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Low-disorder and high-mobility two-dimensional (2D) electron (or hole) systems confined in semiconductor
heterostructures undergo an apparent metal-insulator transition (MIT) at low temperatures as the carrier density
(n) is varied. In some situations, the 2D MIT can be caused at a fixed low carrier density by changing an externally
applied in-plane magnetic field parallel to the 2D layer. The goal of the current work is to obtain the critical
density (nc) for the 2D MIT with the system being an effective metal (Anderson insulator) for density n above
(below) nc. We study the 2D MIT phenomenon theoretically as a possible strong localization induced crossover
process controlled by the Ioffe-Regel criterion, kF l = 1, where kF (n) is the 2D Fermi wave vector and l(n) is
the disorder-limited quantum mean free path on the metallic side. Calculating the quantum mean free path in
the effective metallic phase from a realistic Boltzmann transport theory including disorder scattering effects, we
solve the integral equation (with l depending on n through multidimensional integrals) defined by the Ioffe-Regel
criterion to obtain the nonuniversal critical density nc as a function of the applicable physical experimental
parameters including disorder strength, in-plane magnetic field, spin and valley degeneracy, background dielectric
constant and carrier effective mass, and temperature. The key physics underlying the nonuniversal parameter
dependence of the critical density is the density dependence of the screened Coulomb disorder. Our calculated
results for the crossover critical density nc appear to be in qualitative and semiquantitative agreement with
the available experimental data in different 2D semiconductor systems lending credence to the possibility that
the apparent 2D MIT signals the onset of the strong localization crossover in disordered 2D systems. We also
compare the calculated critical density obtained from the Ioffe-Regel criterion with that obtained from a classical
percolation theory, concluding that experiments support the Ioffe-Regel criterion for the 2D MIT crossover
phenomena.
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I. INTRODUCTION

Carrier transport in 2D semiconductor structures [e.g., Si
inversion layers in MOSFETs, 2D electron gas (2DEG) or 2D
hole gas (2DHG) GaAs-AlGaAs heterojunctions and quantum
wells or in Si-SiGe quantum wells] is a strong function of
carrier density (n) and temperature (T ) [1–6]. The study of 2D
electronic (which include holes also in 2D p-doped structures)
transport at low temperatures divides itself naturally into
two distinct areas: effectively “metallic” transport at high
carrier density manifesting a weak or moderately positive
dρ/dT � 0 and effective insulating temperature dependence
at low carrier density manifesting a large negative dρ/dT < 0
at low temperatures, where ρ(T ) is the temperature-dependent
2D resistivity. The current work aims at a theoretical under-
standing of the density-tuned crossover behavior between this
high-density effective metallic and the low-density effectively
insulating transport behavior at low temperatures. Consistent
with the widely used terminology, we refer to this density
tuned low-temperature phenomenon (i.e., a change of sign
in dρ/dT ) as the 2D metal-insulator transition (“2D MIT”),
but it is more likely to be a crossover behavior rather than an
actual quantum phase transition, and indeed in the current work
we treat the 2D MIT phenomenon manifestly as a crossover
behavior (as already made explicit in the title of this paper)
characterized by the Ioffe-Regel criterion. We emphasize right
here in the beginning that ours is not a critical theory for a
quantum phase transition. This is also highlighted in the title
of our paper through the words “apparent” and “crossover.”
We also emphasize that our current work is not a theory for

the temperature-dependent transport properties of the metallic
or the insulating phase, which have been much studied in the
literature, but is a theory for the transition density itself, which
has not been studied at all in the theoretical literature.

Prior to 1979 and 1980, when the scaling theory of
localization [7] came into being, the 2D MIT phenomenon
in Si inversion layers (based on Si-SiO2 MOSFET structures)
was universally considered to be an example of the Anderson
localization transition [1,8,9], where decreasing 2D carrier
density drives the system from being a 2D metal at high
density to being a 2D insulator at lower density as the Fermi
level moves through a mobility edge. The scaling theory
of localization [7] established two to be the lower critical
dimensionality in the noninteracting localization problem,
and thus all disordered 2D electronic states are now (i.e.,
after 1979) thought to be strictly localized although the
localization length is exponentially long for weak disorder,
making it essentially impossible to distinguish a true extended
metallic state from a weakly localized insulating state in finite
samples (or at finite temperatures) with the localization length
exceeding the sample size (or the temperature-dependent
inelastic phase breaking length). For high disorder, however,
the 2D system becomes exponentially localized (“strong local-
ization”) and the crossover from “weak localization” (which
is a logarithmically weak effect) to “strong localization”
(which is exponential localization with the single-particle wave
function falling off exponentially with distance in contrast to
weak localization with exponentially long localization length)
is the subject matter of the current work. With no loss of
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generality, the weakly localized higher-density phase will
be referred to as the “metallic” phase in this paper and the
lower density strongly localized phase will be referred to as
the “insulating” phase. Experimentally, the two phases (i.e.,
high-density weakly localized or “metallic” and low-density
strongly localized or “insulating”) are distinguishable by the
temperature dependence of their respective low-temperature
resistivity with the strongly localized low-density phase
manifesting the exponential insulating behavior with a strongly
exponentially increasing resistivity with decreasing tempera-
ture whereas the metallic high-density phase either exhibiting
almost no temperature dependence in its resistivity (at very
high density) or the resistivity decreasing (as an effective
power law) with decreasing temperature (at not very high
density). In principle, the “metallic” phase should manifest
a weak logarithmic insulating temperature dependence of low
enough temperatures because of the weak localization property
of the 2D metallic phase as predicted by the scaling theory,
but the observation of such a weak logarithmic insulating
temperature dependence is challenging since it is easily
overwhelmed by any other power-law temperature dependence
in the system (except perhaps at extremely low temperatures)
arising, for example, from phonon or screening effects. At
very low temperatures, the logarithmic insulating temperature
dependence should dominate even in high-density samples,
but such low electronic temperatures are often impossible to
reach because of carrier heating problems invariably present
in semiconductors. We ignore the 2D weak localization
complications [10,11] in the rest of this paper, referring to
the higher-density phase as an effective 2D metal (and the
lower-density strongly localized phase as a 2D insulator).

In this paper we theoretically study the weak to strong
localization transition (or the apparent transition from the
effective metal to the effective insulator) as a function of carrier
density at a fixed low temperature. It is expected that this
transition, which is technically a crossover, happens around
kF l = 1 as defined by the so-called Ioffe-Regel criterion,
where kF is the 2D Fermi wave vector and “l” is the disorder-
induced elastic quantum mean free path. We note that kF ∝ √

n

in 2D systems, but “l” itself is a complicated functional of
“n” defined through a complex integral function l(n). Thus,
the condition kF l = 1 would define an effective crossover
“critical density” nc with n > nc being the 2D metallic phase
(where l > k−1

F ) and n < nc being the (strongly localized) 2D
insulating phase (where l < k−1

F in our theory). We emphasize
that the n > nc metallic phase is only an effective metal in
finite samples.

In addition to obtaining the qualitative dependence of the
crossover density nc for 2D MIT as implied by the Ioffe-Regel
criterion on the 2D materials parameters (e.g., effective mass,
valley degeneracy, dielectric constant, etc.), our main goal
would be to ascertain the qualitative dependence of nc on
disorder. Since disorder determines the mean free path “l,” the
crossover “critical” density nc, as obtained from the condition
kF l = 1, would depend crucially on disorder parameters. The
more disordered the system, the higher would be nc since the
effective mean free path would be smaller for larger disorder.
Since the effective disorder (and therefore the mean free path
itself) is temperature dependent, nc would manifest an implicit

temperature dependence through the temperature dependence
of the 2D metallic conductivity, which we would also study
theoretically although, strictly speaking, nc is defined only
at T = 0 which is indeed the focus of our theory. Another
aspect of experimental interest we study theoretically in this
paper is the effect of a parallel magnetic field which tends
to spin polarize the system leading to suppressed screening
and hence enhanced effective disorder (and thus a suppressed
metallic conductivity and a reduced mean free path). Thus, an
in-plane applied magnetic field increases nc (since it decreases
the effective mean free path) consistent with experimental
observations. The dependence of the crossover critical density
nc on disorder and magnetic field is the focus of our current
theoretical work, where we uncritically use the Ioffe-Regel
criterion to define the metal-to-insulator apparent transition.
We emphasize that this work is not a theory describing
the properties of either the higher-density (n > nc) apparent
metallic or the lower-density (n < nc) insulating phase. These
phases have already been studied extensively in the literature
over the last 20 years [1–6], and we have little to add to
these discussions in the current work which is focused entirely
on describing the properties of the crossover critical density
(i.e., nc) itself using the Ioffe-Regel criterion as the underlying
theoretical principle.

It is important to emphasize that our work is purely
phenomenological in nature where the Ioffe-Regel criterion,
kF l = 1, plays the central role in determining the crossover
density for 2D MIT. Whether this specific description for
2D MIT is valid or not can only be decided a posteriori by
comparing between our calculated theoretical results for nc and
the corresponding experimental results. We should mention
right now that our calculated nc appears to be in reasonable
qualitative and semiquantitative agreement with the available
experimental results (as would later be discussed in this article)
on 2D MIT in the literature although detailed quantitative
comparisons are difficult since independent experimental
information on the applicable disorder in the relevant 2D
systems is unavailable. We assume in this work that the
dominant disorder in the semiconductor structures undergoing
2D MIT arises from uncorrelated random quenched charged
impurities in the environment [12]. There is considerable
experimental evidence [1,13–19] that unintentional random
charged impurities in the background and at the interface
as well as the remote charged donors (e.g., in modulation
doped heterostructures and quantum wells) are the main
resistive scattering sources in 2D semiconductor systems at
low temperatures (and at low carrier densities where 2D MIT
occurs). In Si-MOSFETs the short-range disorder associated
with Si-SiO2 interface [1] certainly plays a role in resistive
scattering at higher carrier density (when the 2D electron gas
is pushed very close to the interface by the self-consistent
electric field generated by the electrons themselves), but for
n � nc the main scattering source is the charged impurity
disorder even for Si-MOSFETs provided that nc is not too
large [12]. We therefore neglect all disorder mechanisms
other than random charged impurities in the system, which
we parametrize using only two parameters: ni and d [a
2D density of charged impurity centers of concentration ni

distributed randomly in a plane a distance “d” away from
the semiconductor-insulator interface where the 2D carrier
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system is localized; we assume the charged impurities to be
of random positive and negative sign of unit strength (i.e., of
magnitude e, the electron charge) with a net charge of zero].
We emphasize that it is straightforward to include in the theory
additional (as well as more realistic) types of disorder [e.g.,
interface roughness, alloy disorder, bulk three-dimensional
(3D) distribution of random charged impurities] and/or a
more general model for charged impurity disorder where
some correlations among impurity positions are included in
the theory [20]. We neglect all these nonessential details
simply because including them would require many more
additional unknown parameters to characterize the system
disorder compared with our minimal model of disorder which
is characterized by only two parameters ni and d. Since our
minimal model (characterized by only two parameters ni and
d) already captures the essential physics of 2D MIT, we believe
that this minimal model should suffice for our theoretical
purpose. In addition to providing results for nc based on the
quantum Ioffe-Regel criterion, we also carry out a comparison
between the critical densities obtained from the Ioffe-Regel
theory and from the classical percolation theory which has
sometimes been invoked in describing 2D MIT in the context
of long-range Coulomb disorder. A comparison between nc

calculated in these two theories and the experimental nc should
tell us whether 2D MIT is a quantum or classical phenomenon.

The rest of this article is organized as follows. In Sec. II
we provide the details for the calculation of the crossover
critical density nc using the Ioffe-Regel criterion, giving the
general theory, the analytical results, and all the numerical
results for realistic systems. We provide a general discussion
of our results in Sec. III, particularly in the context of Ioffe-
Regel versus percolation criteria as descriptions for the 2D
MIT phenomena. We conclude in Sec. IV with a summary of
our results and the discussion of open questions.

II. CALCULATION OF CRITICAL DENSITY

In this section, we apply the Ioffe-Regel criterion,

kF l = 1, (1)

to calculate the crossover 2D MIT “critical” density nc as
a function of system parameters. We first note an immediate
problem arising from the uncritical direct application of Eq. (1)
in obtaining the critical density nc. Interpreting “l” as the
transport (or conductivity) mean free path we can write

l = vF τt , (2)

where vF and τt are, respectively, the Fermi velocity and
the transport relaxation time. Using the well-known Drude-
Boltzmann formula for the electrical conductivity σ given by

σ = ne2τt/m, (3)

and kF = (4πn/gsgv)1/2 for the 2D electron gas (with gs

and gv being, respectively, the ground-state spin- and valley-
degeneracy factor) and the definition vF = pF /m = �kF /m,
we get from Eq. (1) the following condition for the critical
conductivity σc = σ (nc) at the transition:

σc = gsgv

2

e2

h
. (4)

Equation (4), which is precisely equivalent to the Ioffe-Regel
criterion of Eq. (1) for a 2D electron system, can also be written
as

ρc ≡ σ−1
c = 2

gsgv

h

e2
. (5)

Thus, in 2D systems the Ioffe-Regel criterion is precisely
equivalent to ρc = h/e2 if we take the usual situation of
gs = 2 and gv = 1 whereas, for Si(100)-MOSFETs with
gv = 2, we get ρc = h/2e2. It is interesting to note that
the straightforward application of Ioffe-Regel criterion leads
to a critical metallic resistivity of only h/6e2 ∼ 4400 � for
the sixfold valley degenerate Si(111)-MOSFETs which have
recently been fabricated using Si-vacuum interfaces [21].

Such a universal critical resistivity characterizing 2D MIT,
with ρc = h/e2 ≈ 25 600 � for 2D n-GaAs and p-GaAs
and ρc ≈ 12 800 � for Si(100)-MOSFETs [or 4400 � for
Si(111)-MOSFETs] is, however, in quantitative disagreement
with experimental observations where the reported critical
resistivity for the insulating behavior to manifest itself is
certainly not universal in a single material system (i.e., for
a given gs and gv) and typically varies between 10 000 �

and 50 000 � in various experimental studies although it
is often typically within a factor of two of the resistance
quantum h/e2, thus indicating that the naive consideration
given by the direct application of the Ioffe-Regel criterion
defined by Eqs. (4) and (5) is certainly reasonably, but not
perfectly, accurate. In fact, the pioneering experimental studies
of Kravchenko et al. [22] found ρc ≈ 1.5 h/e2 in low-disorder
MOSFETs and the older highly disordered MOSFETs [1]
typically manifested ρc ≈ h/4e2 although both classes of
systems presumably involved gv = 2 and gs = 2 with the
only difference between the two being the level of disorder
and the concomitant value of nc (being around ∼ 1011 cm−2

and ∼ 1012 cm−2 in two classes of systems, respectively).
The measurement temperature used in the experiment is also
a complication, particularly since the measured resistivity
is typically strongly temperature dependent for n ≈ nc. The
most recent experimental investigations of 2D MIT in high
quality Si(100)-MOSFET-based and Si-Ge-based 2D systems
(both should have gs = gv = 2) manifest ρc ≈ 2 h/e2 and
2 h/3e2, respectively, in contrast to the canonical value h/2e2

[Eq. (5)] expected on the basis of gs = 2 and gv = 2. In
n-2D GaAs systems, ρc ≈ h/2e2 has been found [15] whereas
in 2D p-GaAs, the observed ρc seems to vary widely with
ρc ≈ 2 h/e2 [18] and ρc ≈ h/2e2 [19] both being reported in
contrast to the theoretically expected ρc = h/e2 for gs = 2,
gv = 1 2D systems.

