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We investigate, within the envelope function approximation, the low-energy states of trions in graphene
quantum dots (QDs). The presence of valley pseudospin in graphene as an electron degree of freedom apart
from spin adds convolution to the interplay between exchange symmetry and the electron-electron interaction
in the trion, leading to new states of trions as well as a low-energy trion spectrum different from those in
semiconductors. Due to the involvement of valley pseudospin, it is found that the low-energy spectrum is
nearly degenerate and consists of states all characterized by having an antisymmetric (pseudospin) ⊗ (spin)
component in the wave function, with the spin (pseudospin) part being either singlet (triplet) or triplet
(singlet), as opposed to the spectrum in a semiconductor whose ground state is known to be nondegenerate
and always a spin singlet in the case of X− trions. We investigate trions in the various regimes determined
by the competition between quantum confinement and electron-electron interaction, both analytically and
numerically. The numerical work is performed within a variational method accounting for electron mass
discontinuity across the QD edge. The result for electron-hole correlation in the trion is presented. Effects
of varying quantum dot size and confinement potential strength on the trion binding energy are discussed. The
“relativistic effect” on the trion due to the unique relativistic type electron energy dispersion in graphene is also
examined.
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I. INTRODUCTION

Graphene is a hexagonal, single layer of carbon atoms. It has
risen as an important two-dimensional (2D) material for both
scientific research and wide applications [1]. With electrons
in graphene behaving as 2D Dirac fermions, it exhibits
various novel phenomena, including Klein tunneling and
unusual quantum Hall effect [1–3]. In addition, the graphene
band structure shows unique twofold valley degeneracy, thus
bringing a novel electron degree of freedom (DOF) known
as valley pseudospin which enriches physics as well as
applications. Specifically, the presence of valley pseudospin
leads to the valley-dependent physics [4–6] and the possibility
of valley-based electronics (valleytronics) [4–10].

Although the freestanding monolayer graphene is gapless,
it can also be made gapped, in principle, by growing it
on a lattice-matched h-BN substrate [11]. In either case,
conduction band minima and valence band maxima occur at
the Dirac points of Brillouin zone labeled K and K ′, with
the band structure near each point given by the relativistic
type dispersion—E(�k) = ±�vF |�k| (vF = Fermi velocity and
�k is defined relative to the Dirac point) in the gapless case
or E(�k) = ±

√
�2 + (�vF

�k)2 (2� = band gap) in the gapped
case. In addition to monolayer graphene, bilayer graphene
can also be made gapped by applying a dc bias between the
two graphene planes, with the resultant gap (2�) being given
by the dc voltage applied [12,13]. Since gapped graphene
is a semiconductor, confined structures such as quantum
wires or quantum dots (QDs) can be patterned in gapped
graphene as in ordinary semiconductors, by just placing metal
gates on graphene and applying gate voltages [14–16]. This
provides nanoscale band gap-based confinement of carriers
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and makes graphene a promising material for nanoelectronic
applications.

In this paper, we consider carriers of opposite charges
simultaneously confined in a QD in gapped graphene. Elemen-
tary few-particle states such as trions or excitons can be formed
here just as in semiconductors. Consisting of a small number
of interacting particles, these states are relatively simple
and reflect directly the effects of both quantum confinement
and the intercarrier interaction on the carriers. Therefore,
we expect that a theoretical study of such states will aid
future experiments that probe these few-particle states as a
way to characterize graphene-based nanostructures as well
as to investigate the few-electron interaction physics in the
structures. The theoretical study is one of the reasons for the
present paper. Additional reasons are stated below.

Among the few-particle systems, trions have been ex-
tensively studied in semiconductors both theoretically and
experimentally [17–21]. A trion is a bound state consisting
of three particles, e.g., two electrons and one hole in the
case of a X− trion or one electron and two holes in the
case of a X+ trion, and provides an interesting example
closely analogous to an ionized atom or molecule. For a trion
with heavy holes, it mimics the ion H− in the case of an
X− trion or H+

2 in the case of an X+ trion. Moreover, it
exhibits pronounced interplay between the trion energy and
the exchange symmetry (between the two electrons in an X−
trion, for example), which is largely absent in excitons. For
example, it is known that for an X− trion, a spin singlet is
the ground state and is lower in energy than a triplet, due
to the interplay [19]. Generally, there is also the interplay
between the trion binding energy and the dimensionality.
For example, the trion in a bulk semiconductor exhibits a
three-dimensional (3D) character with a small binding energy,
while in CdTe- [17–19], GaAs- [17,19,20], or ZnSe- [19] based
quantum wells, it is quasi-2D and shows a significant binding
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energy, due to the enhanced electron-hole interaction in
reduced dimension. Recently, the various interplays described
above have been revisited by Shiau et al. [21] based on an
efficient theoretical method employing electron-exciton basis
states for expanding the trion state, in the case of X− trions, for
example.

Graphene-based trions differ from semiconductor-based
ones in several aspects. First and foremost, carriers in graphene
carry both valley pseudospin and spin. Although the two types
of spin are shown to be strongly analogous to each other—both
carry magnetic moments in the case of gapped graphene, for
example [5,6,10]—the fact that they are independent DOFs
is expected to come into play in the formation of trions, for
instance, by adding interesting convolution to the interplay
between the exchange symmetry and the trion energy [22].
Specifically, this work finds that the involvement of valley
pseudospin results in new states of trions different from those
in semiconductors, and a low-energy trion state in graphene
can be a spin singlet or triplet, as opposed to the spin
singlet-only ground state in semiconductors.

The role of valley pseudospin as analyzed in this paper is
summarized in the following. Let us assume that a K-valley,
up-spin electron, denoted as K↑, is initially present in the QD,
and consider the optical excitation of an electron-hole pair in
the QD, in the presence of K↑. This excitation creates various
types of low-energy X− trions, with the following electron
parts, e.g., (K↑,K↓), (K↑,K ′↑), or (K↑,K ′↓), (all with the

hole part being hidden). We focus on the usual limit where
the characteristic length of the system (e.g., the QD radius or
the exciton Bohr radius, whichever is shorter) is much greater
than the lattice constant and employ the envelope function
approximation (EFA) [23,24] to write the two-electron part of
the trion as follows:

F (�r1,�r2)ψK (�r1)ψK (�r2) ⊗ (spin singlet),

[F (�r1,�r2)ψ (c)
K (�r1)ψ (c)

K ′ (�r2)

−F (�r2,�r1)ψ (c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin triplet),

[F (�r1,�r2)ψ (c)
K (�r1)ψ (c)

K ′ (�r2)

+F (�r2,�r1)ψ (c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin singlet). (1)

Here, we have ignored the spin-orbit interaction, which is
known to be rather weak in graphene [3], and have therefore
chosen the states to be the eigenstates of the total spin S = s1

+ s2, which are either a singlet or triplet. All the states in
Eq. (1) obey the exchange symmetry required for fermions.
The orbital part has been decomposed, within the EFA, into a
slowly varying envelope function F (�r1,�r2) and a fast-varying
ψ

(c)
K(K ′)(�r), where ψ

(c)
K(K ′)(�r) = conduction band Bloch function

at the Dirac point K(K ′). Depending on the symmetry of
F (�r1,�r2), Eq. (1) leads to

FS(�r1,�r2)ψ (c)
K (�r1)ψ (c)

K (�r2) ⊗ (spin singlet),

FS(�r1,�r2)
[
ψ

(c)
K (�r1)ψ (c)

K ′ (�r2) − ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)
] ⊗ (spin triplet),

FA(�r1,�r2)
[
ψ

(c)
K (�r1)ψ (c)

K ′ (�r2) + ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)
] ⊗ (spin triplet), (2)

FS(�r1,�r2)
[
ψ

(c)
K (�r1)ψ (c)

K ′ (�r2) + ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)
] ⊗ (spin singlet),

FA(�r1,�r2)
[
ψ

(c)
K (�r1)ψ (c)

K ′ (�r2) − ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)
] ⊗ (spin singlet).

Here, FS(A)(�r1,�r2) refers to a symmetric (antisymmetric) envelope function with respect to the exchange between �r1 and �r2.
In contrast, an X− trion in the semiconductor with nondegenerate conduction band minimum has the following two-electron
part [19]:

FS(�r1,�r2) ⊗ (spin singlet) (for ground state trion), FA(�r1,�r2) ⊗ (spin triplet) (for excited state trion). (2′)

Comparing Eqs. (2) and (2′), we see clearly that, with the electrons being in the same K valley, the first state in Eq. (2) is a
close analogy of the spin singlet state in Eq. (2′), as if the valley degeneracy has been lifted. In contrast, other states in Eq. (2)
contain combinations of products formed from opposite pseudospins (called pseudospin singlet/triplet) and represent new states
of trions which have no analogue in Eq. (2′). In general, if we compare the symmetry of wave functions in Eqs. (2) and (2′), it
shows that there is a correspondence between the spin component in Eq. (2′) and the composite pseudospin ⊗ spin in Eq. (2),
as given in the following:

graphene-based trion semiconductor-based trion

{ψ (c)
K (�r1)ψ (c)

K (�r2) ⊗ (spin singlet)} → (spin singlet)

{[ψ (c)
K (�r1)ψ (c)

K ′ (�r2) − ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin triplet)} → (spin singlet)

{[ψ (c)
K (�r1)ψ (c)

K ′ (�r2) + ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin singlet)} → (spin singlet)

{[ψ (c)
K (�r1)ψ (c)

K ′ (�r2) + ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin triplet)} → (spin triplet)

{[ψ (c)
K (�r1)ψ (c)

K ′ (�r2) − ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin singlet)} → (spin triplet)

Thus, an antisymmetric (symmetric) pseudospin ⊗ spin in
graphene plays the role of a spin singlet (triplet) in the

semiconductor. Since the spin singlet (triplet) trion is the
ground (excited) state in the semiconductor, we identify, in
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the graphene case, the states with antisymmetric (symmetric)
pseudospin ⊗ spin, or correspondingly the states with sym-
metric FS(�r1,�r2) [antisymmetric FA(�r1,�r2)], as the low-energy
(excited) trion states. For either the semiconductor- or
graphene-based trions, the states with a symmetric FS(�r1,�r2)
tend to place both of the electrons in the lowest orbital shell
around the hole, giving a configuration similar to the ground
state of H−. This leads to the identification of these states as
the low-energy states.

Apart from the involvement of valley pseudospin, there
are other contrasts between the semiconductor-based trion and
the trion considered by us here. First, a typical semiconductor-
based trion involves a complicated valence band structure with
different types of holes—heavy or light holes. However, in the
graphene case, except for the presence of valley degeneracy,
the band structure is relatively simple. It exhibits the electron-
hole symmetry, as well as nondegenerate conduction and
valence bands [3]. Second, we are primarily concerned here
with the trion that is confined in a QD. On one hand, the
presence of confinement destroys the translational symmetry
and thus increases the level of theoretical difficulty. On the
other hand, it gives us a chance to study trions in different
regimes for a given QD. For example, denote the QD radius
by R. A variation in the gap parameter � (by applying a
dc bias, for instance, in bilayer graphene) would bring about
a variation in the carrier effective mass m∗ (=�/vF

2) and
correspondingly also a variation in the exciton Bohr radius
aB* (=O(�2ε/m∗e2), ε = effective dielectric constant). This
leads to different regimes for the given QD, depending on
the competition between the QD confinement energy EQD

[=O(h2/m∗R2)] and the e-e interaction energy {= max[E(C)
e−e,

Eex]. Here, Ee−e
(C) = O(e2/εR) being the QD charging energy

and Eex = O(e2/εaB*) being the exciton binding energy}.
For R 
 aB∗, the QD confinement dominates, while for R �
aB∗, the interaction dominates. The free trion typically studied
in semiconductors is a well-known example which belongs
to the strong interaction regime. Lastly, semiconductor trions
consist of carriers which are usually taken to have parabolic
energy dispersions and constant effective masses. However, in
the graphene case, due to the unique relativistic type energy
dispersion, high-energy carriers have a “relativistic” energy (or
momentum) dependent effective mass. Therefore, depending
on the magnitude of energy of constituent carriers involved,
interesting “relativistic effects” may emerge in graphene
trions.

