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van der Waals forces and electron-electron interactions in two strained graphene layers

Anand Sharma,1,* Peter Harnish,1 Alexander Sylvester,1 Valeri N. Kotov,1 and A. H. Castro Neto2,†
1Department of Physics, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA

2Graphene Research Centre and Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
(Received 18 February 2014; revised manuscript received 5 May 2014; published 19 June 2014)

We evaluate the van der Waals (vdW) interaction energy at zero temperature between two undoped strained
graphene layers separated by a finite distance. We consider the following three models for the anisotropic case:
(a) where one of the two layers is uniaxially strained, (b) the two layers are strained in the same direction, and
(c) one of the layers is strained in the perpendicular direction with respect to the other. We find that for all three
models and given value of the electron-electron interaction coupling, the vdW interaction energy increases with
increasing anisotropy. The effect is most striking for the case when both layers are strained in the same direction
where we observe up to an order of magnitude increase in the strained relative to the unstrained case. We also
investigate the effect of electron-electron interaction renormalization in the region of large separation between
the strained graphene layers. We find that the many-body renormalization contributions to the correlation energy
are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the
layers due to renormalization of the Fermi velocity, the anisotropy, and the effective interaction. Our analysis
can be useful in designing graphene-based vdW heterostructures which, in recent times, has seen an upsurge in
research activity.

DOI: 10.1103/PhysRevB.89.235425 PACS number(s): 68.65.Pq, 71.10.−w, 71.45.−d, 73.22.−f

I. INTRODUCTION

Graphene, an atomic-thin sheet of carbon atoms, was
isolated from graphite using the micromechanical cleavage
technique [1]. It has remarkable mechanical [2], electronic
[3], transport [4], and optical [5] properties. Since its isolation
in 2004, it has drawn a lot of interest due to its unique zero
gap electronic band structure at the Dirac point with chiral and
massless linear dispersion of Dirac fermions.

In the past several years, the research has rapidly moved on
from single to bi- [6], double- [7], and multilayer graphene
[8] as they display a plethora of intriguing properties due
to the inherent chiral symmetry of the underlying bipartite
lattice structure. Such multilayer systems are formed by
stacking graphene on top of each other and they can be
either electronically coupled or decoupled. The spatially
separate double-layer graphene [9], where they are coupled
only via the long-range Coulomb interaction, are particularly
very fascinating as they exhibit a variety of phenomena like
the plasmon effects [10], excitonic condensate or frictional
Coulomb drag [11], and van der Waals (vdW) interaction [12].
It turns out that these physical phenomena are not only useful
in probing the interaction effects in such systems but are also
important in designing modern technological devices as they
can be separated in the order of nanometer scale.

Recently the low-dimensional vdW heterostructures have
attracted a great deal of attention as they provide a stage for new
materials to study interesting effects and to realize quantum
engineered devices with unprecedented qualities for modern
applications [13]. The van der Waals force between electrically
neutral atoms or molecules arises due to the instantaneous
dipole induced by the fluctuating electron cloud around the

*anand.sharma@uvm.edu
†On leave from Department of Physics, Boston University, 590

Commonwealth Avenue, Boston, Massachusetts 02215, USA.

nucleus and is normally attractive. It is so ubiquitous in nature
that its study covers almost all areas of natural sciences and has
a wide range of utilization among interdisciplinary subjects
[14]. This long range and weak force plays a very crucial
role in the investigation of interaction between the materials
[15]. Thus thorough understanding of vdW interactions and
utilizing noncovalent nanomaterials, for instance carbon-based
graphene, forms a crucial step towards future technology [16].

Graphene as a two-dimensional sheet has extraordinary
mechanical strength [2], but can also be subjected to strain
leading to anisotropic electronic behavior. It is known that the
lattice distortion, due to uniaxial strain, in graphene can alter
its electronic band structure [17–19], optical [20], as well as
magnetic [21] properties and also demonstrates interplay with
many-body interactions [22] and electron-plasmon scattering
[23]. It is also possible to open a finite band gap in the
electronic spectrum, which would be highly desirable for the
semiconductor-based technology [24], but only at the expense
of very large deformations applied along a specific direction
[20]. Due to the lack of achieving substantial deformations
in graphene, there has not been been much work reported on
applying strain in two- or multilayered graphene.