Thus, we have a conundrum in using the Ioffe-Regel
criterion with “l” interpreted as the transport mean free path
since this would lead to a (up to a factor of 2) quantitative
inconsistency with the experimentally observed variations in
ρc ≡ ρ(nc) at the 2D MIT crossover point. We note that
this problem of a nonuniversal experimental ρc for 2D MIT
within the same material system (i.e., constant gs and gv)
in contrast with the universal theoretical ρc prediction from
the Ioffe-Regel criterion (with “l” interpreted as the transport
mean free path) cannot be resolved by altering the criterion
to a different form such as the Mott-Ioffe-Regel criterion [23]
where the transition is defined by kF l = π [rather than kF l = 1
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as in the original Ioffe-Regel condition defined by Eq. (1)].
Such a modification will only alter Eq. (5) for ρc to ρc =
(2/πgsgv)(h/e2), a different (and smaller) universal critical
resistivity for constant values of gs and gv which is, of course,
still in disagreement with the experimental observations. Our
possibility that cannot be ruled out in this context is that the
critical resistivity ρc at T = 0 indeed satisfies the expected
resistance quantum value given by Eq. (5), but cannot really
be accurately determined from finite temperature crossover
measurements. The fact that the experimentally measured ρc

is almost always within a factor of 2 of the expected value
defined by Eq. (5) makes this possibility particularly relevant.

A simple modification of the Ioffe-Regel criterion, where
“l” is interpreted as the quantum mean free path given by
l = vF τq where τq is the quantum single-particle scattering
time (rather than the transport relaxation time τt ), actually
provides a variable critical resistivity since there is no simple
relationship connecting the conductivity σ with the quantum
scattering time τq . Using the identity that impurity scattering
induced quantum level broadening � is related to τq by

� = �/2τq, (6)

it is easy to see that the Ioffe-Regel criterion Eq. (1), based on
using l = vF τq , becomes

� = EF , (7)

where EF = �
2k2

F /2m = (�2/2m)(4πngsgv). We will use this
modified Ioffe-Regel criterion in some of our theoretical
analyses since this condition implies a nonuniversal critical
resistivity ρc at the 2D MIT crossover even for the same values
of gs and gv . We emphasize, however, that most of our results
are derived based on the standard Ioffe-Regel criterion where
l is taken as the transport mean free path. We mention that
the condition defined by Eq. (7), which arises from assuming
kF vF τq = 1, is meaningful since extended metallic states
described by momentum eigenstates cannot exist when the
level broadening becomes equal to the Fermi energy since
the momentum is then no longer a good quantum number. In
ordinary metals, one always has τq = τt and hence this issue
becomes irrelevant.

We note, however, that the calculation of the crossover
critical density nc itself, either using the transport mean free
path or the quantum mean free path, would give similar
qualitative (but different quantitative) results. Since the precise
sample disorder is never quantitatively known (and since we
use approximations in treating disorder scattering effects),
our goal in this work is a qualitative (and not quantitative)
evaluation of the dependence of nc on various physical
variables such as disorder (i.e., ni and d), mobility (at high
density), temperature, magnetic field, and materials parameters
(e.g., gv , gs).

We note that in most systems where the Ioffe-Regel criterion
has been applied and discussed so far in the literature (see
Graham et al. [23] and references therein) there is virtually
no difference between the transport relaxation time τt and
the quantum scattering time τq since the effective disorder
potential is short ranged. In high-mobility modulation-doped
2D systems, however, the charged dopants are placed far
from the plane of the 2D layer where the carriers (either
electrons or holes in n- or p-modulation-doped GaAs or Si-Ge

quantum wells and heterostructures) are located, leading to
an essentially unscreened very long-range disorder potential
in the 2D system. In such modulation-doped high-mobility
2D systems, it is possible for τt � τq since most of the
disorder scattering would be forward scattering, suppressing
τq without affecting τt [24]. In such a situation, where forward
scattering by remote dopants (kF d � 1) dominates transport,
it is possible for ρc given by Eq. (7) to be smaller than the ρc

defined by Eq. (5). Consequently, the crossover critical density
nc will then be higher as given by Eq. (7) with � = �/2τq

compared with that given by Eq. (1) with l = vF τt defined
by the transport mean free path. For Si-MOSFETs, most of
the disorder is of short-ranged nature (either screened charged
impurities near the interface or surface roughness scattering),
and therefore, τt ≈ τq , so that Eqs. (1) and (7) should give
similar (but not identical) estimates for nc and ρc with

nc[obtained by Eq. (7)] � nc[obtained by Eq. (1)],
(8)

ρc[from Eq. (7)] � ρc[from Eq. (5)].

The inequalities given in Eq. (8) above are general applying to
all 2D and 3D systems, and follow simply from the fact that
τq � τt always.

A. Theory

1. Disorder dependence

Starting with Eq. (1) and writing l = vF τ where τ is an
impurity-induced scattering time (either τt or τq), we can
derive the following scaling relation:

nc ∼ n
γ

i , (9)

where

γ = (1 + δ)−1, (10)

and the exponent “δ” defines the density dependence of τ ,

τ ∼ nδ. (11)

In deriving Eq. (9), we assume that all parameters, other than
ni , are fixed and disorder is entirely parametrized by the 2D
impurity density ni . There is an implicit dependence of nc

on the background dielectric constant κ and on the impurity
location parameter d not explicitly shown in Eqs. (9)–(11). We
assume (at this stage) that the d parameter (and the dielectric
constant κ) characterizing the samples is approximately a
constant so that the disorder strength can be characterized
by the single parameter 2D impurity density ni in Eq. (9).

The sample mobility itself is, by definition, inversely
proportion to ni ,

μ ∼ n−1
i , (12)

enabling us to eliminate ni in Eq. (9) in favor of some
“maximum mobility” μm defined at a high fiduciary carrier
density nm � nc. Eliminating ni in favor of μ−1

m we get

nc ∼ μ−γ
m . (13)

This gives us a scaling relationship connecting the crossover
density nc to the sample quality as characterized by the typical
“maximum mobility” μm defined at some high carrier density
nm � nc deep in the metallic phase.
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A detailed theory has recently been developed by us [25] for
the density scaling of 2D metallic conductivity (and mobility),
where we find that the exponent δ (with μ ∼ nδ) given by

δ ≈ 0.7(n − GaAs); 0.5(p − GaAs); 0.3(n − Si), (14)

restricting to the n � nc situation. This then implies

γ = 1/1.7 − 1/1.3 ≈ 0.59 − 0.77, (15)

with

γ ≈ 0.59(n − GaAs); 0.67(p − GaAs); 0.77(n − Si).

(16)

We emphasize that Eqs. (14)–(16) are very approximate
and are derived assuming that the 2D impurity density ni

is the only variable determining the disorder, and therefore
the quantitative applicability of the numerical values of the
exponent γ (defining nc ∼ μ

−γ
m ) is very approximate. We note

that for purely short-range δ-function scatterers, we get δ = 0
and γ = 1, i.e., nc ∼ ni for purely zero-range disorder.

It is, therefore, important to emphasize that such a scaling
relationship, nc ∼ μ

−γ
m , with γ ≈ 0.67 approximately (but

with some fluctuations in the distribution of γ values around
γ ∼ 0.67) was noted empirically by Sarachik [26] more than
10 years ago based on a careful numerical analysis of the
existing 2D MIT experimental data. Thus, our Ioffe-Regel
criterion-based theoretical analysis of the dependence of the
crossover critical density nc on the typical sample mobility
μm is consistent with the 2D MIT experimental data [26]. This
agreement between the experimental mobility dependence of
nc and our Ioffe-Regel criterion-based results is one of the
main a posteriori justifications for our theory.

Similar theoretical considerations can also be applied to the
case where τ is interpreted to be the quantum scattering time
τq [rather than the transport scattering time τt as in the analysis
of Eqs. (9)–(16) above]. For this situation the Ioffe-Regel crite-
rion is better written as � = EF [see Eq. (7)], and it is straight-
forward to show that we get the following results for nc (where
qTF is the 2D Thomas-Fermi screening wave vector [1]),

nc = niq
2
TF

∫ 1

0

dx√
1 − x2

e−4kF dx

(x + qTF)2
, (17)

which leads immediately to

nc = 1

4
√

2π

(ni

d

)2/3
for kF d � 1, (18)

and

nc = πni

2
for kF d � 1. (19)

Assuming the impurity separation parameter “d” to be fixed
and the impurity density ni to be the sole determinant of
the system mobility, we can adapt Eqs. (17)–(19) to provide
a dependence of the critical density nc on some fiduciary
maximum mobility μm (defined as the sample mobility at
some high characteristic density),

nc ∼ μ−0.67
m for kF d � 1, (20)

and

nc ∼ μ−1
m for kF d � 1. (21)

This immediately leads to the same conclusion we already
discussed above [see the discussion above following Eq. (16)]
that the dependence of nc on the sample quality follows an
approximate power law nc ∼ μ

−γ
m where γ ≈ 0.5–0.8, as has

been already pointed out by Sarachik based on an empirical
analyses of the experimental data [26]. Thus, both the original
Ioffe-Regel criterion kF l = 1 and our modified Ioffe-Regel
criterion EF = � give the same theoretical dependence of nc

on the sample mobility, which is in agreement with the existing
experimental data on 2D MIT. We note that a pure short-range
disorder model on the other hand gives the exponent γ = 1
disagreeing with the empirical data on 2D MIT.

2. Temperature dependence

The Ioffe-Regel criterion strictly applies at T = 0, but
can be generalized to finite temperatures by considering the
temperature dependence of the mean free path “l” on the
metallic side. This is, of course, relevant for the 2D MIT
problem since its hallmark (and the raison d’etre for its huge
impact in contrast to the corresponding MIT phenomenon
in 2D semiconductor systems in the 1970–1990 era) is the
strong temperature dependence of the 2D metallic conductivity
for n � nc. The strong temperature dependence of the 2D
metallic conductivity for n � nc immediately leads to a strong
temperature dependence of the mean free path l(T ), which
should affect the critical density nc(T ) derived on the basis
of the Ioffe-Regel criterion kF l = 1. Since the 2D metallic
conductivity decreases with increasing temperature for n �
nc, the corresponding l(T ) also decreases with increasing
temperature whereas the Fermi wave vector kF ∝ √

n is,
by definition, temperature independent. This implies that
nc(T ), defined by the Ioffe-Regel criterion, increases with
increasing temperature at the lowest temperatures, where
strong metallicity is observed in high-quality 2D systems. The
situation is, however, complicated by the fact [27,28] that the
2D conductivity is nonmonotonic as a function of temperature,
and eventually decreases with increasing temperature for
T � TF which is reached at pretty low temperatures if Tc =
TF (nc) is low. Thus, nc(T ) could manifest nonmonotonic
behavior as a function of temperature for a given sample
with nc(T ) increasing with T at the lowest temperatures, and
then decreasing with T at higher temperatures. Using the
Ioffe-Regel criterion and the Boltzmann transport theory at
finite temperatures [27,28], we get for T � Tc,

nc(T ) ≈ nc

[
1 +

(
x0

1 + x0

)
T

Tc

]
, (22)

and for T � Tc,

nc(T ) ∼ Tc

T
, (23)

where nc = nc(T = 0); Tc = TF (n = nc), and x0 = qTF/2kFc

where kFc = kF (n = nc). (We note that the screening wave
vector qTF is a constant independent of carrier density in 2D
because of the constant 2D density of states.) From Eqs. (22)
and (23), we conclude that nc(T ) would in principle manifest
nonuniversal behavior, but at sufficiently high temperatures,
nc(T ) will decrease with increasing temperature approxi-
mately linearly, i.e., nc(T > Tc) ∼ 1/T . This 1/T decrease in
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nc(T ) has been experimentally observed [17,18,29], however,
the predicted increase of nc(T ) with T at lower temperatures
has not yet been reported in Si MOSFETs (although it has
been seen in 2D p-GaAs holes [18], perhaps because the
lowest temperatures are not reached yet in the experiments
to see this decrease or because of complications arising from
weak localization corrections not included in our theory, which
would dominate the asymptotic low-temperature transport.

3. Magnetic field dependence

One of the most important experimental discoveries [30]
in the 2D MIT phenomena is the observation of a strong
enhancement of nc by the application of an applied parallel
(to the 2D layer) magnetic field, which is equivalent to the
suppression of the 2D effective metallic phase by the applied
parallel field. In addition to the enhancement of nc compared
with its zero-field value, an applied parallel magnetic field
also leads to a suppression of the metallic temperature
dependence which becomes weaker as the applied field is
made stronger. While this latter effect of the magnetic-field-
induced weakening of the metallic temperature dependence
has been extensively studied theoretically [31], there has been
no theoretical analysis in the literature of the magnetic-field-
induced enhancement of nc itself.