It is also noted that the study of trions in a gapped
graphene-based QD constitutes a significant step towards
eventually developing graphene-based long-distance quantum
communications. In a previous study [10], it was shown that a
graphene qubit (comprising of a pair of coupled QDs in gapped
graphene, with two electrons separately confined in the QDs)
based on valley pseudospin can serve as a quantum memory in
the communication. Such utilization involves the interaction
between a photon and one of the QDs. When the photon
is absorbed, it creates an electron-hole pair, and a possible
formation of X− trion in the QD.

Our work studies the low-energy states of a trion in a type-I
gapped graphene-based QD, where electrons and holes are
both confined in the QD. For simplicity, we consider mono-
layer graphene on h-BN as the prototype system in view of its

simple electron energy dispersion E(�k) = ±
√

�2 + (�vF
�k)2,

but the discussion can be generalized to bilayer graphene as
well [25]. Due to the electron-hole symmetry between X−
and X+, we shall focus only on X−. The presentation is
organized as follows. In Sec. II, we present the theoretical
formulation for X− trions involving valley pseudospin, in
the envelope function approximation. In Sec. III, we discuss
the low-energy trion spectrum as well as trions in different
regimes. In Sec. IV, we describe the variational method for the
calculation of low-energy trion states. In Sec. V, numerical
results of binding energies as well as wave functions of
trions are presented. In Sec. VI, we summarize the work.
Appendix A lists the various parameters of basis functions
used in the variational calculation. Appendix B presents the
exact one-carrier ground state solution in the QD, which can be
used to provide the ground state energy of the noninteracting
system of two electrons and one hole, as reference energy
for the calculation of trion binding energy. Appendix C
provides useful formulas for the various integrals involved
in the variational calculation, such as the overlap or the
Hamiltonian matrix element between two basis functions.
Appendix D discusses the approximation involved in our treat-
ment and provides an assessment of the numerical error in the
calculation.

II. THE THEORETICAL FORMULATION FOR X− TRIONS
INVOLVING VALLEY PSEUDOSPIN

We present the theoretical formulation for X− trions in
gapped graphene (band gap = 2�), in the envelope function
approximation. In the case where the constituent carriers in the
trion are near the conduction and valence band edges, we are in
the nonrelativistic type regime (also called Schrödinger regime
in this work), where the carrier energy with respect to the band
edge is given by Ec(k) ≈ �

2k2

2m∗ for an electron or Ev(k) ≈ −�
2k2

2m∗

for a hole. Here, the effective mass m∗ = �/vF
2, and

k = wave vector relative to K or K ′. In the case where the
constituent carriers are away from the band edges, we are
in the relativistic type regime (also called the Dirac regime
in this work), where the effective mass becomes k dependent
and is given by m∗(k) = 1

2 [( �
2k2

v2
F

+ �2

v4
F

)1/2 + �

v2
F

]. Both regimes
will be considered. We focus on the specific example where
the X− trion consists of (K↑,K ′↑,K̄ ′↓). K̄ ′ denotes a K ′
hole. The discussion below can be generalized to other
cases.

A. The field operator involving the valley pseudospin

We employ the second quantization formalism to present
the theoretical formulation. Let the one-particle Hilbert
space consist of both conduction and valence band states.
The corresponding annihilation field operator is written
as

�(r) ≈ �K↑(r) + �K ′↑(r) + �
(+)
K̄ ′↓(r) + �irrel.(r),

�K↑(r) ≡
∑
k∼0

Kk↑
exp(ik · r)√

�
ψ

(c)
K (r) ⊗ ↑,
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�K ′↑(r) ≡
∑
k∼0

K ′
k↑

exp(ik · r)√
�

ψ
(c)
K ′ (r) ⊗ ↑,

�
(+)
K̄ ′↓(r) ≡

∑
k∼0

K̄
′(+)
k↓

exp(−ik · r)√
�

ψ
(v)
K ′ (r) ⊗ ↑. (3)

Here, k = wave vector relative to K or K ′, and � = total
system area. Kk↑(K ′

k↑) removes a K↑ (K ′↑) electron at k

in the conduction band, and K̄
′(+)
k↓ creates a K ′↓hole at k

(or removes a K ′↑ electron at −k) in the valence band.
ψ

(c)
K(K ′)(r) [ψ (v)

K(K ′)(r)] denotes the conduction (valence) band
Bloch wave function at K (K ′). Here, we have taken the nor-
malization

∫
cell |ψ (c)

K(K ′)(�r)|2d2r = ∫
cell |ψ (v)

K(K ′)(�r)|2d2r = �cell

(�cell = area of a unit cell). Here, �irrel.(r) represents the part
of �(r) irrelevant for the discussion of the specific type of trion
considered here, for example, which removes a K↓electron in
the conduction band.

We note that Eq. (3) employs the approximation where
the exact wave function at k is expressed in terms of that at
k = 0, e.g., ψ

(c)
K(K ′)(r) or ψ

(v)
K(K ′)(r). For trions consisting of the

low-energy states near Dirac points, this approximation works
well. Appendix D provides an analysis concerning the validity
of this approximation in this paper.

B. The envelope function and the trion wave function

Next, we describe the trion state. Let |0〉 = ground state of
intrinsic gapped graphene, which has a filled valence band and
an empty conduction band. In terms of |0〉, we write the trion
state as

|ψtrion〉 =
∑
k1k2k3

fk1k2k3 |k1k2k3〉,

|k1k2k3〉 ≡ K+
k1↑K ′+

k2↑K̄ ′+
k3↓|0〉. (4)

Here, {|k1k2k3〉’s} represent the states of two electrons
and one hole, all being noninteracting and form the set
of basis functions for expanding the trion state. Also,
{fk1k2k3 ’s} are the corresponding expansion coefficients sub-
ject to the normalization

∑
k1k2k3

|fk1k2k3 |2 = 1. Equation (4)
gives a description of the trion state in the k space, with
fk1k2k3 being the k-space wave function. As well, {fk1k2k3 ’s}
can be transformed to the r space, giving the envelope
function

Ftrion(r1,r2,r3)

=
∑
k1k2k3

fk1k2k3

exp(ik1 · r1)√
�

exp(ik2 · r2)√
�

exp(−ik3 · r3)√
�

, (5)

subject to the normalization
∫ |Ftrion(�r1,�r2,�r3)|2d2�r1d

2�r2d
2

�r3 = 1. Here, Ftrion(r1, r2, r3) is closely related to the following

wave function �trion(r1,r2,r3) defined in the r space by

�trion(r1,r2,r3) ≡ 1√
2
〈0|�K̄ ′↓(r3)[�K↑(r2) + �K ′↑(r2)]

× [�K↑(r1) + �K ′↑(r1)]|ψtrion〉, (6)

which gives the coordinate representation of |ψtrion〉. Note that
�trion(r1,r2,r3) given by Eq. (6) is antisymmetric with respect
to the exchange between r1 and r2. Substituting the various
field operators introduced in Eq. (3) into the above equation,
we express �trion(r1,r2,r3), in terms of Ftrion(r1, r2, r3), as

�trion(r1,r2,r3) = 1√
2

[
Ftrion(�r1,�r2,�r3)ψ (c)

K (�r1)ψ (c)
K ′ (�r2)

−Ftrion(�r2,�r1,�r3)ψ (c)
K (�r2)ψ (c)

K ′ (�r1)
]

⊗ (↑1↑2)
[
ψ

(v)
K ′ (�r3)

]∗ ⊗ (↑3). (7)

Here, �trion(r1,r2,r3) can be interpreted as the total wave
function of the trion, which includes both the envelope
function and the Bloch wave function and, hence, describes
the trion state down to the subcell details. In comparison, the
envelope function Ftrion(r1, r2, r3) is a coarse-grain average of
�trion(r1,r2,r3) and describes the trion only on the length scale
above the unit cell.

C. The trion Hamiltonian and the envelope function equation

Now, we discuss the trion Hamiltonian Htrion and
the corresponding effective wave equation satisfied by
Ftrion(r1, r2, r3),

HtrionFtrion(r1,r2,r3) = EFtrion(r1,r2,r3). (8)

This defines Htrion as the effective Hamiltonian for the trion.
Equation (8) (or Htrion) is derived as follows.

We start with the description of the many-electron Hamil-
tonian for the system, which is given by

H =
∫

d2r�+(r)Hcrystal�(r) + 1

2

∫∫
d2r1d

2r2

×�+(r1)�+(r2)Ve−e(r1 − r2)�(r2)�(r1),

Ve−e(�r1 − �r2) = e2

4πε|�r1 − �r2| , (9)

where Hcrystal denotes the one-electron crystal Hamiltonian for

gapped graphene, with Hcrystal = − �
2

2m
∇2 + Vcrystal(�r), Ve−e

denotes the electron-electron (e-e) interaction, and ε is an
effective dielectric constant determined by graphene as well
as the substrate supporting graphene.

The trion state satisfies the following Hamiltonian equation

H |ψtrion〉 = E|ψtrion〉. (10)

Substituting the field operator �(r) given by Eq. (3) into
Eq. (10), we obtain

∑
k

[Ec(k)(K (+)
k↑ Kk↑+K

′(+)
k↑ K ′

k↑)−Ev(−k)K̄ ′(+)
k↓ K̄ ′

k↓] +
∑

q,k1,k2

V̄e−e(q)K (+)
k1+q↑K

′(+)
k2−q↑K ′

k2↑Kk1↑

−
∑

q,k1,k3

V̄e−e(q)K (+)
k1+q↑K̄

′(+)
k3↓ K̄ ′

k3+q↓Kk1↑ −
∑

q,k2,k3

V̄e−e(q)K ′(+)
k2+q↑K̄

′(+)
k3↓ K̄ ′

k3+q↓K ′
k2↑ + Hignored|ψtrion〉 = E|ψtrion〉. (11)
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Here, Ec(k) and Ev(k) are the conduction and valence band dispersions, respectively, and satisfy the following Hamiltonian
equations:

Hcrystal
[
eik·rψ (c)

K(K ′)(r)
] ≈ Ec(k)

[
eik·rψ (c)

K(K ′)(r)
]
, Hcrystal

[
eik·rψ (v)

K(K ′)(r)
] ≈ Ev(k)

[
eik·rψ (v)

K(K ′)(r)
]
.

Here, V̄e−e(q) is approximately the Fourier transform of
Ve−e(�r), given by V̄e−e(q) ≈ 1

�

∫
d2rVe−e(�r) exp(−i �q · �r).

The last three lines in Eq. (11) involving V̄e−e(q) represent,
respectively, the Coulomb interaction between a K↑and a
K ′↑electrons, between a K↑ electron and a K ′↓ hole, and
between a K ′↑ electron and a K ′↓ hole. Here, Hignored consists
of terms typically ignored for the treatment of trions in
semiconductors, for example, the spin-flipping electron-hole
(e-h) exchange scattering, as well as additional terms only
present in graphene due to the presence of valley pseudospin
(see below).

