same six theory curves as
in Fig. 12 is shown in Fig. 13, where it is again apparent
that the one-loop bare Coulomb interaction result (265) and
the full RPA on-shell solution do not agree as well with the
data as do the other four theory curves. Since α < αc = 0.78
in this case, we have also included in Fig. 13 our two-loop
result for the bare Coulomb interaction (193), which lies above
the experimental data points as well as all the other theory
curves. This is due to the fact that in this case α = 0.73
is sufficiently close to the critical value αc = 0.78 that the
suppression of renormalization effects that occurs at αc is also
manifest (albeit to a weaker degree) for α = 0.73, leading to
a smaller reduction in the cyclotron mass. We further analyze
the effect of proximity to the critical point below and discuss
how, like in the case of α > αc, a perturbative expansion in the
bare Coulomb interaction appears inadequate even for α � αc.

A smaller yet still unmistakable renormalization of the
Fermi velocity was observed in quantum capacitance mea-
surements of graphene on an h-BN substrate, as reported in
Ref. [12]. In this case, the dielectric constant is quite large
(κ = 8), leading to an effective coupling strength of α ≈ 0.28,
almost an order of magnitude smaller than in the case of
graphene suspended in vacuum. Since this value is well below
the critical value αc = 0.78, no critical point arises in the RG
flow, and the system remains weakly interacting as the Dirac
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FIG. 13. (Color online) Comparison of the experimental results
(circles) from the Supplemental Material of Ref. [15] for the effective
cyclotron mass versus carrier density for graphene on a boron nitride
substrate (α = 0.73) with seven different theoretical predictions: (a)
the one-loop RPA result for extrinsic graphene given in Eq. (266)
and first computed in Ref. [28]; (b) the one-loop (bare Coulomb
interaction) result for intrinsic graphene given in Eq. (265), which
was first calculated in Ref. [5] and rederived in the current work
in Sec. III B; (c) the two-loop with geometric resummation result for
intrinsic graphene first derived in this work and given in Eq. (269); (d)
the one-loop result with the statically screened Coulomb interaction
for intrinsic graphene quoted in Eq. (267) and used in Ref. [15];
(e) the full RPA off-shell solution obtained in Ref. [41] by solving
Dyson’s equation for the self-energy self-consistently; (f) the full
RPA on-shell solution obtained in Ref. [41] by solving Dyson’s
equation for the self-energy (with the noninteracting energy inserted)
numerically; (g) the two-loop bare Coulomb interaction result first
derived in this work and given in Eq. (193). In all cases, we have
used that the effective cyclotron mass is related to the renormalized
Fermi velocity via m∗ = √

πn/v∗
F and have made the replacement

ln(Ec/E), ln(Ec/EF ) → 1
2 ln(nc/n) as explained in the text, with

nc = 1015 cm−2. m0 is the free-electron mass, and the bare velocity
is taken to be vF = 108 cm/s.

point is approached by reducing the carrier density. Thus,
no qualitative change in the Fermi velocity renormalization
arises from the inclusion of the perturbative second-order
correction, so that the second-order interaction effects are
purely quantitative. This is illustrated in Fig. 14, where we
plot both the one-loop and our two-loop perturbation theory
results for the renormalized velocity as a function of carrier
density (following the same procedure of replacing intrinsic
graphene momenta with densities as explained above); it is
apparent from the figure that the second-order correction
results in a narrowing of the cusp near the Dirac point, but
otherwise maintains the same basic behavior of the velocity
relative to the one-loop case. Figure 14 should be compared
with Fig. 2B of Ref. [12], from which it is clear that both
the one-loop and two-loop perturbation theory results are in
reasonably close agreement with the experimental data. It is
important to stress that, unlike in Ref. [12], we are comparing
experiment and theory without any fitting parameters. Whereas
in that reference (and elsewhere in the literature) the ultraviolet
cutoff � (equivalently nc) was used as a fitting parameter,
our result for the renormalized Fermi velocity [Eq. (201)]
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FIG. 14. (Color online) One-loop (blue, dashed line) and two-
loop (red, solid line) results for the renormalized Fermi velocity versus
carrier density taken from Eq. (201) (for the one-loop result we set
f2 = 0 in that equation), where we have made the replacements |�k| →
nk , |�q| → n, and where we have taken the dielectric constant to be κ =
8. The figure is to be compared with Fig. 2B of Ref. [12], which shows
Fermi velocity measurements for graphene on an h-BN substrate.
The RG flow reference point specified by nk = 5 × 1012 cm−2 and
v∗

F (nk) = vk = 106 m/s is taken from the rightmost data point in
Fig. 2B of Ref. [12]. Note that there are no fitting parameters in this
comparison.

does not depend on �, as should be the case for a properly
renormalized physical observable. The renormalized velocity
at density n instead depends on the value vk of the velocity at a
separate, reference density nk , where for Fig. 14, vk = 106 m/s
and nk = 5 × 1012 cm−2 were taken from the data shown in
Fig. 2B of Ref. [12].

The fact that both the one-loop and two-loop results in
Fig. 14 agree reasonably well with the experimental data in
Ref. [12] highlights the need for more quantitatively accurate
data in order for a definitive conclusion to be reached regarding
whether the higher-order many-body effects we predict are
present in the experiment. More broadly, in order to truly
ascertain the validity of higher-order perturbative graphene
effective field theory, improved experimental accuracy would
be needed not only for graphene on h-BN, but for graphene
on a range of different substrates for which the effective
coupling satisfies α < αc, i.e., substrates with moderate to
large dielectric constants. As illustrated in Figs. 15 and 16, the
experimental visibility of higher-order effects should improve
at more moderate values of the dielectric constant for which
α � αc since the presence of the critical point at αc leads to a
suppression of the Fermi velocity relative to the leading-order,
one-loop result so long as α is not too small. It is clear
from these figures that even if the precise value of the
substrate dielectric constant is not known, the observation
of a 40%–50% enhancement of the Fermi velocity can
automatically rule out the presence of higher-order corrections.
This endeavor of searching for higher-order effects in graphene
would be analogous to the ongoing and increasingly accurate
g-2 measurements carried out for QED and compared with
very high-order perturbative calculations, a 60-year enterprise
that has established QED as the most precise theory in all
of physics. However, unlike in QED, the asymptotic limit
of graphene perturbation theory may already be reached at
second order when α � αc, meaning that comparing such
measurements with our results for α < αc is critical for a
fundamental understanding of graphene effective field theory.
Also, it must be kept in mind that, unlike in QED, the finite
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FIG. 15. (Color online) One-loop (blue, dashed line), two-loop
(red, solid line), and two-loop with geometric resummation (green,
dotted-dashed line) results for the renormalized Fermi velocity versus
bare fine structure constant α taken from Eq. (201) (for the one-loop
result we set f2 = 0 throughout that equation, while for the two-loop
with geometric resummation, we set f2 = 0 in the argument of the
logarithm in that equation), where we have made the replacements
|�k| → nk , |�q| → n, and where we have taken the density to be n =
1010 cm−2. The RG flow reference point was taken to be nk = 5 ×
1012 cm−2 and v∗

F (nk) = vk = 106 m/s. It is clear from the figure that
the two-loop velocity renormalization is strongly suppressed relative
to the one-loop result for α � 0.4, corresponding to substrates with
dielectric constant κ � 5.5.

carrier density of real graphene systems plays an important
role, making it essential to perform the measurements as a
function of density in order to eliminate the chemical potential
effect by doing the RG connection between different carrier
densities as we propose in this paper.

More accurate measurements would also be needed for
a quantitative test of the second-order vacuum polariza-
tion results found in Sec. III. In particular, the vacuum
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FIG. 16. (Color online) One-loop and two-loop results for the
renormalized Fermi velocity versus carrier density taken from
Eq. (201) (for the one-loop result we set f2 = 0 throughout that
equation, while for the two-loop with geometric resummation, we
set f2 = 0 in the argument of the logarithm in that equation),
where we have made the replacements |�k| → nk , |�q| → n. The
RG flow reference point was taken to be nk = 5×1012 cm−2 and
v∗

F (nk) = vk = 106 m/s. Results are shown for two different values
of the bare fine structure constant: α = 0.4 and 0.7, corresponding to
substrate dielectric constants of κ = 5.5 and 3.14, respectively.

polarization results lead to the following expressions for
the effective dielectric constant and optical conductivity of
graphene electrons: ε ≈ 1 + π

2 α + 0.78α2 and σ ≈ e2(1 +
0.01α)/4, respectively [70]. If we ignore the O(α2) term
in the expression for ε, then we obtain ε ≈ 4.6(2.4) for
α ≈ 2.2(0.9), whereas with the second-order correction, these
numbers are substantially altered to the values ε ≈ 8.2(3.0). In
Ref. [87], a dielectric constant of ε = 15.4+39.6

−6.4 was reported
for graphene in vacuum (α ≈ 2.2), while in Ref. [11], a
value of ε = 3.0 ± 1.0 was measured for graphene on a BN
substrate (α ≈ 0.9). If we compare the theoretical results to
both experimental results for ε, then it is evident that the
second-order perturbative corrections lead to an improvement
in the agreement between theory and experiment, although
further experiments and greater measurement accuracy would
be needed to demonstrate that this apparent improvement is
not a coincidence. Experiments have also found reasonable
agreement with the universal, leading-order value of the
optical conductivity σ = e2/4 [91,95,96], but again greater
accuracy is needed to confirm the presence of the small
O(α) correction stemming from the second-order vacuum
polarization.

We conclude our discussion of the experimental status of
many-body effects with respect to graphene effective field
theory by mentioning that a recent independent analysis by
Geim [98] comparing the experimental data of Elias et al. [15]
on suspended graphene with the RPA theory of Refs. [28,41]
comes to the same conclusion as ours that RPA indeed provides
a better quantitative fit to the experimentally observed density-
dependent velocity renormalization. The same conclusion was
also reached by Chae et al. [16], who carried out a quantitative
comparison between the RPA results for the density-dependent
velocity renormalization [28,41] with scanning tunneling
spectroscopic data for doped graphene on BN substrates,
obtaining impressive quantitative agreement between theory
and experiment although the actual quantitative velocity
renormalization in this experiment was rather small (around
20% compared with around 200% in Ref. [15]). A recent
series of experiments by Siegel et al. [82,83] attempted
to compare various theoretical results directly with ARPES
data on the graphene velocity renormalization by changing
the substrate dielectric constants. Although not completely
decisive, these experiments also conclude that RPA [28,36,41]
seems to provide the best agreement with the experimental data
regarding the substrate dependence of the graphene velocity
renormalization.

V. DISCUSSION

A. General remarks

We have in this work investigated four distinct questions
regarding quantum many-body corrections to the electronic
properties of graphene:

(i) How important are the higher-loop perturbative many-
body corrections to the graphene self-energy and polarizabil-
ity?

(ii) Is perturbative graphene effective field theory valid at
these higher orders?
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(iii) Does the divergence structure of the effective field
theory remain consistent with renormalizability at higher
orders?

(iv) How do theory and experiment compare in graphene
many-body electronic properties?

To answer questions (i) and (ii) above, we carry out a
complete two-loop analysis of the intrinsic graphene self-
energy and polarizability diagrams by explicitly calculating all
the relevant diagrams up to O(α2) perturbatively. Although the
fact that α is of order unity for real experiments immediately
leads to the expectation that the higher-order corrections will
be comparable in magnitude to the leading one-loop results,
it is necessary to check this explicitly since the coefficients
of higher-order terms could potentially be parametrically
small. In the case of the two-loop Fermi velocity, this turns
out not to be the case; we find in Eq. (193) that the
numerical coefficient of the second-order correction is not
small: 1

2 ln 2 − 2
3 ≈ −0.32. Even in the case of graphene

on a BN substrate where α ≈ 0.4 is relatively small, the
second-order contribution amounts to a 50% correction to
the first-order result, illustrating the fact that higher-order
corrections are significant. Similar conclusions were also
reached in the context of the dielectric function, as we
discussed in the previous section. Furthermore, we find that
for larger values of α, specifically for α > αc ≈ 0.78, the
second-order correction reverses the RG flow of the Fermi
velocity and running coupling such that the theory is now
asymptotically free and flows to a new strong-coupling fixed
point in the infrared, where the Fermi velocity is renormalized
to zero and the renormalized coupling runs to infinity. Whether
this strong-coupling fixed point is physical or a signature of the
breakdown of the perturbation theory is unknown except that
experimentally the weak-coupling physics seems to hold for all
values of α (� 2.2), including suspended graphene (α = 2.2).
Our best estimate, based on an extension of Dyson’s original
argument for the eventual breakdown of QED perturbation
theory [27], is that the asymptotic expansion most likely starts
diverging at very low orders, perhaps already beyond O(α),
which may explain why theory and experiment agree in the
first-order calculation, but the agreement is not quantitatively
accurate. The issue of the asymptotic nature of weak-coupling
graphene perturbation theory requires further analysis in future
works.