Besides tailoring the electronic band structure of graphene
using strain, the many-body interactions also play an important
role in understanding the fundamental physical properties as
well as for applications in technical devices. These interactions
are normally more pronounced in low-dimensional materials
and are visible as intrinsic enhancement of Coulomb inter-
actions as well as reduced screening in these materials. In
graphene, the low-energy behavior of the Dirac quasiparticles
is remarkably modified due to the electron-electron inter-
actions and is evident in terms of the fractional quantum
Hall effect [25] and renormalization of the Fermi velocity
[26] among various other striking results [27]. In addition
to the monolayer, various interesting phenomena related to
many-body interactions were also observed in double-layer
graphene [28–31].
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Thus it would be captivating to study the effects of the
electron-electron interactions along with strain on the vdW
interactions between two-layer graphene and this forms the
main motivation of this paper. Our aim is to obtain the vdW
force acting between two uniaxially strained clean graphene
layers at zero temperature and which are separated by a finite
distance. In Sec. II we introduce the three anisotropic models
and obtain the vdW interaction energy per unit area in each
of these cases. We consider an effective Coulomb interaction
between the graphene sheets derived within the random phase
approximation (RPA). The numerical results, discussed in
Sec. III, are divided into two parts. In Sec. III A we examine
the variation in the vdW force coefficient as a function of
applied uniaxial strain for different values of the strength of
effective interaction or coupling constant. And in Sec. III B we
additionally consider the effect of intralayer electron-electron
interaction on the vdW interaction energy as the distance
between the two layers is increased. In Sec. IV we summarize
the results and present our conclusions.

II. ANISOTROPIC MODELS AND
THE VAN DER WAALS FORCE

We are interested in evaluating the van der Waals (vdW)
interaction energy or the vdW force per unit area at zero
temperature (T = 0) between two charge neutral strained
graphene layers separated by a finite distance. We begin by
indicating that for any interacting many-electron system, the
total energy consists of its kinetic, exchange, and correlation
energy. In our study, the intralayer kinetic and the exchange
energy are independent of the distance between the two layers
and there is no interlayer exchange energy since we assume
that the separation between the two layers are large enough
to neglect any overlap between the electronic wave functions.
Thus the many-body electronic correlation energy, a part of
which is the weak long-ranged vdW interaction energy, is
the only quantity which depends on the separation between
the layers [32,33]. The vdW interaction arises because of the
induced dipole-dipole interaction due to the correlated motion
of the electrons in both the layers and in the presence of an
effective interlayer Coulomb interaction between the layers.

For a system of two undoped and unstrained freely
suspended graphene layers separated by a finite distance (D),
as shown in Fig. 1, the vdW force per unit area at T = 0
was derived in several different ways [34,35] and a consistent
power-law dependence on the distance was obtained which
varied as D−4 in both the nonretarded [34] and retarded
[36] regimes. This was due to the fact that in such a system
for no doping and zero temperature, the force of attraction
resulted from the interaction of the charge-density oscillations
within the graphene crystal and there was no characteristic
temperature scale. Therefore, if one neglected the effects of
intralayer Coulomb interaction then there was no physical
quantity which had a dependence on the distance of separation
between the graphene layers. Moreover, under that condition
the retardation effects were also shown to be practically
irrelevant for such a system [38]. We would also like to
remark that, surprisingly, the above mentioned power-law
dependence was in sharp contrast to the case of two layers
of two-dimensional metals (D− 7

2 ) or insulators (D−5) and

FIG. 1. (Color online) Schematic depicting two undoped and
unstrained freely suspended graphene layers separated by a finite
distance (D).

the difference was attributed to the unique band structure of
graphene [37]. There have also been studies reporting finite
temperature [30,38,39] calculations and with doped as well as
gapped graphene [40].