The Ioffe-Regel criterion provides a natural explanation
for the field-induced enhancement of nc as arising from
the suppression of the metallic mean free path “l” (or the
enhancement of the quantum level broadening �) due to the
enhancement of the effective disorder in the metallic phase as
the effective carrier screening is reduced by the application of
the applied parallel magnetic field B. Screening is suppressed
at finite B since the system gets spin polarized by the B-
induced Zeeman splitting so that the effective Thomas-Fermi
screening wave vector qT F defined by

qTF = gsgvme2

κ�2
, (24)

decreases as the spin degeneracy changes from gs = 2 for
B = 0 to gs = 1 for B = Bs where Bs is the density-dependent
field strength that completely spin polarizes the 2D system, i.e.,
Bs is defined by

2gμBBs = EF , (25)

where g is the Landé g factor for the specific semiconductor,
μB is the Bohr magneton, and EF is the Fermi energy
at B = 0. For B = Bs , the 2D system is completely spin
polarized at the Fermi level with gs = 1. We note, however, that
kF = (4πn/gsgv)1/2 itself is now B dependent in the presence
of spin polarization, and becomes

√
2 times larger at B = Bs

compared with its value at B = 0 since gs decreases from 2
to 1. Thus, if the mean free path l remains unaffected by the
applied field B, then the effect of spin-polarization-induced
enhancement of kF itself would lead to a decrease of nc in finite
B in apparent disagreement with experimental observations.
Thus, spin-polarization-induced (or equivalently B-induced)
suppression of screening (and the consequent enhancement of
Coulomb disorder) is essential in understanding the enhance-
ment of nc in the presence of the finite applied parallel field.
If the effective disorder underlying the 2D MIT phenomenon

is purely short-ranged δ-function white-noise disorder, where
carrier screening should play no key role, then the application
of the parallel magnetic field would decrease nc, effectively
enhancing the metallic phase rather than suppressing it as
observed experimentally. This latter effect (but not the former),
i.e., the effect of the enhancement of kF by spin polarization
(but not the effect of suppressed screening), is already implicit
in Eq. (9) which implies a decreasing nc with decreasing
gs (i.e., with increasing applied field). We mention that for
very large nc, so that qT F /2kF is very small and screening is
unimportant, we do predict that an applied parallel field will
either have almost no effect on nc because spin-polarization
effects are negligible due to the very small spin polarization
induced by an applied field at very large density (or will
decrease it because of the increasing kF with increasing spin
polarization). One reason that the applied field effect on 2D
MIT was not discovered until 2000 is indeed the fact that nc

was simply too large in the older (and dirtier) 2D samples for
the field-induced screening suppression to play any role.

To include the effect of suppressed screening in the presence
of finite spin polarization (i.e., gs < 2), we must take into
account the variation of qTF with gs as shown in Eq. (24). We
can obtain an analytical formula by noting that the screened
Coulomb disorder u(q) behaves in the following manner:

u(q) = v(q)

ε(q)
= 2πe2

κ(q + qTF)
, (26)

where v(q) = 2πe2/κq is the unscreened 2D Coulomb in-
teraction and ε(q) = 1 + qTF/q is the 2D carrier dielectric
screening function. In the strong screening limit (qTF � kF ),
we can write u(q) ∼ q−1

TF ∼ g−1
s , and this limit enables an

analytical calculation by noting that l−1 ∝ niu
2 ∝ ni/g

2
s ,

which allows us to replace ni in Eq. (9) by ni/g
2
s , producing the

following equation for nc(B) taking into account dual effects of
the enhancement (suppression) of both kF (qTF) by the applied
field compared with their B = 0 values,

nc(B) ∼
(

ni

gs

)γ

, (27)

which is valid in the strong screening (qTF � kF ) limit. In the
weak screening limit, the spin-polarization dependence in the
screening may be ignored and we get

nc(B) ∼ (gsni)
γ . (28)

To obtain the explicit B dependence of nc(B) we need to
express the spin-degeneracy factor gs as a function of the
magnetic field B, which then leads to

nc(B) ∼
(

1 + B

2Bs

)γ

, (29)

and

nc(B) ∼
(

1 − B

2Bs

)γ

, (30)

respectively, for Eqs. (27) and (28). Since the 2D MIT phe-
nomenon mostly occurs in the strong-screening (qT F � kF )
regime, Eq. (29) applies to most situations indicating an
increase in the critical density with increasing applied field. At
high carrier densities where 2kF � qTF or in a situation where
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short-range scattering dominates transport so that screening
is not relevant, Eq. (30) should apply, and thus for highly
disordered samples with large nc (so that qTF � 2kF ), it is
conceivable that an applied field may slightly decrease nc.

Before concluding this section we mention that all our
considerations above for the effect of spin polarization gs (as
modulated by the parallel field B) apply equally well to the
valley degeneracy gv since the combination gsgv appears in
all physical quantities. In particular, if gv could be modified
somehow by an external valley-symmetry-breaking field A (for
example, an applied strain), then Eqs. (29) and (30) will apply
to describe the valley degeneracy dependence of the critical
density with the A field replacing the B field. In both cases,
the lifting of the spin (or valley) degeneracy by an external
field would typically lead to an increasing critical density with
increasing field since most 2D MIT phenomena happen in
the qTF � kF strong screening regime [as characterized by
Eq. (29)]. Indeed, such a symmetrical situation of increasing
nc with increasing external symmetry-breaking field for either
spin or valley degeneracy has been experimentally observed
by Shayegan and his collaborators in the multivalley AlAs
2D systems [32]. Our qualitative findings in this section are
in excellent agreement with these experimental results [32]
showing an equivalence of increasing nc with the decrease
of gs or gv . In particular, a given sample with a fixed carrier
density (n) is most likely to be in the insulating phase [i.e.,
n < nc(gs,gv)] when the 2D system is maximally polarized to
have the minimum possible values of gs and gv as precisely
observed by Shayegan and his collaborators [32].

4. Materials dependence

To consider how nc depends on the materials parameters
(e.g., m, κ , gs , gv) of the 2D system we imagine a situation
with fixed bare disorder (i.e., fixed ni and d) while varying only
the materials parameters to see how the Ioffe-Regel criterion
kF l = 1 is affected.

Expressing the mean free path l = vF τ in terms of the
relaxation time τ , and then using the Boltzmann equation to
obtain τ assuming scattering from random screened charged
impurities we get the following integral equation for nc from
the Ioffe-Regel condition (at T = 0) kF l = 1,

1

τ
= �k2

F

m

= nim

π�3k2
F

(
2πe2

κ

)2 ∫ 1

0

dy√
1 − y2

y2e−2yd0

(y + x)2
, (31)

where x = qTF/2kF and d0 = 2kF d. All other quantities in
Eq. (31) are defined with kF = (4πn/gsgv)1/2 and qTF =
gsgcme2/κ�

2. We can rewrite the integral equation defined
by Eq. (31) as

π�
4k4

F = nim
2

(
2πe2

κ

)2 ∫ 1

0

dy√
1 − y2

y2e−2d0y

(y + x)2
. (32)

We note that Eq. (32) is a nontrivial integral equation for nc

since the density n enters the equation in three distinct places:
kF ∝ √

n, d0 = 2kF d, and x = qTF/2kF ∝ n−1/2. Before dis-
cussing the materials dependence of nc implied by Eq. (32),
we note that the above relationship [i.e., Eq. (32)] has been

derived by assuming “l” to be the transport mean free path,
i.e., τ = τt . If, instead of τt , we use the quantum relaxation time
τ = τq , the only difference is that the vertex correction term
disappears from the integral on the right-hand side, leading to
the following integral equation for n = nc using the � = EF

Ioffe-Regel criterion (i.e., τ = τq in kF l = kF vF τ = 1),

π�
4k4

F = nim
2

(
2πe2

κ

)2 ∫ 1

0

dy√
1 − y2

e−2d0y

(y + x)2
, (33)

with the only difference between Eqs. (32) and (33) being the
additional factor of y2 inside the integral on the right-hand
side of Eq. (32); this y2 factor arises from the well-known
“1 − cos θ” vertex correction term in the Kubo formula for the
current-current correlation function in the conductivity.

In Eqs. (32) and (33), materials parameters m, gs ,
gv , κ enter through kF = (4πn/gsgv)1/2, d0 = 2kF d, x =
qTF/2kF = (gsgv)3/2me2/(4κ�

2√πn), and the factor 2πe2/κ

as well as m on the right-hand side. It is obvious that
no definitive and unique dependence of nc = nc(gv,gs,m,κ)
on the materials parameters can be analytically discerned
from Eqs. (32) and (33) because of the complex functional
relationship defined by Eqs. (32) and (33) of the form n2 =
niA(gv,gs,m,κ)

∫ 1
0 dyf (y; n,d,gv,gs,m,κ) where both A and

f are functions of the materials parameters gv , gs , m, and κ .
The only relatively simple dependence implied by the integral
Eqs. (32) and (33) is the dependence on the impurity density
ni , which has already been discussed in Sec. II A 1 above in
details. We mention here that using the Ioffe-Regel criterion
the kF d � 1 and kF d � 1 limits of Eqs. (32) and (33) lead to
nc ∼ (ni/d)2/3 and nc ∼ nid

0, respectively.
To discuss the materials dependence of nc analytically,

we start by assuming that the strong screening (qTF � 2kF )
condition applies to the 2D system, which is likely (since nc is
relatively low for the 2D MIT phenomenon to manifest itself),
but not guaranteed. An additional constraint is necessary on the
dimensionless variable d0 = 2kF d, which we also assume to
be small (which certainly applies to Si-MOSFETs, but may not
always apply to the modulation-doped GaAs structures even at
low values of nc). With these two constraints (i.e., qTF � 2kF

and 2kF d � 1), the Ioffe-Regel integral equation can be
analytically studied to provide the following approximate
asymptotic dependence of nc on materials parameters,

nc ∼ (gsgv)−2/3; nc ∼ κ2/3; nc ∼ m0. (34)

It is interesting and important to note that in the strong-
screening (qTF � 2kF ) limit, there is no dependence of the
critical density nc on the effective mass of the system since
the effective mass appearing in qTF (i.e., screening) exactly
cancels out the inverse effective mass appearing in the Fermi
velocity in this artificial limit qTF � 2kF . The spin- and
valley-degeneracy dependence shown in Eq. (34) is the same
as what we obtained in Sec. II A 3 above, and indicates
that in general insulating (metallic) phase is preferred by
lower (higher) values of gs or gv . We note, however, that the
strong-screening situation itself, qTF � 2kF , depends crucially
on the effective mass since qTF ∼ m, and thus the strong
screening condition is difficult to achieve in 2D systems with
small effective mass.
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5. Comparison with percolation transition

Ioffe-Regel criterion provides one possibility for conductor-
to-insulator crossover in 2D semiconductor systems. Another
possibility, which has been studied rather extensively in the
2D MIT literature [17,18,29,33–36], is a classical percolation
transition at n = nc arising from the 2D Fermi level moving
through the potential fluctuations (“mountains and lakes”
landscape) associated with the long-range Coulomb disorder
in the 2D system. Simple theoretical considerations [35] and
direct numerical simulations [36] indicate that a percolation
conductor-to-insulator transition may occur at a critical carrier
density given by

nc ≈ 1

4π

√
ni

d
≈ 0.1

√
ni

d
, (35)

where the long-range-Coulomb disorder is created in the 2D
layer by random charged impurities of 2D density ni located
a distance “d” from the 2D layer (i.e., exactly the same
model for disorder we have used in this work for applying the
Ioffe-Regel criterion kF l = 1). Since the percolation transition
in the context of 2D MIT has already been extensively studied
in the literature, we do not provide any details in the current
work on the percolation transition and accept Eq. (35) for the
crossover density as a given. Our goal in the current work
is to compare the percolation transition with the Ioffe-Regel
transition in the context of the 2D MIT phenomena. It is,
however, important here to point out that the percolation
transition is manifestly a classical phenomenon with the MIT
being driven by the chemical potential or the Fermi level
(which is proportional to the carrier density in 2D) crossing
through the percolation point in the potential fluctuation driven
inhomogeneous 2D “mountains and lakes” landscape with
the high-density (n � nc) metallic phase being essentially
the homogeneous (and well-screened) “all-lakes” conducting
situation whereas the low-density (n � nc) insulating phase
being the highly inhomogeneous (and unscreened) “all-
mountains” situation. By contrast, the Ioffe-Regel criterion
defines a completely quantum condition for the localization
crossover. In some loose sense, the two criteria (percolation
and Ioffe-Regel) are complementary and describe the 2D MIT
as a high-temperature classical and a low-temperature quantum
crossover phenomenon, respectively.

We note that for fixed “d,” the percolation criterion implies
nc ∼ √

μm, i.e., the exponent [see Eqs. (9) and (13)] γ = 1/2
in the percolation picture whereas γ ≈ 0.6–0.8 in the Ioffe-
Regel theory as discussed already in great detail above. If
we assume ni to be fixed and “d” to be the relevant variable
characterizing impurity disorder, then the percolation theory
gives the simple dependence nc ∼ d−1, which can be converted
to the following dependence on the high-density mobility μm

assuming that the kF d � 1 condition applies,

nc ∼ d−1 ∼ μ−1/3
m , (36)

where we have used the fact that 2D mobility μ ∼ d3 for
kF d � 1 (and fixed ni). Thus percolation theory gives the
following exponent γ (where nc ∼ μ

γ
m) for the critical density,

assuming d to be fixed,

γ = 1/2, (37)

and, assuming ni to be fixed,

γ = 1/3. (38)

In addition, the percolation critical density, being dependent
only on ni and d (i.e., just the bare disorder), is independent
of materials parameters gv , gs , m, and κ in contrast to the
critical density nc based on the Ioffe-Regel criterion. We
mention the corresponding Ioffe-Regel exponents for Eqs. (37)
and (38) are γ = 2/3 (fixed d) and 2/9 (fixed ni) for kF d � 1.
The differences in the exponent γ between the two theories
are significant (γ = 1/2 and 1/3 versus γ = 2/3 and 2/9,
respectively), but not very large.

One particular aspect of percolation-induced 2D MIT not
discussed above is worth mentioning here (and we will present
numerical results on this aspect later in this paper). The critical
density defined by percolation theory is completely indepen-
dent of any transport considerations and thus the constraint on
the critical resistivity ρc � (2/gsgv)(h/e2) defined by Eqs. (5)
and (8) does not apply to the percolation critical resistivity. In
principle, therefore, ρc for the 2D MIT percolation crossover
could be any value much larger or smaller than the quantum
resistance value of h/e2 whereas, by contrast, the Ioffe-Regel
condition implies a critical resistance of O(h/e2). In practice,
however, we find numerically (as shown in the next section)
that the calculated ρc = ρ(nc) at the 2D MIT percolation
transition turns out to be ∼ h/e2 for most, if not all, 2D MIT
experimental parameters in realistic 2D systems. The possi-
bility, however, remains that ρc could be very different from
h/e2 in a percolation 2D MIT crossover since the percolation
transition is simply a classical transition between immobile
and mobile states depending on the value of the chemical
potential (i.e., the Fermi level) with respect to the disorder
potential in an inhomogeneous potential fluctuation landscape
where localization or quantum interference plays no role.

While the fact that the percolation critical resistivity ρc =
ρ(n = nc) is, in principle, arbitrary (and can be larger or
smaller than h/e2 with no theoretical constraint) may appear
to be an attractive quantitative feature of the percolation
theory in describing 2D MIT, there are other aspects of the
percolation transition which are in manifest disagreement
with the experimental phenomenology for 2D MIT even
on a qualitative level. For example, the percolation theory
predicts an nc = nc(ni,d) which is completely independent of
materials parameters (i.e., m, κ , etc.) and of the valley and/or
spin degeneracy. This is in disagreement with experimental
findings for 2D MIT where, for example, applying an external
in-plane magnetic field to spin polarize the 2D system leads
to an increasing nc which cannot easily be described by the
percolation theory. The classical percolation theory would
predict no dependence of nc on an applied magnetic field.