To address question (iii), we also calculate representative
third-order [O(α3)] corrections to some of the three-loop
graphene self-energy diagrams. In these three-loop correc-
tions, we find the expected ln2(Ec/E) ultraviolet divergence
in the self-energy, whereas the only divergence in the first two
loops, i.e., up to O(α2), is the ln(Ec/E) divergence, which is
consistent with the standard theorem on the renormalization
scheme independence of the lowest-order terms in the beta
function for the effective coupling. We derive a set of
recursion relations which relate the coefficients of the third-
order ln2(Ec/E) terms to those of the first- and second-order
ln(Ec/E) divergences. We find that our explicit O(α3) results
for the electron self-energy are fully consistent with these
recursion relations and with the higher-order renormalizability
of the effective field theory.

Although we have not discussed the role of the Landau
pole [99] thus far, it may be worth commenting on it briefly

at this point in relation to our analysis of the self-consistency
of graphene perturbation theory. It is well known that when a
renormalization group analysis is applied to generic quantum
field theories which are not asymptotically free, there can exist
a finite renormalization scale, the Landau scale, at which the
effective coupling diverges, signifying that the theory is ill
defined at energy scales above the Landau scale. In QED,
the Landau scale is estimated to be astronomically large and
thus merely a matter of theoretical interest. However, since
the effective fine structure constant of graphene is much larger
than that of QED, it is possible that the graphene effective
field theory exhibits a Landau pole at experimentally relevant
energy scales. To calculate the Landau scale, one generally
needs full knowledge of the beta function for the effective
coupling to all orders in perturbation theory, especially when
the coupling is not small as in the case of graphene. We can
at least give a rough estimate using first-order perturbation
theory, from which it is straightforward to show that the Landau
scale is �L ∼ �vF

√
ne4/α . For typical values of the Fermi

velocity and electron density (vF ∼ 106 m/s, n ∼ 1012 cm−2),
�L is already comparable to the inverse lattice constant for
graphene in vacuum (α = 2.2), while for graphene on a BN
substrate with α = 0.4, �L is several orders of magnitude
larger than the scale of the lattice. Since we already know that
the theory does not apply at such high-energy scales, we do
not expect the Landau pole to hold any practical importance
for the graphene effective field theory. Note that here we are
assuming that the critical point αc = 0.78 does not arise in
a full, nonperturbative treatment of the theory; if the critical
point is a real, physical feature of the theory, then no Landau
pole arises at all.

Finally, with respect to item (iv) above, we have analyzed
a recent experiment [15] in depth using various graphene
many-body theories, finding that the data are consistent with
the existence of the ultraviolet logarithmic divergence of the
Fermi velocity, but not completely quantitatively decisive
yet. We find that the nonsingular subleading many-body
corrections to the self-energy are quantitatively significant, and
the best theory for the comparison with experiment is the RPA
theory for extrinsic graphene, where both the ultraviolet and
the infrared divergence are properly accounted for by using
RG and dynamical screening, respectively. The agreement
between RPA and experimental data is quite encouraging
[15,16,82], although more accurate measurements of the Fermi
velocity over a larger density range than is available at the
current time would be necessary for a definitive conclusion on
the agreement between theory and experiment.

Given our conclusion that RPA, i.e., the leading-order
theory in the dynamically screened Coulomb interaction (or
equivalently, the sum of the infinite geometric series of bubble
diagrams), is the appropriate quantitative theory for comparing
theory and experiment in extrinsic graphene with finite carrier
density (and by definition, all experiments are carried out
in the extrinsic graphene with undoped intrinsic graphene
being a purely theoretical abstraction), the natural question
is whether one can go to higher orders in the dynamically
screened Coulomb interaction in calculating the graphene
self-energy in a systematic manner. This is a formidable task
which has not been carried out in any system ever, but is worth
considering in the context of graphene perturbation theory
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given the large value of the interaction strength (α ∼ 1). Of
course, the equations for the velocity renormalization suggest
that the real perturbation parameter may be α/4, where 4 is
the ground-state spin-valley degeneracy factor, but even α/4
is not necessarily small in graphene.

An interesting question in this context is whether the full
RPA confirms the strong-coupling 1/N expansion approach
[43], which yields a nontrivial critical point in the infinite-
coupling limit with a dynamical exponent z < 1 for graphene,
i.e., the graphene dispersion changes from E = vF k to E ∼
kz, with z < 1. Of course, the systematic weak-coupling
perturbation theory maintains z = 1 to all orders, with only
an interaction-induced renormalization of the Fermi velocity
vF . We have carried out a full and exhaustive numerical
calculation with RPA to calculate the graphene quasiparticle
dispersion E∗(k), finding that within the numerical error
bars E∗(kF ) = v∗

F kF , i.e., z = 1 always for all values of the
finite carrier density. Thus, the nontrivial dynamical exponent
z < 1 is an artifact purely of the 1/N expansion around
the infinite-coupling fixed point, and is not experimentally
germane in spite of its theoretical curiosity.

The interaction-induced logarithmic renormalization ex-
hibited by the Fermi velocity should also arise in other physical
quantities, as is generally the case for a renormalizable field
theory. To demonstrate that additional observables renormalize
via the same logarithmic divergence, we explicitly calculate
the renormalization of the spin susceptibility. Given the
importance of RPA as a theoretical tool in understanding the
electronic properties of real graphene, we give in the following
a theoretical RPA result for the interacting spin susceptibility in
graphene, whose analytic RPA form has not been theoretically
calculated before in this literature. Future experiments should
be able to test our predictions for the RPA spin susceptibility
result given below.

B. Spin susceptibility

In a normal Fermi liquid, the spin susceptibility is given
by χ∗ = n dξ/dB = g∗μBNF /2, where g∗ is the effective
g factor, NF is the density of states (DOS) at the Fermi
level, and ξ = (n↑ − n↓)/n is the spin polarization parameter.
In graphene, the DOS is given by NF = gvgskF /(2π�v∗

F ),
therefore χ∗ ∝ g∗/v∗

F . We express it as a relative spin
susceptibility

χ∗

χ0
= g∗

g

vF

v∗
F

, (270)

where χ0 is the spin susceptibility of the noninteracting system.
In the presence of the Coulomb interaction, the quasiparticle

energy of graphene can be found by solving Dyson’s equation

E(k) = ξ (k) + 
[k,E(k)], (271)

where ξ (k) = �vF k − μ is the noninteracting energy relative
to the chemical potential, and 
(k,ω) is the self-energy.

In the presence of a weak magnetic field B, the quasiparticle
energy for two spin states can be written as

E↑(k) = ξ (k) + 1
2gμBB + 
↑[k,E↑(k)], (272)

E↓(k) = ξ (k) − 1
2gμBB + 
↓[k,E↓(k)], (273)

where g is the free-electron g factor and μB the Bohr
magneton. Then, the effective g factor g∗ can be found to be

g∗μBB ≡ E↑(k) − E↓(k)

= gμBB + 
↑[k,E↑(k)] − 
↑[k,E↓(k)]. (274)

The RPA self-energy correction due to the Coulomb
interaction V is given by [28]


s[k,ω] = −
∑
s ′

∫
d2k′

(2π )2

∫
dν

2πi

Vk−k′

ε(k − k′,ν)

×Fss ′ (k,k′)G(q − k′,ν + ω), (275)

where s,s ′ = ±1 are the band indices, nF (E) is the Fermi
function, and the chiral term Fss ′ (k,k′) = (1 + ss ′ cos θkk′)/2
arises from the wave-function overlap factor, where θkk′ is the
angle between k and k′. With Eqs. (272)–(275) we have the
effective g factor g∗:

g

g∗ = 1 − kF

2πv∗
F

∫
dφ

2π

Vk−k′

ε(k − k′)
F++(k,k′), (276)

where v∗
F is the renormalized quasiparticle velocity due

to many-body interactions, and within RPA, we have the
normalized quasiparticle velocity [28]

v∗
F

vF

= 1 + α

4
ln

kc

kF

− α

π

[
5

3
+ ln α

]
, (277)

where kc ∼ 1/a is the ultraviolet momentum cutoff, and
the second (third) term comes from exchange (correlation)
self-energy corrections.

The spin susceptibility is now given by

χ0

χ∗ = g

g∗
v∗

F

vF

= v∗
F

vF

− kF

2πvF

∫
dφ

2π

Vk−k′

ε(k − k′)
F++(k,k′)|k,k′=kF

.

(278)

Note that this equation can be compared with the correspond-
ing nonchiral parabolic 2D version, i.e., Eq. (10) in Ref. [100].

With Eq. (278), we finally find the spin susceptibility up to
O(α ln α) to be

χ

χ∗ = 1 − α

π

[
5

3
+ π

8
+ 3

4
ln α

]
+ α

4
ln

Ec

EF

. (279)

Equation (279) shows that the leading-order RPA suscep-
tibility has exactly the same ultraviolet divergence given by
the ln(Ec/EF ) term, and is thus renormalized by the velocity
renormalization (or equivalently, by the running coupling
constant). We note, however, that the nonsingular subleading
terms could be quantitatively significant unless the carrier
density is very small.

C. Zero-range electron-electron interactions

Finally, we briefly discuss the structure of ultraviolet
divergences for a hypothetical theory in which the Coulomb in-
teraction is replaced by a zero-range electron-electron contact
interaction. This theory should be relevant for experimental
studies of artificial graphene realized in cold atomic gases
confined in optical lattices. Recently, much progress has
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been made in constructing optical honeycomb lattices in the
laboratory [101,102], and in controllably creating and moving
Dirac cones with cold Fermi gases [103]. Although one might
initially expect that a theory with contact interactions would
be comparatively simpler in the absence of the long-range
Coulomb force, it turns out that this theory is rather subtle and
exhibits a significantly more complicated divergence structure.
A detailed description of this theory, along with results for
one-loop, two-loop, and certain n-loop corrections to the
electron self-energy are presented in Appendix B. In particular,
we show that power-law divergences arise at every order of
perturbation theory, and that the nth-order (RPA-type) ring
diagram diverges with momentum k like kn+1, indicating that
if the theory can be renormalized, the procedure would be
quite different from the Coulomb-interaction case, and would
not simply involve the renormalization of the Fermi velocity.
Thus, it seems that the contact-interaction theory does not
provide insight into the Coulomb-interaction problem, and
moreover it may be unphysical.

VI. CONCLUSIONS

In this very long paper, we have theoretically studied
graphene many-body effects from a number of different (but
closely related) perspectives.

Graphene, having an interaction coupling constant of order
unity, can be construed to be a (2+1)-dimensional strong-
coupling version of massless chiral QED. Unfortunately,
α ≈ 0.4–2.2 in graphene is really an intermediate-coupling
situation where purely strong-coupling theories, which assume
infinite interaction strengths, are inappropriate. We have in-
vestigated the applicability of the weak-coupling perturbation
theory at the Dirac critical point (undoped with the Fermi level
at the Dirac point and with zero carrier density) by going to
three loops, i.e., O(α3), with a complete analytical calculation
up to all O(α2) second-order terms. Our second-order results
indicate that the perturbation theoretic weak-coupling series is
asymptotic and well behaved for α < 0.78, while a strong-
coupling critical point appears for α > 0.78, questioning
the validity of a perturbative approach for more strongly
coupled systems such as graphene in vacuum. In the three-loop
order, we explicitly showed the emergence of higher-order,
O(ln2), ultraviolet singular terms, as we anticipated from
simple RG arguments that rely on the renormalizability of
the theory. However, the serious issue of the asymptotic nature
of the perturbative expansion remains open; our best estimate
indicates that the perturbative expansion may start diverging
after only the first few terms.