In this work we consider three different types of geometries
for an applied uniaxial strain on graphene sheets, as shown in
Fig. 2, with (a) one of the two graphene layers (bottom layer
as shown in the figure) is uniaxially (−) strained, (b) the two
layers are strained in the same (=) direction, and (c) one of
the layers is strained in the perpendicular (⊥) direction with
respect to the other for a fixed coordinate system. Our starting
point is the evaluation of the vdW interaction energy at zero
temperature. It is known that the result for the interaction
energy within the random phase approximation (RPA) [41],
which takes into account both intra- and interlayer screening,
is equivalent to the nonretarded version of the well-known
Lifshitz approach [42]. Retardation effects can be easily taken
into account and by including them we shall show that with
applied strain, in the limit as considered in this work, they

FIG. 2. (Color online) Schematic showing three different
anisotropic models: (a) one of the two graphene layers (bottom layer
as shown in the figure) is uniaxially (−) strained, (b) the two layers
are strained in the same (=) direction, and (c) one of the layers is
strained in the perpendicular (⊥) direction with respect to the other
for a fixed coordinate system.

235425-2



VAN DER WAALS FORCES AND ELECTRON-ELECTRON . . . PHYSICAL REVIEW B 89, 235425 (2014)

are negligible similar to the case of unstrained graphene [38].
Thus our starting expression for the interaction energy is

E(D) = �

(2π )3

∫∫
dqxdqy

∫ ∞

0
dω

× ln

(
1 − e−2qDV1(q)�1(q,iω)V2(q)�2(q,iω)

ε1(q,iω)ε2(q,iω)

)
,

(1)

where the dielectric functions in the layers, labeled ν = 1 (top)
and 2 (bottom), are given as εν(q,iω) = 1 − Vν(q)�ν(q,iω).
Here V1(q) = V2(q) = V (q) = 2πe2

κq
is the bare (unscreened)

long-range Coulomb potential within each layer and κ is the
dielectric constant of the surrounding medium. The dynamical
polarization bubble in the strained case is

�ν(q,iω) = − N

16vνxvνy

v2
νxq

2
x + v2

νyq
2
y√

v2
νxq

2
x + v2

νyq
2
y + ω2

, (2)

with N = 4 being the total number of fermion flavors, i.e.,
two spins and two valley degrees of freedom in graphene.
On applying uniaxial strain within a given graphene sheet,
assuming the limit of uniform bond deformations and ne-
glecting all kinds of bond bending effects, the isotropic band
structure of the Dirac fermions becomes anisotropic giving
rise to two different velocities (vνx and vνy) along the two
spatial (x and y) directions. With a fixed coordinate system
and depending on the direction of the strain, as seen in Fig. 2,
we define the anisotropy parameter proportional to the ratio
of the two velocities such that the velocity along the direction
of applied strain is always in the numerator. Thus if the strain
is applied along the x (y) direction of a given layer (ν), then
the anisotropy parameter is vν⊥ = vνx

vνy
(vν⊥ = vνy

vνx
), where it is

assumed vνx < vνy (vνy < vνx) and that we are interested in
the range vνx/vνy � 1 (vνy/vνx � 1). It is worth pointing out
that in the numerical results to follow we will approximate
the larger velocity vνy (vνx), for the applied strain along x (y)
direction, respectively, equal to its isotropic limit v, i.e., the
Fermi velocity. This is due to the fact that in the tight-binding
calculations of the uniaxially strained graphene, the larger
velocity does not deviate much from its isotropic value [17].
For further details on the nature of anisotropic velocities and
the band structure (Dirac cones) near a Dirac point due to
the application of uniaxial strain in graphene, see for example
Sec. II in Ref. [22].

The vdW force can be obtained from the interaction energy
as

F(D) = −dE(D)

dD

= −2�

(2π )3

∫∫
dqxdqy

∫ ∞

0
dω f (q,ω,D), (3)

where

f (q,ω,D) = qe−2qD
∏

ν=1,2 Vν(q)�ν(q,iω)∏
ν=1,2 εν(q,iω) − e−2qD

∏
ν=1,2 Vν(q)�ν(q,iω)

and it can be evaluated for each of the three different models
considered in this work. A straightforward calculations gives

Fm(D) = −Cm(v⊥,α)

D4
, (4)

where m = (a), (b), and (c) are the anisotropic models as shown
in Fig. 2 and the coefficient Cm(v⊥,α) is given by

Cm(v⊥,α) = �v

8(2π )3

∫ 2π

0
dϕ

∫ ∞

0
dω̃

∫ ∞

0
dq̃

×
(

q̃3e−q̃

gm(ϕ,ω̃,v⊥,α) − e−q̃

)
. (5)

We have used polar coordinates and considered dimensionless
scaled variables for the frequency (ω̃ = 2Dω

vq̃
) and the mo-

mentum (q̃ = 2qD) which sets the distance parameter (D)
outside the integrand. The coefficient only depends on the
strength of anisotropy (v⊥) and the dimensionless intralayer
effective Coulomb coupling constant α = e2

κ�v
. The function

gm(ϕ,ω̃,v⊥,α) depends explicitly on the way in which the
uniaxial strain is applied.