To proceed further in Eq. (11), we expand |ψtrion〉 in terms
of {|k1k2k3〉’s} according to Eq. (4), and project each side of
Eq. (11) onto |k1k2k3〉. Dropping Hignored, we obtain

Efk1k2k3 =
∑
k′

1k
′
2k

′
3

〈k1k2k3|H |k′
1k

′
2k

′
3〉fk′

1k
′
2k

′
3

≈ [Ec(k1) + Ec(k2) − Ev(−k3)]fk1k2k3

+
∑
k′

1k
′
2

V̄e−e(k1 − k′
1)fk′

1k
′
2k3

−
∑
k′

1k
′
3

V̄e−e(k1 − k′
1)fk′

1k2k
′
3

−
∑
k′

2k
′
3

V̄e−e(k2 − k′
2)fk1k

′
2k

′
3
. (12)

Here, {fk1k2k3 ’s} above are coupled together by the Coulomb
interaction between electrons as well as between electrons and
holes. Multiplying Eq. (12) with exp(ik1·r1)√

�

exp(ik2·r2)√
�

exp(−ik3·r3)√
�

on
each side and summing it over k1, k2, and k3, we finally arrive
at Eq. (8), with

Htrion ≈ Ec(k1 → −i∇1) + Ec(k2 → −i∇2)

−Ev(k3 → −i∇3) + e2

4πε|�r1 − �r2| − e2

4πε|�r1 − �r3|
− e2

4πε|�r2 − �r3| + Ve(�r1) + Ve(�r2) + Vh(�r3),

or more explicitly,

Htrion ≈ −�
2

2
∇1 ·

(
1

m∗(�r1)
∇1

)
− �

2

2
∇2 ·

(
1

m∗(�r2)
∇2

)

−�
2

2
∇3 ·

(
1

m∗(�r3)
∇3

)
+ e2

4πε|�r1 − �r2|

− e2

4πε|�r1 − �r3| − e2

4πε|�r2 − �r3|
+Ve(�r1) + Ve(�r2) + Vh(�r3). (13)

Here, we have generalized Htrion to account for the variation
of energy gap [�(�r)] across the boundary of the QD. The
gap variation provides, in Htrion, the quantum confinement
potentials for electrons and holes, Ve(h)(�r). Also, Ve(h)(�r) and

the gap function �(�r) satisfy the following identity

�(r > R) − �(r < R) = 1
2 [Ve(r > R) + Vh(|r > R)

−Ve(r < R) − Vh(r < R)].

Figure 1 shows Ve(h)(�r) in the type-I QD. Moreover,
due to the gap variation, there is a corresponding mass
variation in the space. The Hamiltonian in Eq. (13) ac-
counts for the variation by replacing the standard kinetic
energy operator − �

2

2m∗ ∇2
i with −�

2

2 ∇i · ( 1
m∗(ri )

∇i), where

m∗(ri) = �(ri)/vF
2 in the Schrödinger regime and m∗(ri) =

1
2 [(−�

2∇2
i

v2
F

+ �(ri )2

v4
F

)1/2 + �(ri )
v2

F

] in the Dirac regime, for i = 1–3.
This replacement ensures the positive definiteness of the op-
erator and has often been used in the theory of semiconductor
heterostructures [24,26].

Equations (8) and (13) together form the EFA description
of trion states. This description can be improved by treating
Hignored within the perturbation theory as a correction to the
EFA. An example will be given in Sec. III.

D. Hignored

Now, we describe Hignored. First, we note that, although
the expression of Htrion given by Eq. (13) looks exactly the
same as the Hamiltonian commonly used for semiconductor-
based trions, as if the valley pseudospin did not play any
role, the approximations invoked in the derivation of the
two Hamiltonians are actually different. In both cases, the
approximation neglects higher-order terms such as the spin-
flipping e-h exchange scattering given by

H(↑↔↓)
e−h =

∑
q,k2,k3

V̄
(↑↔↓)
e−h (q)K ′(+)

k1−q↓K̄
′(+)
−k1↑K̄ ′

−k2−q↓K ′
k2↑,

(14a)

V̄
(↑↔↓)
e−h (q) ≡ 1

�2

∫
d2r1d

2r2e−i �q·(�r2−�r1)ψ
(c)∗
K ′ (�r1)ψ (v)∗

K ′ (�r2)

×Ve−e(�r1 − �r2)ψ (v)
K ′ (�r1)ψ (c)

K ′ (�r2). (14b)

Such a scattering swaps the spins of the electron and the hole
in the trion.

In the case of graphene, Hignored further includes a
term analogous to H

(↑↔↓)
e−h —the valley-flipping e-h exchange

FIG. 1. (Color online) The energy band profile of a type-I
graphene QD.
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scattering given by

H
(K↔K ′)
e−h =

∑
q,k2,k3

V̄
(K↔K ′)
e−h (q)K (+)

k1−q↑K̄
(+)
−k1↓K̄ ′

−k2−q↓K ′
k2↑,

(15a)

V̄
(K↔K ′)
e−h (q) ≡ 1

�2

∫
d2r1d

2r2e−i �q·(�r2−�r1)ψ
(c)∗
K (�r1)ψ (v)∗

K ′ (�r2)

×Ve−e(�r1 − �r2)ψ (v)
K (�r1)ψ (c)

K ′ (�r2). (15b)

This scattering annihilates an e-h pair in the K ′ valley and
creates a new pair in the K valley. Such a scattering is absent in
a typical semiconductor. Being analogous to the spin-flipping
e-h exchange scattering, the above scattering is also neglected
in the present EFA description.

Moreover, Hignored also includes the following valley-
flipping e-e exchange scattering

H
(K↔K ′)
e−e = −

∑
q,k1,k2

V̄
(K↔K ′)
e−e (q)K (+)

k2−q↑K
′(+)
k1+q↑K ′

k2↑Kk1↑,

(16a)

V̄
(K↔K ′)
e−e (q) ≡ 1

�2

∫
d2r1d

2r2e−i �q·(�r2−�r1)ψ
(c)∗
K (�r1)ψ (c)∗

K ′ (�r2)

×Ve−e(�r1 − �r2)ψ (c)
K ′ (�r1)ψ (c)

K (�r2), (16b)

which is also absent in the semiconductor with a nondegenerate
conduction band minimum. The matrix element V̄

(K↔K ′)
e−e (q)

given above for the scattering indicates that a large intervalley
momentum transfer is involved in the scattering. In comparison
to the nonvalley-flipping e-e scattering already included in
Htrion, we regard the present scattering as a higher-order effect
and place it in Hignored.

E. Definition of trion binding energy

Before we close this section, we introduce the definition of
trion binding energy as follows:

Ebinding = E(e = 0) − E,

where E is the eigenstate energy in Eq. (8). Here, E(e = 0) is
the ground state energy of two electrons and one hole, all being
noninteracting with the charge (e) being turned off. Obviously
E(e = 0) is determined by the ground state energy of each
carrier, e.g., E(e = 0) = 2E0

(c) + E0
(v), where E0

(c) [E0
(v)]

represents the electron (hole) ground state energy in the QD,
defined with respect to the bulk conduction (valence) band
edge in the QD. Here, Ebinding therefore refers to the amount
of energy by which E(e = 0) is lowered when e (or the
Coulomb interaction among the carriers) is turned on. Note
that our definition of Ebinding differs from the conventional
one. The conventional Ebinding refers to the energy required to
separate the trion into a free exciton and a free electron (in
the case of X−), which applies in our case only in the limit
of infinite QD radius (or the delocalized trion limit) where the
exciton-electron system can dissociate into the two far-apart,
independent subsystems—an exciton and an electron. In our
case, with the two subsystems both being confined in the same
QD and constantly interacting with each other, dissociation
of the trion can never occur. In the following, we further
establish the connection of Ebinding to optical excitation, from
the experimental perspective.

Suppose initially an electron is present in the QD. Then

E
(trion)
optical = E

(c)
0 + E

(v)
0 + 2�(r < R) − Ebinding

is the minimal optical excitation energy required to excite
across the energy gap an electron-hole pair, which binds with
the initial electron into a trion. Here, 2�(r < R) is the bulk
energy gap inside the QD, and E

(c)
0 + E

(v)
0 + 2�(r < R) is

the QD energy gap, which is increased from the bulk value
due to the quantum confinement. For the optical excitation
of an electron-hole pair in the QD, the expression above for
E

(trion)
optical means that the energy required is lowered from the

QD gap energy by Ebinding, due to the intercarrier Coulomb
interaction in the QD, when an electron is initially present.

In comparison, in the case where the QD is initially empty,
a corresponding discussion would give

E
(exciton)
optical = E

(c)
0 + E

(v)
0 + 2�(r < R) − Eex,

where E
(exciton)
optical is the minimal energy to excite an electron-hole

pair (i.e., exciton) in the QD. Due to the electron-hole Coulomb
attraction, E

(exciton)
optical is reduced from the QD gap energy by the

amount Eex . Here, Eex is similar to Ebinding introduced above
for a trion and may thus be defined as the binding energy for
an exciton in the QD. Note that with both excitons and trions
being analogous few-particle systems, the theory of Eex would
be similar to that of Ebinding. For a focused presentation here,
such a theory is left to a future, separate work.

The difference between E
(exciton)
optical

) and E
(trion)
optical is given by

E
(exciton)
optical − E

(trion)
optical = Ebinding − Eex.

The above result establishes the connection between the theory
(as represented by the terms on the r.h.s.) and the optical
measurement (on the l.h.s.).

III. THE LOW-ENERGY TRION SPECTRUM AND TRIONS
IN DIFFERENT REGIMES

A. Low-energy trion spectrum

First, we discuss the low-energy trion spectrum. In par-
ticular, we study the total wave function �trion(r1,r2,r3)
of trion states with a symmetric envelope function
Ftrion(r1,r2,r3) = Ftrion(r1,r2,r3) = FS(r1,r2) (with the hole r3

dependence being hidden) and an antisymmetric pseudospin ⊗
spin component. These states have been argued in Sec. I to be
well separated from those having an antisymmetric envelope
function Ftrion(r1,r2,r3) = −Ftrion(r1,r2,r3) = FA(r1,r2) and a
symmetric pseudospin ⊗ spin component. We hide the hole
part and write �trion(r1,r2,r3) for all the low-energy states

ψ
(1)
2e (�r1,�r2) = FS(�r1,�r2)ψ (c)

K (�r1)ψ (c)
K (�r2) ⊗ (spin singlet),

ψ
(2)
2e (�r1,�r2) = FS(�r1,�r2)ψ (c)

K ′ (�r1)ψ (c)
K ′ (�r2) ⊗ (spin singlet),

ψ
(3)
2e (�r1,�r2) = FS(�r1,�r2)

1√
2

[ψ (c)
K (�r1)ψ (c)

K ′ (�r2)

+ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin singlet),

ψ
(4)
2e (�r1,�r2) = FS(�r1,�r2)

1√
2

[ψ (c)
K (�r1)ψ (c)

K ′ (�r2)

−ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)] ⊗ (spin triplet). (17)
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Overall, there are six states in Eq. (17), counting both spin
and pseudospin degeneracy of electrons but discounting that
of holes. Here, ψ

(1)
2e and ψ

(2)
2e form a doublet. With the two

valley pseudospins of electrons being the same in the state,
each is a close analogy of the semiconductor trion. Also,
ψ

(3)
2e is nondegenerate, while ψ

(4)
2e is threefold degenerate. The

pseudospin component of ψ
(4)
2e is antisymmetric and forms

a pseudospin singlet, while those of ψ
(1)
2e , ψ

(2)
2e , and ψ

(3)
2e are

given, respectively, by

ψ
(c)
K (�r1)ψ (c)

K (�r2), ψ
(c)
K ′ (�r1)ψ (c)

K ′ (�r2),

1√
2

[
ψ

(c)
K (�r1)ψ (c)

K ′ (�r2) + ψ
(c)
K (�r2)ψ (c)

K ′ (�r1)
]
,

which are all symmetric and altogether form a set of pseu-
dospin triplet states. However, the pseudospin triplet states
are not all degenerate. Due to the symmetric combination
of pseudospins, the third one [for ψ

(3)
2e ] above has an en-

hanced probability for �r1 ∼ �r2, and thus an increased e-e
interaction in comparison to that in the other two. On the
other hand, the pseudospin singlet ψ

(4)
2e has a suppressed

probability for �r1 ∼ �r2 and thus a reduced e-e interaction. The
corresponding energy increase/decrease due to the enhance-
ment/suppression in the probability for �r1 ∼ �r2 is an exchange
energy, which we discuss and estimate semiquantitatively
below.