We have also compared experimental results with various
graphene many-body theories, finding that RPA, i.e., the
infinite sum of bubble diagrams, provides the best available
quantitative description of the experimental data since RPA
regularizes both the short-wavelength ultraviolet divergence
and the long-wavelength infrared divergence appropriately.
Going beyond RPA in a systematic manner remains a
great open challenge for future graphene theories. But, this
intermediate-coupling nature of graphene (i.e., α ∼ 1) is of
course quite common in solid-state electronic materials where,
for example, in metals and semiconductors the dimensionless
electron-electron interaction parameter rs (which for graphene

is precisely the fine structure constant α as already mentioned
in the Introduction) is invariably larger than unity, with
rs ∼ 5–6 for simple metals (Na, K, Li, etc.) [14] and rs > 10
for 2D semiconductor systems such as Si inversion layers and
GaAs quantum wells at low carrier densities [104]. In general,
RPA-based many-body theories [105–114] work quite well
for such strong-coupling metallic systems, perhaps because
the Fermi-liquid ground state is stable under RG flow, and
the RPA expansion in terms of the dynamically screened
Coulomb interaction turns out to be a reasonable technique,
often referred to as the “GW” technique (where W is the
dynamically screened Coulomb interaction, and G is the
electron Green’s function). Graphene is, however, qualitatively
different from interacting 2D Fermi liquids because of the
ultraviolet divergence (and the existence of the Dirac point as
a critical point which has no analog in ordinary Fermi liquids),
which could lead to a strong-coupling fixed point associated
with chiral symmetry breaking.

The graphene interacting many-body problem is concep-
tually and technically difficult precisely because it suffers
from the difficulties of both the ordinary interacting electron
liquids (i.e., an infrared Coulomb divergence which must
be regularized away from the Dirac point by using RPA)
and the ultraviolet divergence of strong-coupling chiral QED
at the Dirac point (i.e., the possibility of a flow toward a
strong-coupling fixed point with a chiral-symmetry-breaking
gap opening at the Dirac point). As we have emphasized, the
effective field theory for graphene is perfectly well defined and
is renormalizable (and the strong-coupling problem is asymp-
totically free), but there is no effective theoretical technique
available for dealing with the intermediate-coupling situation
(as graphene is, since α ∼ 0.4–2.2 is neither too large nor
too small, and since the number of fermion flavors is N = 2,
which is again not large, thus making 1/N expansion-type RG
theories ineffective). Such intermediate-coupling problems are
notoriously difficult to tackle in theoretical physics, and one
must use experiments as the guide.

Our approach, based on a weak-coupling perturbative
expansion of graphene effective field theory, is rooted entirely
on the empirical evidence that the leading-order one-loop
perturbation theory seems to work very well in graphene,
and there is no experimental signature anywhere of any
strong-coupling behavior (either a spontaneous gap opening
at the Dirac point or the appearance of a dynamical exponent
different from unity). Given the empirical success of the
weak-coupling theory in the leading order and the fact that the
actual coupling is not very weak, we believe that a higher-order
perturbative calculation, as we have done in this work, is
absolutely necessary to establish the domain of validity of
the weak-coupling theory. Our finding that, for α < 0.78, the
weak-coupling theory gives moderate corrections to graphene
properties, bringing theory and experiment slightly closer
together for the measured graphene velocity and dielectric
function, provides some confidence and justification for the
applicability of the weak-coupling theory to study graphene
many-body effects. More experimental data using substrates
with large dielectric constants so that α < 0.78 is strictly
satisfied would be necessary for future progress in the field.

It is important to emphasize that QED is touted as one of
the greatest triumphs of theoretical physics simply because
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higher-order calculations [beyond O(α4)] have been done,
obtaining an astonishing better than 12 decimal place agree-
ment between theory and experiments. This has, however, been
possible purely because of luck, not because of any particular
cleverness or theoretical breakthrough. It just so happens
that the smallness (∼ 1

137 ) of the QED coupling constant
allows accurate perturbative calculations up to 137 decimal
places before the asymptotic perturbative series breaks down.
In graphene, the perturbative series may be breaking down
already at the one- or two-loop level, and so perhaps, we should
not expect better than simple qualitative agreement (i.e., just
one significant digit in the dimensionless velocity!) between
theory and experiment. The situation may actually be worse
than it is even for QCD (which is inherently strongly coupled)
because in graphene, experiments give no hints at all of any
strong-coupling behavior!

Thus, graphene many-body theory shares features of calcu-
lational difficulties with QED (in the sense that the perturbative
series in α is asymptotic, but may already be diverging after
the first few terms, unlike in QED, because α for graphene is
not very small), QCD (in the sense that the strong-coupling
problem is not amenable to analytical tools except perhaps
in the trivial infinite-coupling problem, which is useless for
graphene since α is not very large), and the metallic many-body
problem in ordinary strongly interacting Fermi liquids (in
the sense that rs = α is not small, and therefore standard
diagrammatic techniques may not be accurate). The problem is
therefore interesting and highly nontrivial, which is the reason
for our rather comprehensive analysis in the current work.

Actually, the many-body problem for real graphene (not
intrinsic graphene with the Fermi level at the Dirac point,
which is an idealization) is even more complex than what
is discussed above. In particular, all experimental graphene
samples are doped, and the Fermi level is shifted away from the
Dirac point, which has no analog in QED or QCD. The finite
Fermi level is irrelevant as far as the RG flow is concerned since
at low enough densities, the ultraviolet divergent logarithmic
term dominates all other contributions, but for quantitative
purposes the finite carrier density matters very much, and
analytical calculations must go beyond the single-loop order
in the dynamically screened Coulomb interaction, which is a
problem of great difficulty. In addition, at low carrier density
near the Dirac point, even ultrapure graphene would have
disorder effects which could potentially overwhelm many-
body effects since disorder becomes important as the Fermi
energy decreases. Disorder is likely to be relevant in the RG
sense, and of course, the problem of disorder and interaction
together is a formidable unsolved problem in many-body
physics. Again, disorder is not a complication that arises in
QED or QCD. One hand-waving way of handling disorder is
to cut off the RG flow at the disorder energy scale, but again,
this would complicate any quantitative comparison between
experiment and theory. Obviously, much more work will be
needed, both theoretically and experimentally, in order to
understand the quantitative many-body effects in graphene;
ours is just the first step in this journey, where we have brought
the crucial questions into sharp focus and provided plausible
partial answers in a few situations.

One important (albeit somewhat tentative) conclusion
following from our work is that the best possible many-body

theory for graphene self-energy and velocity renormalization
may very well be RPA, i.e., the leading-order loop expansion
in the dynamically screened Coulomb interaction, which,
being an expansion in the screened interaction, does not
have the artifact of the infrared bare Coulomb Hartree-Fock
divergence in the self-energy at the Fermi level that the usual
loop expansion in the bare Coulomb interaction suffers from.
Since all experiments are carried out, by definition, in doped
graphene, RPA serves the crucial role of validating the nature
of the ultraviolet log divergence that the loop expansion in
the bare interaction for undoped graphene has uncovered.
Both RPA and the one-loop theory give exactly the same
ultraviolet divergence, justifying the RG approach for the
running coupling in doped graphene. Thus, as long as one
is interested only in the log divergence part of the self-energy
(and not the subleading nondivergent terms), RPA and the
one-loop expansion give exactly the same results, with RPA
allowing the use of the theory at finite doping. This result
is still somewhat tentative for a number of reasons. First,
the asymptotic convergence of the series is unknown for the
expansion in the dynamically screened Coulomb interaction
since only the leading-order term (i.e., RPA) has so far
been calculated. It is important to calculate the higher-order
self-energy diagrams in the dynamically screened Coulomb
interaction to establish that they are small for a full justification
of the theoretical framework. This is a formidable task well
beyond the scope of this work. Second, if the graphene
self-energy problem is indeed a strong-coupling problem,
then even an apparently numerically convergent perturbative
expansion in the dynamically screened interaction would not
lead to the correct result since there is a new strong-coupling
fixed point not accessible to any perturbative expansion. We
believe that such a strong-coupling behavior is unlikely in
view of the existing experimental data, but the theoretical
possibility of the existence of a strong-coupling fixed point
can not be ruled out given the large value of the graphene
bare coupling constant. As emphasized in this paper, the
rather disappointing possibility that the graphene self-energy
expansion ceases to be asymptotic already at the two-loop
level (in contrast to QED which remains asymptotic at least up
to 137 loops, possibly to much higher orders) would explain
the observed approximate agreement between the one-loop
theory and experiment, with the unfortunate implication that
the agreement between experiment and theory in graphene
may not improve in the future beyond what we have today.

Note added in proof. A very recent work has just appeared
[115] which uses a perturbative expansion in the dynamically
screened Coulomb interaction rather than the loop expansion
in the bare Coulomb coupling used in this work, finding only a
small correction to the leading-order RPA result [28,43], which
is consistent with our conclusion that RPA may very well be
the quantitatively accurate theory for graphene many-body
effects.

ACKNOWLEDGMENTS

We thank A. Geim for providing us with the experimental
data points. We also thank J. Hofmann for helpful discussions.
This work is supported by LPS-CMTC and US-ONR.

235431-38



EFFECTIVE FIELD THEORY, THREE-LOOP . . . PHYSICAL REVIEW B 89, 235431 (2014)

FIG. 17. First vertex correction to two-loop rainbow diagram.

APPENDIX A: LEADING ULTRAVIOLET DIVERGENCE
AT THREE LOOPS

In this Appendix, we show that one of the three-loop
corrections to the electron self-energy, that shown in Fig. 9(g),
vanishes identically, thus avoiding a potential ln3 divergence
at third order that would violate renormalizability constraints.

We also compute the leading ln2 ultraviolet divergence for
several of the remaining three-loop diagrams, in particular
those which contain divergent self-energy subdiagrams. The
results confirm the expectation that such ln2 divergences arise
at third order, while higher powers of log do not occur, as
required by renormalizability and as discussed in Sec. III J.
We also calculate explicitly the diagram shown in Fig. 9(p),
which exhibits a simple log divergence.

1. First vertex correction to two-loop rainbow diagram

We begin by considering the diagram shown in Fig. 17. We
will denote this diagram by 
3b(q). We note that it contains
the sole first-order self-energy correction as a subdiagram. The
correction is given by


3b(q) = 2
∫

d3k

(2π )3

∫
d3p

(2π )3

g2

2|�q − �k|
g2

2|�q − �p| iγ
0 i/k

k2

ig2

16π
�k· �γ ln

(
�

|�k|

)
i/k

k2
iγ 0 i(/k + /p − /q)

(k + p − q)2
iγ 0 i /p

p2
iγ 0. (A1)

Note the overall factor of 2; this is due to the presence of a second diagram with the self-energy correction on the right-hand
side. This will give us an identical contribution. With the aid of the identity,

γ 0/k�k· �γ /kγ 0 = (
k2

0 − v2
F |�k|2)�k· �γ + 2vF |�k|2k0γ

0, (A2)

we may rewrite this as


3b(q) = i
g6

32π

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q − �k||�q − �p|
1

k4p2(k + p − q)2

[(
k2

0 − v2
F |�k|2)�k· �γ + 2vF |�k|2k0γ

0
]

× [(k0 +p0 − q0)γ 0 + vF (�k + �p − �q)· �γ ](p0γ
0 − vF �p· �γ ) ln

(
�

|�k|

)
. (A3)

a. Evaluation of integrals over temporal components

We will now do the integrals over k0 and p0. If we multiply out the above expression, we obtain


3b(q) = i
g6

32π

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�q − �p| ln

(
�

|�k|

)[
2vF |�k|2B1γ

0 − 2v2
F |�k|2B2 �p· �γ − 2v2

F |�k|2B3(�k + �p − �q)· �γ − 2v3
F |�k|2

×B4γ
0(�k + �p − �q)· �γ �p· �γ + B5�k· �γ + vF B6γ

0�k· �γ �p· �γ + vF B7γ
0�k· �γ (�k + �p − �q)· �γ − v2

F B8�k· �γ (�k + �p − �q)· �γ �p· �γ ]
,

(A4)

where the eight integrals Bk are given by

B1 =
∫

dk0

2π

∫
dp0

2π

k0p0(k0 + p0 − q0)

k4p2(k + p − q)2
= (|�k| + | �p| + |�k + �p − �q|)q0

4|�k|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
]2 , (A5)

B2 =
∫

dk0

2π

∫
dp0

2π

k0(k0 + p0 − q0)

k4p2(k + p − q)2
= v2

F (|�k| + | �p| + |�k + �p − �q|)2 − q2
0

8v2
F |�k|| �p|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2 , (A6)

B3 =
∫

dk0

2π

∫
dp0

2π

k0p0

k4p2(k + p − q)2
= q2

0 − v2
F (|�k| + | �p| + |�k + �p − �q|)2

8v2
F |�k||�k + �p − �q|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2 , (A7)