B. Numerical results

We now present detailed numerical results for our calcu-
lated critical crossover density nc as a function of various
physical parameters using the Ioffe-Regel criterion. These
results are obtained by directly numerically solving the integral
equations defined by Eq. (32) or (33), which correspond,
respectively, to using lt = vF τt or lq = vF τq in the Ioffe-Regel
criterion kF l = 1. Both equations give similar qualitative
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FIG. 1. (Color online) The calculated critical density of n-GaAs
(a) as a function of impurity density ni for fixed impurity locations
d = 10, 50, 100, 200 nm (from top to bottom) and (b) as a function of
impurity location d for fixed impurity densities. Solid (dashed) lines
represent the percolation critical density nper

c (Ioffe-Regel critical
density nIR

c ). (c) and (d) Results for p-GaAs with the same impurity
parameters of (a) and (b), respectively. (e) and (d) nc for Si-MOSFET.
In (e) the impurity locations d = 1, 10, and 100 nm (from top to
bottom) are used.

results, and our goal in this work is an investigation of the
qualitative dependence of nc on disorder, temperature, applied
in-plane magnetic field, and system parameters, and we do not
therefore distinguish between these two closely related ver-
sions (i.e., lt or lq) of the Ioffe-Regel criterion. We also provide
a comparison between nIR

c and n
per
c as obtained, respectively,

by the Ioffe-Regel criterion and percolation transition in same
situations. We believe that a direct comparison between nIR

c

and n
per
c as a function of disorder could shed considerable

light on the nature of the 2D MIT, in particular, distinguishing
between quantum localization and classical percolation on a
qualitative level.

1. Pure 2D case

In Fig. 1, we show our numerically calculated critical
density nc for both the Ioffe-Regel and the percolation theory
as a function of ni (with d fixed) and d (with ni fixed).
All numerical results presented in this subsection assume
the 2D carriers to be confined in an ideal strict 2D layer
of zero thickness. For the percolation theory, of course,

nc = 0.1
√

ni/d is trivial to plot, and we provide these results
only for the sake of comparison with the nontrivial Ioffe-Regel
results for nc, which we obtain by numerically solving the
integral equation defined by Eq. (33), which uses τ = τq

(i.e., � = EF Ioffe-Regel condition). We show results for the
three most commonly studied 2D systems: n-GaAs, p-GaAs,
and n-Si(100)-MOSFET (using the appropriate corresponding
values of m, κ , gv , etc., in solving the integral equation for nc).

Several general comments can be made about the results
shown in Fig. 1: (i) The analytically derived scaling behaviors
derived earlier in this paper apply in their respective regimes of
validity, but the dependence of nc on both (ni , d) characterizing
disorder precludes any definitive dependence of nc on the
system mobility since nc(ni,d) and μm(ni,d) at some high
density nm � nc are two independent functions of ni and d. (ii)
In general, nIR

c > n
per
c for larger values of ni and/or d. We see

the clear trend in Fig. 1 that as ni (d) increases for fixed d (ni),
respectively, nIR

c lines cross above the n
per
c lines for all three 2D

systems we study. For lower disorder (i.e., smaller ni), which
is of particular interest to 2D MIT phenomena, nIR

c always is
smaller than n

per
c . We expect the percolation theory to be of

validity only for rather large values of d (since only then the
Coulomb disorder is effectively unscreened and leads to long-
range potential fluctuations in the 2D landscape), and again for
“d” not too large, we always find nIR

c < n
per
c . (iii) For similar

disorder parameters (i.e., same values of ni and d), our results
in Fig. 1 indicate very similar (but not identical) values of nIR

c

for all three systems we study; of course n
per
c = 0.1

√
ni/d

is, by definition, independent of the materials parameters.
This finding of similar nIR

c in all three systems, while being
surprising at first sight, turns out to be consistent with exper-
imental observations where the discrepancy in the reported
nc values among different systems (with nSi

c ∼ 1011 cm−2 >

n
p−GaAs
c ∼ 1010 cm−2 > nn−GaAs

c ∼ 109 cm−2) appears to arise
almost entirely from the very different disorder parame-
ters in these systems (with μSi

m ∼ 5×104 cm2/Vs < μ
p−GaAs
m

∼ 5×105 cm2/Vs < μn−GaAs
m ∼ 5×106 cm2/Vs), where μm is

the typical high-density mobility value, more or less explain
the difference in their observed nc values based on the
approximate scaling law nc ∼ μ

−γ
m . (iv) To the extent the

numerical results in Fig. 1 allow us to discern any materials
trend in the nIR

c values, we find that for the same disorder
strength (i.e., same values of ni and d) Si-MOSFETs tend to
have the lowest nIR

c with n-GaAs and p-GaAs having almost
the same calculated nc, thus verifying the effective mass
independence of nIR

c we derived before. A clear prediction
of this finding is that 2D n-GaAs and 2D p-GaAs will have
very similar values of nc provided they have similar disorder
configurations.

To reinforce the point that the Ioffe-Regel criterion typically
leads to nc values which depend strongly on the disorder, but
only weakly on the material, we show in Fig. 2 our calculated
resistivity ρ(n) as a function of 2D carrier density n for the
n-Si-MOSFET and the n-GaAs system for exactly the same
set of values of (ni , d) with three different sets of disorder
configurations (i.e., ni and d values) shown in the plots.
The kF l = 1 Ioffe-Regel criterion translates into ρ = h/e2,
which gives similar nc values for the three sets of disorder
shown in Fig. 2. For the purpose of comparison we also
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FIG. 2. (Color online) The calculated resistivity ρ as a function
of carrier density. The solid (dashed) lines show results for n-
GaAs (Si-MOSFET). The sets of the remote impurity density ni

and the distance d are (1010 cm−12, d = 100 nm) (i.e., nid
2 = 1);

(ni = 1010 cm−12, d = 10 nm) (i.e., nid
2 = 0.01); (ni = 1012 cm−12,

d = 30 nm) (i.e., nid
2 = 9) (from left to right). The vertical dot lines

indicate the percolation critical density for given impurity conditions
(i.e., nc = 0.1

√
ni/d).

shown n
per
c = 0.1

√
ni/d, which again is reasonably close to

the calculated nIR
c value for each disorder configuration. At

first sight, it appears that for the intermediate disorder strength
(red curves with nid

2 = 0.1), the nIR
c values for Si and n-GaAs

are very different from each other, but this discrepancy is
resolved once the valley degeneracy effect (i.e., gv = 2 for Si)
is taken into account so that the critical resistivity ρc = h/2e2

for the Si system. It becomes clear that if we use ρSi
c = 0.5 h/e2

and ρGaAs
c = h/e2, then indeed the resultant nc values for

the two systems are very close to each other, indicating the
approximate materials universality of nc among different 2D
systems, with disorder being the primary determinant of nc.

One unexpected aspect of the results shown in Fig. 2 is that
the critical resistivity ρc = ρ(nc) for the percolation transition
seems to be not very different from that (i.e., ρc ∼ h/e2)
implied by the Ioffe-Regel criterion, which is, of course, a
direct manifestation of n

per
c and nIR

c being not that different
(typically n

per
c � nIR

c in Figs. 1 and 2) from each other. We
show in Figs. 3–6 our calculated ρIR

c and ρ
per
c defined by

ρIR
c = ρ

(
n = nIR

c

)
,

(39)
ρper

c = ρ
(
n = nper

c

)
.

Although we expect ρIR
c � h/e2, by definition, there is no

reason for ρ
per
c to have anything to do with h/e2 since it is a

nonuniversal quantity not determined by quantum interference
or quantum localization. Our results, however, indicate that in
general ρ

per
c � h/e2 as well!

In Fig. 3 we show our numerically calculated ρIR
c as a

function of ni and d for 2D n-GaAs, p-GaAs, and n-Si-MOS
systems. We emphasize that ρIR

c = 2 h/(gsgve
2) universally

by definition if the quantity “l” in the kF l = 1 Ioffe-Regel
criterion is interpreted as the transport mean free path [see
Eq. (5)] of the 2D system. This means that ρIR

c = h/e2

(GaAs); h/2e2 (Si) for all ni and d if we take “l” to be
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FIG. 3. (Color online) The calculated resistivity ρc at Ioffe-Regel
critical density nIR

c , (a) as a function of ni for different d = 10, 50,
100, 200 nm and (b) ρc as a function d for different impurity densities
ni = 1010, 1011, 1012, 1013 cm−2 (from top to bottom). The solid
(dashed) lines are the results of n-GaAs (p-GaAs). (c) and (d) The
calculated resistivity ρc for an n-Si-MOSFET (c) as a function of ni

for different d = 3, 10, 30 nm and (d) as a function d for different
impurity densities ni = 1010, 1011, 1012, 1013 cm−2.

the transport mean free path l = lt as in Eq. (32). All our
numerical ρIR

c results therefore interpret l = lq as the quantum
mean free path [using Eq. (33) without the conductivity vertex
correction term] where kF lq = 1 becomes equivalent to the
� = EF strong localization condition. The most important
qualitative conclusion based on the numerical results of Fig. 3
is that ρIR

c is large (small) for small (large) ni and small
(large) d. In Fig. 3ρc(ni,d) falls off monotonically either as
a function of increasing ni or increasing d, which of course
makes sense since small ni and d implies very small nc, and
hence rather large ρIR

c (which is still bounded from above
by h/e2 since ρIR

c � h/e2 by definition since lq � lt ). The
decrease of ρIR

c to incredibly small values as a function of
increasing ni or d may appear completely unphysical (perhaps
even ridiculous) at first, but this is a direct manifestation of
our model of disorder which is entirely characterized by a
2D impurity plane containing ni random charged impurities
per unit area separated by a distance “d.” For large “d,” this
model fails completely since there would always be some
unknown and unintentional background charged impurities
which will cause the strong localization crossover at some
higher value of ρc (i.e., lower value of nc). In principle,
however, the qualitative result emerging from Fig. 3 is that
the more disordered the system (i.e., larger the value of ni),
the lower the critical resistance ρc at the transition (and the
higher the nc). This is certainly qualitatively correct since older
MOSFETs (before 1994–1995 when the current era of 2D MIT
physics commerced with the Kravchenko et al. work [22])
typically had [1] very high values of nc (>1012 cm−2) with
consequently rather low values of ρc (∼h/10e2 ≈ 2 k�) [1].
We also mention in this context the empirical finding of
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FIG. 4. (Color online) The calculated resistivity ρc at percolation
critical density nper

c , (a) as a function of ni for different d = 10, 50,
100, 200 nm and (b) as a function d for different impurity densities
ni = 1010, 1011, 1012, 1013 cm−2. The solid (dashed) lines are the
results of n-GaAs (p-GaAs). (c) and (d) The calculated resistivity ρc

for a n-Si-MOSFET (c) as a function of ni for different d = 3, 10,
30, 100 nm and (d) as a function d for different impurity densities
ni = 1010, 1011, 1012, 1013 cm−2.

Sarachik [26] that nc ∼ μ−0.67
m which implies very large nc

(and hence rather low ρc) for samples with very large values
of ni (i.e., low values of μm). Results with very large d values in
Fig. 3 are shown only for the sake of completeness since other
unknown disorder with small “d” (not included in the model)
will intervene making our large d results inapplicable to
experimental systems. Our results, however, do indicate that
extremely pure modulation doped 2D samples with large
values of “d” should have relatively small values of ρc if all
other disorder effects are absent. This theoretical prediction
should be experimentally tested in the future.

In Fig. 4 we show the same results as in Fig. 3 except now
for the percolation theory (i.e., ρ

per
c is shown as a function of

ni and d in Fig. 4 in contrast to Fig. 3 where ρIR
c is shown). It

is clear that ρ
per
c (Fig. 4) behaves qualitatively very differently

than ρIR
c (Fig. 3) with ρ

per
c ∼ h/e2 within a factor of 2 for

most values of ni and d. (We emphasize again that ρIR
c =

h/e2 within a factor of 2 also if the Ioffe-Regel criterion is
taken to be l = lt in the kF l = 1 condition.) The fact that
the percolation transition which defines n

per
c = 0.1

√
ni/d with

ρ
per
c = ρc(nc) as obtained from our standard Drude-Boltzmann

semiclassical transport theory provides a very reasonable value
of ρc ∼ h/e2 for a wide range of realistic disorder parameters
is certainly somewhat of a surprise. We should mention that for
unrealistically large ni and/or unrealistically small d, ρper

c takes
on unrealistic values, but for realistic physical combinations
of (ni , d) values operational in real 2D systems our theoretical
ρ

per
c seems to agree well with the experimental results. We do

not know at this stage whether this is simply a coincidence or
indicates some deep truth about the importance of percolation
transport in the 2D MIT phenomena.

Results shown in Figs. 3 and 4 hint at the dimensionless
parameter nid

2 being the important disorder parameter deter-
mining ρIR

c and ρ
per
c . This, in fact, follows from the definitions

of these two critical resistivities. Using the Boltzmann trans-
port theory for charged impurity scattering limited transport at
T = 0 [25], we find

ρc = 8h

e2

ni

nc

x2
c

∫ 1

0
dy

dy√
1 − y2

y2e−2ydc

(y + xc)2
, (40)

where

kc = kF (nc) =
(

4πnc

gsgv

)1/2

; xc = qT F /2kc; dc = 2kcd.

(41)

Putting n
per
c or nIR

c for nc in Eq. (40) we obtain ρ
per
c and ρIR

c ,
respectively. We note that the explicit dependence of ρc ∼ ni

in Eq. (40) is misleading since nc itself has an ni dependence
also.

The integral on the right-hand side of Eq. (40) can be
analytically evaluated in various asymptotic limits for both
ρIR

c and ρ
per
c , giving the following results (with kc ∼ √

nc):
For kcd � 1,

ρIR
c ∝ (nid

2)−2/3; nc ∼ (ni/d)2/3,
(42)

ρper
c ∝ (nid

2)−1/4; nc ∝ √
ni/d.

For kcd � 1,

ρIR
c ∝ (nid

2)−3/2; nc ∼ nid
0,

(43)
ρper

c ∝ (nid
2)1/2; nc ∝ √

ni/d.

This shows that nid
2 is an important dimensionless parameter

determining the disorder scaling of the crossover resistivity ρc.
We have explicitly checked numerically that these equations
[Eqs. (42) and (43)] are in quantitative agreement with our
numerical results.