B. EFA estimation of the trion energy

We analyze the e-e interaction energy in the first-order
perturbation theory. Two approaches are given here for
the estimation. In the first approach, we employ the EFA,
yielding

E
(EFA)
e−e =

∫
|FS(�r1,�r2)|2Ve−e(�r1 − �r2)d�r1d�r2 (18)

for all the low-energy states. In the alternative approach,
we include the subcell details and replace FS(�r1,�r2) by the
total wave function ψ

(n)
2e (�r1,�r2), n = 1 ∼ 4. This gives the

estimate

E
(n)
e−e =

∫ ∣∣ψ (n)
2e (�r1,�r2)

∣∣2Ve−e(�r1 − �r2)d2�r1d
2�r2

= Ee−e

∣∣
|�r1−�r2|�O(a)+E

(n)
e−e

∣∣
|�r1−�r2|�O(a), n = 1 ∼ 4,

(19)

where a is the lattice constant. The second line above
separates the interaction energy integral into the two parts,
Ee−e||�r1−�r2|�O(a) and E

(n)
e−e||�r1−�r2|�O(a), depending on the inter-

electron distance. Using the fact that in ψ
(n)
2e (�r1,�r2), FS(�r1,�r2)

varies slowly while ψ
(c)
K(K ′)(�r) varies rapidly on the length scale

�a, we approximate Ee−e||�r1−�r2|�O(a) by first integrating the
fast-varying part, yielding for all the states in Eq. (17)

Ee−e||�r1−�r2|�O(a) ≈
∫

|FS(�r1,�r2)|2 e2

4πε|�r1 − �r2|d�r1d�r2,

O(Ee−e||�r1−�r2|�O(a)) = max

[
e2

εR
,

e2

εa∗
B

]
. (18′)

Obtained here, Ee−e||�r1−�r2|�O(a) agrees exactly with Ee−e
(EFA),

the EFA estimate given by Eq. (18). The agreement is
consistent with the well-known fact that the EFA applies on the
length scale above a. Within the EFA, the six states in Eq. (17)
are therefore all degenerate. Such a high degeneracy number
obviously derives from the presence of valley pseudospin in
the trion, apart from spin.

C. Beyond the EFA

However, the states listed in Eq. (17) do differ in the pseu-
dospin component and, in fact, are split by the short-range e-e
exchange interaction energy Ee−e||�r1−�r2|�a as discussed below.
Let δE14 = E

(1)
e−e − E

(4)
e−e = E

(2)
e−e − E

(4)
e−e, and δE34 = E

(3)
e−e −

E
(4)
e−e denote the energy differences. We estimate that

δE14 ≈ 1

2
δE34 ≈

∫
|�r1∼�r2|�O(a)

e2

4πε|�r1 − �r2| |FS(�r1,�r2)|2

×ψK (�r1)∗ψK ′ (�r2)∗ψK (�r2)ψK ′ (�r1)d�r1d�r2,

O(δE14) ≈ O(δE34) = e2

ε

[
max

(
a

R2
,

a

a∗2
B

)]
, (20)

where R = QD radius. Comparison of the above expression
to V̄

(K↔K ′)
e−e (q) given in Eq. (16b) shows that the energy

difference given here derives in origin from the valley-flipping
e-e exchange scattering [H(K↔K ′)

e−e ] discussed in Sec. II, which
belongs to Hignored and is ignored in the EFA description [i.e.,
Eqs. (8) and (13)]. Therefore, Eq. (20) can also be regarded
as an improvement over the EFA description, through the
inclusion of Hignored in the first-order perturbation theory.
Using Eq. (20), we can make an order-of-magnitude estimation
of the energy splitting. For min(R, aB

∗) � 100 Å, it gives
δE14(34) � O (meV). Specifically, since [ψ (1)

2e ,ψ (2)
2e ] are the

analogy of the ground state in semiconductors, comparison
of their energy to that of ψ

(4)
2e , as represented here by δE14,

provides an interesting assessment of the valley pseudospin
involvement in trion energy.

According to Eqs. (18′) and (20), it follows that δE14(34) 

Ee−e||�r1−�r2|�O(a) [or Ee−e

(EFA)] for R � a, meaning that
Hignored can be neglected in the limit where R � a.

D. The role of the hole

It would be interesting here to analyze the role of the hole
in the trion. This can be done by comparing the trion (with
the hole) to the two-electron QD system (without the hole).
While the confinement energy (EQD), the QD charging energy
[Ee−e

(C)] and the exciton binding energy (Eex) are all relevant
energy scales for the trion, Eex is not for the two-electron
system, due to the absence of the hole and the e-h interaction
as well from the system.

In addition, it is easy to see that the earlier statement that the
ψ2e(�r1,�r2)’s with FS(�r1,�r2) are the low-energy states does not
necessarily apply to the two-electron system. In the latter case,
the ground state for two electrons with opposite pseudospins
can be either FS(�r1,�r2)[ψK (�r1)ψK ′(�r2) − ψK (�r2)ψK ′ (�r1)] ⊗
(spin triplet) or FA(�r1,�r2)[ψK (�r1)ψK ′(�r2) − ψK (�r2)ψK ′ (�r1)] ⊗
(spin singlet), depending on the competition between EQD
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and Ee−e
(C) for |�r1 − �r2| � a, as discussed in the following.

First, if EQD dominates, the state with FS(�r1,�r2) obviously has
the lower energy since it would place the two electrons both in
the lowest, one-electron orbital shell of the QD. On the other
hand, the state with FA(�r1,�r2) tends to place the two electrons in
separate shells, thus keeping the electrons apart and reducing
the e-e interaction. Therefore, when Ee−e

(C) dominates, the
state with FA(�r1,�r2) is favored as the ground state.

E. Trions in different regimes

We discuss low-energy trions in the various regimes
classified using the length scales R and aB* or equiv-
alently the energy scales EQD [=O(h2/m∗R2)], Ee−e

(C)

[=O(e2/εR)] and Eex [=O(e2/εaB*)]. We define (i) the
strong confinement regime, where R 
 aB* [or EQD �
E

(C)
e−e � Eex], (ii) the strong interaction regime, where R �

aB* [or EQD 
 Ee−e
(C) 
 Eex], and (iii) the intermediate

regime, where R ∼ aB* [or EQD ∼ E
(C)
e−e ∼ Eex]. Since this

paper is mainly concerned with trions in QDs, we focus on
the strong confinement regime as well as the intermediate
regime, while giving a brief discussion about the strong
interaction regime at the end. All regimes are treated in the
EFA.

In the regime of strong confinement, the trion state can
be easily treated with the perturbation theory. For simplicity,
we present the symmetric case where Ve(r) = Vh(r) in the
following, although the discussion can be easily generalized
to the asymmetric case where Ve(r) � Vh(r). To the lowest
order, we ignore the e-e and the e-h interaction and consider as
examples the lowest trion state with a symmetric FS(r1,r2,r3)
[also the ground state and denoted as F0(r1,r2,r3)] and the
lowest state with an antisymmetric FA(r1,r2,r3) [denoted as
F1(r1,r2,r3)]. We obtain

F0(r1,r2,r3) ≈ ϕ
(c)
0 (r1)ϕ(c)

0 (r2)ϕ(v)
0 (r3), (21a)

F1(r1,r2,r3) ≈ 1√
2

[
ϕ

(c)
0 (r1)ϕ(c)

1 (r2)

−ϕ
(c)
0 (r2)ϕ(c)

1 (r1)
]
ϕ

(v)
0 (r3), (21b)

where ϕ
(c)
0 (r) and ϕ

(v)
0 (r) are the one-particle ground states

of the confined electron and the confined hole in the QD,
respectively, and ϕ

(c)
1 (r) is the first excited electron state. Being

bound states, these forgoing functions are all real-valued.
Therefore, we have dropped the complex conjugate operation
on φ

(v)
0 (r3) in Eqs. (21a) and (21b). Next, we include the e-e

and the e-h interaction as the perturbation. The state energies
E0 and E1 corresponding to F0(r1,r2,r3) and F1(r1,r2,r3) are
given, respectively, by the following first-order perturbation-
theoretical expressions

E0 ≈ 2E
(c)
0 + E

(v)
0 + 〈

φ
(c)
0 φ

(c)
0

∣∣Ve−e

∣∣φ(c)
0 φ

(c)
0

〉
− 2

〈
φ

(c)
0 φ

(v)
0

∣∣Ve−e

∣∣φ(c)
0 φ

(v)
0

〉
, (22a)

E1 ≈ E
(c)
0 + E

(c)
1 + E

(v)
0 + 〈

ϕ
(c)
0 ϕ

(c)
1

∣∣Ve−e

∣∣ϕ(c)
0 ϕ

(c)
1

〉
− 〈

ϕ
(c)
0 ϕ

(v)
0

∣∣Ve−e

∣∣ϕ(c)
0 ϕ

(v)
0

〉 − 〈
ϕ

(c)
1 ϕ

(v)
0

∣∣Ve−e

∣∣ϕ(c)
1 ϕ

(v)
0

〉
− 〈

ϕ
(c)
0 ϕ

(c)
1

∣∣Ve−e

∣∣ϕ(c)
1 ϕ

(c)
0

〉
. (22b)

Here, E
(c)
0 = E

(v)
0 (one-particle ground state energy in the

QD) and ϕ
(c)
0 (r) = ϕ

(v)
0 (r) in the present symmetric case. Also,

E
(c)
1 = one-particle first excited state energy in the QD. The

matrix element of Ve−e above is given by

〈ϕ1ϕ2|Ve−e|ϕ3ϕ4〉 ≡
∫∫

d2r1d
2r2 [ϕ1(r1)ϕ2(r2)]∗

×Ve−e(r1 − r2)ϕ3(r1)ϕ4(r2).

The last term in Eq. (22b) is the exchange energy between the
two electrons, which tends to lower E1.