B4 =
∫

dk0

2π

∫
dp0

2π

k0

k4p2(k + p − q)2
= (|�k| + | �p| + |�k + �p − �q|)q0

4v2
F |�k|| �p||�k + �p − �q|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2 , (A8)

B5 =
∫

dk0

2π

∫
dp0

2π

(
k2

0 − v2
F |�k|2)p0(k0 + p0 − q0)

k4p2(k + p − q)2
= q2

0 − v2
F (|�k| + | �p| + |�k + �p − �q|)2

4
[
q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2 , (A9)

B6 =
∫

dk0

2π

∫
dp0

2π

(
k2

0 − v2
F |�k|2)(k0 + p0 − q0)

k4p2(k + p − q)2
= (|�k| + | �p| + |�k + �p − �q|)q0

2| �p|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
]2 , (A10)
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B7 =
∫

dk0

2π

∫
dp0

2π

(
k2

0 − v2
F |�k|2)p0

k4p2(k + p − q)2
= − (|�k| + | �p| + |�k + �p − �q|)q0

2|�k + �p − �q|[q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
]2 , (A11)

B8 =
∫

dk0

2π

∫
dp0

2π

k2
0 − v2

F |�k|2
k4p2(k + p − q)2

= q2
0 − v2

F (|�k| + | �p| + |�k + �p − �q|)2

4v2
F | �p||�k + �p − �q|[q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2 . (A12)

We will now extract the temporal and spatial components of this self-energy correction. To do so, we simply multiply by the
appropriate matrix and take the trace, making use of the anticommutation relations for the Dirac matrices to simplify the result.
The temporal component is


3b,0(q) = 1

4
Tr[γ 0
3b(q)] = i

g6

32π

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�q − �p| ln

(
�

|�k|

)
× [

2vF |�k|2B1 − 2v3
F |�k|2B4(�k + �p − �q)· �p + vF B6�k· �p + vF B7�k·(�k + �p − �q)

]
= i

g6

64π
q0

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�q − �p|
vF |�k|(|�k| + | �p| + |�k + �p − �q|)[

q2
0 + v2

F (|�k| + | �p| + |�k + �p − �q|)2
]2

×
[

1 − �p·(�k + �p − �q)

| �p||�k + �p − �q| +
�k· �p

|�k|| �p| −
�k·(�k + �p − �q)

|�k||�k + �p − �q|

]
ln

(
�

|�k|

)
,

(A13)

and the spatial component is


3b,i(q) = 1

4
Tr[γ i
3b(q)] = i

g6

32π

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k|
1

|�q − �p|
{−2v2

F |�k|2B2pi − 2v2
F |�k|2B3(ki + pi − qi)

+ B5ki − v2
F B8[ �p·(�k + �p − �q)ki − �k· �p(ki + pi − qi) + �k·(�k + �p − �q)pi]

}
ln

(
�

|�k|

)

= i
g6

32π

qi

|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�q − �p|
|�k|[q2

0 − v2
F (|�k| + | �p| + |�k + �p − �q|)2

]
4
[
q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2

×
[ �p·�q

| �p| − (�k + �p − �q)·�q
|�k + �p − �q| +

�k·�q
|�k| − | �p|2�k·�q + |�q|2�k· �p + |�k|2 �p·�q − 2(�k·�q)( �p·�q)

|�k|| �p||�k + �p − �q|

]
ln

(
�

|�k|

)
. (A14)

b. Extracting the divergence of the temporal component

We first find the leading divergence of the temporal component. The integrand is nonzero for �q = 0, so that the leading
divergence is found by simply setting �q = 0 in the integrand:


3b,0(q) ≈ i
g6

64π
q0

∫
d2k

(2π )2

∫
d2p

(2π )2

1

| �p|
vF (|�k| + | �p| + |�k + �p|)[

q2
0 + v2

F (|�k| + | �p| + |�k + �p)2
]2

[
1 − �p·(�k + �p)

| �p||�k + �p| +
�k· �p

|�k|| �p| −
�k·(�k + �p)

|�k||�k + �p

]
ln

(
�

|�k|

)

= i
g6

64π
q0(�1 − �2 − �3 + �4), (A15)

where

�1 =
∫

d2k

(2π )2

∫
d2p

(2π )2

1

| �p|S(�k, �p) ln

(
�

|�k|

)
,

�2 =
∫

d2k

(2π )2

∫
d2p

(2π )2

1

| �p|S(�k, �p)
�p·(�k + �p)

| �p||�k + �p| ln

(
�

|�k|

)
,

�3 =
∫

d2k

(2π )2

∫
d2p

(2π )2

1

| �p|S(�k, �p)
�k·(�k + �p)

|�k||�k + �p| ln

(
�

|�k|

)
,

�4 =
∫

d2k

(2π )2

∫
d2p

(2π )2

1

| �p|S(�k, �p)
�k· �p

|�k|| �p| ln

(
�

|�k|

)
, (A16)

with

S(�k, �p) ≡ vF (|�k| + | �p| + |�k + �p|)[
q2

0 + v2
F (|�k| + | �p| + |�k + �p)2

]2 . (A17)
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To evaluate the �p integrals, we use elliptic coordinates. Let p|| and p⊥ be the components of �p parallel and perpendicular to �k,
respectively. These components are written in terms of the elliptic coordinates μ and ν as

p|| = 1
2 |�k|(cosh μ cos ν − 1), p⊥ = 1

2 |�k| sinh μ sin ν. (A18)

These coordinates have the ranges 0 � μ < ∞ and 0 � ν < 2π . Some useful identities are

| �p| = 1
2 |�k|(cosh μ− cos ν), |�k + �p| = 1

2 |�k|(cosh μ+ cos ν),

|�k| + | �p| + |�k + �p| = |�k|(cosh μ+ 1). (A19)

The integration measure is

d2p = 1
4 |�k|2(cosh2 μ− cos2 ν) dμ dν = | �p||�k + �p| dμ dν. (A20)

In terms of these coordinates, the �k integrals above become

�1 = 1

4π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)(cosh μ+ cos ν),

�2 = 1

4π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)

cosh2 μ+ cos2 ν − 2

cosh μ− cos ν
,

�3 = 1

4π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)(1 + cosh μ cos ν),

�4 = 1

4π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)

(cosh μ cos ν − 1)(cosh μ+ cos ν)

cosh μ− cos ν
, (A21)

where

f (μ) =
∫

d2k

(2π )2

vF |�k|(1 + cosh μ)

2
[
q2

0 + v2
F |�k|2(1 + cosh μ)2

]2 |�k| ln

(
�

|�k|

)
. (A22)

We first do the ν integrals, obtaining

�1 = 1

2π

∫ ∞

0
dμf (μ) cosh μ,

�2 = − 1

2π

∫ ∞

0
dμf (μ)(cosh μ− 2 sinh μ),

�3 = 1

2π

∫ ∞

0
dμf (μ),

�4 = − 1

2π

∫ ∞

0
dμf (μ)e−2μ. (A23)

We now evaluate f (μ) in closed form; doing so, we obtain

f (μ) = − 1

16πv3
F (1 + cosh μ)3

{
ln

[
1 +

(
vF �

q0

)2

(1 + cosh μ)2

]
+ Li2

[
−

(
vF �

q0

)2

(1 + cosh μ)2

] }
, (A24)

where Lin(z) is the polylogarithm function

Lin(z) =
∞∑

k=1

zk

kn
. (A25)

For z → ∞, we may approximate Li2(−z2) as

Li2(−z2) ≈ − 2 ln2 z. (A26)

Since we assume that the cutoff � is large, this approximation is valid, and thus we may approximate f (μ) as

f (μ) ≈ 1

8πv3
F (1 + cosh μ)3

ln2

[
vF �

|q0| (1 + cosh μ)

]
. (A27)

If we now substitute this result into the �k integrals and drop the 1 + cosh μ factor in the logarithm (which will only give
subleading terms if retained), then we may evaluate the remaining integrals over μ, obtaining

�1 = 1

16π2v3
F

[∫ ∞

0
dμ

cosh μ

(1 + cosh μ)3

]
ln2

(
vF �

|q0|
)

= 1

80π2v3
F

ln2

(
vF �

|q0|
)

,

�2 = − 1

16π2v3
F

[∫ ∞

0
dμ

cosh μ− 2 sinh μ

(1 + cosh μ)3

]
ln2

(
vF �

|q0|
)

= 1

320π2v3
F

ln2

(
vF �

|q0|
)

,
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�3 = 1

16π2v3
F

[∫ ∞

0
dμ

1

(1 + cosh μ)3

]
ln2

(
vF �

|q0|
)

= 1

120π2v3
F

ln2

(
vF �

|q0|
)

,

�4 = − 1

16π2v3
F

[∫ ∞

0
dμ

e−2μ

(1 + cosh μ)3

]
ln2

(
vF �

|q0|
)

= − 1

320π2v3
F

ln2

(
vF �

|q0|
)

. (A28)

Putting everything together, we find that the leading divergence of the temporal component of 
3b(q) is


3b,0(q) = − 1

480
iα3q0 ln2

(
vF �

|q0|
)

→ − 1

480
iα3q0 ln2

(
�

|�q|
)

. (A29)

We make the replacement |q0|
vF

→ |�q| for reasons similar to those for making the same replacement in determining the leading
divergence of 
2a(q).

c. Extracting the divergence of the spatial component

We now turn our attention to the spatial component. Note that, in this case, the integrand is zero when �q = 0. Therefore, in
order to obtain the leading divergence of this component, we will need to expand the integrand to first order in �q. We will find it
easier to do this if we shift �p by �q and interchange �k and �p:


3b,i(q) = i
g6

128π

qi

|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�q − �p|

q2
0 − v2

F (|�k + �q| + | �p| + |�k + �p|)2[
q2

0 + v2
F (|�k + �q| + | �p| + |�k + �p|)2

]2

[ �p·�q
| �p| − (�k + �p)·�q

|�k + �p| + (�k + �q)·�q
|�k + �q|

− | �p|(�k + �q)·�q
|�k + �q||�k + �p| − |�q|2(�k + �q)· �p

|�k + �q|| �p||�k + �p| − |�k + �q| �p·�q
| �p||�k + �p| + 2[(�k + �q)·�q]( �p·�q)

|�k + �q|| �p||�k + �p|

]
ln

(
�

| �p|
)

. (A30)

In doing the expansion, the following approximations will prove useful:

|�k + �q| ≈ |�k| +
�k·�q
|�k| ,

1

|�k + �q| ≈ 1

|�k| −
�k·�q
|�k|3 ,

1

| �p − �q| ≈ 1

| �p| + �p·�q
| �p|3 , (A31)

and [
q2

0 − v2
F (|�k + �q| + | �p| + |�k + �p|)2

][
q2

0 + v2
F (|�k + �q| + | �p| + |�k + �p|)2

]2 ≈ Q(�k, �p) + R(�k, �p)
�k·�q
|�k| , (A32)

where

Q(�k, �p) = q2
0 − v2

F (|�k| + | �p| + |�k + �p|)2[
q2

0 + v2
F (|�k| + | �p| + |�k + �p|)2

]2 ,

R(�k, �p) = −2v2
F (|�k| + | �p| + |�k + �p|) 3q2

0 − v2
F (|�k| + | �p| + |�k + �p|)2[

q2
0 + v2

F (|�k| + | �p| + |�k + �p|)2
]3 . (A33)

Using these formulas, we may now write


3b,i(q) ≈ g6

128π

qi

|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�k|

(
1 + �p·�q

| �p|2
) [

Q(�k, �p) + R(�k, �p)
�k·�q
|�k|

]
ln

(
�

| �p|
){

�p·�q
| �p| − (�k + �p)·�q

|�k + �p|

+
[

(�k + �q)·�q
|�k| − | �p|(�k + �q)·�q

|�k||�k + �p| − |�q|2(�k + �q)· �p
|�k|| �p||�k + �p| + 2[(�k + �q)·�q]( �p·�q)

|�k|| �p||�k + �p|

] (
1 −

�k·�q
|�k|2

)
− |�k| �p·�q

| �p||�k + �p|

(
1 +

�k·�q
|�k|2

)}
.