We note that ρc and nc have very different qualitative
dependence on the disorder parameters ni and d, and this
might make an experimental distinction between them possible
if quantitative information about the underlying disorder
becomes available. In Figs. 5–7 we show our numerically
calculated ρc as a function of nid

2 to explicitly depict the
dimensionless dependence of ρc/(h/e2) on the dimensionless
disorder parameter nid

2.
In Figs. 5 and 6 we show our calculated ρIR

c and ρ
per
c

as a function of nid
2 for various fixed values of ni and

d (as shown in the figures) for 2D n-GaAs, p-GaAs, and
n-Si-MOSFET systems. It is clear (which is also obvious from
our analytical results) that the Ioffe-Regel and the percolation
criteria provide very different qualitative dependence of ρc

on disorder parameters. Finally, in Fig. 7 we show the
calculated resistivity ρ at different values of n � n

per
c in order

to emphasize the scaling behavior.

2. Realistic 2D structures

All results shown in Figs. 1–7 are for strict zero-thickness
2D systems with the appropriate effective mass, lattice
dielectric constant, and valley degeneracy (gv = 1, 2 for
GaAs, Si, respectively) defining each semiconductor material.
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FIG. 5. (Color online) (a) and (b) The calculated resistivity at
Ioffe-Regel critical density nIR

c , ρIR
c , for n-GaAs as a function of nid

2

(a) varying ni for various fixed d = 10, 50, 100, 200, 1000 nm (from
bottom to top) and (b) varying d for various fixed ni = 108, 1010,
1011, 1012, 1013 cm−2 (from top to bottom), respectively. (c) and (d)
ρIR

c for p-GaAs with the same impurity parameters used in (a) and
(b), respectively. (e) and (f) ρIR

c as a function of nid
2 for Si-MOSFET.

(e) Varying ni for various fixed d = 0.3, 3, 30 nm (from bottom to
top) and (f) varying d for various fixed ni = 1011, 1012, 1013 cm−2

(from top to bottom), respectively.

Results given in Figs. 1–7 serve to provide the qualitative
dependence of the critical density and resistivity on disorder
parameters, but are not quantitatively realistic even if the
disorder parameters (i.e., ni and d) were precisely known.
In particular, the finite quantum thickness of the realistic
quasi-2D system softens the Coulomb disorder arising from the
charged impurities since the 2D Coulomb interaction changes
from 2πe2/κq to (2πe2/κq)f (q) where f (q) � 1 is the
quasi-2D form factor due to the finite quantum thickness effect
[and f (q) = 1 in the ideal 2D limit]. Since the modification to
the transport theory for f (q) < 1 is well known [1,28] we do
not provide any details, concentrating instead on the numerical
results for nc in the realistic quasi-2D situation.

In Fig. 8 we show our nIR
c and n

per
c results [Fig. 8(a)] for n-

and p-GaAs quantum wells (using τ = τt so that ρIR
c = h/e2).

For the purpose of comparison, we also provide our results for
the strict 2D limit (i.e., zero quantum well thickness a = 0) in
Fig. 8(b). For n

per
c = 0.1

√
ni/d, the only effect of finite well

thickness (a 	= 0) is that the effective value of “d” changes
by a, changing n

per
c to n

per
c = 0.1

√
ni/(d + a/2). For nIR

c ,
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FIG. 6. (Color online) (a) and (b) The calculated resistivity at
percolation critical density nper

c , ρper
c , for n-GaAs as a function of

nid
2 (a) varying ni for various fixed d = 10, 50, 100, 200, 1000 nm

(from bottom to top) and (b) varying d for various fixed ni = 108,
1010, 1011, 1012, 1013 cm−2 (from top to bottom), respectively. (c) and
(d) ρper

c for p-GaAs with the same impurity parameters used in (a) and
(b), respectively. (e) and (f) ρper

c as a function of nid
2 for Si-MOSFET

(e) varying ni for various fixed d = 0.3, 3, 30, 100 nm (from bottom
to top) and (f) varying d for various fixed ni = 1011, 1012, 1013 cm−2

(from top to bottom), respectively.

the finite thickness increases the effective mean free path l,
and thus suppresses the resultant nc. Thus, both nIR

c and n
per
c

are suppressed by the finite thickness with this suppression
effect being very strong for n

per
c when d < a. A comparison of

Figs. 8(a) and 8(b) bear this out, and thus the finite thickness
effect is only quantitative with the qualitative power law
dependence of nc on ni being approximately the same.

In Fig. 9 we show our realistic quasi-2D results for
n-Si-MOSFETs where the quasi-2D quantum thickness is
determined self-consistently by the carrier density n itself [1]
which we incorporate through the variational Stern-Howard
wave function [37]. We note that for small values of d (which
is the expected situation in Si-MOSFETs since the charged
impurities are typically in the SiO2 layer close to the Si-
SiO2 interface), nIR

c ∼ 1010 − 1011 cm−2 for ni ∼ 1010 − 1011

cm−2 whereas nIR
c > 1011 cm−2 for ni > 1011 cm−2. These

findings are consistent with the higher- and lower-mobility
Si-MOSFET devices, respectively.

One important qualitative point to note in Figs. 8 and 9
is that while there is a large difference between percolation
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FIG. 7. (Color online) The calculated resistivity ρper
c as a function

of nid
2 (a) for n- and (solid lines) p-GaAs (dashed lines), and (b)

for Si-MOSFET. In (a) and (b) d = 100 nm and d = 3 nm are
used, respectively. The percolation critical density nc = 0.1

√
ni/d is

calculated by changing ni . The resistivity ρ is calculated at different
values of n � nper

c in order to show the scaling behavior.

and Ioffe-Regel predictions for nc for large values of “d,” for
small values of d, they are virtually indistinguishable. We also
note that the materials difference (e.g., n- versus p-GaAs 2D
systems in Fig. 8) is rather small with respect to the calculated
nc for the same disorder. It may be worthwhile to point out
that writing nc ∼ nδ

i in Fig. 9, we get δ = δ(d,ni), and our
best numerical estimate for the exponent δ is δ ≈ 0.8 − 1 for
d = 1 nm, δ ≈ 0.6 − 0.9 for d = 5 nm, and δ ≈ 0.5 − 0.8 for
d = 15 nm. Since μ ∼ n−1

i , we can approximate γ = δ (where
nc ∼ μ

−γ
m ), and thus our earlier estimate of γ ≈ 0.67 for Si-

MOSFET is consistent with d = 1–2 nm. This is a stringent
consistency check on our theory since, indeed, the random
charged impurities in Si MOSFETs are known to be located
1–2 nm inside the oxide layer near the Si-SiO2 interface.

In Fig. 10 we show our calculated Ioffe-Regel value of nc

as a function of a fiduciary “maximum mobility” defined as
the mobility calculated for exactly the same value of disorder
parameters (i.e., the same sample), but at a much higher density
nm � nc. The precise dependence of nc on the high-density
mobility μ, of course, depends somewhat on the fiduciary
density chosen for the high-density mobility, but the basic
finding is that the power law (γ ) dependence, nc ∼ μ

−γ
m , is a

function of temperature, and typically γ ∼ 0.7–0.8 as already
pointed out empirically by Sarachik a long time ago [26]. The
fact that γ ≈ 0.6–0.8 is consistent with experimental findings
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FIG. 8. (Color online) (a) Calculated nIR
c (dashed lines) and nper

c

(solid lines) as a function of impurity density for fixed several d =
10, 50, 100, 200 nm for GaAs quantum wells with a well width
a = 200 Å. Thick (thin) dashed lines represent results for n-GaAs
(p-GaAs). (b) The same results as (a) for zero quantum well thickness
(i.e., a = 0).
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FIG. 9. (Color online) The calculated critical density of n-
MOSFET as a function of impurity density ni for fixed impurity
locations d = 3, 10, 30, 100 nm (from top to bottom). Here the the
finite thickness of the quasi-2D system is considered. Solid (dashed)
lines represent the percolation critical density nper

c (Ioffe-Regel critical
density, nIR

c ).

in different systems is an indication that the experimental
2D MIT is likely to be a strong localization crossover
phenomenon. One salient feature of the results presented in
Fig. 10 is that the effective exponent γ , nc ∼ μ

−γ
m where μm

is the mobility at the same high density nm � nc, depends
strongly on the temperature (as one would expect because
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FIG. 10. (Color online) (a) and (b) The calculated Ioffe-Regel
critical density nIR

c of Si-MOSFET as a function of mobility for
different temperatures, T = 0, 1, and 2 K (from bottom to top). The
mobility is calculated (a) at a given high density n = 5×1011 cm−2

and (b) at n = 5nc. (c) and (d) The nc of n-GaAs as a function of
mobility for different temperatures, T = 0, 0.2, and 0.5 K (from
bottom to top). The mobility is calculated (c) at a given high density
n = 5×1010 cm−2 and (b) at n = 5nc.
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FIG. 11. Calculated Ioffe-Regel nc(T ) of (a) Si-MOSFET as a
function of temperature for different impurity densities ni = 0.5, 1.0,
1.5×1011 cm−2 (from bottom to top) and (b) n-GaAs for ni = 0.2,
0.5, 1.0×1010 cm−2 (from bottom to top).

of the strong temperature dependence of the 2D metallic
resistivity for n � nc provided nc is not too large).

In Fig. 11 we show our numerically calculated nc(T ), based
on the finite-temperature Ioffe-Regel criterion kF l(T ) = 1, as
a function of temperature. As discussed earlier, nc(T ) first
increases with T and then decreases when T � TF . However,
the overall variation in nc(T ) is less than a factor of 2 in
our results. We mention that the results shown in Figs. 11(a)
and 11(b) agree well, respectively, with the experimentally
measured temperature dependence of the critical 2D MIT
density in Si MOSFETs [17] and 2D electrons [15] and
holes [18] in GaAs systems, providing strong support for our
basic Ioffe-Regel model describing the 2D MIT crossover.

In Fig. 12, we show that the calculated maximum mobility
dependence of nc is to some extent dependent on how the
maximum mobility is chosen, and thus one cannot really
discuss a unique dependence of nc on the maximum mobility,
which is obvious from the fact that both nc = nc(ni,d) and the
mobility μ = μ(ni,d) are independent functions of ni and d.
What is interesting, however, is the finding that the exponent
γ (with nc ∼ μ

−γ
m ) remains within our analytical finding of

γ ≈ 0.6–0.8 for a wide range of definitions of the maximum
mobility μ.

In Fig. 13 we show how our realistic numerical results
change if the quantum mean free path with l = lq = vF τq

is used in the kF l = 1 criterion for 2D MIT. There is no
qualitative change in the results with τq replacing τt in the
Ioffe-Regel criterion as we already emphasized earlier in this
paper.

Finally, in Figs. 14 and 15 we show the effect of an applied
parallel magnetic field B on the critical density nc(B) due
to the spin-polarization-induced lifting of spin degeneracy gs

from gs = 2 at B = 0 to gs = 1 at B = Bs where Bs is the
applied field strength to fully spin polarize the 2D electrons.
We show numerical results only for Si-MOSFETs here since
the qualitative effect of the parallel field on the 2D MIT
is the same for all 2D systems since the relevant physics
is the suppression of screening (and hence suppression of
the transport mean free path l) due to the applied magnetic
field. We neglect all orbital effects of the applied magnetic
field which could enhance nc(B) even more for systems
with large quasi-2D thickness [38]. As mentioned already,
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FIG. 12. (Color online) Calculated zero temperature Ioffe-Regel
critical densities (solid lines) as a function of a reference mobility
for (a) Si-MOSFET and (b) for n-GaAs. The reference mobility is
calculated for different densities n = 5nc, 10nc, 20nc (from bottom
to top). Zero temperature nc as a function of mobility calculated at
(c) n = 5, 10, 20×1011 cm−2 (from bottom to top) for Si-MOSFET
and (d) n = 5, 10, 20×1010 cm−2 for n-GaAs (from bottom to top).
(e) Zero temperature nc of Si-MOSFET as a function of a reference
mobility calculated at n = 10×1011 cm−2 for different locations of
the impurity center, d = 0, 10, and 20 Å (from bottom to top), and
(f) nc of n-GaAs as a function of a mobility at n = 10×1010 cm−2

for different locations of the impurity center, d = 0, 50, and 100 Å
(from bottom to top).

the maximum possible effect of the magnetic field is an
enhancement of nc by a factor of

√
2 due to the reduction

of spin degeneracy from 2 to 1. Thus, our results in Fig. 14
show an approximate 40% enhancement of nc in the presence
of the applied field at T = 0 whereas at finite temperatures
the effect is smaller. We emphasize that although the spin-
polarization-induced enhancement of nc(B) compared with its
B = 0 value is a universal qualitative phenomenon as long
as screened Coulomb disorder is the dominant underlying
transport scattering mechanism, the actual quantitative effect
would be miniscule (and experimentally unobservable) if
nc(B = 0) = nc is very large (as it is highly disordered 2D
systems where the 2D MIT phenomena have no dramatic
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FIG. 13. (Color online) (a) and (b) Respectively, the calculated
nc with the quantum mean free path using the same parameters of
Figs. 12(c) and 12(d) where the transport mean free path is used. Solid
(dashed) lines indicate the results with quantum (transport) mean free
path. (c) and (d) The calculated nc with the quantum mean free path
using the same parameters of Figs. 12(e) and 12(f) where the transport
mean free path is used, respectively. Solid (dashed) lines indicate the
results with quantum (transport) mean free path.

consequences) since Bs = 2Ec/gμB with Ec = EF (n = nc)
would be very large when nc is large, and thus the B/Bs � 1
limit would apply on any physically applicable magnetic
field in the laboratory making nc(B) ≈ nc(B = 0). It is only
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FIG. 14. (Color online) (a) Calculated nc(B) as a function of
parallel magnetic field B for an impurity density ni = 1011 cm−2 and
for different temperatures T = 0.0, 0.5, 0.1 K. The critical density
is normalized by the critical density calculated at B = 0 and T = 0,
where nc(0,0) = 7 × 1010 cm−2. Above Bs the scattering time τ is
constant in this model, which gives the saturation of the critical
density. (b) Calculated nc(B) as a function of parallel magnetic field
B‖ for two different impurity densities [ni = 5×1010 (solid lines) and
1011 cm−2 (dashed lines)] and for two temperatures [T = 0 K (thick
lines) and T = 0.3 K (thin likes)]. The critical density is normalized
by the critical density calculated at B = 0 and at given temperature
nc(0,T ).

when nc [and hence Ec = EF (nc)] is sufficiently small that
the applied parallel-field-induced enhancement of nc can be
experimentally relevant since the available laboratory applied
field could reach the B/Bs ∼ 1 regime. Thus, the condition
for the observation of strong temperature dependence of the
metallic resistivity and the condition for the observation of
strong magnetic field dependence of 2D MIT are closely
related as they both require fairly small nc (and therefore
very high-quality 2D samples) so that T/TF and B/Bs can
be relatively large in respective cases. This close connection
between the temperature dependence and the magnetic field
dependence of 2D MIT phenomena is experimentally well
established, and has already been noted in the literature [31].