For the case when the anisotropy is only along one of the
layers, i.e., case (a) of Fig. 2, with v1⊥ = 1 and v2⊥ = v2y

v
= v⊥,

we have

g(a)(ϕ,ω̃,v⊥,α) =
(

1+2
√

1 + ω̃2

πα

)

×
(

1 +
2v⊥

√
cos2 ϕ + v2

⊥ sin2 ϕ + ω̃2

πα(cos2 ϕ + v2
⊥ sin2 ϕ)

)
.

(6)

On the other hand, when an equal amount of strain is applied
on both the layers and along the same direction, i.e., case (b)
with v1⊥ = v2⊥ = v⊥, we have

g(b)(ϕ,ω̃,v⊥,α) =
(

1 +
2v⊥

√
cos2 ϕ + v2

⊥ sin2 ϕ + ω̃2

πα(cos2 ϕ + v2
⊥ sin2 ϕ)

)2

.

(7)

And all the other limits, v1⊥ �= v2⊥, can also be studied, but
since these limits are intermediate between models (a) and (b)
we therefore do not consider them in this work.

For case (c), i.e., when both layers are strained in different
(perpendicular) directions we define v1⊥ = v1x

v
and v2⊥ = v2y

v
.

One can vary these two parameters independently but as
before we consider v1⊥ = v2⊥ = v⊥, which corresponds to
the maximum value of the force. In this case, the function
gm(ϕ,ω̃,v⊥,α) is given by

g(c)(ϕ,ω̃,v⊥,α) =
(

1 +
2v⊥

√
v2

⊥ cos2 ϕ + sin2 ϕ + ω̃2

πα(v2
⊥ cos2 ϕ + sin2 ϕ)

)

×
(

1 +
2v⊥

√
cos2 ϕ + v2

⊥ sin2 ϕ + ω̃2

πα(cos2 ϕ + v2
⊥ sin2 ϕ)

)
.

(8)

Before we discuss the numerical results of the vdW
force coefficient for three anisotropic models, we confirm
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the isotropic limit. With v1⊥ = v2⊥ = v⊥ = 1, � = 6.58 ×
10−16 eV s, v = 1016 Å s−1, we get C(1,α) = 0.40 eV Å for the
freely suspended (κ = 1 and α = 2.2) graphene sheets. This is
the well-established value for the force in isotropic graphene
[38,39].

III. EVOLUTION OF THE VAN DER WAALS FORCE
WITH STRAIN AND ELECTRON-ELECTRON

INTERACTION STRENGTH

In this section we present the results for the vdW force
coefficient for varying strength of anisotropy and effective
coupling constant. We numerically evaluate the coefficient
for three anisotropic models, shown in Fig. 2, by substituting
Eqs. (6), (7), and (8) in Eq. (5) for models (a), (b), and (c),
respectively. First we shall carry out the analysis for fixed
(momentum independent) values of the couplings (Sec. III A).
Then in Sec. III B we take into account the logarithmic
coupling renormalization due to intralayer electron-electron
interactions.

A. Results for the van der Waals force

Let us begin by calculating the vdW force for fixed
(i.e., momentum-independent, unrenormalized) values of the
model parameters v⊥ and α. In Fig. 3 we plot the ratio of
the anisotropic Cm(v⊥,α) to the isotropic C(1,α) coefficient
as a function of change in anisotropy parameter (1 − v⊥)
and varying strength of effective coupling constant (α) for
different models as shown in three panels in the figure. For our
calculations, we consider three different values of the effective
interaction, α = 0.2, 0.5, and 0.8 shown in the circle, square,
and diamond, respectively, in the figure and for these values
we get the isotropic coefficient as C(1,α) = 0.014, 0.059, and
0.115 eV Å, respectively.