(A34)

When we multiply out the integrand, we find that some of the terms naı̈vely appear to produce a linear divergence, but these
terms turn out to be zero. We will therefore enumerate all of the terms that give us a logarithmic divergence, of which there are
the following 15:

�1 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|

[
|�q|2
|�k| − (�k·�q)

|�k|3

]
ln

(
�

| �p|
)

, (A35)

�2 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
| �p|

|�k + �p|

[
|�q|2
|�k| − (�k·�q)

|�k|3

]
ln

(
�

| �p|
)

, (A36)

�3 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
|�q|2�k· �p

|�k|| �p||�k + �p| ln

(
�

| �p|
)

, (A37)
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�4 = 2
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p| ln

(
�

| �p|
)

, (A38)

�5 = −1

2
�4, (A39)

�6 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
( �p·�q)2

| �p|3 ln

(
�

| �p|
)

, (A40)

�7 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
( �p·�q)[(�k + �p)·�q]

| �p|2|�k + �p| ln

(
�

| �p|
)

, (A41)

�8 =
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
(�k·�q)( �p·�q)

|�k|| �p|2 ln

(
�

| �p|
)

, (A42)

�9 = −1

2
�4, (A43)

�10 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

Q(�k, �p)

|�k|
|�k|( �p·�q)2

| �p|3|�k + �p| ln

(
�

| �p|
)

, (A44)

�11 =
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|
(�k·�q)( �p·�q)

|�k|| �p| ln

(
�

| �p|
)

, (A45)

�12 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|
(�k·�q)[(�k + �p)·�q]

|�k||�k + �p| ln

(
�

| �p|
)

, (A46)

�13 =
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|

( �k·�q
|�k|

)2

ln

(
�

| �p|
)

, (A47)

�14 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|
| �p|

|�k + �p|

( �k·�q
|�k|

)2

ln

(
�

| �p|
)

, (A48)

�15 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

R(�k, �p)

|�k|
(�k·�q)( �p·�q)

| �p||�k + �p| ln

(
�

| �p|
)

. (A49)

We will once again use elliptic coordinates to evaluate these integrals. In these coordinates, the functions Q and R become

Q(�k, �p) → Q̃(μ,|�k|) = q2
0 − v2

F |�k|2(1 + cosh μ)2[
q2

0 + v2
F |�k|2(1 + cosh μ)2

]2 ,

R(�k, �p) → R̃(μ,|�k|) = −2v2
F |�k|(1 + cosh μ)

[
3q2

0 − v2
F |�k|2(1 + cosh μ)2

][
q2

0 + v2
F |�k|2(1 + cosh μ)2

]3 . (A50)

It will be helpful to write all scalar products in terms of components of the vectors parallel and perpendicular to �k; in this case,
the components of �q will be q|| = |�q| cos θ and q⊥ = −|�q| sin θ , where θ is the angle variable in the �k integration. We will also
replace the | �p| in the logarithms with |�k| since the terms that are dropped in making this replacement will only contribute to the
subleading divergence. Upon performing the ν and θ integrals, we obtain

�1 = |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)

(
cosh2 μ− 1

2

)
|�k| ln

(
�

|�k|

)
, (A51)

�2 = − |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)

(
cosh2 μ+ 1

2

)
|�k| ln

(
�

|�k|

)
, (A52)

�3 = |�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
, (A53)

�4 = −�3, (A54)
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�5 = 1

2
�3, (A55)

�6 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|) cosh μ|�k| ln

(
�

|�k|

)
, (A56)

�7 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)(cosh μ− 2 sinh μ)|�k| ln

(
�

|�k|

)
, (A57)

�8 = − |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)e−2μ|�k| ln

(
�

|�k|

)
, (A58)

�9 = 1

2
�3, (A59)

�10 = −�3, (A60)

�11 = − |�q|2
64π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|) cosh μ|�k|2 ln

(
�

|�k|

)
, (A61)

�12 = �11, (A62)

�13 = |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)

(
cosh2 μ− 1

2

)
|�k|2 ln

(
�

|�k|

)
, (A63)

�14 = − |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)

(
cosh2 μ+ 1

2

)
|�k|2 ln

(
�

|�k|

)
, (A64)

�15 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
. (A65)

We now combine all of these results together, writing 
3b,i(q) as a sum of an integral involving Q̃ and another involving R̃,
obtaining


3b,i(q) = i
g6

64π

qi

64π2

∫ ∞

0
dμ

∫ �

0
d|�k| ln

(
�

|�k|

)
[Q̃(μ,|�k|)(−1 + 4e−μ − 2e−2μ)|�k| + R̃(μ,|�k|)(1 − cosh μ)|�k|2]. (A66)

We first evaluate the |�k| integrals, obtaining∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)

= 1

2v2
F (1 + cosh μ)2

{
ln

[
1 +

(
vF �

q0

)2

(1 + cosh μ)2

]
+ 1

2
Li2

[
−

(
vF �

q0

)2

(1 + cosh μ)2

]}
≈ − 1

2v2
F (1 + cosh μ)2

ln2

[
vF �

|q0| (1 + cosh μ)

]
, (A67)

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)

= �2

(1 + cosh μ)
[
q2

0 + v2
F �2(1 + cosh μ)2

] − 3

2v2
F (1 + cosh μ)3

ln

[
1 +

(
vF �

q0

)2

(1 + cosh μ)2

]

− 1

2v2
F (1 + cosh μ)3

Li2

[
−

(
vF �

q0

)2

(1 + cosh μ)2

]
≈ 1

v2
F (1 + cosh μ)3

ln2

[
vF �

|q0| (1 + cosh μ)

]
. (A68)
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We now substitute in these results and drop the 1 + cosh μ term in the logarithm because it gives us contributions to the subleading
divergence, and evaluate the remaining integral on μ, obtaining


3b,i(q) = 1

128

(
−29

5
+ 8 ln 2

)
iα3vF qi ln2

(
vF �

|q0|
)

→ 1

128

(
−29

5
+ 8 ln 2

)
iα3vF qi ln2

(
�

|�q|
)

. (A69)

Note that, as with the temporal component, we made the replacement |q0|
vF

→ |�q|.
Combining all of our results, the full leading divergence of 
3b(q) is


3b(q) = iα3

[
− 1

480
q0γ

0 + 1

128

(
−29

5
+ 8 ln 2

)
vF �q· �γ

]
ln2

(
�

|�q|
)

. (A70)

2. Second vertex correction to two-loop rainbow diagram

We consider the diagram shown in Fig. 18. We will denote
the value of this diagram by 
3c(q). We note that it contains
the second-order diagram shown in Fig. 7 as a subdiagram; its
value was denoted by 
2a(q) and given in Eq. (173). We are
interested only in the leading divergence of 
3c(q). We may
express 
3c(q) as


3c(q) =
∫

d3k

(2π )3

g2

2|�q − �k| iγ
0 i/k

k2
i

(
ln 2 − 2

3

)
α2

×
(

1

2
k0γ

0 + vF
�k· �γ

)
ln

(
�

|�k|

)
i/k

k2
iγ 0. (A71)

Using the anticommutation relations for the γ matrices, we
may rewrite this as


3c(q) = 2πi

(
ln 2 − 2

3

)
α3vF

∫
d3k

(2π )3

1

|�q − �k|

× γ 0 /k

k2

(
1

2
k0γ

0 + vF
�k· �γ

)
ln

(
�

|�k|

)
/k

k2
γ 0.

(A72)

We now note that the denominator of the integrand is an even
function of k0, so that terms in the numerator that are odd
functions of k0 vanish under integration. Keeping only the
nonvanishing terms, this becomes


3c(q) = −2πi

(
ln 2 − 2

3

)
α3vF

∫
d3k

(2π )3

1

|�q − �k|

×
(

v2
F |�k|2
k4

)
vF

�k· �γ ln

(
�

|�k|

)
. (A73)

We may now evaluate the integral over k0, obtaining


3c(q) = −1

2
πi

(
ln 2 − 2

3

)
α3vF

∫
d2k

(2π )2

1

|�k||�q − �k|

× ln

(
�

|�k|

)
�k· �γ . (A74)

FIG. 18. Second vertex correction to two-loop rainbow diagram.

If we were to now choose our coordinate system such that �q
lies along, say, the x axis, then one may see that the integrand
is odd in ky . Therefore, we may make the replacement

�k · �γ →
�k · �q
|�q|2 �q · �γ , (A75)

thus obtaining


3c(q) = −1

2
πi

(
ln 2 − 2

3

)
α3vF

×
∫

d2k

(2π )2

1

|�k||�q − �k|
�k · �q
|�q|2 ln

(
�

|�k|

)
�q · �γ .

(A76)

Because we are interested in the leading ultraviolet divergence,
we now expand 1

|�q−�k| for large |�k|:

1

|�q − �k| ≈ 1

|�k|

(
1 +

�k · �q
|�k|2

)
. (A77)

Naı̈vely, we would expect that the leading term in this expan-
sion will give us a linearly divergent contribution to 
3c(q).
However, this term is an odd function of both components
of �k, so that it drops out. The leading nonzero correction is
thus given by the subleading term, which only gives us a
logarithmic divergence. All higher terms are ultraviolet conver-
gent. The resulting integral for the leading divergence is easily
evaluated:


3c(q) = −1

2
πi

(
ln 2 − 2

3

)
α3vF

∫
d2k

(2π )2

1

|�k|4
(�k·�q)2

|�q|2

× ln

(
�

|�k|

)
�q· �γ

= − 1

16
i

(
ln 2 − 2

3

)
α3vF ln2

(
�

|�q|
)

�q· �γ . (A78)

In evaluating this integral, we assume that the infrared
divergence of this integral is regularized by imposing a lower
limit of |�q| on |�k|.

FIG. 19. Self-energy correction to two-loop vertex correction.
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3. Self-energy correction to two-loop vertex correction

We now turn our attention to the diagram in Fig. 19, the value of which we will denote by 
3e(q). This diagram is similar
in appearance to Fig. 17, and indeed the evaluation of 
3e(q) will be very similar to the calculation of 
3b(q) given above. The
expression for this correction is


3e(q) =
∫

d3k

(2π )3

∫
d3p

(2π )3

g2

2|�q − �k|
g2

2|�q − �p| iγ
0 i/k

k2
iγ 0 i(/k + /p − /q)

(k + p − q)2

× ig2

16π
(�k + �p − �q)· �γ ln

(
�

|�k + �p − �q|

)
i(/k + /p − /q)

(k + p − q)2
iγ 0 i /p

p2
iγ 0. (A79)

To simplify the subsequent calculations, we make the substitution p → − p − k + q, obtaining


3e(q) = i
g6

64π

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q − �k||�k + �p|γ
0 /k

k2
γ 0 /p

p2
�p· �γ ln

(
�

| �p|
)

/p

p2
γ 0 /k + /p − /q

(k + p − q)2
γ 0. (A80)

We may now use the identity

/k�k· �γ /k = −(
k2

0 − v2
F |�k|2)�k· �γ + 2vF |�k|2k0γ

0 (A81)

to express the above as


3e(q) = i
g6

64π

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q − �k||�k + �p|
1

k2p4(k + p − q)2

(
k0γ

0 − vF
�k· �γ )[−(

p2
0 − v2

F | �p|2) �p· �γ + 2vF | �p|2p0γ
0
]

× [(k0 + p0 − q0)γ 0 − vF (�k + �p − �q)· �γ ] ln

(
�

| �p|
)

. (A82)

Evaluation of the k0 and p0 integrals is similar to the calculation of 
3b; the result is


3e(q) = i
g6

64π

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�k + �p| ln

(
�

| �p|
) [

2vF | �p|2B̃1γ
0 − 2v2

F | �p|2B̃2�k· �γ − 2v2
F | �p|2B̃3(�k + �p − �q)· �γ

− 2v3
F | �p|2B̃4γ

0�k· �γ (�k + �p − �q)· �γ + B̃5 �p· �γ + vF B̃6γ
0�k· �γ �p· �γ + vF B̃7γ

0 �p· �γ (�k + �p − �q)· �γ
− v2

F B̃8�k· �γ �p· �γ (�k + �p − �q)· �γ ]
, (A83)

where the B̃i are identical to the corresponding Bi in the calculation of 
3b, except that �k and �p are interchanged. We now extract
the temporal and spatial components, obtaining


3e,0(q) = i
g6

64π
q0

∫
d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�k + �p| ln

(
�

| �p|
)

vF | �p|(|�k| + | �p| + |�k + �p − �q|)
2
[
q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2

×
[

1 − �p·(�k + �p − �q)

| �p||�k + �p − �q| +
�k· �p

|�k|| �p| −
�k·(�k + �p − �q)

|�k||�k + �p − �q|

]
(A84)

and


3e,i(q) = i
g6

64π

qi

|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

1

|�q − �k||�k + �p|
| �p|[q2

0 − v2
F (|�k| + | �p| + |�k + �p − �q|)2

]
4
[
q2

0 + v2
F (|�k| + | �p| + |�k + �p − �q|)2

]2

×
[ �p·�q

| �p| − (�k + �p − �q)·�q
|�k + �p − �q| +

�k·�q
|�k| − | �p|2�k·�q − |�q|2�k· �p − |�k|2 �p·�q + 2(�k· �p)(�k·�q)

|�k|| �p||�k + �p − �q|

]
ln

(
�

| �p|
)