On the other hand, in the intermediate regime where the
interaction begins to compete with the quantum confinement,
the interaction strongly couples the various product states
given by

ϕn,m,l(r1,r2,r3) ≡ ϕ(c)
n (r1)ϕ(c)

m (r2)ϕ(v)
l (r3), (23)

which involves one-particle ground as well as excited states of
the QD. Therefore, the solution is generally given by

Ftrion(�r1,�r2,�r3) =
∑
n,m,l

cn,m,lϕn,m,l(�r1,�r2,�r3), (24)

where {cn,m,l’s} are determined by the coupling among the
product states. In order to proceed further, we shall resort to
the numerical variational calculation as described in the next
section.

We briefly remark on the trions in the strong interaction
regime. In the lowest-order treatment, the QD confinement can
be ignored, and the trion basically moves freely in the 2D space
of graphene. In this approximation, the envelope function Ftrion

is identical to that of the semiconductor trion in a quantum
well, when in the latter case we take the thin well limit as well
as equal electron and hole masses. This identification yields,
in the Schrödinger model, an approximate formula for Ebinding

in the strong interaction regime, which is given by

Ebinding ≈ 1.11Eex,

Eex = e4�(r < R)

�2v2
F ε2

(2D exciton binding energy in gapped graphene).

(25)

A similar scaling relation between Ebinding and Eex (for
3D excitons) is given for semiconductor trions in the thin
well limit [19]. Here, it has been adjusted to account for
the difference in the definition of Ebinding between the
semiconductor case and ours. Moreover, Ebinding in Eq. (25)
is expressed in terms of Eex in 2D, which is known to be four
times as large as Eex in 3D [27].

IV. THE VARIATIONAL METHOD

We describe our variational method for solving the trion
ground state, in a QD with the following piecewise constant
potential profile

Ve(h)(r) =
{

−V
(0)
e(h) for r < R,

0 for r > R.
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Since we are primarily interested in the case with R � a, it is
justified to employ the EFA and calculate the envelope function
F0(r1,r2,r3) for the ground state. Using the wave Eq. (8) for
the envelope function, we write the expectation value of the
ground state energy

E0 = 〈F0(�r1,�r2,�r3)|H (model)
trion |F0(�r1,�r2,�r3)〉 (26)

subject to the constraint
∫ |F0(�r1,�r2,�r3)|2d2�r1d

2�r2d
2�r3 = 1.

Here, H
(model)
trion in the equation is taken to be Htrion given

in Eq. (13), with the mass m∗(ri) = �(ri)/vF
2 or m∗(ri) =

1
2 [(−�

2∇2
i /v

2
F + �(ri)2/v4

F )1/2 + �(ri)/v2
F ] defining, respec-

tively, the Schrödinger and Dirac models of trions in gapped
graphene.

The variational calculation is performed by expanding
F0(�r1,�r2,�r3) in terms of the following symmetric combination
of product states

F0(�r1,�r2,�r3) =
∑
n,k,l

cn,k,lφn,k,l(r1,r2,r3),

φn,k,l(r1,r2,r3) = Nn,k,l[χn(r1)χk(r2)

+χn(r2)χk(r1)]χl(r3). (27)

Here, Nn,k,l is the normalization constant. n = 1 ∼ N1,
k = 1 ∼ N2, and l = 1 ∼ N3. In a typical calculation, we
take N1 = N2 = N3 � 6. Each basis φn,k,l(r1,r2,r3) is
exchange-symmetric with respect to r1 and r2, as required
for the ground state.

A. Variational basis functions

Specifically, we choose four types of functions for χn(r)
here, Gaussian, exponential, and two Bessel functions,
parameterized by an, bn, cn, and dn, respectively, as described
below. Appendix A tabulates an’s and bn’s (for n = 1–6) and
cn’s and dn’s (for n = 1–5) used in the numerical calculation.

1. Gaussian functions (for the Schrödinger model)

The function is parameterized by an and given by

χn(r) =
{

exp[−anr
2], for r < R

exp[(gS − 1)anR
2] exp[−gSanr

2], for r > R.

(28)

2. Exponential functions (for the Schrödinger model)

The function is parameterized by bn and given by

χn(r) =
{

exp[−bnr], for r < R

exp[(gS − 1)bnR] exp[−gSbnr], for r > R.

(29)

3. Bessel functions (for the Schrödinger model)

The function is parameterized by cn and given by

χn(r) =
{
J0(cnr), for r < R

αnK0(c′
nr), for r > R.

(30)

With K0 decaying with increasing r , Eq. (30) describes a
distribution that resembles a bound state. Here, c′

n is a function

of cn determined by

J0(cnR)

K0(c′
nR)

= gScn

c′
n

J1(cnR)

K1(c′
nR)

,

and αn is a function of cn and c′
n given by

αn = J0(cnR)

K0(c′
nR)

.

In Eqs. (28)–(30), gS ≡ m∗(r>R)
m∗(r<R) being the ratio of effective

masses inside and outside the QD, in the Schrödinger
model.

4. Bessel functions (for the Dirac model)

The function is parameterized by dn and given by

χn(r) =
{
J0(dnr), for r < R

βnK0(d ′
nr), for r > R.

(31)

Here, d ′
n is a function of dn determined by

J0(dnR)

K0(d ′
nR)

= gD(dn,d
′
n)

dn

d ′
n

J1(dnR)

K1(d ′
nR)

,

where gD(dn,d
′
n) ≡ m∗(r>R;d ′

n)
m∗(r<R;dn) is the ratio of momentum-

dependent effective masses inside and outside the QD, which
is the generalization of gS given in the Schrödinger model to
the Dirac model. Explicitly, we have

m∗(r < R; dn) = 1

2

[(
�

2d2
n

v2
F

+�(r < R)2

v4
F

)1/2

+�(r < R)

v2
F

]
,

m∗(r > R; d ′
n) = 1

2

[(
−�

2d ′2
n

v2
F

+�(r > R)2

v4
F

)1/2

+�(r>R)

v2
F

]
.

Here, βn is a function of dn and d ′
n given by

βn = J0(dnR)

K0(d ′
nR)

.

The spatial widths of χn(r)’s in Eqs. (28)–(31) are
determined by an, bn, cn, and dn, respectively, which are
prechosen to cover the range ∼O(a∗

B) [or O(R)], as listed in
Appendix A.

B. Mass discontinuity and the choice of χ n(r)

Here, χn(r)’s given above in Eqs. (28) and (29) decay
with the constants an or bn for r < R and gS an or gS

bn for r > R. The reason for the discontinuity in decay
constant is discussed below. As mentioned earlier, there
is a mass variation, m∗(r), across the QD boundary at
r = R, giving a nonunity mass ratio gS ≡ m∗(r>R)

m∗(r<R) . The
mass variation is taken into account in the trion Hamiltonian
given in Eq. (13), which writes the kinetic energy operator
in the form −�

2

2 ∇1 · ( 1
m∗(r1)∇1) − �

2

2 ∇2 · ( 1
m∗(r2)∇2) − �

2

2 ∇3 ·
( 1
m∗(r3)∇3). Such an operator requires [24,26]

F0(r1,r2,r3),
∂ri

F0(r1,r2,r3)

m∗(ri)
(32)

to be continuous across ri =R, for i = 1–3. The specification of
χn(r) given in Eqs. (28) and (29) enforces the continuity of both
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χn(r) and ∂rχn(r)/m∗(r) at r = R, as can easily be verified, and
therefore ensures the continuity of F0(r1,r2,r3) and

∂ri
F0(r1,r2,r3)
m∗(ri )

at ri = R. The Bessel function given in Eq. (30) is also dictated
by the same consideration. Equation (31) extends χn(r) defined
in Eq. (30) for the Schrödinger model to the Dirac model,
by replacing the mass ratio gS with gD(dn,d

′
n). In the limit

where the gap energy � is predominant (i.e., the Schrödinger
regime), gD(dn,d

′
n) reduces to gS and Eq. (31) reduces to

Eq. (30).
Equation (27) is substituted into Eq. (26), leading to the

variational equation∑
n′,k′,l′

(
H

(model)
trion

)
n,k,l;n′,k′,l′cn′,k′,l′

= E
∑

n′,k′,l′
Sn,k,l;n′,k′,l′cn′,k′,l′ ,

(
H

(model)
trion

)
n,k,l;n′,k′,l′ ≡ 〈φn,k,l|H (model)

trion |φn′,k′,l′ 〉,
Sn,k,l;n′,k′,l′ ≡ 〈φn,k,l|φn′,k′,l′ 〉. (33)

Here, S is the overlap matrix. Since the basis functions
with χn(r)’s given by Eqs. (28)–(31) are nonorthogonal,
S is different from the identity matrix. Appendix C pro-
vides the various overlap (Sn,k,l;n′,k′,l′ ’s) and energy integrals
{[H (model)

trion ]n,k,l;n′,k′,l′ ’s} for these basis functions.
The variational calculation proceeds as follows. First, we

perform the calculation to study the physics of confined
trions in the Schrödinger model, using the three forms of
basis functions, namely Gaussian, exponential, and Bessel
functions given in Eqs. (28)–(30). Comparison among the
results obtained with the three functions also allows us to assess
the numerical reliability of the present variational scheme in
general and that of the calculation using the Bessel function
in particular. Next, we employ the Bessel functions given
in Eq. (31) and perform the variational calculation in the
Dirac model. In particular, we take the parameter dn = cn

in Eq. (31), meaning that we use in the Dirac model the
same J0’s that are used in the Schrödinger model, inside the
QD. The difference between the Bessel functions in the two
models then derives only from the variant in K0 outside the
QD, which comes about due to the fact that K0 is connected
to J0 in a way depending on the mass ratio, e.g., gS in the
Schrödinger model and gD(dn,d

′
n) in the Dirac model. This

ensures a large overlap between the sets of Bessel functions
used in the two models. Due to this overlap, similar levels of
numerical reliability are expected for the two Bessel function-
based calculations. Comparison between the two calculations
permits us to investigate the relativistic effect on the trion
state.

V. NUMERICAL RESULTS AND DISCUSSION

The trion binding energy and wave function in a graphene
QD are presented in this section. The QD system is
specified by the following parameters: 150 Å � R �
450 Å, ε = 2.4 εvacuum [28], �(r < R) = 28 meV,
�(r > R) = 84 meV, vF = 1×106 m/sec, electron con-
finement potential barrier height V (0)

e [=Ve(r > R) −
Ve(r < R)] = 56 meV, and hole confinement potential

barrier height V
(0)
h [=Vh(r > R) − Vh(r < R)] = 56

meV. These QD structure parameters are used throughout
this section unless stated otherwise. With the above pa-

rameters, it gives a∗
B[= �

2εv2
F

e2�(r<R) ] ∼ 250 Å for the exciton

Bohr radius. With 150 Å < a∗
B (∼ 250 Å) < 450 Å, we

expect the trions considered here belong to the intermediate
regime.

A. The Schrödinger model

First, we discuss the result obtained from the calculation
in the Schrödinger model using Gaussian and exponential
functions. Using Eq. (25), we obtain Eex ∼ 23 meV for
the exciton binding energy, and Ebinding ∼ 25.5 meV for
the trion binding energy in the limit of large R. These
values are useful references when we interpret the numerical
result.

We calculate the trion binding energy using

Ebinding = E(e = 0) − E0,

with E0 here being the ground state energy of trion calculated
with the variational method according to Eq. (33). On the
other hand, E(e = 0) above is determined by either of the two
methods described in the following.