As seen in Fig. 3, for all the anisotropic models we find
that for the fixed coupling constant the coefficient increases
with increasing anisotropy which can be understood as an

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

C
m

(υ
⊥
,α

) /
 C

(1
,α

)

0 0.2 0.4 0.6 0.8 1

1 - υ⊥

0

5

10

15

20

25

30

α = 0.2
α = 0.5
α = 0.8

0 0.2 0.4 0.6 0.8 10

5

10

15

20

(a) (b) (c)

FIG. 3. The ratio of the anisotropic Cm(v⊥,α) to the isotropic
C(1,α) coefficient of the vdW force as a function of variation in the
anisotropy (1 − v⊥) and strength of coupling constant (α) for three
different models. Note the different scales on the y axis.

increase in the intralayer charge susceptibility. From the three
anisotropic models considered in this work, the effect of strain
and interaction is the most prominent for model (b) which is
the case when both layers are strained in the same direction
and where we notice an order of magnitude increase in the
vdW coefficient at the maximum value of applied strain. We
also observe that at any given finite value of strain, the factor of
increase in the strength of the force of attraction gets reduced
with increasing coupling.

We restrict our calculations to the maximum anisotropy
of v⊥ = 0.05. In the limit of large applied uniaxial strain
(v⊥ → 0) in any of the anisotropic models, the vdW coefficient
increases rapidly and in the extreme limit, it is straightforward
to see that it diverges due to the integration over the frequency.
We have numerically checked our calculations until the limit
close to the maximum strain and the results indicate that the
quantitative difference between the retarded and nonretarded
regime increases only in this extreme limit. Though our theory
is not valid in this extreme limit of applied strain due to change
in the band structure and the form of polarization function
but nevertheless it suggests that the retardation-induced upper
cutoff [38] for the scaled dimensionless frequency should be
kept, i.e., the integration should be performed as

∫ c/v

0 dω̃. This
accounts for the retardation effect where c is the speed of
light in vacuum and c/v = 300; the nonretarded results are
obtained in the limit c → ∞. We have performed all of our
calculations with the cutoff as described above. In the limit
of applied strain as considered in this work, we find that the
introduction of this cutoff has practically no effect just like
in the case of isotropic graphene [38]. However, we find that
in the presence of applied strain when the polarization and
thus the force increase substantially, retardation effects gain
importance in the limit of large separation between the two
graphene layers.

B. Influence of many-body logarithmic renormalization

The intriguing many-body physics due to the electron-
electron interaction is known to renormalize the Fermi velocity
(v) and the effective coupling constant (α) in graphene [27].
In the strained case the anisotropic parameter (v⊥), which de-
pends on the Fermi velocity, also gets altered and acquires log-
arithmic corrections due to the many-body interactions [21].

Recently [31] the effect of such renormalization was
studied in the context of vdW force between two undoped
and unstrained graphene layers where the authors concluded
that the asymptotic behavior of the vdW interaction at large
separation gets modified due to change in the low-energy
(long wavelength) behavior of the Dirac fermions in the
presence of electron-electron interactions. They also showed
that not only the vdW force coefficient but also the power-law
dependence on the distance between the two graphene layers
could drastically change.

We have included the many-body interactions and recal-
culated the vdW force coefficient which gets modified due to
the renormalization of the physical quantities [v(l),α(l),v⊥(l)],
where l is the logarithmic scale in the renormalization group
treatment (see below). Their behavior is governed, to lowest
order in the interaction (i.e., under the condition α � 1), by
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the following coupled nonlinear renormalization group (RG)
equations [21]:

dv

dl
= vα

4π

∫ 2π

0
dϕ

cos2 ϕ√
cos2 ϕ + v2

⊥ sin2 ϕ

, (9)

dα

dl
= − α2

4π

∫ 2π

0
dϕ

cos2 ϕ√
cos2 ϕ + v2

⊥ sin2 ϕ

, (10)

dv⊥
dl

= v⊥α

4π

∫ 2π

0
dϕ

sin2 ϕ − cos2 ϕ√
cos2 ϕ + v2

⊥ sin2 ϕ

, (11)

where l = ln(
/q) = ln (2D
/q̃) is the RG parameter with

 (∼1/a) being the momentum cutoff and a = 1.42 Å is the
lattice constant of graphene. Our results are valid in the weak
coupling regime, which is a good approximation since α(l)
decreases under renormalization.