. (A85)

a. Extracting the divergence of the temporal component

As before, we begin by extracting the divergence of the
temporal component. In this case, we simply set �q = 0 in the
integrand to do so:


3e,0(q)

≈ i
g6

128π
q0

∫
d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|

× vF (|�k| + | �p| + |�k + �p|)
[q2

0 + v2
F (|�k| + | �p| + |�k + �p|)2]2

×
[

1 − �p·(�k + �p)

| �p||�k + �p| +
�k· �p

|�k|| �p| −
�k·(�k + �p)

|�k||�k + �p|

]
ln

(
�

| �p|
)

= i
g6

128π
q0(�̃1 − �̃2 − �̃3 + �̃4), (A86)

where the �̃i are given by
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�̃1 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|S(�k, �p) ln

(
�

| �p|
)

, (A87)

�̃2 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|S(�k, �p)

�k·(�k + �p)

|�k||�k + �p|

× ln

(
�

| �p|
)

, (A88)

�̃3 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|S(�k, �p)

�p·(�k + �p)

| �p||�k + �p|

× ln

(
�

| �p|
)

, (A89)

�̃4 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|S(�k, �p)

�k· �p
|�k|| �p| ln

(
�

| �p|
)

,

(A90)

with

S(�k, �p) = vF (|�k| + | �p| + |�k + �p|)[
q2

0 + v2
F (|�k| + | �p| + |�k + �p|)2

]2 . (A91)

We now rewrite the integral over �k in terms of elliptic
coordinates, similarly to how we did before; the result is

�̃1 = 1

2π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ),

�̃2 = 1

2π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)

cosh2 μ+ cos2 ν − 2

cosh2 μ− cos2 ν
,

�̃3 = 1

2π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)

1 + cosh μ cos ν

cosh μ+ cos ν
,

�̃4 = 1

2π2

∫ ∞

0
dμ

∫ 2π

0
dν f (μ)

cosh μ cos ν − 1

cosh μ− cos ν
, (A92)

where f (μ) is defined in Eq. (A22). If we now evaluate the ν

integrals, we obtain

�̃1 = 1

π

∫ ∞

0
dμf (μ),

�̃2 = 1

π

∫ ∞

0
dμf (μ)(2 tanh μ− 1),

�̃3 = 1

π

∫ ∞

0
dμf (μ)e−μ,

�̃4 = −�̃3. (A93)

Combining these results together, and using the asymptotic
form of f (μ) derived earlier, we obtain


3e,0(q)

= i
g6

128π

q0

8π2v3
F

∫ ∞

0
dμ

2(1 − tanh μ− e−μ)

(1 + cosh μ)3
ln2

(
vF �

|q0|
)

= 1

8

(
41

60
− ln 2

)
iα3q0 ln2

(
vF �

|q0|
)

→ 1

8

(
41

60
− ln 2

)
iα3q0 ln2

(
�

|�q|
)

. (A94)

b. Extracting the divergence of the spatial component

We now look at the spatial component. If we once again
shift �k by �q and then expand the integrand to linear order in �q,
we obtain


3e,i(q)

≈ i
g6

256π

qi

|�q|2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|
|�k||�k + �p|

[
1 − (�k + �p)·�q

|�k + �p|2

]

×
[
Q(�k, �p) + R(�k, �p)

�k·�q
|�k|

] { �p·�q
| �p| − (�k + �p)·�q

|�k + �p|

+
[

(�k + �q)·�q
|�k| − | �p|(�k + �q)·�q

|�k||�k + �p| + |�q|2(�k + �q)· �p
|�k|| �p||�k + �p|

− 2[(�k + �q)· �p][(�k + �q)·�q)

|�k|| �p||�k + �p|

] (
1 −

�k·�q
|�k|2

)

+ |�k| �p·�q
| �p||�k + �p|

(
1 +

�k·�q
|�k|2

) }
ln

(
�

| �p|
)

. (A95)

The functions Q(�k, �p) and R(�k, �p) were defined in Eq. (A33).
Upon multiplying the integrand out, we again obtain terms that
appear to be linearly divergent, but turn out to be zero. We now
enumerate the logarithmically divergent terms, of which there
are now 17:

�̃1 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|

[
|�q|2
|�k| − (�k·�q)2

|�k|3

]

× ln

(
�

| �p|
)

, (A96)

�̃2 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
| �p|

|�k + �p|

×
[

|�q|2
|�k| − (�k·�q)2

|�k|3

]
ln

(
�

| �p|
)

, (A97)

�̃3 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
|�q|2�k· �p

|�k|| �p||�k + �p| ln

(
�

| �p|
)

,

(A98)

�̃4 = −2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p|

ln

(
�

| �p|
)

+ 2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|

× (�k· �p)(�k·�q)2

|�k|3| �p||�k + �p| ln

(
�

| �p|
)

− 2�̃3, (A99)

�̃5 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
(�k·�q)( �p·�q)

|�k|| �p||�k + �p| ln

(
�

| �p|
)

,

(A100)
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�̃6 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
( �p·�q)[(�k + �p)·�q]

| �p||�k + �p|2

× ln

(
�

| �p|
)

, (A101)

�̃7 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
[(�k + �p)·�q]2

|�k + �p|3 ln

(
�

| �p|
)

,

(A102)

�̃8 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
(�k·�q)[(�k + �p)·�q]

|�k||�k + �p|2

× ln

(
�

| �p|
)

, (A103)

�̃9 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
| �p|(�k·�q)[(�k + �p)·�q]

|�k||�k + �p|3

× ln

(
�

| �p|
)

, (A104)

�̃10 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
|�k|( �p·�q)[(�k + �p)·�q]

| �p||�k + �p|3

× ln

(
�

| �p|
)

, (A105)

�̃11 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|
(�k·�q)( �p·�q)

|�k|| �p| ln

(
�

| �p|
)

,

(A106)

�̃12 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|
(�k·�q)[(�k + �p)·�q]

|�k||�k + �p|

× ln

(
�

| �p|
)

, (A107)

�̃13 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|

( �k·�q
|�k|

)2

ln

(
�

| �p|
)

,

(A108)

�̃14 = −
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|
| �p|

|�k + �p|

( �k·�q
|�k|

)2

× ln

(
�

| �p|
)

, (A109)

�̃15 =
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|
(�k·�q)( �p·�q)

| �p||�k + �p| ln

(
�

| �p|
)

,

(A110)

�̃16 = 2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|Q(�k, �p)

|�k||�k + �p|
(�k· �p)(�k·�q)[(�k + �p)·�q]

|�k|| �p||�k + �p|3

× ln

(
�

| �p|
)

, (A111)

�̃17 = −2
∫

d2k

(2π )2

∫
d2p

(2π )2

| �p|R(�k, �p)

|�k||�k + �p|
(�k· �p)(�k·�q)2

|�k|2| �p||�k + �p|

× ln

(
�

| �p|
)

. (A112)

We now rewrite the �p integral in terms of elliptic coordinates.
Upon performing the ν and θ integrals, we obtain

�̃1 = |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k|Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
×

(
cosh2 μ+ 1

2

)
, (A113)

�̃2 = − |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
×

(
8 coth μ− 4e−2μ + 1

2
cosh 2μ − 4

)
, (A114)

�̃3 = |�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
×(2 + e−2μ − 4 coth μ), (A115)

�̃4 = −2�̃3, (A116)

�̃5 = 1
2 �̃3, (A117)

�̃6 = − |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× (2e−μ + cosh μ), (A118)

�̃7 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× (4 coth μ− 3) cosh μ, (A119)

�̃8 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× (1 + 2e−2μ), (A120)

�̃9 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× (2 + 3e−2μ − 4 coth3 μ), (A121)

�̃10 = −|�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× (2 coth3 μ− 1), (A122)

�̃11 = − 3|�q|2
64π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
× cosh μ, (A123)
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�̃12 = − |�q|2
64π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
× (2 cosh 3μ − 8 cosh2 μ sinh μ+ cosh μ), (A124)

�̃13 = |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
×

(
cosh2 μ+ 1

2

)
, (A125)

�̃14 = − |�q|2
32π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
×

(
8 coth μ− 4e−2μ + 1

2
cosh 2μ − 4

)
, (A126)

�̃15 = |�q|2
16π2

∫ ∞

0
dμ

∫ �

0
d|�k| R̃(μ,|�k|)|�k|2 ln

(
�

|�k|

)
× (2 + e−2μ − 4 coth μ), (A127)

�̃16 = |�q|2
8π2

∫ ∞

0
dμ

∫ �

0
d|�k| Q̃(μ,|�k|)|�k| ln

(
�

|�k|

)
× [2 coth μ(2 coth2 μ− 1) − e−2μ − 1], (A128)

�̃17 = −2�̃15, (A129)

where Q̃(μ,|�k|) and R̃(μ,|�k|) were defined in Eq. (A50). We
may now do the integrals on �k using Eqs. (A67) and (A68).

Doing so and collecting all of the results, we obtain


3e,i(q)

= 1

128
iα3vF qi

∫ ∞

0
dμ

×
[
−−1 + 16/(1 + eμ) − 4e−2μ(−2 + 3eμ)

2(1 + cosh μ)2

+ 1 − e−μ + 2e−2μ − e−3μ − cosh μ

(1 + cosh μ)3

]
ln2

(
vF �

|q0|
)

= 1

128

(
247

15
− 24 ln 2

)
iα3vF qi ln2

(
vF �

|q0|
)

→ 1

128

(
247

15
− 24 ln 2

)
iα3vF qi ln2

(
�

|�q|
)

. (A130)

The full leading divergence of 
3e(q) is thus


3e(q) =
[

1

8

(
41

60
− ln 2

)
q0γ

0

+ 1

128

(
247

15
− 24 ln 2

)
vF �q· �γ

]

× iα3 ln2

(
�

|�q|
)

. (A131)

4. Self-energy correction to two-loop rainbow diagram

The diagram shown in Fig. 20 evaluates to


3g(q) = −
∫

d3k

(2π )3
γ 0G0(k)
1(k)G0(k)
1(k)G0(k)γ 0D0(q − k)

= − ig6

512π2

∫
d3k

(2π )3
γ 0 /k�k· �γ /k�k· �γ /k

k6
γ 0 ln2(�/|�k|) 1

|�q − �k|

= ig6

512π2

∫
d3k

(2π )3
[k0γ

0 − vF
�k· �γ ][k0γ

0 + vF
�k· �γ ][k0γ

0 − vF
�k· �γ ]

|�k|2
k6

ln2(�/|�k|) 1

|�q − �k|

= ig6

512π2

∫
d3k

(2π )3
[k0γ

0 − vF
�k· �γ ]

[
k2

0 + 2vF
�k· �γ k0γ

0 − v2
F |�k|2] |�k|2

k6
ln2(�/|�k|) 1

|�q − �k|

= ig6

512π2

∫
d3k

(2π )3

[
k3

0γ
0 − 3vF k2

0
�k· �γ − 3v2

F k0|�k|2γ 0 + v3
F |�k|2�k· �γ ] × |�k|2

k6
ln2(�/|�k|) 1

|�q − �k|

= ig6

512π2

∫
d3k

(2π )3

v3
F |�k|2 − 3vF k2

0

k6
�k· �γ |�k|2 ln2(�/|�k|) 1

|�q − �k| . (A132)

In the final step, we discarded the terms odd in k0 since these terms will vanish identically under the k0 integration. In fact, the
terms even in k0 also vanish under the integration∫

dk0
v3

F |�k|2 − 3vF k2
0

k6
= 0. (A133)

Therefore, the diagram vanishes identically:


3g(q) = 0. (A134)
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FIG. 20. Self-energy correction to the two-loop rainbow diagram.