B. E(e = 0) and validity of the variational calculation

Here, E(e = 0) (or the ground state energy of a single
confined carrier in the QD) can be calculated numerically with
the variational method using the Gaussian and exponential
functions specified in Eqs. (28), (29), and Appendix A.
Apart from the variational method, Appendix B provides an
analytical solution for the ground state of a confined carrier
and, therefore, an alternative method to calculate E(e = 0).
In the case where the QD radius is 300 Å, the analytical
approach yields 16.64 meV as the carrier ground state energy,
and the variational method yields 16.67 meV with the Gaussian
functions, both with respect to the bottom of QD confinement
potential. In the case where the QD radius is 600 Å, the
analytical approach yields 6.50 meV, and the variational
method yields 6.53 meV with the exponential functions. We
further compute Ebinding variationally using both the Gaussian
and exponential functions. In the case where the QD radius
is 300 Å, it is found that Ebinding = 37.73 meV with the
Gaussian functions and 37.74 meV with the exponential
functions. The good agreement between the calculations
of both Ebinding and the single carrier ground state energy
indicates a reasonable level of numerical reliability in the
variational calculation using the Gaussian and exponential
functions.

C. The variation of Ebinding with QD size and confinement
potential strength

Figure 2 shows how Ebinding varies with both the electron
and the hole confinement potential strength (V (0)

e(h)), in the case

where the QD radius is 300 Å. Three barrier heights are con-
sidered, namely, V

(0)
e(h) = 28, 42, and 56 meV. The calculations
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FIG. 2. (Color online) Ebinding versus both the electron and the
hole confinement potential strength [V (0)

e(h)], in the case where the QD

radius is 300 Å. Three barrier heights are considered, namely, 28, 42,
and 56 meV. The calculation is performed in the Schrödinger model
with the Gaussian and exponential functions.

with Gaussian and exponential functions generally agree well
with each other, and they both show that Ebinding increases with
increasing barrier height. In Fig. 3, we vary the QD radius R

and present the dependence of Ebinding on R, with R here
changing from 150 to 450 Å. It shows that Ebinding decreases
with increasing R due to increasing electron-hole separation,
and approaches the free trion limit, 25.5 meV, estimated
earlier with Eq. (25). The calculations with Gaussian, expo-
nential, and Bessel functions agree reasonably well with one
another.

D. Electron distribution in the trion

Figure 4(a) shows an interesting correlation between the
locations of the electrons and the hole, in the case where the
QD radius is 300 Å. In particular, it fixes the hole location
at the QD center and plots the envelope function F0(r1,
r2, r3 = 0), with F0 calculated using both the Gaussian

meV

FIG. 3. (Color online) Ebinding versus R (QD radius). Here, R

changes from 150 to 450 Å. The calculation is performed in the
Schrödinger model with the Gaussian, exponential, and Bessel
functions.

FIG. 4. F0(r1, r2, r3 = 0) in the Schrödinger model, in the case
where the QD radius is 300 Å. (a) F0 calculated using the Gaussian
functions. (b) F0 calculated using the exponential functions.

[Fig. 4(a)] and exponential [Fig. 4(b)] functions. The graphs
in (a) and (b) show a strong similarity. For example, both
exhibit a discontinuity in the slope across the QD boundary,
due to the specific boundary condition in Eq. (32) for F0.
Moreover, with the hole being fixed at the center, F0 reaches
the maximum at the high symmetry point (r1 = 0, r2 = 0), and
decreases monotonically away from the point. Figure 5 further
investigates the electron-hole correlation and shows the
electron distribution F0(r1, r2, r3 = 300 Å), with the hole now
being placed at the edge of the QD. In comparison to Fig. 4,
the peak of F0 has shifted away from (r1 = 0, r2 = 0) due to
the attractive electron-hole Coulomb interaction, which now
pulls the electrons slightly towards the edge where the hole is
located.
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FIG. 5. F0(r1, r2, r3 = 300 Å) in the Schrödinger model, in the
case where the QD radius is 300 Å. (a) F0 calculated using the
Gaussian functions. (b) F0 calculated using the exponential functions.

E. Hole distribution in the trion

Figure 6 shows the hole distribution F0(r1 = 0, r2 = 0, r3) in
the case where the QD radius is 300 Å, with the two electrons
both being placed at the QD center. Here, F0 is calculated
using only the Gaussian functions. With the electrons both
sitting at the center, the peak of F0 occurs at (r3 = 0) due to the
attractive electron-hole Coulomb interaction. Figure 7 shows
the hole distribution F0(r1 = 0, r2 = 300 Å, r3), with the two
electrons now being separately placed at the center and at the
edge of the QD. In comparison to Fig. 6, although the present
F0 looks similar in shape to that in Fig. 6, it differs, however, in
that the amplitude is now overall smaller and less concentrated
around the center—while F0(r3 = 0)/F0(r3 = 300 Å) = 7.2 in
Fig. 6, F0(r3 = 0)/F0(r3 = 300 Å) = 3.8 in the present case.

FIG. 6. F0(r1 = 0, r2 = 0, r3) in the Schrödinger model, in the
case where the QD radius is 300 Å. F0 is calculated using only the
Gaussian functions.

This shows that spreading the two electrons apart widens the
hole distribution as well.

F. Numerical reliability in the calculation with Bessel functions

As shown in Fig. 3, the variational calculation for trions
in the Schrödinger model is also performed using the Bessel
functions specified in Eq. (30) and Appendix A, and the result
agrees reasonably well with those obtained with the Gaussian
or exponential functions. We thus proceed to the variational
calculation in the Dirac model, using largely the same Bessel
functions (e.g., with dn = cn) that have already been tested by
the calculation.

G. The Dirac model

First, we further test the numerical reliability of the Bessel
function based variational method, in the case of the Dirac
model. For example, we consider the case where the QD
radius is 300 Å and calculate the one-particle ground state

FIG. 7. F0(r1 = 0, r2 = 300 Å, r3) in the Schrödinger model, in
the case where the QD radius is 300 Å. F0 is calculated using only
the Gaussian functions.
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One

FIG. 8. (Color online) E
(c)
0 (ground state energy of the confined

electron) versus R (QD radius), calculated in both the Schrödinger
and Dirac models.

energy. The variational method yields 16.64 meV with the
Bessel functions specified by Eq. (31) and Appendix A, and
the analytical approach described in Appendix B yields 16.7
meV, both with respect to the bottom of QD confinement
potential. The foregoing agreement further supports the
expectation for a reasonable level of numerical reliability
in the variational study of trions, in the case of the Dirac
model.

Figure 8 presents E
(c)
0 (ground state energy of the confined

electron) as a function of QD radius, derived in both the
Schrödinger and Dirac models. Figure 9 shows ϕ

(c)
0 (the

corresponding ground state wave function), also derived
in both of the models, in the case where the QD radius
is 150 Å. Note that Figs. 8 and 9 also represent E

(v)
0

and ϕ
(v)
0 , respectively, due to the electron-hole symmetry

[i.e., E
(c)
0 = E

(v)
0 and ϕ

(c)
0 = ϕ

(v)
0 ]. In general, they indicate

a lower E
(c)
0 and a more confined ϕ

(c)
0 in the Dirac model.

However, as shown in the figures, only a slight difference ac-
tually exists between the models, indicating that the relativistic
effect on the confined, one-particle state is small, at least for
the class of QDs studied here. A rough explanation is given
below in terms of the suppression of the relativistic effect by

FIG. 9. (Color online) ϕ
(c)
0 (ground state wave function of the

confined electron) calculated in both the Schrödinger and Dirac
models, in the case where the QD radius is 150 Å.

meV

FIG. 10. (Color online) Ebinding versus R (QD radius). Here, R

changes from 150 to 450 Å. The calculation is performed with the
Bessel functions, in both the Schrödinger and Dirac models.

the quantum confinement. First, the relativistic effect and the
quantum confinement are two phenomena generally prevailing
in different regimes, with the former favored in the high-energy
regime while the latter in the low-energy regime. Second, while
the effective mass in the Schrödinger model is constant and
given by �

v2
F

, the mass in the relativistic Dirac model is given by
1
2 [( �

2k2

v2
F

+ �2

v4
F

)1/2 + �

v2
F

] that increases with the momentum and

is always greater than �

v2
F

. In the presence of QD confinement,
the relatively large “relativistic mass” leads to the lowering of
Dirac energy levels in comparison to the Schrodinger ones,
and a consequent suppression of the relativistic effect due
to the energy lowering. In short, the quantum confinement
limits the relativistic effect and results in the demonstrated
proximity between the two models in Figs. 8 and 9. In
the following, we compare the two models in the case of
trions, where the interparticle Coulomb interaction comes into
play.

Figure 10 presents the trion binding energy Ebinding as a
function of QD radius, calculated in both the Schrodinger and
Dirac models. Generally, Ebinding is slightly larger in the Dirac
model. Figure 11 shows F0(r1, r2, r3 = 0) calculated in the two
models, in the case where the QD radius is 150 Å. It is found
that F0 is more concentrated near the QD center in the Dirac
model. In both figures, the contrast between the two models
can be attributed to the enhanced Dirac carrier confinement in
the QD shown in Fig. 9. Due to the enhanced confinement,
it effectively increases, in the Dirac model, the electron-hole
attraction and, hence, the electron-hole correlation. In Fig. 11,
where the hole location is fixed at the center (r3 = 0), this
results in the enhanced F0 near r1 = r2 = 0 in Fig. 11(b)
(for the Dirac model), when compared to Fig. 11(a) (for the
Schrödinger model). On the other hand, due to the enhanced
carrier confinement, both the electron-electron repulsion and
the electron-hole attraction are effectively raised. However,
they offset each other largely in their effects on the trion
energy (E0). Overall, the offset leads, along with the quantum
suppression of the relativistic effect on the one-particle energy
[or E(e = 0)], to the limited, net relativistic effect on Ebinding

shown in Fig. 10.
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FIG. 11. F0(r1, r2, r3 = 0) calculated using the Bessel functions,
in the case where the QD radius is 150 Å. (a) F0(r1, r2, r3 = 0) in the
Schrödinger model. (b) F0(r1, r2, r3 = 0) in the Dirac model.

H. A note on the Dirac model

The Dirac model employed in the variational calculation is,
rigorously speaking, an approximate theory of Dirac trions.
Basically, as expressed in Eqs. (8) and (13), it employs
the exact Dirac energy dispersion, but treats both electron
and hole states approximately as one-band states. Such an
approximation lowers the numerical complexity level of the
calculation considerably, down to that of the Schrödinger
model. On the other hand, the reduced, one-band description
could, in principle, be improved by utilizing the full two-band
Dirac theory [3] of electron and hole states. Appendix D
discusses such a two-band model of trions and compares the
present reduced description of trions to the two-band model.
Based on the comparison, it also gives an assessment of

the reduced model for the class of quantum dots considered
here.

VI. SUMMARY

We have investigated, within the envelope function approx-
imation, the low-energy states of a trion in a graphene quantum
dot. The presence of valley pseudospin adds convolution to the
interplay between exchange symmetry and the e-e interaction
in the trion. The involvement of valley pseudospin leads to
new states of trions different from those in semiconductors,
and it is found that the low-energy trion states are nearly
degenerate and form either spin singlet or triplet, as opposed
to the nondegenerate, spin singlet-only ground state in a semi-
conductor. We have performed the study of trions analytically
as well as numerically, with the numerical work being carried
out within the variational method using simple products of
Gaussian or exponential functions as basis. Calculations with
the two types of functions are found to agree well with each
other. The trion binding energy is found to decrease with
increasing QD size and increase with increasing confinement
potential strength. Electron and hole distributions have been
investigated, and interesting correlation between electron and
hole locations has been demonstrated. “Relativistic effects”
have also been investigated with the variational method using
the Bessel functions. In the study of electron-hole correlation
in trions, a sizable enhancement due to the relativistic effect is
demonstrated. On the other hand, in the study of trion binding
energy, a close proximity between the Schrödinger and Dirac
models is found, which is attributed to the strong suppression
of the relativistic effect by quantum confinement, as well
as the competition between the electron-electron repulsion
and the electron-hole attraction, in the case of trion binding
energy.