One of the consequences of RG is that in Eq. (5) the
function gm(ϕ,ω̃,v⊥,α) becomes distance and momentum
dependent, i.e., gm(ϕ,ω̃,v⊥(l),α(l)). Since this dependence
makes it difficult to carry out the momentum integration in
Eq. (5), we can perform it approximately by setting q̃ = 3
under the logs. This is justified using the fact that the numerator
in Eq. (5) is a rapidly decreasing function of q̃ and has its
extremum at q̃ ∼ 3, while the denominator contains v⊥(l)
and α(l) which are logarithmically slow varying functions of
momentum since they depend on the RG scale l. In order
words, in Eq. (5) we can approximate:∫ ∞

0
dq̃

q̃3e−q̃

gm(ϕ,ω̃,v⊥[ln (2
D/q̃)],α[ln (2
D/q̃)]) − e−q̃

≈
∫ ∞

0
dq̃

q̃3e−q̃

gm(ϕ,ω̃,v⊥[ln (2
D/3)],α[ln (2
D/3)]) − e−q̃
.

(12)
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FIG. 4. (Color online) The ratio of anisotropic C(a)(v⊥,α) to the
isotropic C(1,α) coefficient of the vdW force between two graphene
layers for the anisotropic model (a) and with many-body effects.
The renormalization of the Fermi velocity is considered for different
values of initial anisotropy and coupling constant which depend on
the separation between the two graphene layers. Note the different
scales on the y axis.
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FIG. 5. (Color online) The same as in Fig. 4 but for model (b).
Note the different scales on the y axis.

Moreover, we have numerically checked the validity of our
approximation for the isotropic case where the RG equations
can be analytically solved thereby providing a possibility to
make a comparison between the exact and the approximate
calculation.

With this assumption we evaluate the vdW force coefficient
as a function of model parameters but with the additional
dependence on distance (D) of the anisotropy v⊥[ln (2D
/3)]
and the coupling constant α[ln (2D
/3)]. The results are
plotted in Figs. 4, 5, and 6 for models (a), (b), and (c)
respectively, for different values of the separation between
the graphene layers.

We first evaluate Eq. (5) for the case described by Eq. (6),
i.e., model (a), along with Eqs. (9)–(11), for three different
values of coupling constants and for various distances between
the graphene layers. We plot the ratio of the renormalized
anisotropic to the unrenormalized isotropic coefficient as
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FIG. 6. (Color online) The same as in Fig. 4 but for model (c).
Note the different scales on the y axis.
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isotropic C(1,α) coefficient of the vdW force between two graphene
layers, for model (b), as a function of variation in the strength of
coupling constant α and the distance between the layers for fixed
anisotropy v⊥ = 0.05.

shown in Fig. 4. For comparison purpose we also include
the results without many-body interactions (no RG) as taken
from Fig. 3. As the distance between the two layers increases
there is an overall decrease in the vdW force coefficient which
is seen even for the isotropic case. This happens because in
the limit of large separation the low energy physics becomes
important and the renormalization effect is the strongest at
that energy scale. It is known [21] that the interplay between
the weak coupling behavior and anisotropy in the presence
of electron-electron interactions is such that the RG flow is
towards the noninteracting and isotropic limit. Therefore, as
the distance between the graphene layers is increased (and
thus the RG scale increases) the many-body renormalization
effects become more pronounced resulting in the decrease of
the effective interaction α(l) which in turn leads to the decrease
of the vdW force.

Such a feature is also found in other anisotropic models
but the dominant effect is seen for model (b) which is the case
where the strain is applied on both layers in the same direction.
In Fig. 7 we plot the ratio of anisotropic to the isotropic
coefficient for model (b) as a function of variation in the
strength of coupling constant α and the distance between the
layers for fixed anisotropy v⊥ = 0.05, which is the maximum
value of strain considered in this work. We see that the
decrease in the coefficient is rapid for the weakly interacting
case (α = 0.2) which validates our consideration of weak
electron-electron interactions.