5. Self-energy correction to one-loop bubble diagram

We now turn our attention to the diagram shown in Fig. 21,
whose value will be denoted by 
3i(q). Its value is given by


3i(q) =
∫

d3k

(2π )3
iγ 0 g2

2|�q − �k|�B(q − k)
g2

2|�q − �k|

× i/k

k2

1(k)

i/k

k2
iγ 0, (A135)

where �B(q) is the value of the bubble diagram given in
Eq. (32), and 
1(q) is the one-loop self-energy given in
Eq. (19). Substituting these into 
3i(q), we obtain


3i(q) = −i
g6

512π
N

∫
d3k

(2π )3

1

k4
√

(q − k)2

×γ 0/k�k · �γ /kγ 0 ln

(
�

|�k|

)
. (A136)

After some algebra, we may show that

γ 0/k�k · �γ /kγ 0 = (
k2

0 − v2
F |�k|2)�k · �γ + 2vF |�k|2k0γ

0, (A137)

so that


3i(q) = −i
g6

512π
N

∫
d3k

(2π )3

1

k4
√

(q − k)2

[(
k2

0 − v2
F |�k|2)

× �k· �γ + 2vF |�k|2k0γ
0
]

ln

(
�

|�k|

)
. (A138)

We are again interested in finding the leading divergence, so
we expand 1√

(q−k)2
as follows:

1√
(q − k)2

= 1

k

(
1 + k · q

k2

)
. (A139)

Substituting this expansion into 
3i(q) and keeping only terms
that are even in k0, we obtain


3i(q) = −i
g6

512π
N

∫
d3k

(2π )3

1

k7

[
2vF |�k|2k2

0q0γ
0

+ v2
F

(
k2

0 − v2
F |�k|2)(�k · �q)(�k · �γ )

]
ln

(
�

|�k|

)
.

(A140)

In the second term, we note that the cross terms in the product
(�k · �q)(�k · �γ ) are odd functions of each component of �k, and
that the entire integral is symmetric under the exchange of the

FIG. 21. Self-energy correction to bubble diagram.

two components of �k, i.e., under kx ↔ ky . As a result, we may
make the replacement

(�k · �q)(�k · �γ ) = 1
2 |�k|2 �q · �γ , (A141)

thus obtaining


3i(q) = −i
g6

512π
N

∫
d3k

(2π )3

1

k7

[
2vF |�k|2k2

0q0γ
0

+ 1

2
v2

F |�k|2(k2
0 − v2

F |�k|2)�q · �γ
]

ln

(
�

|�k|

)
.

(A142)

We may now do the integrals over k0, obtaining


3i(q) = −i
g6

512π

1

15πvF

N (4q0γ
0 − 3vF �q · �γ )

×
∫

d2k

(2π )2

1

(vF |�k|)2
ln

(
�

|�k|

)
. (A143)

We may now easily evaluate the remaining integral, obtaining


3i(q) = −i
N

60

g6

512π3v3
F

(4q0γ
0 − 3vF �q · �γ ) ln2

(
�

|�q|
)

,

(A144)

where, once again, we assumed an infrared cutoff given by |�q|.
Rewriting this in terms of α, we finally arrive at


3i(q) = −i
Nα3

480
(4q0γ

0 − 3vF �q · �γ ) ln2

(
�

|�q|
)

. (A145)

6. Bubble diagram correction to one-loop electron self-energy

We now calculate the diagram shown in Fig. 22, which is
similar in appearance to the previous case. We will denote
this diagram by 
3j (q). It contains the divergent subdiagram
shown in Fig. 8, which we denoted by 
2c(q) and expressed
explicitly in Eq. (187). The value of 
3j (q) is


3j (q) =
∫

d3k

(2π )3
γ 0 g2

2|�q − �k|
/k

k2

2c(k)

/k

k2
γ 0. (A146)

To evaluate this expression, we will find the following
identities useful:

γ 0/kk0γ
0/kγ 0 = (

k2
0 − v2

F |�k|2)k0γ
0 − 2vF k2

0
�k· �γ , (A147)

γ 0/k�k· �γ /kγ 0 = 2vF |�k|2k0γ
0 + (

k2
0 − v2

F |�k|2)�k· �γ . (A148)

Using these identities, along with the above expression for

2c(q), we obtain, after dropping terms that will integrate to

FIG. 22. Bubble diagram correction to one-loop electron self-
energy.
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zero by virtue of being odd functions of k0,


3j (q) = 1

6
Nπiα3vF

∫
d3k

(2π )3

1

k4|�q − �k|
(−3k2

0 + v2
F |�k|2)

×vF
�k· �γ ln

(
�

|�k|

)
. (A149)

Evaluating the k0 integral, we obtain


3j (q) = − 1

12
Nπiα3

∫
d2k

(2π )2

1

|�k||�q − �k|

× vF
�k · �γ ln

(
�

|�k|

)
. (A150)

As with the first diagram considered here, we note that the
integrand is odd in the component of �k perpendicular to �q, and
thus make the replacement

�k · �γ →
�k · �q
|�q|2 �q · �γ , (A151)

as before. The integral now becomes


3j (q) = − 1

12
Nπiα3

∫
d2k

(2π )2

1

|�k||�q − �k|
�k·�q
|�q|2

× vF �q· �γ ln

(
�

|�k|

)
. (A152)

We now expand 1
|�q−�k| in powers of �q. As before, the leading

term drops out because it gives us a term that is odd in �k, so that
the subleading term is the lowest-order nonzero contribution:


3j (q) = − 1

12
Nπiα3

∫
d2k

(2π )2

(�k·�q)2

|�k|4|�q|2 ln

(
�

|�k|

)
vF �q· �γ .

(A153)

We now evaluate the remaining integral on �k, obtaining


3j (q) = − i

96
Nα3 ln2

(
�

|�q|
)

vF �q · �γ . (A154)

We once again assumed a lower cutoff of |�q| on the magnitude
of �k to regularize the infrared divergence of the integral.

7. Self-energy vacuum polarization correction
to electron self-energy

The three-loop self-energy vacuum polarization correction
to the electron self-energy is shown in Fig. 23. This diagram
evaluates to


3l(q) = −2
∫

d3k

(2π )3
γ 0G0(q − k)γ 0D0(k)2�SE(k),

(A155)

FIG. 23. Three-loop self-energy vacuum polarization correction
to the electron self-energy.

where we have included an overall factor of 2 to account for the
symmetry of the diagram. Recall that the self-energy correction
to the vacuum polarization was found to be [Eq. (45)]

�SE(k) = Nα|�k|
32πvF

[
π

2

v3
F |�k|3
k3

ln(�/|�k|) + Ia(ik0/vF |�k|)
]
,

(A156)

where the function Ia(y) was given in Eq. (48). We begin by
focusing on the term involving the logarithmic divergence in
�SE(q):


3l,div(q) = − iNαg4v2
F

128

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
γ 0

× 1

|�k|2
|�k|4
k3

ln(�/|�k|). (A157)

We are only interested in the ultraviolet divergence of this
integral, so we expand the denominator:

1

(q − k)2
≈ 1

k2

(
1 + 2

k·q
k2

)
. (A158)

As usual, a potential linear divergence cancels identically due
to the antisymmetry under k → − k. The leading divergence
is thus logarithmic:


3l,div(q)

= − iNαg4v2
F

128

∫
d3k

(2π )3
γ 0

[
/q − 2

k2
0q0γ

0 + v3
F (�k· �γ )(�k·�q)

k2

]

× γ 0 |�k|2
k5

ln(�/|�k|). (A159)

In the second term inside the square brackets, we have kept
only those terms which are symmetric under k0 → − k0. The
k0 integration can be done straightforwardly, with the result


3l,div(q)

= − iNπα3

16

∫
d2k

(2π )2
γ 0

[
4

3
/q − 8

15
q0γ

0 − 32

15
vF

(�k· �γ )(�k·�q)

|�k|2
]

× γ 0 ln(�/|�k|)
|�k|2 . (A160)

In the third term inside the square brackets, we may keep only
the terms symmetric under k1 → − k1. This, in combination
with the symmetry under swapping k1 ⇔ k2, allows us to make
the replacement (�k· �γ )(�k·�q) → 1/2|�k|2 �q· �γ , with the result


3l,div(q)

= − iNπα3

16

∫
d2k

(2π )2
γ 0

[
4

3
/q − 8

15
q0γ

0 − 16

15
vF �q· �γ

]
× γ 0 ln(�/|�k|)

|�k|2

= − iNπα3

16

(
4

5
q0γ

0 − 4

15
vF �q· �γ

) ∫
d2k

(2π )2

ln(�/|�k|)
|�k|2

= − iNα3

240
(3q0γ

0 − vF �q· �γ ) ln2(�/|�q|). (A161)
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FIG. 24. Two-bubble RPA correction to electron self-energy.

In the final step, we made the assumption that the infrared
divergence of the final integration is regulated by |�q|.

8. Two-bubble RPA correction to electron self-energy

To give an example of a third-order simple logarithmic (as
opposed to double logarithmic) divergence, we will calculate
the two-bubble RPA diagram shown in Fig. 24, the value
of which we denote by 
3p(q). This diagram can be easily
evaluated by starting from the full RPA result, which was
originally obtained in Refs. [28,43]:


RPA(q) = 4i

Nπ2
[f0(λ)q0γ

0 + f1(λ)vF �q · �γ ] ln(�/|�q|),
(A162)

where for λ < 1, the functions f0 and f1 are given by

f0(λ) ≡ − 2 − λ2

λ
√

1 − λ2
arccos λ − 2 + π

λ
,

f1(λ) ≡ −
√

1 − λ2

λ
arccos λ − 1 + π

2λ
, (A163)

and we have defined an effective coupling

λ ≡ g2N

16vF

= πNα

4
. (A164)

We can extract the third-order contribution to 
RPA(q) by
expanding f0 and f1 to third order in λ:

f0(λ) = λ2

3
− πλ3

8
+ O(λ4),

f1(λ) = πλ

4
− λ2

3
+ πλ3

16
+ O(λ4). (A165)

The third-order terms then yield


3p(q) = iπ2α3

32
[−q0γ

0 + 2vF �q · �γ ] ln(�/|�q|). (A166)

APPENDIX B: ELECTRON SELF-ENERGY
WITH ZERO-RANGE INTERACTION

Given the complexity of graphene perturbation theory with
the Coulomb interaction, it is tempting to try replacing this
long-range interaction with an effective short-range one in an
attempt to arrive at a simpler theory. In particular, we will
consider (2+1)-dimensional Dirac electrons interacting via a
delta-function contact interaction instead of the long-range
Coulomb repulsion. In this case, the Feynman rules remain
the same as before, except that we now use a dashed line to
denote the propagator associated with the contact interaction,
with the value of this propagator given by

Dzr
0 = g2r0

2
. (B1)

FIG. 25. One-loop correction to the electron self-energy for zero-
range interaction.

Here, r0 is a scale factor which controls the strength of the
interaction and which preserves the dimensionality of the
propagator relative to the 2D Coulomb interaction case. We
will see that while inserting this contact interaction in place of
the Coulomb force does offer some algebraic simplification in
the course of computing diagrams, it does so at the expense
of introducing new conceptual complexities related to the
physicality and renormalizability of the resulting theory.

1. One-loop electron self-energy for zero-range
interaction and an ambiguity

The diagram for the one-loop electron self-energy in the
case of a zero-range contact interaction is shown in Fig. 25.
This diagram evaluates to


zr
1 (q) = −

∫
d3k

(2π )3
γ 0G0(k)γ 0Dzr

0

= − ig2r0

2

∫
d3k

(2π )3
γ 0 /k

k2
γ 0 = 0. (B2)

In the last step, we determined that the integral over k vanishes
because the integrand is an odd function of k.

This argument may be too fast, however. Consider the
following expression:


zr
1 (q) = −

∫
d3k

(2π )3
γ 0G0(q − k)γ 0Dzr

0

= − ig2r0

2

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
γ 0. (B3)

This expression should be equally valid as it arises simply from
a different definition of the loop momentum k. Performing the
integration over k0, we find


zr
1 (q) = ig2r0

4

∫
d2k

(2π )2

(�q − �k)· �γ
|�q − �k| . (B4)

Note that if at this point we changed variables �k → �q − �k, we
would again conclude that the integral vanishes because the
integrand would become odd. There is a problem here though
because under such a coordinate transformation, the limits of
integration (which have so far been kept implicit) will also
change because of the implicit momentum cutoff. Indeed, if
we do not make this coordinate change and proceed to evaluate
the integral, we find


zr
1 (q) = ig2r0

4

∫
d2k

(2π )2

(�q − �k)· �γ
|�q − �k|

≈ ig2r0

4

∫
d2k

(2π )2

1

|�k|

[
�q· �γ − (�k· �γ )(�k·�q)

|�k|2

]

= iαr0kc

4
vF �q· �γ . (B5)

This result is not only nonzero, it is linearly divergent.
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This discrepancy appears to be due to the momentum
independence of the photon propagator and can be understood
from an even simpler toy model. Suppose that we have a
one-dimensional theory where the photon propagator is again
momentum independent, but now the fermion propagator
scales linearly with momentum: G(k) ∼ k. In this case, the
one-loop self-energy would be given by


 ∼
∫

dk G(k) ∼
∫ kc

− kc

dk k = 0. (B6)

However, we could just as well have defined the fermion
propagator to carry momentum q − k to obtain


 ∼
∫

dk G(q − k) ∼
∫ kc

− kc

dk(q − k) = 2qkc. (B7)

Note that these two integrals are not related by a coordinate
transformation because the integration limits remained the
same. In each case, we chose the cutoff to be the maximal
value of k, but the definition of k is different in each case, and
it is unclear which definition should be used. The same sort of
behavior arises in the (2+1)-dimensional theory, suggesting
that this theory may be unphysical.