Trion states are relatively simple and, hence, can reflect
plainly the effects of both quantum confinement and the
interaction between charge carriers in the QD. In particular,
a large Ebinding � a few tens of millielectron volts has
been demonstrated in our numerical work, which implies
that these effects are reasonably easy to observe in ex-
periments on trions. Therefore, apart from a revelation of
the interesting role of valley pseudospin in the formation
of low-energy trion states, we expect that this theoretical
study will aid the class of experiments which probe these
bound states as a way to characterize graphene nanostructures
or investigate the few-electron interaction physics in these
structures.
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APPENDIX A: PARAMETERS OF BASIS FUNCTIONS

We list an’s, bn’s (n = 1–6), cn’s and dn’s (n = 1–5) of the
basis functions used in the variational calculation.
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Å
39

0
Å
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Å

20
8.

02
Å
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Å

69
.4

39
Å
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Å

20
8.

02
Å
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Å
65

Å
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Å
29

0.
89

Å
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Å
30

0
Å

65
Å
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Å

48
6.

76
Å
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Å

29
0.

89
Å
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Å APPENDIX B: ONE-CARRIER GROUND STATE

We present the exact one-carrier ground state in the two-
dimensional QD when a gap or mass discontinuity is present.
The problem is treated in both the Schrödinger and the Dirac
models of graphene.

1. The Schrödinger model

In a type-I graphene QD, the effective Schrödinger equation
for a single electron or hole is given by [10]

− �
2

2
∇ · 1

m∗(r)
∇� + Ve(h)(r)� = E�, (B1)

where the subscript e stands for electron and h for hole, and
we have taken the energy zero to be at the corresponding band
edge outside the QD. In the equation,

m∗(r > R)

m∗(r < R)
= gS, Ve(h)(r) =

{
−V

(0)
e(h) for r < R,

0 for r > R.

We introduce the following dimensionless variables

r ′ ≡ r/R, ω ≡ E/ε0, m′(r ′) ≡ m∗(r)/m∗(r < R),

V ′(r ′) ≡ Ve(h)(r)/ε0,

where ε0 ≡ �
2

2m∗(r<R)R2 . Then Eq. (B1) reduces to

− ∇′ · 1

m′(r ′)
∇′� + V ′(r ′)� = ω�, (B2)

where

m′(r ′) =
{

1 for r ′ < 1

gS for r ′ > 1,

V ′(r ′) =
{−V

(0)
e(h)

ε0
for r ′ < 1

0 for r ′ > 1.

Equation (B2) can be solved for the ground state in terms
of Bessel functions, yielding

�(r ′) =
⎧⎨
⎩J0

(√
ω + V

(0)
e(h)

ε0
r ′), 0 < r ′ < 1

αK0(
√−gSωr ′), r ′ > 1.

(B3)

Here, α and ω are to be determined by the following continuity
conditions at r ′ = 1:

�(1−) = �(1+),
d�

dr ′

∣∣∣∣
r ′=1−

= 1

gS

d�

dr ′

∣∣∣∣
r ′=1+

. (B4)

Using the following identities for Bessel functions:

dJ0(z)

dz
= −J1(z),

dK0(z)

dz
= −K1(z),

Eq. (B4) leads to

J0
(√

ω + V
(0)
e(h)

ε0

)
K0(

√−gSω)
=

gS

√
ω + V

(0)
e(h)

ε0√−gSω

J1
(√

ω + V
(0)
e(h)

ε0

)
K1(

√−gSω)
, (B5a)

α =
J0
(√

ω + V
(0)
e(h)

ε0

)
K0(

√−gSω)
. (B5b)
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Equation (B5a) is a transcendental equation satisfied by the
dimensionless energy eigenvalue ω, and its root can be found
numerically to yield ω. Equation (B5b) provides α once ω is
obtained. Therefore, this solves the one-particle ground state
in the QD.

2. The Dirac model

The Dirac theory of graphene is a two-band model consist-
ing of two first-order differential equations [3]. We merge the
two equations, and in the case of a type-I graphene QD, this
yields the equation for a single electron or hole [10]

− �
2

2
∇ · 1

m∗(r; E)
∇� + VD(r)� = E�, (B6)

where

m∗(r; E) ≡ E + 2�(r) − VD(r)

2v2
F

,

VD(r) =
{

−V
(0)
e(h) for r < R,

0 for r > R,

(e for an electron and h for a hole).

The energy zero here is taken to be at the corresponding band
edge outside the QD. Equation (B6) appears to be of the same
form as Eq. (B1). However, the function m∗(r;E) introduced
here, which plays the role of “effective mass” in the equation,
is energy dependent, as it should be in a Dirac type theory.

We define the energy-dependent mass ratio gD(E)

gD(E) = m∗(r > R; E)

m∗(r < R; E)
,

and also introduce the following dimensionless variables,

r ′ ≡ r

R
, ωD(E) ≡ E

ε0,D(E)
,

m′(r ′; E) ≡ m∗(r; E)

m∗(r < R; E)
, V ′

D(r ′; E) ≡ VD(r)

ε0,D(E)
,

where ε0,D(E) ≡ �
2

2m∗(r<R;E)R2 . Then Eq. (B6) reduces to

− ∇′ · 1

m′(r ′; E)
∇′� + V ′

D(r ′; E)� = ωD(E)�, (B7)

where

m′(r ′; E) =
{

1 for r ′ < 1

gD(E) for r ′ > 1,

V ′
D(r ′; E) =

{ −V
(0)
e(h)

ε0,D(E) for r ′ < 1

0 for r ′ > 1.

Equation (B7) can be solved for the ground state in terms
of Bessel functions, yielding

�(r ′) =
⎧⎨
⎩J0

(√
ωD(E) + V

(0)
e(h)

ε0,D (E) r
′), 0 < r ′ < 1

βK0(
√−gD(E)ωD(E)r ′), r ′ > 1.

(B8)

The unknowns β and E in the equation are to be determined
by the following continuity conditions at r ′ = 1:

�(1−) = �(1+),
d�

dr ′

∣∣∣∣
r ′=1−

= 1

gD

d�

dr ′

∣∣∣∣
r ′=1+

,

or

J0
[
ωD(E) + V

(0)
e(h)

ε0,D (E)

]
K0[

√−gD(E)ωD(E)]
=

gD(E)

√
ωD(E) + V

(0)
e(h)

ε0,D(E)√−gD(E)ωD(E)

×
J1
[√

ωD(E) + V
(0)
e(h)

ε0,D(E)

]
K1[

√−gD(E)ωD(E)]
, (B9a)

β =
J0
[√

ωD(E) + V
(0)
e(h)

ε0,D(E)

]
K0[

√−gD(E)ωD(E)]
. (B9b)

Equation (B9a) is a transcendental equation satisfied by E, and
its root can be found numerically. Equation (B9b) provides β

once E is obtained. Therefore, this solves the one-particle
ground state in the QD.

The solution derived here allows us to determine, in either
the Schrödinger or the Dirac model, the ground state energy
of the noninteracting system of two electrons and one hole,
giving E(e = 0) as a reference energy for the calculation of
the trion binding energy Ebinding.

APPENDIX C: USEFUL INTEGRALS FOR THE VARIATIONAL CALCULATION

In the following, we provide the integrals involved in both the Hamiltonian and the overlap matrix elements in Eq. (33).

1. Gaussian and exponential functions

We introduce the notations

〈r|n〉 =
{〈r|n〉< = e−nr2

, r < R

〈r|n〉> = en(gS−1)R2
e−gSnr2

, r > R

〈r1r2r3|nkl〉 =
{〈r1r2r3|nkl〉< = e−(nr2

1 +kr2
2 +lr2

3 ), r < R

〈r1r2r3|nkl〉> = e(n+k+l)(gS−1)R2
e−gS (nr2

1 +kr2
2 +lr2

3 ), r > R
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for the Gaussian function, and

〈r|n〉 =
{〈r|n〉< = e−nr , r < R

〈r|n〉> = en(gS−1)Re−gSnr ,l r > R

〈r1r2r3|nkl〉 =
{〈r1r2r3|nkl〉< = e−(nr1+kr2+lr3), r < R

〈r1r2r3|nkl〉> = e(gS−1)(n+k+l)Re−gS (nr1+kr2+lr3), r > R

for the exponential function. Here, gS is the mass ratio [=m∗(r > R)/m∗(r < R)].
The overlap integral between two basis functions is given by

〈n|n′〉 = 〈n|n′〉< + 〈n|n′〉>

=
⎧⎨
⎩

2π
[

1−e−(n+n′ )R2

2(n+n′) + e−(n+n′ )R2

2(n+n′)gS

]
(Gaussian basis),

2π
{ 1−[1+(n+n′)R]e−(n+n′)R

(n+n′)2 + [1+(n+n′)gSR]e−(n+n′)R

(n+n′)2g2
S

}
(exponential basis).

(C1)

The kinetic energy in the Hamiltonian matrix element involves the integral

〈n| − ∇ ·
(

1

m∗ ∇
)

|n′〉 = 1

m∗(r < R)

[
〈n| − ∇2|n′〉< + 1

g
〈n| − ∇2|n′〉>

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2π
m∗(r<R)

⎛
⎝ 2n′[1−e−(n+n′ )R2

]
(n+n′) − 2n′2{1−[1+(n+n′)R2]e−(n+n′)R2 }

(n+n′)2

+ e−(n+n′ )R2

gS

{
2n′

(n+n′) − 2n′2[1+(n+n′)gSR2]
(n+n′)2

}
⎞
⎠ (Gaussian basis),

2π
m∗(r<R)

⎛
⎝ n′[1−e−(n+n′ )R ]

(n+n′) − n′2{1−[1+(n+n′)R]e−(n+n′ )R}
(n+n′)2

+ e−(n+n′ )R
gS

{
n′

(n+n′) − n′2[1+(n+n′)gSR]
(n+n′)2

}
⎞
⎠ (exponential basis).

(C2)

The Coulomb interaction energy in the Hamiltonian matrix element involves the integral

〈nkl| 1

r12
|n′k′l′〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2π )2
[

1−e−(l+l′)R2

2(l+l′) + e−(l+l′)R2

2(l+l′)gS

]
× ∫ ∞

0 dr1
∫ ∞

0 dr2
∫ 2π

0 dθ12
r1r2〈n|r1〉〈k|r2〉〈r1|n′〉〈r2|k′〉√

r2
1 +r2

2 −2r1r2cosθ12

(Gaussian basis),

(2π )2

{
1−[1+(l+l′)R]e−(l+l′)R

(l+l′)2 + [1+(l+l′)gSR]e−(l+l′)R

(l+l′)2g2
S

}

× ∫ ∞
0 dr1

∫ ∞
0 dr2

∫ 2π

0 dθ12
r1r2〈n|r1〉〈k|r2〉〈r1|n′〉〈r2|k′〉√

r2
1 +r2

2 −2r1r2cosθ12

(exponential basis).