We note that at very low applied field values in Fig. 14,
there is a small upturn in the critical density compared with
its zero-field value. This is a real effect arising from the
increase in effective kF induced by the applied field which
always suppresses nc at finite field compared with its zero-field
value, as noted earlier in this paper. If screening effects
are unimportant (e.g., scattering by unscreened short-range
disorder or at very high carrier density with 2kF � qTF),
then this Fermi surface effect would dominate the finite field
transport properties. But the 2D MIT phenomenon occurs at
low values of nc, where qTF > 2kF , and screening effects
dominate, leading to a suppression of the metallic phase and
an increase of nc at finite applied magnetic field.

Finally, in Fig. 15 we show our numerical results on
the valley-degeneracy dependence of nc by plotting the
numerically calculated nc(gv) as a function of the valley
degeneracy gv (at fixed gs = 2) which we assume for this
purpose to be a fictitious continuous variable—in reality gv is
1 or 2 for Si(100)-MOSFETs [whereas for Si(111)-MOSFETs,
gv = 6 is allowed]. As expected nc(gv) behaves very similarly
to the spin-polarization effect on nc, and with decreasing valley
degeneracy, nc is enhanced since screening is reduced. This
dependence of nc on spin and valley degeneracy of the 2D
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FIG. 15. (Color online) The calculated Ioffe-Regel critical den-
sity of Si-MOSFET as a function of valley degeneracy. Black solid
(red dashed) line indicates the nIR

c calculated from the transport
(quantum) scattering time τt (τq ). The results are shown for an
ideal 2D system with zero thickness and d = 1 nm—a finite
thickness corresponds to a larger value of effective “d,” decreasing
nc accordingly.
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system is consistent with detailed experimental results reported
in the 2D AlAs system [32]. We emphasize that our calculated
nc(gs) for fixed gv is identical to results shown in Fig. 15 since
both gs and gv enter the theory equivalently as the product gsgv

through the density of states. We mention that for T 	= 0 (not
shown in Fig. 15), nc(gv) softens somewhat showing a weaker
dependence of nc on gv . The numerical nc(gv) in Fig. 15
agrees exactly with the analytical dependence nIR

c ∝ g−1
v for

kF d � 1 which is satisfied essentially for all values of nc

shown in Fig. 15.

III. DISCUSSION

We have studied 2D MIT as a strong localization induced
crossover phenomenon determined by the Ioffe-Regel cri-
terion (comparing with the corresponding classical percola-
tion transition in the disorder-induced “mountains-and-lakes”
inhomogeneous potential fluctuations landscape). There are
several distinct aspects of the 2D MIT phenomenology we
have addressed in this work theoretically. The main results
obtained in this paper involve theoretical and numerical
calculations of the crossover critical density nIR

c for 2D MIT
using the Ioffe-Regel criterion and its comparison with the
corresponding percolation transition density n

per
c .

In addition to obtaining nc, we also provide results for
the critical resistivity ρc = ρ(n = nc), which at T = 0, is by
definition ρc = 2 h/(gsgve

2). For a percolation transition at
n = n

per
c = 0.1

√
ni/d, in principle, ρ

per
c could have any value,

but in practice ρ
per
c ∼ h/e2 seems to apply extensively for

realistic 2D sample parameters.
All our theoretical results use a minimal model of Coulomb

disorder characterized by a random 2D charged impurity
density ni and a separation of d between the impurities
and the 2D carriers. More complex models of disorder are
straightforward to include in the theory, but will involve more
(than two) free parameters, making it difficult to interpret and
understand the theoretical results. Since precise information
about the details of disorder is not typically available for
high-quality 2D semiconductor systems manifesting 2D MIT,
our two-parameter impurity model is a reasonable starting
point for discussing the 2D MIT phenomena.

Below we summarize and critically discuss our important
findings and related questions focusing on the key features
of our theory as compared with the experimental 2D MIT
phenomenology.

A. Localization versus percolation

A question of great importance, of course, is whether
the 2D MIT at n ≈ nc is a strong localization quantum
crossover or classical percolation, i.e., whether nc = nIR

c or
nc = n

per
c . At first sight, it appears that our theory should

be able to answer this question with sharp precision since
the physical origin and the mathematical description of the
Ioffe-Regel quantum crossover and the percolation transition
are completely distinct. This turns out to be a much more
difficult issue than anticipated at first because nIR

c and n
per
c

have similar magnitudes (both in qualitative agreement with
experimental nc) in many situations for realistic values of
sample parameters. This is a rather surprising finding of our

work that could not have been anticipated earlier. Even more
surprisingly we find that the critical resistivity ρc = ρ(n = nc)
is similar for both Ioffe-Regel theory and percolation theory!
This is a very unexpected and rather strange result since
in principle ρ

per
c = ρ(n = n

per
c ) is allowed to be arbitrary

whereas ρIR
c is closely related to the resistance quantum h/e2 ≈

25,600 � since it arises from quantum localization. But our
explicit calculations for 2D n-Si, n-GaAs, and p-GaAs systems
show that for realistic experimental parameters (with nc ∼
109 − 1011 cm−2), ρc values calculated from localization and
percolation considerations are not widely different although
their dependencies on system parameters could be quite
different. In view of this similarity between absolute values
of nc (and ρc) in the two theories, it is not easy to manifestly
choose one mechanism over the other as determining the 2D
MIT crossover density nc, at least using the experimental data
on nc and ρc only.

One practical possibility is that as the carrier density is
lowered from the high-density metallic phase (n � nc) to the
low-density insulating phase (n < nc), whichever transition
occurs first (i.e., at higher carrier density) in a given sample
dominates the actual crossover behavior in that system. (We
mention here that our theoretical calculation of nc and ρc

explicitly approaches the transition from above, i.e., from the
metallic phase.) Thus, nc = n

per
c if n

per
c > nIR

c and nc = nIR
c

if nIR
c > n

per
c . At very low temperatures, however, quantum

interference must always be present and therefore nc → nIR
c

as T → 0. Careful experiments should be carried out to
investigate this question of whether nc is better described
as localization or as percolation. We emphasize that the
experimental finding that ρc ∼ h/e2 (typically within a factor
of 2–3) does not automatically imply that nc is described by nIR

c

since our explicit numerical calculations indicate that, perhaps
purely coincidentally, ρc ∼ h/e2 (again within a factor of 2–3)
is also true for ρc = ρ

per
c = ρ(n = n

per
c ). We discuss the issue

of localization versus percolation more below in the context
of comparing theory and experiment.

There is one particular experimental finding, however,
which can only be explained by the quantum Ioffe-Regel
theory with the classical percolation theory failing completely.
The dependence of nc on an applied parallel magnetic field,
which is widely reported experimentally, can only be explained
correctly by the Ioffe-Regel theory and not at all by the
percolation theory.

B. Theory and experiment

An important issue is how our theoretically calculated
nc compares with the observed experimental dependence of
the critical density on various system parameters such as
“maximum” mobility, temperature, external magnetic field,
valley degeneracy, effective mass, etc. In this respect (i.e.,
when compared with experimental findings), the Ioffe-Regel
criterion describing 2D MIT as a crossover phenomenon
seems to be in much better agreement (both qualitative and
quantitative) with observations than the percolation theory. In
particular, the fact that the 2D MIT behavior (specifically, the
value of nc itself) depends on an applied parallel magnetic
field is difficult to reconcile with the percolation transition
which gives a nominally density-independent explicit value
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of nc = n
per
c ≈ 0.1

√
ni/d. The Ioffe-Regel theory by contrast

correctly predicts an increasing nc with the applied parallel
field (i.e., a field-induced suppression of the metallic phase
much discussed in the literature [30,31] on 2D MIT) arising
from the spin polarization of the 2D system. Similarly, the
valley degeneracy dependence of nc (and its equivalence to the
spin degeneracy dependence), which has been experimentally
demonstrated [32], is very naturally explained in the Ioffe-
Regel theory as arising from the variation in screening due
to the modification in the density of states, whereas it has no
explanation within the percolation theory. We see no obvious
way of incorporating the applied magnetic field effect in
the percolation picture, and thus it appears that 2D MIT,
at least for the 2D systems manifesting a strong magnetic
field dependence of nc, is incompatible with the percolation
transition.

The most important experimental parameter determining
the crossover density nc is, of course, the sample quality (or
disorder) as discussed throughout this article. We emphasize
that although nc obviously increases with increasing disorder,
and this is the key reason for the 2D MIT phenomena
manifesting itself only in the 1990s when sufficiently high-
quality 2D systems could be studied with sufficiently low
values of nc, there does not, in principle, exist a simple
relationship between nc and the sample mobility μ (at a density
n � nc). The reason for this is that the sample disorder is
minimally determined by at least two independent parameters
(ni and d), and therefore it is, in principle, allowed for nc and
μm [with μm = μ(n = nm) where nm � nc is some specific
high density] to be completely independent parameters. Thus,
in principle, a sample with very high μm could have much
higher nc than another sample with low μm although it is
probably not very likely.

With the above caveat in mind we can, however, obtain from
the Ioffe-Regel (or percolation) theory how nc varies with ni

and d separately, and we can also calculate how the mobility
μ(n) varies with ni and d as well as carrier density n [25].
Therefore, the disorder dependence of nc is completely spec-
ified in our theory through the two disorder parameters ni and
d. Assuming a fixed d, we can convert the ni dependence of nc

to an effective dependence on the mobility at some high carrier
density, finding, nc ∼ μ−0.7

m in the Ioffe-Regel theory and nc ∼
μ−0.5

m in the percolation theory. The fact that Sarachik already
pointed out more than 10 years ago [26] an empirical relation-
ship, nc ∼ μ−0.7

m , which is in agreement with the Ioffe-Regel
theory, is a strong agreement in favor of the Ioffe-Regel theory.

Assuming kF d � 1, we obtain theoretically I IR
c ∼ nid

0

and n
per
c ∼ nid

−1/2 whereas for kF d � 1, nIR
c ∼ (ni/d)2/3 and

n
per
c ∼ (ni/d)1/2. In principle, this asymptotic dependence on

ni and d can be explicitly checked experimentally, but we
know of no detailed experimental study of the critical density
on the microscopic parameters defining the disorder.

At this stage, the most convincing agreement between our
theory for nc and experiment comes from (1) nIR

c ∼ μ−0.67
m

type behavior noted earlier empirically [26]; (2) the parallel-
field-induced enhancement of nIR

c [30,31]; (3) the dependence
of nIR

c on the valley degeneracy and its equivalence to the
spin-degeneracy dependence [32]. We note that all three
properties mentioned here favor the 2D MIT being a strong

localization induced crossover phenomenon as determined by
the Ioffe-Regel criterion (in contrast to the classical percolation
transition). In this context, we must mention one small (but
significant) remaining discrepancy between the Ioffe-Regel
theory and the experimental finding on 2D MIT. The Ioffe-
Regel theory predicts that the critical resistivity ρc = ρ(nc) at
the transition must necessarily obey the inequality,

ρIR
c � h

e2

2

gsgv

, (44)

which means that even if the spin and valley degeneracy are
lifted ρc < h/e2 ≈ 25,6000 �. Experimentally, this inequality
is obeyed almost universally with the most important exception
being the original Si-MOSFET data of Kravchenko et al.
who consistently found ρSi

c ≈ 1.5 h/e2. We have no way of
explaining ρc > h/e2 (at least at T = 0) within the Ioffe-Regel
theory. One possibility is that ρc > h/e2 is a finite temperature
effect, and ρc(T → 0) approaches h/e2, but we simply do not
know if this is true or not. We emphasize, however, that the
vast majority of 2D MIT data are consistent with ρc values
obtained from the Ioffe-Regel theory, and thus the critical
resistivity issue may not be a particularly important problem
for the Ioffe-Regel theory, particularly since the extrapolated
value of ρc(T → 0) is not easy to ascertain experimentally
from finite temperature transport measurements.

C. Transition versus crossover

We have studied the 2D MIT as a crossover in this work
(either described by Ioffe-Regel criterion or by percolation),
not as a true localization quantum phase transition since two
is established to be the lower critical dimensions for the An-
derson localization phenomenon [39], both for noninteracting
electrons in a disordered system [7,40] and in the presence
of disorder and interaction [41]. We consider the metallic
phase (for n > nc) to be an effective metal which at T = 0
will be insulating in an infinite system. The metal-to-insulator
crossover in our theory arises from the strong modification in
the effective screened Coulomb disorder which becomes very
strong as the carrier density is lowered, leading to the kF l = 1
condition defining the MIT crossover point. The fact that our
calculated nc is in qualitative agreement with experimental
observations is persuasive evidence in support of 2D MIT
being a crossover phenomenon, but our theory can shed no
light on the theoretical question of whether quantum criticality
is playing a role in this problem or not. In particular, we
emphasize that we have no way of ruling out the 2D MIT as a
true quantum phase transition since this issue is simply beyond
the scope of our work, which treats the problem manifestly as a
crossover phenomenon described by the Ioffe-Regel criterion.

IV. CONCLUSION

Assuming 2D MIT to be a crossover phenomenon from
a weakly localized effective metallic phase to a strongly
localized insulating state, we have developed a theory for
the critical density for the transition from the higher-density
effective metallic phase to the lower-density strongly localized
insulating phase. The calculated critical density based on the

235423-17



S. DAS SARMA AND E. H. HWANG PHYSICAL REVIEW B 89, 235423 (2014)

well-known Ioffe-Regel criterion for strong localization is
in qualitative agreement with experimental observations on
2D MIT with respect to its dependence on disorder, applied
parallel magnetic field, valley degeneracy, and materials
parameters.

