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We study a two-terminal electronic conductance through an AB2 ring which is an example of the family
of itinerant geometrically frustrated electronic systems. These systems are characterized by the existence of
localized states with nodes in the probability density. We show that such states lead to distinct features in the
conductance. For zero magnetic flux, the localized states act as a filter of the zero frequency conductance peak, if
the contact sites have hopping probability to sites which are not nodes of the localized states. For finite flux, and
in a chosen orthonormal basis, the localized states have extensions ranging from two unit cells to the complete
ring, except for very particular values of magnetic flux. The conductance exhibits a zero frequency peak with a
dip which is a distinct fingerprint of the variable extension of these localized states.
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I. INTRODUCTION

The conductance through molecular devices, nanowires,
and other nanosystems has been extensively studied both
theoretically and experimentally. Nano transport phenomena
such as Coulomb blockade [1], conductance quantization [2],
resonant tunneling [3], quantum interference, and Aharonov-
Bohm oscillations in the conductance [4,5] are now well
understood.

The conductance fingerprints of localized states, however,
induced by the topology of a nanocluster [6–26] have never
been addressed as far as we know. Do these localized states
inhibit the electronic transport through the cluster or is the
conductance indifferent to their existence? The answer is rather
complex and unexpected. In this paper we show that, in the case
of the AB2 ring, also known as diamond chain, and which is
an example of the family of itinerant geometrically frustrated
electronic systems [6–28], these localized states act as zero
frequency conductance absorbers for zero magnetic flux, but
surprisingly generate a dipped zero frequency conductance
peak when magnetic flux is applied. Similar features should
be observed in the conductance through other elements of
the family of the itinerant geometrically frustrated electronic
systems of the Lieb lattice kind, that is, systems which display
localized states with nodes in their probability density [29].

This paper is organized in the following way: First we
recall recent exact results about the eigenstates of the AB2

tight-binding ring, and in particular we discuss the form of the
localized states when magnetic flux is present. Next we discuss
the conductance through an AB2 ring for several different
scenarios including different placements of the conducting
leads and different values of the threading flux.

II. LOCALIZED STATES IN THE AB2 CHAIN

In order to address the phenomena of coherent transport
through an AB2 ring, we consider a two-terminal setup of
one-dimensional (1D) tight-binding leads coupled to the AB2

ring, as depicted in Fig. 1. Our results are easily generalized
to the case of 3D leads as long as only one site of each lead
contacts the cluster. We shall often focus on the case where
the number of cells of the AB2 ring, Nc, is equal to 4, and

assume that each plaquette is threaded by an identical magnetic
flux, φ.

The Hamiltonian of the full system is given by

H = Hring + Hleads + HLR, (1)

where Hleads is the Hamiltonian of the isolated leads, assumed
to be semi-infinite,

Hleads = −t

∞∑
j=1

∑
σ=↑,↓

|aj,σ 〉〈aj+1,σ |

+ |a−j−1,σ 〉〈a−j,σ |+H.c., (2)

where |aj,σ 〉 is a lead Wannier state at site j and with spin σ .
j ∈ (−∞,−1] correspond to left lead states while j ∈ [1,∞)
correspond to right lead states. Hring is the Hamiltonian for an
AB2 chain with Nc unit cells,

Hring = −t

Nc∑
j=1

∑
σ=↑,↓

eiφo/2Nc (|Aj,σ 〉〈Bj,σ | + |Bj,σ 〉〈Aj+1,σ |)

+ e−iφi/2Nc (|Cj,σ 〉〈Aj,σ | + |Aj+1,σ 〉〈Cj,σ |) + H.c.,

where |Aj,σ 〉, |Bj,σ 〉, |Cj,σ 〉 correspond to states on A, B, and
C sites, respectively, of the j th cell/plaquette, with spin σ .
Here we have chosen a gauge such that the Peierls phases are
equally distributed in the inner ring and in the outer ring. In
Fig. 1, an AB2 ring is shown with a magnetic flux φ threading
each plaquette and a magnetic flux φi threading the inner
ring. The magnetic flux enclosed by the outer ring is φo =
φi + 4Ncφ/4 and we introduce an auxiliary flux φ′ such that
φo = φ′ + 2Ncφ/4, φi = φ′ − 2Ncφ/4. The inner sites in the
AB2 ring of Fig. 1 are denoted as C sites and the outer sites as
B sites. Spinal sites are denoted as A sites. The hybridization
between the AB2 ring and the leads is given by

HLR = −
∑

σ=↑,↓
tL|a−1,σ 〉〈XL,σ | + tR|a1,σ 〉〈XR,σ | + H.c.,

(3)

where tL,R are the hopping amplitudes coupling the leads and
the star and X stands for an A, B, or C site depending on where
the left (L) and right (R) contacts are. Since we do not consider
spin-spin interactions, each spin channel is independent and
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FIG. 1. (Color online) The AB2 ring is connected at sites L and R
to semi-infinite tight-binding leads via hopping amplitudes tL and tR ,
respectively. Except where otherwise stated, the hopping amplitude
of the leads is taken to be the same to that of the star, t . Here is shown
the situation for Nc = 4, a particular case we will study in detail.
The magnetic fluxes threading the plaquettes and the inner ring are
respectively φ and φi .

we disregard spin in the rest of the paper, without any loss of
generality.