(C3)

The above three-dimensional integrals are numerically evaluated in our work.
The QD confinement potential energy in the Hamiltonian matrix element involves the integral

〈n|Ve(h)(r)|n′〉 =

⎧⎪⎨
⎪⎩

− πV
(0)
e(h)

(n+n′) [1 − e−(n+n′)R2
], (Gaussian basis)

− 2πV
(0)
e(h)

(n+n′)2 {1 − [1 + (n + n′)R]e−(n+n′)R}, (exponential basis)
, (C4)

where we have taken Ve(h)(r) = 0 outside the QD, and Ve(h)(r) = −Ve(h)
(0) inside the QD.

2. Bessel functions

We introduce the notations

〈r|n〉 =
{〈r|n〉< = J0(cnr), r < R

〈r|n〉> = αnK0(c′
nr), r > R

(for the Schrödinger model)

〈r|n〉 =
{〈r|n〉< = J0(dnr), r < R

〈r|n〉> = βnK0(d ′
nr), r > R

(for the Dirac model)

〈r1r2r3|nkl〉 =
{〈r1r2r3|nkl〉< = 〈r1|n〉<〈r2|k〉<〈r3|l〉<, r < R

〈r1r2r3|nkl〉> = 〈r1|n〉>〈r2|k〉>〈r3|l〉>, r > R
.
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The overlap integral between two basis functions is given by

〈m|n〉 = 〈m|n〉< + 〈m|n〉> = 2π

[∫ R

0
rdr〈m|r〉<〈r|n〉< +

∫ ∞

R

rdr〈m|r〉>〈r|n〉>
]

∫ R

0
rdr〈m|r〉<〈r|n〉< =

⎧⎨
⎩

R
c2
n−c2

m
[cnJ0(cmR)J1(cnR) − cmJ0(cnR)J1(cmR)] , (Schrödinger model)

R
d2

n−d2
m

[dnJ0(dmR)J1(dnR) − dmJ0(dnR)J1(dmR)] , (Dirac model),
(C5)

∫ ∞

R

rdr〈m|r〉>〈r|n〉> =
⎧⎨
⎩

αmαnR

c′2
n −c′2

m
[c′

nK0(c′
mR)K1(c′

nR) − c′
mK0(c′

nR)K1(c′
mR)] (Schrödinger model),

βmβnR

d ′2
n −d ′2

m
[d ′

nK0(d ′
mR)K1(d ′

nR) − d ′
mK0(d ′

nR)K1(d ′
mR)] (Dirac model).

(C6)

The sum of the kinetic energy and the QD confinement potential energy gives the following Hamiltonian matrix element

〈m| − �
2

2
∇ ·

(
1

m∗ ∇
)

+ Ve(h)|n〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�

2c2
n

2m∗(r<R) − V
(0)
e(h)

)〈m|n〉< − (
�

2c′2
n

2m∗(r>R)

)〈m|n〉>, (Schrödinger model),[(
�

2v2
F d2

n + �2
)1/2 − V

(0)
e(h)

]〈m|n〉< + (−�
2v2

F d ′2
n + �2

)1/2〈m|n〉>
−�(r < R)〈m|n〉< − �(r > R)〈m|n〉>, (Dirac model).

(C7)

Equation (C7) involves the integrals 〈m | n〉〈and 〈m | n〉〉,
both of which have already been evaluated in Eqs. (C5)
and (C6).

The Coulomb interaction energy in the Hamiltonian matrix
element involves integral

〈nkl| 1

r12
|n′k′l′〉

= 2π〈l|l′〉
∫ ∞

0
dr1

∫ ∞

0
dr2

∫ 2π

0
dθ12

× r1r2〈n|r1〉〈k|r2〉〈r1|n′〉〈r2|k′〉√
r2

1 + r2
2 − 2r1r2cosθ12

,

(for both the Schrödinger and Dirac models). (C8)

The above three-dimensional integral is numerically evaluated
in our work.

APPENDIX D: THE REDUCED TRION MODEL VERSUS
THE FULL TWO-BAND TRION MODEL

IN THE DIRAC REGIME

The reduced Dirac model given in Eqs. (8) and (13)
replaces the quadratic energy dispersion in the Schrödinger
model by the Dirac dispersion, but treats the one-carrier states
approximately. For example, for the states around the Dirac
point, it expresses them as eik·rψ (c)

K(K ′)(r) and eik·rψ (v)
K(K ′)(r)

with ψ
(c)
K(K ′)(r) and ψ

(v)
K(K ′)(r) being the wave functions at the

Dirac point, as indicated in Eq. (3). In the following, we
consider the full, two-band Dirac model that includes the
more exact wave functions, for example, the ones obtained
by directly solving the 2×2 Dirac equation. Such a two-band
description would allow for a suitable treatment of the mixing
between conduction and valence band states in trions.

First, we introduce the one-carrier state in the two-band
Dirac theory. The wave function of a conduction band electron
around, for example, the K point is given by 1√

�
eik·rψ (c)

k+K (r)

(k = wave vector), with

ψ
(c)
k+K (r) = eiK·rU (c)

k+K (�r),

U
(c)
k+K (�r) =

[
c

(A)
k u

(A)
K (r)

c
(B)
k u

(B)
K (r)

]
. (D1)

uK
(A)(r) and uK

(B)(r) are cell-periodic Bloch functions. The
superscripts A and B indicate the two atomic sites in a
graphene unit cell. The coefficients c

(A)
k and c

(B)
k represent,

respectively, the amplitudes on A and B sites. They are
determined by the 2×2 Dirac equation and given by(

c
(A)
k

c
(B)
k

)
∝

(
E + 2�

�vF k+

)
, (D2)

where k+ = kx + iky and E = the corresponding electron en-
ergy with respect to the conduction band edge. The amplitudes
satisfy the normalization condition∣∣c(A)

k

∣∣2 + ∣∣c(B)
k

∣∣2 = 1. (D3)

We take A site to have the higher atomic energy level �,
and B site the lower energy level −�, where � = energy
gap parameter of graphene. It is known that a conduction band
electron mainly occupies A sites while a valence band electron
mainly occupies B sites. Therefore, for a conduction band
state, [c(A)

k ,c
(B)
k ] ≈ (1,0), and the amplitude |c(B)

k |2 increases
with increasing electron momentum, reflecting the relativistic
effect. In the reduced trion model, we ignore the state mixing
and take [

c
(A)
k ,c

(B)
k

] = (1,0). (D4)

Equations (D1)–(D4) can be generalized to valence electron
states and states round the K ′ valley.

Next, we compare the reduced model to the full two-band
model of trions, as follows.

(i) First, we discuss the kinetic aspect. We consider the
central trion envelope function equation in the reduced model,
specified by Eqs. (8) and (13), in the noninteracting limit.
In this case, the equation reduces to the wave equation for
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three independent particles, with each particle governed by
the same one-band Dirac equation in Appendix B. Moreover,
since the one-band Dirac equation there is rigorously derived
from the 2 × 2 Dirac equation (by combining into one the
two differential equations in the 2 × 2 problem), the reduced
model thus exactly conforms to the 2 × 2 Dirac theory, in the
noninteracting case.

(ii) Second, we discuss the interaction aspect. We turn
on the intercarrier interaction in the trion and estimate the

difference between the reduced and the full Dirac models, in
the interaction matrix element.

We consider a typical matrix element for the interaction
between, for example, two electrons—one K valley electron
(with wave vectors k1 and k′

1) and the other K ′ valley electron
(with wave vectors k2 and k′

2). This is a case relevant to the
trion (consisting of one K electron, one K ′ electron, and one
K ′ hole) considered in Sec. II.
In the two-band Dirac model, we would have

〈k1,k2|Ve−e|k′
1,k

′
2〉 = 1

�2

∫
d2r1d

2r2e−i(
−→
k1 −−→

k′
1 )·(�r1−�r2)U

(c)∗
k1+K (�r1)U (c)∗

k2+K ′ (�r2)Ve−e(�r1 − �r2)

U
(c)
k′

1+K
(�r1)U (c)

k′
2+K ′ (�r2) ≈ V e−e(

−→
k1 − −→

k′
1 )
[
c

(A)∗
k1

c
(A)
k′

1
+ c

(B)∗
k1

c
(B)
k′

1

][
d

(A)∗
k2

d
(A)
k′

2
+ d

(B)∗
k2

d
(B)
k′

2

]
(for the two-band model), (D5)

where the constants d
(A)
k2

, d
(A)
k2′ , d

(B)
k2

, and d
(B)
k2′ represent the

amplitudes of the K ′ electron on A sites and B sites,
respectively.

In the reduced Dirac model, with the approximation in
Eq. (D4),

〈k1,k2|Ve−e|k′
1,k

′
2〉

≈ V e−e(
−→
k1 − −→

k′
1 ) (for the reduced model). (D6)

If we compare Eqs. (D5) and (D6), we see that the
difference is due to the presence of a nonunity factor in
Eq. (D5), given by

μ ≡ [
c

(A)∗
k1

c
(A)
k′

1
+ c

(B)∗
k1

c
(B)
k′

1

][
d

(A)∗
k2

d
(A)
k′

2
+ d

(B)∗
k2

d
(B)
k′

2

]
. (D7)

Here, μ = 1 in the reduced model and deviates from unity
in the two-band model because the amplitudes on site B

are generally nonvanishing for states away from the Dirac
point (i.e., state mixing). Thus, as shown above, the state
mixing results in a modification of the interaction matrix
element.

Now, we make an estimate of the deviation of μ from unity,
in a typical quantum dot, in the two-band model. Specifically,
we take the radius to be 300 Å. We consider one of the inner
products, for example, ρ = c

(A)∗
k1

c
(A)
k′1 + c

(B)∗
k1

c
(B)
k′1 in Eq. (D7).

The task then is to evaluate the average of ρ, with [c(A)
k1

,c
(B)
k1

]

and [c(A)
k′1 ,c

(B)
k′1 ] both varying in the neighborhood of (1,0) (see

below for justification). We utilize the Bloch sphere scheme

and represent, for example, [c(A)
k1

,c
(B)
k1

] by a point on the surface
of the sphere, parameterized by

[
c

(A)
k1

c
(B)
k1

]
=

(
cos

θk1
2

eiϕ1 sin
θk1
2

)
.

Here, θk1 is small, meaning that the point is near the north pole
of the sphere. Evaluation in such a scheme yields 〈ρ〉 ≈ 1 −
〈|c(B)

k |2〉
4 and 〈μ〉 ≈ 1 − 〈|c(B)

k |2〉
2 [〈|c(B)

k |2〉 = average occupation
probability on site B, for states in the neighborhood of north
pole].

We apply Eq. (D2) and estimate 〈|c(B)
k |2〉 using � = 28 meV

in the quantum dot and electron energy E ∼ 17 meV according
to the calculation of one-carrier state energy shown in Fig. 8.
This yields 〈|c(B)

k |2〉 ∼ 0.19, justifying our assumption of
the states being near the north pole. Therefore, 〈μ〉 ≈ 1 −
〈|c(B)

k |2〉
2 = 0.9, meaning a reduction in the interaction strength,

due to state mixing in the two-band model, in comparison to
that in the reduced model (μ = 1).

(iii) Last, the above discussion gives an estimate of about
10% error in the interaction matrix element, in the reduced
model. Since the trion state is determined by both the kinetic
effect [discussed in (i)] and interaction effect [discussed in (ii)],
an error of similar or less magnitude is expected for the trion
state. Thus, our numerical work based on the reduced Dirac
model provides a reasonable study of trions.
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