Our main findings are the following: (1) The critical density
nc for the 2D MIT crossover varies with the maximum sample
mobility μm (measured at some high carrier density n � nc)
according to the approximate scaling law, nc ∼ μ

−γ
m , with the

exponent γ ≈ 0.7 (for screened Coulomb disorder) and 1 (for
purely zero-range δ-function disorder) as derived from the
Ioffe-Regel criterion and γ = 0.5 (for all disorder) as derived
from the semiclassical percolation theory. (2) The Ioffe-Regel
criterion predicts an enhancement of nc with decreasing spin
degeneracy, as, for example, in the presence of an applied
parallel magnetic field inducing spin polarization in the system
provided that the critical density nc is fairly low at zero spin
polarization (so that the condition qTF � 2kF or qTF � 2kF

is satisfied). By contrast, the percolation theory predicts no
dependence of nc on the spin degeneracy. (3) The Ioffe-Regel
criterion predicts an enhancement of nc with decreasing
valley degeneracy in the system as, for example, could be
induced by applying a suitable external strain. In fact, the
Ioffe-Regel criterion predicts that the dependence of the critical
density nc(gs,gv) on the spin and valley degeneracy to be
approximately equivalent, i.e., increasing (decreasing) gs or gv

decreases (increases) nc if all other parameters are fixed. This
mutually equivalent spin- and valley-degeneracy dependence
of nc arises from the 2D screening being dependent on gs and
gv equivalently since the density of states is proportional to
gsgv . One direct prediction of the Ioffe-Regel theory is thus that
the most metallic (insulating) situation will manifest itself for
the largest (smallest) values of the product gsgv , and therefore,
nc will be the smallest (largest) for the largest (smallest) values
of gsgv in the system. The percolation theory predicts the 2D
MIT phenomena to be completely independent of gs and/or
gv , and thus does not in any way predict any dependence of
nc on spin or valley polarization. We mention that all three
of these theoretical findings based on the Ioffe-Regel criterion
are in good qualitative and semiquantitative agreement with
experimental results on 2D MIT whereas the predictions of the
percolation theory—in particular, the nc ∝ √

μm dependence
and the lack of dependence of nc on gs and gv—are in
disagreement with the empirical evidence.

In addition to the above qualitative physical results fol-
lowing directly from our theory, we also find the actual
quantitative values of nc calculated on the basis of the
Ioffe-Regel criterion to be consistent with the experimental
results. In particular, we find that the Ioffe-Regel criterion
gives the following approximate critical density values for
typical high-mobility 2D systems studied in the existing 2D
MIT literature [2–6]: nc ≈ 1011 cm−2 (for Si MOSFETs);
1010 cm−2 (for p-GaAs); 109 cm−2 (for n-GaAs). By contrast,
we find that the lower-quality Si MOSFETs studied extensively
during the 1970s and early 1980s [1] should typically have
nc ≈ 1012 cm−2 according to the Ioffe-Regel criterion. This
high value of nc, with a corresponding Fermi temperature
∼73 K, is not only consistent with the experimental nc values
found in older MOSFETs [1] with lower values of maximum
mobility (μm < 5000 cm2/Vs), but also provides an obvious

explanation for why the 2D MIT phenomenon could only be
observed after very high mobility (μm � 20 000 cm2/Vs) Si
MOS samples become available in the 1990s [22]. A high
value of nc with a concomitant high value of Fermi temperature
makes it impossible [28] for the 2D effective metallic phase
(for n > nc) to manifest any temperature dependence in its
resistivity arising purely from an electronic mechanism.

Several open questions remain for future investigations.
Although our main conclusion is that the 2D MIT (at least
at very low temperatures) is a strong localization induced
crossover phenomenon as constrained by an Ioffe-Regel-type
quantum interference condition, the role of percolation in the
inhomogeneous potential fluctuation landscape in affecting
the crossover behavior remains unclear. For Si-MOSFETs,
where the random charged impurities are located at the
Si-SiO2 interface close to the 2D electron system, it is hard
to see how and why percolation could be relevant, but in
modulation-doped GaAs structures, where the dopants are
far away from the electrons, percolation could conceivably
be relevant. One possibility we have speculated about is that
the transition itself crosses over from being percolationlike
at higher temperatures to being Ioffe-Regel-like at lower
temperatures as quantum tunneling and quantum interference
become effective. But these are all mere speculations, and
we do not have a theory combining percolation and strong
localization crossover, which remains an important open
issue in the long-range fluctuating potential landscape of
Coulomb disorder. In the current work, we have only compared
localization and percolation crossovers as distinct physical
processes, concluding that the experimental observations are
more consistent with the Ioffe-Regel localization crossover.

Another open question (and an important shortcoming
of our theory) is that the theory developed in this paper
approaches the transition (i.e., the crossover) from the higher-
density effective metallic side (with decreasing density to
approach the transition) using Boltzmann transport theory
to treat the screened disorder-induced carrier scattering. An
equivalent theory from the lower-density insulating side
(with increasing density to approach the transition) is highly
desirable, but is out of the scope of our work, and in fact, there
is no good idea in the literature about how to approach the
transition from the insulating side where the whole concept of
a quantum mean free path becomes inapplicable (and therefore
the Ioffe-Regel criterion is useless). Such a theory from the
insulating side, if available, could be a compelling consistency
check for the calculated critical density if the same crossover
point is reached theoretically from either direction.

Another issue with our theory, in spite of its good
qualitative agreement with essentially all aspects of 2D MIT
phenomenology, is that our calculated critical resistivity (i.e.,
the 2D resistance at the crossover critical density) is only in
approximate quantitative agreement with experiments. This
may not be a serious problem since the crossover nature
of the transition makes it problematic to define a unique
zero-temperature critical resistivity (particularly since the 2D
resistivity is strongly temperature dependent around the critical
density), and it is likely that a proper extrapolation of the
experimental data to zero temperature would be in reasonable
agreement with our theory since the disagreement is mainly
in Si-MOSFETs and is by less than a factor of two. More
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experimental work is necessary to settle the question for the
precise value of the T = 0 critical resistivity in 2D MIT in
various systems.

Our theory provides a good qualitative explanation for the
dependence of the critical density on disorder, applied parallel
magnetic field, spin and valley degeneracy, and materials
parameters indicating that the Ioffe-Regel criterion, in all
likelihood, captures the essential features of the transition
between the high-density effective (weakly localized) metallic
phase and the low-density strongly localized insulating phase
in 2D semiconductors. The issue of whether 2D MIT is or is
not a true T = 0 quantum phase transition as well as whether
or how electron-electron interaction [41] beyond screening
affects the transition, however, still remain open as theoretical
questions for future work. What we have established in this
work through extensive calculations is that the application
of the empirical Ioffe-Regel criterion, which is often used

in the literature for a semiquantitative description of the
Anderson localization transition in three-dimensional systems,
to the phenomenon of the apparent two-dimensional metal-
insulator transition provides a critical density which agrees
well with existing experiments in describing the characteristic
dependence of the critical density on disorder, mobility,
temperature, and magnetic field, indicating that the observed
2D MIT phenomenon is likely to be a crossover between a
weakly localized 2D metal and a strongly localized Anderson
insulator.

ACKNOWLEDGMENTS

This work is supported by LPS-CMTC and Basic Science
Research Program through the National Research Foundation
of Korea Grant funded by the Ministry of Science, ICT &
Future Planning (2009-0083540).

[1] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

[2] E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod.
Phys. 73, 251 (2001).

[3] S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1
(2004).

[4] S. Das Sarma and E. H. Hwang, Solid State Commun. 135, 579
(2005).

[5] B. Spivak, S. V. Kravchenko, S. A. Kivelson, and X. P. A. Gao,
Rev. Mod. Phys. 82, 1743 (2010).

[6] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[7] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[8] N. F. Mott, J. Phys. C 8, L239 (1975).
[9] C. J. Adkins, J. Phys. C 11, 851 (1978).

[10] D. J. Bishop, D. C. Tsui, and R. C. Dynes, Phys. Rev. Lett. 44,
1153 (1980); F. W. Van Keuls, H. Mathur, H. W. Jiang, and
A. J. Dahm, Phys. Rev. B 56, 13263 (1997); T. M. Lu, W. Pan,
D. C. Tsui, P. C. Liu, Z. Zhang, and Y. H. Xie, Phys. Rev. Lett.
107, 126403 (2011); G. M. Minkov, A. V. Germanenko, O. E.
Rut, A. A. Sherstobitov, and B. N. Zvonkov, Phys. Rev. B 75,
235316 (2007); G. M. Minkov, O. E. Rut, A. V. Germanenko,
A. A. Sherstobitov, B. N. Zvonkov, E. A. Uskova, and A. A.
Birukov, ibid. 65, 235322 (2002).

[11] Patrick A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985); G. Bergman, Phys. Rep. 107, 1 (1984); C. W. J.
Beenakker and H. Van Houten, in Solid State Physics, edited by
H. Ehrenreich and D. Turnbull, Vol. 44 (Academic, San Diego,
1991).

[12] T. M. Klapwijk and S. Das Sarma, Solid State Commun. 110,
581 (1999).

[13] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 235437 (2008).
[14] A. Lewalle, M. Pepper, C. J. B. Ford, E. H. Hwang, S. Das

Sarma, D. J. Paul, and G. Redmond, Phys. Rev. B 66, 075324
(2002).

[15] M. P. Lilly, J. L. Reno, J. A. Simmons, I. B. Spielman, J. P.
Eisenstein, L. N. Pfeiffer, K. W. West, E. H. Hwang, and S. Das
Sarma, Phys. Rev. Lett. 90, 056806 (2003).

[16] V. Senz, T. Ihn, T. Heinzel, K. Ensslin, G. Dehlinger, D.
Grutzmacher, U. Gennser, E. H. Hwang, and S. Das Sarma,
Physica E 13, 723 (2002).

[17] L. A. Tracy, E. H. Hwang, K. Eng, G. A. Ten Eyck, E. P.
Nordberg, K. Childs, M. S. Carroll, M. P. Lilly, and S. Das
Sarma, Phys. Rev. B 79, 235307 (2009).

[18] M. J. Manfra, E. H. Hwang, S. Das Sarma, L. N. Pfeiffer, K. W.
West, and A. M. Sergent, Phys. Rev. Lett. 99, 236402 (2007).

[19] H. Noh, M. P. Lilly, D. C. Tsui, J. A. Simmons, E. H. Hwang,
S. Das Sarma, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 68,
165308 (2003).

[20] Q. Li, E. H. Hwang, E. Rossi, and S. Das Sarma, Phys. Rev.
Lett. 107, 156601 (2011).

[21] K. Eng, R. N. McFarland, and B. E. Kane, Appl. Phys. Lett.
87, 052106 (2005); ,Physica E 34, 701 (2006); ,Phys. Rev. Lett.
99, 016801 (2007); B. Hu, T. M. Kott, R. McFarland, and B. E.
Kane, Appl. Phys. Lett. 100, 252107 (2012).

[22] S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M.
Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994);
S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux,
V. M. Pudalov, and M. D’Iorio, ibid. 51, 7038 (1995); S. V.
Kravchenko, W. Mason, J. E. Furneaux, and V. M. Pudalov,
Phys. Rev. Lett. 75, 910 (1995); S. V. Kravchenko, M. P.
Sarachik, and D. Simonian, ibid. 83, 2091 (1999).

[23] M. R. Graham, C. J. Adkins, H. Behar, and R. Rosenbaum,
J. Phys.: Condens. Matter 10, 809 (1989).

[24] S. Das Sarma and F. Stern, Phys. Rev. B 32, 8442 (1985).
[25] S. Das Sarma and E. H. Hwang, Phys. Rev. B 88, 035439 (2013).
[26] M. P. Sarachik, Europhys. Lett. 57, 546 (2002).
[27] S. Das Sarma and E. H. Hwang, Phys. Rev. B 68, 195315 (2003).
[28] S. Das Sarma and E. H. Hwang, Phys. Rev. B 69, 195305 (2004);

,Phys. Rev. Lett. 83, 164 (1999).
[29] S. Das Sarma, M. P. Lilly, E. H. Hwang, L. N. Pfeiffer, K. W.

West, and J. L. Reno, Phys. Rev. Lett. 94, 136401 (2005).
[30] D. Simonian, S. V. Kravchenko, M. P. Sarachik, and V. M.

Pudalov, Phys. Rev. Lett. 79, 2304 (1997); T. Okamoto, K.
Hosoya, S. Kawaji, and A. Yagi, ibid. 82, 3875 (1999); K. M.
Mertes, D. Simonian, M. P. Sarachik, S. V. Kravchenko, and
T. M. Klapwijk, Phys. Rev. B 60, R5093 (1999); J. Yoon, C. C.