One possible way to lift this ambiguity is to modify the
interaction slightly. We do this by reinterpreting kc as a cutoff
scale associated with the interaction itself and by redefining
the photon propagator as

Dzr
0 (q) = g2r0

2
θ (kc − |�q|), (B8)

so that the interaction strictly vanishes about the momentum
scale kc. Using this new definition of the photon propagator,
for the one choice of loop momentum k we now find (after
performing the integration over k0)


zr
1 (q) = ig2r0

16π2

∫
d2k

(�q − �k)· �γ
|�q − �k| θ (kc − |�k|), (B9)

while for the other choice of k we obtain


zr
1 (q) = ig2r0

16π2

∫
d2k

�k· �γ
|�k| θ (kc − |�q − �k|). (B10)

Since we have a cutoff coming from the interaction itself, it
is no longer necessary to include a cutoff in the integration
limits. The two results are then manifestly equivalent since we
may perform the coordinate transformation �k → �q − �k in the
latter integral to obtain the former. Either integral can then be
performed by expanding the denominator in the large-|�k| limit
as before, yielding


zr
1 (q) = iαr0kc

4
vF �q· �γ . (B11)

Therefore, for this modified contact interaction, we unambigu-
ously find a linear divergence in the one-loop correction to the
electron self-energy. We will continue to use the modified
contact interaction throughout the remainder of this section.

2. Two-loop rainbow correction to self-energy
for zero-range interaction

The two-loop rainbow diagram correction to the electron
self-energy is shown in Fig. 26. The contribution from this

FIG. 26. Two-loop rainbow correction to the electron self-energy
for zero-range interaction.

diagram is given by


zr
2b(q)

= −
∫

d3k

(2π )3
γ 0G0(q − k)
1(q − k)G0(q − k)γ 0Dzr

0 (k)

= iπα2r2
0 kcv

2
F

2

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
(�q − �k)· �γ /q − /k

(q − k)2
γ 0

× θ (kc − |�k|)

= iπα2r2
0 kcv

2
F

2

∫
d3k

(2π )3

1

k4
γ 0

[−k2
0 + v2

F |�k|2]�k· �γ γ 0

× θ (kc − |�q − �k|) = 0. (B12)

The contribution vanishes identically due to the integration
over k0.

3. Two-loop bubble correction to electron self-energy
for zero-range interaction

The diagram for the two-loop bubble correction to the
electron self-energy in the case of the zero-range interaction
is shown in Fig. 27. This diagram evaluates to


zr
2c(q) = −

∫
d3k

(2π )3
γ 0G0(q − k)γ 0�B(k)[Dzr

0 (k)]2

= iNg4r2
0

32

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
γ 0 |�k|2√

k2
θ (kc − |�k|).

(B13)

Here, we have inserted the value for the one-loop vacuum
polarization function �B (k) computed earlier in Eq. (32). As in
the case of the two-loop vertex correction considered above, we
may extract the divergent terms by expanding the denominator:

1

(q − k)2
= 1

k2

{
1 + 2

k·q
k2

+ 4
(k·q)2

k4
− q2

k2

+ 4
k·q
k6

[2(k·q)2 − k2q2]

}
+ O(1/k6). (B14)

FIG. 27. Two-loop bubble correction to the electron self-energy
for zero-range interaction.
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The first two terms of this expansion produce a quadratic
divergence:


zr
2c,quad (q)

= − iNg4r2
0

32

∫
d3k

(2π )3

|�k|2
k3

(
1 + 2

k·q
k2

) (
k0γ

0 − vF
�k· �γ

− q0γ
0 + vF �q· �γ )

θ (kc − |�k|)

= − iNg4r2
0

32

∫
d3k

(2π )3

|�k|2
k3

{
−q0γ

0 + vF �q· �γ + 2
k2

0

k2
q0γ

0

− 2v3
F

k2
(�k·�q)(�k· �γ )

}
θ (kc − |�k|)

= − iNg4r2
0

32

∫
d3k

(2π )3

|�k|2
k3

{
−q0γ

0 + vF �q· �γ + 2
k2

0

k2
q0γ

0

− v2
F |�k|2
k2

vF �q· �γ
}
θ (kc − |�k|). (B15)

The k integrals were computed above, and we quote them
again here for convenience:∫

d3k

(2π )3

v2
F |�k|2
k3

θ (kc − |�k|) = 1

(2π )3
2
∫

d2k = k2
c

4π2
,∫

d3k

(2π )3

v2
F |�k|2k2

0

k5
θ (kc − |�k|) = 1

(2π )3

2

3

∫
d2k = k2

c

12π2
,∫

d3k

(2π )3

v4
F |�k|4
k5

θ (kc − |�k|) = 1

(2π )3

4

3

∫
d2k = k2

c

6π2
.

(B16)

Plugging in these results, we obtain


zr
2c,quad (q)

= − iNg4r2
0 k2

c

384π2v2
F

{3(−q0γ
0 + vF �q· �γ ) + 2q0γ

0 − 2vF �q· �γ }

= iα2r2
0 k2

c

12
(q0γ

0 − vF �q· �γ ). (B17)

Combining this result with the other contributions to the
quadratic divergence of the two-loop self-energy, we have


zr
2,quad (q) = 
zr

2a,quad (q) + 
zr
2c,quad (q)

= iα2r2
0 k2

c

32
(3q0γ

0 − 2vF �q· �γ ). (B18)

The remaining terms in the expansion shown in Eq. (B14)
give rise to a logarithmic divergence:


zr
2c, ln(q)

= − iNg4r2
0

32

∫
d3k

(2π )3

|�k|2
k3

{ (
4

(k·q)2

k4
− q2

k2

)
× (−q0γ

0 + vF �q· �γ ) + 4
k·q
k6

[2(k·q)2 − k2q2]

× (k0γ
0 − vF

�k· �γ )

}
θ (kc − |�k|). (B19)

The first half of the integral has been computed already in the
course of computing 
zr

2a, ln(q):

− iNg4r2
0

32

∫
d3k

(2π )3

|�k|2
k3

(
4

(k·q)2

k4
− q2

k2

)
(−q0γ

0 + vF �q· �γ )

× θ (kc − |�k|)
= −4NT1

= − iNα2r2
0

30v2
F

(q0γ
0 − vF �q· �γ )

(
q2

0 − 3v2
F |�q|2) ln(kc/|�q|).

(B20)

The remainder of the integral can be computed with the help
of the following results:

I1 = 8
∫

d3k

(2π )3

|�k|2
k9

(k·q)3k0γ
0θ (kc − |�k|)

= 2

35π2v4
F

(4q2
0 + v2

F |�q|2)q0γ
0 ln(kc/|�q|), (B21)

I2 = −8vF

∫
d3k

(2π )3

|�k|2
k9

(k·q)3�k· �γ θ (kc − |�k|)

= − 8

35π2v4
F

(2q2
0 + 3v2

F |�q|2)vF �q· �γ ln(kc/|�q|), (B22)

I3 = −4q2
∫

d3k

(2π )3

|�k|2
k7

(k·q)k0γ
0θ (kc − |�k|)

= − 4

15π2v4
F

q2q0γ
0 ln(kc/|�q|), (B23)

I4 = 4vF q2
∫

d3k

(2π )3

|�k|2
k7

(k·q)(�k· �γ )θ (kc − |�k|)

= 8

15π2v4
F

q2vF �q· �γ ln(kc/|�q|). (B24)

The logarithmic divergence is then


zr
2c, ln(q) = −4NT1 − iNg4r2

0

32

∑
i

Ii

= − iNα2r2
0

210v2
F

[(
3q2

0 − 43v2
F |�q|2)q0γ

0

+ (
q2

0 + 5v2
F |�q|2)vF �q· �γ ]

ln(kc/|�q|). (B25)

Combining the results from the different diagrams then gives
for the full logarithmic divergence at second order


zr
2, ln(q) = 
zr

2a, ln(q) + 
zr
2c, ln(q)

= iα2r2
0

840v2
F

[(−25q2
0 + 335v2

F |�q|2)q0γ
0

− (
13q2

0 + 37v2
F |�q|2)vF �q· �γ ]

ln(kc/|�q|). (B26)
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FIG. 28. n-bubble correction to the electron self-energy for zero-
range interaction.

The complete divergence of the self-energy for the zero-range
interaction up to two loops is then


zr
2,div(q) = iα2r2

0 k2
c

32
(3q0γ

0 − 2vF �q· �γ )

+ iα2r2
0

840v2
F

[(−25q2
0 + 335v2

F |�q|2)q0γ
0

− (
13q2

0 + 37v2
F |�q|2)vF �q· �γ ]

ln(kc/|�q|). (B27)

4. Many-bubble correction to electron self-energy
for zero-range interaction

The diagram corresponding to the n-bubble correction to the
electron self-energy in the case of the zero-range interaction
is shown in Fig. 28. This diagram evaluates to


zr
n,c(q) = −

∫
d3k

(2π )3
γ 0G0(q − k)γ 0[�B(k)]n[Dzr

0 (k)]n+ 1

= (−1)n + 1iNng2(n + 1)rn+ 1
0

24n + 1

∫
d3k

(2π )3
γ 0 /q − /k

(q − k)2
γ 0

×|�k|2n

kn
θ (kc − |�k|). (B28)

The (q − k)2 factor in the denominator can be expanded
in the large-k limit precisely as in the case of the single-
bubble correction considered in the previous section, and we
obtain


zr
n,c(q)

≈ (−1)niNng2(n + 1)rn+ 1
0

24n + 1

∫
d3k

(2π )3

|�k|2n

kn + 2

×
{

−q0γ
0 + vF �q· �γ + 2

k2
0

k2
q0γ

0 − v2
F |�k|2
k2

vF �q· �γ
}

× θ (kc − |�k|). (B29)

Introducing a momentum cutoff kc, the integrals over k are
easily computed:∫

d3k

(2π )3

|�k|2n

kn+ 2
θ (kc − |�k|)

= 1

(2π )3

√
π�

(
1 + n

2

)
�

(
1 + n

2

)
vn + 1

F

∫
d2k|�k|n− 1θ (kc − |�k|)

= �
(

1 + n
2

)
kn + 1
c

4π3/2(n+ 1)�
(
1 + n

2

)
vn + 1

F

, (B30)

∫
d3k

(2π )3

|�k|2nk2
0

kn + 4
θ (kc − |�k|)

= 1

(2π )3

√
π�

(
1 + n

2

)
2�

(
2 + n

2

)
vn+ 1

F

∫
d2k|�k|n− 1θ (kc − |�k|)

= �
(

1 + n
2

)
kn+ 1
c

8π3/2(n+ 1)�
(
2 + n

2

)
vn + 1

F

, (B31)

∫
d3k

(2π )3

v4
F |�k|4
k5

θ (kc − |�k|)

= 1

(2π )3

√
π�

(
3 + n

2

)
�

(
2 + n

2

)
vn + 3

F

∫
d2k|�k|n− 1θ (kc − |�k|)

= �
(

3 + n
2

)
kn + 1
c

4π3/2(n+ 1)�
(
2 + n

2

)
vn + 3

F

. (B32)

Plugging these in and simplifying, we find the following result
for the leading-order divergence of the n-bubble self-energy
correction:


zr
n,c(q) ≈ (−1)n + 1iπn − 1

2 �
(

1 + n
2

)
αn + 1(r0kc)n+ 1

2n + 2(n+ 1)�
(
2 + n

2

)
× [nq0γ

0 − vF �q· �γ ]. (B33)

It is clear that the order of the divergence increases with
the number of bubbles in the diagram. Unless there is a
magical cancellation occurring at every order (we have seen
in previous sections that this does not seem to occur at second
order), the divergence structure of the theory appears to be
dramatically different from that of the Coulomb-interaction
theory.
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