IV. SUMMARY AND CONCLUSIONS

In this work we studied the vdW force acting between two
uniaxially strained undoped graphene layers at zero tempera-
ture and separated by a finite distance. We evaluated the vdW
force coefficient as a function of anisotropy due to strain and

for different values of the Coulomb coupling constant. In order
to study the anisotropy we considered three different models:
(a) where one of the two layers is uniaxially strained, (b) the
two layers are strained in the same direction, and (c) one of the
layers is strained in the perpendicular direction with respect to
the other. We calculated the vdW interaction energy and the
vdW force per unit area in each of these cases. Our analysis
was based on the effective long-range Coulomb interaction
between the graphene sheets derived within the random phase
approximation (RPA) since it is known that this approach is
equivalent to the Lifshitz approach with weak retardation. We
also included the dominant retardation effect which manifests
itself as an effective frequency cutoff. In fact, we found
that for large strain, where the force grows dramatically
due to the increased polarization, retardation provides an
effective suppression of this growth and its inclusion is
essential.

We performed our calculations by first neglecting effects
arising from renormalization of electron-electron interactions,
i.e., running of the couplings. We found that for all three
anisotropic models and for any given strength of the coupling,
the vdW force increases with increasing anisotropy. The effect
is most prominent for the case when both layers were strained
in the same direction. In this case we observed up to an order
of magnitude increase in the strained relative to the unstrained
case. We also found that at any given finite value of strain,
the increase of the vdW force is suppressed as the coupling
increases.

These calculations were followed by an investigation
which included the effect of electron-electron interaction
renormalization in the region of large separation between
the strained graphene layers. We found that the many-body
renormalization contributions to the correlation energy were
non-negligible and the vdW interaction energy decreased
as a function of increasing distance between the layers
due to renormalization of the Fermi velocity, the effective
interaction, and the anisotropy. Our study can be helpful
in designing modern graphene-based vdW heterostructures
which have attracted a lot of attention in recent research
activities. Strong anisotropies leading to enhanced vdW attrac-
tion could be potentially achieved in artificial graphene-based
lattices. Moreover, interactions between multilayer structures
containing more than two sheets, nonzero doping, and finite
temperature could be studied in future work.
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Phys. Rev. B 78, 045415 (2008); R. M. Ribeiro, V. M. Pereira,
N. M. R. Peres, P. R. Briddon, and A. H. Castro Neto, New J.
Phys. 11, 115002 (2009).

[20] V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. Castro
Neto, Europhys. Lett. 92, 67001 (2010); F. M. D. Pellegrino,
G. G. N. Angilella, and R. Pucci, Phys. Rev. B 81, 035411
(2010).

[21] A. Sharma, V. N. Kotov, and A. H. Castro Neto,
arXiv:1206.5427.

[22] A. Sharma, V. N. Kotov, and A. H. Castro Neto, Phys. Rev. B
87, 155431 (2013).

[23] F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, J. Phys.:
Conf. Ser. 377, 012083 (2012); J. P. F. LeBlanc and J. P. Carbotte,
Phys. Rev. B 87, 205407 (2013).

[24] F. Schwierz, Nat. Nano. 5, 487 (2010).
[25] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature

(London) 462, 192 (2009); K. I. Bolotin, F. Ghahari, M. D.
Shulman, H. L. Stormer, and P. Kim, ibid. 462, 196 (2009).

[26] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov,
A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva,
K. S. Novoselov, F. Guinea, and A. K. Geim, Nat. Phys. 7, 701
(2011).

[27] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[28] H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, Phys.
Rev. B 78, 121401 (2008); M. Y. Kharitonov and K. B. Efetov,
ibid. 78, 241401 (2008).

[29] D.-H. Chae, D. Zhang, X. Huang, and K. von Klitzing,
Nano Lett. 12, 3905 (2012).

[30] J. Sarabadani, A. Naji, R. Asgari, and R. Podgornik, Phys. Rev.
B 84, 155407 (2011).

[31] J. F. Dobson, T. Gould, and G. Vignale, Phys. Rev. X 4, 021040
(2014).

[32] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard,
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