235423-19

http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1016/j.ssc.2005.04.035
http://dx.doi.org/10.1016/j.ssc.2005.04.035
http://dx.doi.org/10.1016/j.ssc.2005.04.035
http://dx.doi.org/10.1016/j.ssc.2005.04.035
http://dx.doi.org/10.1103/RevModPhys.82.1743
http://dx.doi.org/10.1103/RevModPhys.82.1743
http://dx.doi.org/10.1103/RevModPhys.82.1743
http://dx.doi.org/10.1103/RevModPhys.82.1743
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1088/0022-3719/8/11/004
http://dx.doi.org/10.1088/0022-3719/8/11/004
http://dx.doi.org/10.1088/0022-3719/8/11/004
http://dx.doi.org/10.1088/0022-3719/8/11/004
http://dx.doi.org/10.1088/0022-3719/11/5/008
http://dx.doi.org/10.1088/0022-3719/11/5/008
http://dx.doi.org/10.1088/0022-3719/11/5/008
http://dx.doi.org/10.1088/0022-3719/11/5/008
http://dx.doi.org/10.1103/PhysRevLett.44.1153
http://dx.doi.org/10.1103/PhysRevLett.44.1153
http://dx.doi.org/10.1103/PhysRevLett.44.1153
http://dx.doi.org/10.1103/PhysRevLett.44.1153
http://dx.doi.org/10.1103/PhysRevB.56.13263
http://dx.doi.org/10.1103/PhysRevB.56.13263
http://dx.doi.org/10.1103/PhysRevB.56.13263
http://dx.doi.org/10.1103/PhysRevB.56.13263
http://dx.doi.org/10.1103/PhysRevLett.107.126403
http://dx.doi.org/10.1103/PhysRevLett.107.126403
http://dx.doi.org/10.1103/PhysRevLett.107.126403
http://dx.doi.org/10.1103/PhysRevLett.107.126403
http://dx.doi.org/10.1103/PhysRevB.75.235316
http://dx.doi.org/10.1103/PhysRevB.75.235316
http://dx.doi.org/10.1103/PhysRevB.75.235316
http://dx.doi.org/10.1103/PhysRevB.75.235316
http://dx.doi.org/10.1103/PhysRevB.65.235322
http://dx.doi.org/10.1103/PhysRevB.65.235322
http://dx.doi.org/10.1103/PhysRevB.65.235322
http://dx.doi.org/10.1103/PhysRevB.65.235322
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/0370-1573(84)90103-0
http://dx.doi.org/10.1016/S0038-1098(99)00024-1
http://dx.doi.org/10.1016/S0038-1098(99)00024-1
http://dx.doi.org/10.1016/S0038-1098(99)00024-1
http://dx.doi.org/10.1016/S0038-1098(99)00024-1
http://dx.doi.org/10.1103/PhysRevB.77.235437
http://dx.doi.org/10.1103/PhysRevB.77.235437
http://dx.doi.org/10.1103/PhysRevB.77.235437
http://dx.doi.org/10.1103/PhysRevB.77.235437
http://dx.doi.org/10.1103/PhysRevB.66.075324
http://dx.doi.org/10.1103/PhysRevB.66.075324
http://dx.doi.org/10.1103/PhysRevB.66.075324
http://dx.doi.org/10.1103/PhysRevB.66.075324
http://dx.doi.org/10.1103/PhysRevLett.90.056806
http://dx.doi.org/10.1103/PhysRevLett.90.056806
http://dx.doi.org/10.1103/PhysRevLett.90.056806
http://dx.doi.org/10.1103/PhysRevLett.90.056806
http://dx.doi.org/10.1016/S1386-9477(02)00268-0
http://dx.doi.org/10.1016/S1386-9477(02)00268-0
http://dx.doi.org/10.1016/S1386-9477(02)00268-0
http://dx.doi.org/10.1016/S1386-9477(02)00268-0
http://dx.doi.org/10.1103/PhysRevB.79.235307
http://dx.doi.org/10.1103/PhysRevB.79.235307
http://dx.doi.org/10.1103/PhysRevB.79.235307
http://dx.doi.org/10.1103/PhysRevB.79.235307
http://dx.doi.org/10.1103/PhysRevLett.99.236402
http://dx.doi.org/10.1103/PhysRevLett.99.236402
http://dx.doi.org/10.1103/PhysRevLett.99.236402
http://dx.doi.org/10.1103/PhysRevLett.99.236402
http://dx.doi.org/10.1103/PhysRevB.68.165308
http://dx.doi.org/10.1103/PhysRevB.68.165308
http://dx.doi.org/10.1103/PhysRevB.68.165308
http://dx.doi.org/10.1103/PhysRevB.68.165308
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1103/PhysRevLett.107.156601
http://dx.doi.org/10.1063/1.2001734
http://dx.doi.org/10.1063/1.2001734
http://dx.doi.org/10.1063/1.2001734
http://dx.doi.org/10.1063/1.2001734
http://dx.doi.org/10.1016/j.physe.2006.03.069
http://dx.doi.org/10.1016/j.physe.2006.03.069
http://dx.doi.org/10.1016/j.physe.2006.03.069
http://dx.doi.org/10.1016/j.physe.2006.03.069
http://dx.doi.org/10.1103/PhysRevLett.99.016801
http://dx.doi.org/10.1103/PhysRevLett.99.016801
http://dx.doi.org/10.1103/PhysRevLett.99.016801
http://dx.doi.org/10.1103/PhysRevLett.99.016801
http://dx.doi.org/10.1063/1.4729584
http://dx.doi.org/10.1063/1.4729584
http://dx.doi.org/10.1063/1.4729584
http://dx.doi.org/10.1063/1.4729584
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://dx.doi.org/10.1103/PhysRevB.51.7038
http://dx.doi.org/10.1103/PhysRevB.51.7038
http://dx.doi.org/10.1103/PhysRevB.51.7038
http://dx.doi.org/10.1103/PhysRevB.51.7038
http://dx.doi.org/10.1103/PhysRevLett.75.910
http://dx.doi.org/10.1103/PhysRevLett.75.910
http://dx.doi.org/10.1103/PhysRevLett.75.910
http://dx.doi.org/10.1103/PhysRevLett.75.910
http://dx.doi.org/10.1103/PhysRevLett.83.2091
http://dx.doi.org/10.1103/PhysRevLett.83.2091
http://dx.doi.org/10.1103/PhysRevLett.83.2091
http://dx.doi.org/10.1103/PhysRevLett.83.2091
http://dx.doi.org/10.1088/0953-8984/10/4/010
http://dx.doi.org/10.1088/0953-8984/10/4/010
http://dx.doi.org/10.1088/0953-8984/10/4/010
http://dx.doi.org/10.1088/0953-8984/10/4/010
http://dx.doi.org/10.1103/PhysRevB.32.8442
http://dx.doi.org/10.1103/PhysRevB.32.8442
http://dx.doi.org/10.1103/PhysRevB.32.8442
http://dx.doi.org/10.1103/PhysRevB.32.8442
http://dx.doi.org/10.1103/PhysRevB.88.035439
http://dx.doi.org/10.1103/PhysRevB.88.035439
http://dx.doi.org/10.1103/PhysRevB.88.035439
http://dx.doi.org/10.1103/PhysRevB.88.035439
http://dx.doi.org/10.1209/epl/i2002-00496-6
http://dx.doi.org/10.1209/epl/i2002-00496-6
http://dx.doi.org/10.1209/epl/i2002-00496-6
http://dx.doi.org/10.1209/epl/i2002-00496-6
http://dx.doi.org/10.1103/PhysRevB.68.195315
http://dx.doi.org/10.1103/PhysRevB.68.195315
http://dx.doi.org/10.1103/PhysRevB.68.195315
http://dx.doi.org/10.1103/PhysRevB.68.195315
http://dx.doi.org/10.1103/PhysRevB.69.195305
http://dx.doi.org/10.1103/PhysRevB.69.195305
http://dx.doi.org/10.1103/PhysRevB.69.195305
http://dx.doi.org/10.1103/PhysRevB.69.195305
http://dx.doi.org/10.1103/PhysRevLett.83.164
http://dx.doi.org/10.1103/PhysRevLett.83.164
http://dx.doi.org/10.1103/PhysRevLett.83.164
http://dx.doi.org/10.1103/PhysRevLett.83.164
http://dx.doi.org/10.1103/PhysRevLett.94.136401
http://dx.doi.org/10.1103/PhysRevLett.94.136401
http://dx.doi.org/10.1103/PhysRevLett.94.136401
http://dx.doi.org/10.1103/PhysRevLett.94.136401
http://dx.doi.org/10.1103/PhysRevLett.79.2304
http://dx.doi.org/10.1103/PhysRevLett.79.2304
http://dx.doi.org/10.1103/PhysRevLett.79.2304
http://dx.doi.org/10.1103/PhysRevLett.79.2304
http://dx.doi.org/10.1103/PhysRevLett.82.3875
http://dx.doi.org/10.1103/PhysRevLett.82.3875
http://dx.doi.org/10.1103/PhysRevLett.82.3875
http://dx.doi.org/10.1103/PhysRevLett.82.3875
http://dx.doi.org/10.1103/PhysRevB.60.R5093
http://dx.doi.org/10.1103/PhysRevB.60.R5093
http://dx.doi.org/10.1103/PhysRevB.60.R5093
http://dx.doi.org/10.1103/PhysRevB.60.R5093


S. DAS SARMA AND E. H. HWANG PHYSICAL REVIEW B 89, 235423 (2014)

Li, D. Shahar, D. C. Tsui, and M. Shayegan, Phys. Rev. Lett. 84,
4421 (2000); S. J. Papadakis, E. P. De Poortere, M. Shayegan,
and R. Winkler, ibid. 84, 5592 (2000); J. Zhu, H. L. Stormer,
L. N. Pfeiffer, K. W. Baldwin, and K. W. West, ibid. 90, 056805
(2003).

[31] S. Das Sarma and E. H. Hwang, Phys. Rev. B 72, 035311 (2005);
,72, 205303 (2005); V. T. Dolgopolov and A. Gold, JETP Lett.
71, 27 (2000); I. F. Herbut, Phys. Rev. B 63, 113102 (2001).

[32] O. Gunawan, T. Gokmen, K. Vakili, M. Padmanabhan, E. P. De
Poortere, and M. Shayegan, Nat. Phys. 3, 388 (2007).

[33] S. Das Sarma, E. H. Hwang, and Qiuzi Li, Phys. Rev. B 88,
155310 (2013).

[34] M. M. Fogler, Phys. Rev. B 69, 121409 (2004); J. A. Nixon
and J. H. Davies, ibid. 41, 7929 (1990); Y. Meir, ibid. 61,
16470 (2000); J. Shi and X. C. Xie, Phys. Rev. Lett. 88, 086401
(2002); J. Shi, S. He, and X. C. Xie, Phys. Rev. B 60, R13950
(1999).

[35] F. G. Pikus and A. L. Efros, Zh. Éksp. Teor. Fiz. 96, 985
(1989) [Sov. Phys. JETP 69, 558 (1989)]; A. L. Efros,
Solid State Commun. 67, 1019 (1988).

[36] A. L. Efros, F. G. Pikus, and V. G. Burnett, Phys. Rev. B 47,
2233 (1993).

[37] F. Stern and S. Das Sarma, Phys. Rev. B 30, 840 (1984);
W. E. Howard and F. F. Fang, ibid. 13, 2519 (1976).

[38] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 84, 5596 (2000).
[39] D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994);

D. Belitz, T. R. Kirkpatrick, and T. Vojta, ibid. 77, 579 (2005).
[40] F. J. Wegner, Z. Phys. B 35, 207 (1979).
[41] A. M. Finkel’stein, Zh. Eksp. Teor. Fiz. 86, 367 (1984)

[Sov. Phys. JETP 59, 212 (1984)]; A. M. Finkel’stein, Pis’ma
Zh. Eksp. Teor. Fiz. 40, 63 (1984) [JETP Lett. 40, 796 (1984)];
A. Punnoose and A. M. Finkel’stein, Science 310, 289 (2005);
G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64,
214204 (2001).

235423-20

http://dx.doi.org/10.1103/PhysRevLett.84.4421
http://dx.doi.org/10.1103/PhysRevLett.84.4421
http://dx.doi.org/10.1103/PhysRevLett.84.4421
http://dx.doi.org/10.1103/PhysRevLett.84.4421
http://dx.doi.org/10.1103/PhysRevLett.84.5592
http://dx.doi.org/10.1103/PhysRevLett.84.5592
http://dx.doi.org/10.1103/PhysRevLett.84.5592
http://dx.doi.org/10.1103/PhysRevLett.84.5592
http://dx.doi.org/10.1103/PhysRevLett.90.056805
http://dx.doi.org/10.1103/PhysRevLett.90.056805
http://dx.doi.org/10.1103/PhysRevLett.90.056805
http://dx.doi.org/10.1103/PhysRevLett.90.056805
http://dx.doi.org/10.1103/PhysRevB.72.035311
http://dx.doi.org/10.1103/PhysRevB.72.035311
http://dx.doi.org/10.1103/PhysRevB.72.035311
http://dx.doi.org/10.1103/PhysRevB.72.035311
http://dx.doi.org/10.1103/PhysRevB.72.205303
http://dx.doi.org/10.1103/PhysRevB.72.205303
http://dx.doi.org/10.1103/PhysRevB.72.205303
http://dx.doi.org/10.1134/1.568270
http://dx.doi.org/10.1134/1.568270
http://dx.doi.org/10.1134/1.568270
http://dx.doi.org/10.1134/1.568270
http://dx.doi.org/10.1103/PhysRevB.63.113102
http://dx.doi.org/10.1103/PhysRevB.63.113102
http://dx.doi.org/10.1103/PhysRevB.63.113102
http://dx.doi.org/10.1103/PhysRevB.63.113102
http://dx.doi.org/10.1038/nphys596
http://dx.doi.org/10.1038/nphys596
http://dx.doi.org/10.1038/nphys596
http://dx.doi.org/10.1038/nphys596
http://dx.doi.org/10.1103/PhysRevB.88.155310
http://dx.doi.org/10.1103/PhysRevB.88.155310
http://dx.doi.org/10.1103/PhysRevB.88.155310
http://dx.doi.org/10.1103/PhysRevB.88.155310
http://dx.doi.org/10.1103/PhysRevB.69.121409
http://dx.doi.org/10.1103/PhysRevB.69.121409
http://dx.doi.org/10.1103/PhysRevB.69.121409
http://dx.doi.org/10.1103/PhysRevB.69.121409
http://dx.doi.org/10.1103/PhysRevB.41.7929
http://dx.doi.org/10.1103/PhysRevB.41.7929
http://dx.doi.org/10.1103/PhysRevB.41.7929
http://dx.doi.org/10.1103/PhysRevB.41.7929
http://dx.doi.org/10.1103/PhysRevB.61.16470
http://dx.doi.org/10.1103/PhysRevB.61.16470
http://dx.doi.org/10.1103/PhysRevB.61.16470
http://dx.doi.org/10.1103/PhysRevB.61.16470
http://dx.doi.org/10.1103/PhysRevLett.88.086401
http://dx.doi.org/10.1103/PhysRevLett.88.086401
http://dx.doi.org/10.1103/PhysRevLett.88.086401
http://dx.doi.org/10.1103/PhysRevLett.88.086401
http://dx.doi.org/10.1103/PhysRevB.60.R13950
http://dx.doi.org/10.1103/PhysRevB.60.R13950
http://dx.doi.org/10.1103/PhysRevB.60.R13950
http://dx.doi.org/10.1103/PhysRevB.60.R13950
http://dx.doi.org/10.1016/0038-1098(88)91177-5
http://dx.doi.org/10.1016/0038-1098(88)91177-5
http://dx.doi.org/10.1016/0038-1098(88)91177-5
http://dx.doi.org/10.1016/0038-1098(88)91177-5
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.30.840
http://dx.doi.org/10.1103/PhysRevB.30.840
http://dx.doi.org/10.1103/PhysRevB.30.840
http://dx.doi.org/10.1103/PhysRevB.30.840
http://dx.doi.org/10.1103/PhysRevB.13.2519
http://dx.doi.org/10.1103/PhysRevB.13.2519
http://dx.doi.org/10.1103/PhysRevB.13.2519
http://dx.doi.org/10.1103/PhysRevB.13.2519
http://dx.doi.org/10.1103/PhysRevLett.84.5596
http://dx.doi.org/10.1103/PhysRevLett.84.5596
http://dx.doi.org/10.1103/PhysRevLett.84.5596
http://dx.doi.org/10.1103/PhysRevLett.84.5596
http://dx.doi.org/10.1103/RevModPhys.66.261
http://dx.doi.org/10.1103/RevModPhys.66.261
http://dx.doi.org/10.1103/RevModPhys.66.261
http://dx.doi.org/10.1103/RevModPhys.66.261
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1007/BF01319839
http://dx.doi.org/10.1007/BF01319839
http://dx.doi.org/10.1007/BF01319839
http://dx.doi.org/10.1007/BF01319839
http://dx.doi.org/10.1126/science.1115660
http://dx.doi.org/10.1126/science.1115660
http://dx.doi.org/10.1126/science.1115660
http://dx.doi.org/10.1126/science.1115660
http://dx.doi.org/10.1103/PhysRevB.64.214204
http://dx.doi.org/10.1103/PhysRevB.64.214204
http://dx.doi.org/10.1103/PhysRevB.64.214204
http://dx.doi.org/10.1103/PhysRevB.64.214204