Without interactions, the tight-binding AB2 chain has a flat
band even in the presence of magnetic flux (Fig. 2 displays
the dispersion relation of the nearest neighbor AB2 chain for
several values of the plaquette threading flux). The eigenvalues
for an arbitrary value of flux are given by

εflat = 0, ε± = ±2t
√

1 + cos(φ/2) cos(φ′/Nc + k), (4)

where k is the momentum.
Localized states associated with the flat band can be written

in the most compact form as standing waves in one (in the
absence of magnetic flux) or two consecutive plaquettes (in the
presence of magnetic flux) [29]. In the particular case of zero
flux, localized states are simply the antibonding combination
of the B and C states, BC−

j = (|Bj 〉 − |Cj 〉)/
√

2, and itinerant
states in the AB2 ring are linear combinations of A and
bonding BC+ states, BC+

j = (|Bj 〉 + |Cj 〉)/
√

2. Rewriting
the Hamiltonian in the basis of antibonding BC−, bonding
BC+, and A states, one obtains a tight-binding ring of sites A
and bonding BC sites (with hopping constant

√
2t) and a ring

of decoupled antibonding BC states [29], as shown in Fig. 3(a).

π 2 0 π 2 π
2 2

2

0

2

2 2

k

∋ t
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π

2π3

0

FIG. 2. (Color online) Dispersion relation of the AB2 ring for
φ′ = 0 and several values of φ. Note that a gap opens between the
localized band and the itinerant bands when there is a finite flux. Also,
for φ = π all bands are flat, and therefore, all states are localized.

The number of localized states is equal to the number of
rhombi and in the presence of flux, if written in the most com-
pact form (each localized state taking place in two consecutive
plaquettes) they form a nonorthogonal set of states. Assuming
φ′ = 0 to simplify, the nonorthogonal localized states are of
the form (|Bj 〉 − ei

φ

2 |Cj 〉) + (ei
φ

2 |Bj+1〉 − |Cj+1〉) where the
sites have been numbered clockwise in the AB2 ring; that is,
j indexes the plaquettes in the AB2 ring. Orthogonalization of
these sets of states (see Appendix) implies that the extension
of the localized states ranges from two consecutive plaquettes
to the complete ring [40], except for φ = 0 and for φ = π

(in this case, the orthogonal localized states occupy only two
consecutive plaquettes). This will imply a clear difference in
the conductance when compared with the zero flux case. Note
that a gap opens between the localized band and the itinerant
bands when flux is present.

III. CONDUCTANCE THROUGH THE AB2 RING

In this section we discuss the conductance through the AB2

ring. We will begin by addressing the case without magnetic
flux. Since no two-particle interactions are considered in this
paper, the transmission probability |t(ω)|2 for an incident
particle with momentum k and energy ω = −2 cos(k) can be
calculated using quantum scattering theory [30], and is given
by the following expression [31],

|t(ω)|2 = 4t2
Lt2

R sin2 k|〈R|[ωÎs − Hs

+ eik
(
t2
L|L〉〈L| + t2

R|R〉〈R|)]−1|L〉|2, (5)

where the inverse is to be found within the subspace of the
cluster sites (in our case, the AB2 ring) positions, Îs is the
identity operator in that subspace, and Hs the Hamiltonian of
that subspace (in our case, Hs = Hring). Note that it suffices to
calculate the matrix representation (in the Wannier basis) of the
inverse of the expression in square brackets and to extract the
relevant matrix element [the (L,R) entry of the matrix]. This
equation includes the effect of the coupling of the ring to the
leads as modifications of the on-site energies of sites L and R.
If the conductance is normalized by the conductance of an ideal
one-dimensional system, G0 = e2/π�, then the conductance is
given by the transmission probability at the chemical potential
[32]. In what follows, we will always deal with this normalized
conductance, i.e., transmission probability.

In Fig. 4, we show several profiles of the conductance
through the AB2 ring with four unit cells as function of the
energy of the incident electron (or chemical potential of the
leads) or as a function of a potential Vgate applied to the AB2

ring. These profiles correspond to certain positions of the leads
which are shown at the top of Figs. 4(a), 4(b), and 4(c). In these
figures we also include diagrams of equivalent systems, that
is, systems that exhibit exactly the same conductance profiles
as the AB2 ring.

In the case of Fig. 4(a), the leads are connected to sites A;
therefore the antibonding BC “sites” can be ignored since they
are completely decoupled from the leads. The remaining “ring”
of sites A and bonding BC sites forms a tight-binding ring.

Therefore, if the contacts are sites A, the conductance
is exactly the same as that of the equivalent tight-binding
ring (with hopping constant

√
2t) [33]. For small coupling
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FIG. 3. (Color online) (a) In the absence of magnetic flux, rewriting the Hamiltonian in the basis of antibonding BC−, bonding BC+, and
A states, one obtains a tight-binding ring of sites A and bonding BC sites (with hopping constant

√
2t) and a ring of decoupled antibonding

BC states. (b) The hopping term from the left lead to a B site of the AB2 ring, in the basis of antibonding BC, bonding BC, and A states,
becomes tL/

√
2. (c) For an incident particle with energy ω = −2t cos(k), an extra transverse hopping ta to a dangling site effectively modifies

the on-site energy of site j to εj = t2
a /ω.

between the leads and the AB2 ring, the conductance has peaks
when the chemical potential coincides with any of the system
eigenvalues of the AB2 ring, due to resonant tunneling. These
peaks have the Breit-Wigner shape. In Fig. 4(a), three peaks
A, B, and C are observed in G(Vgate) in a potential interval
corresponding to the bandwidth of the leads (the chemical
potential of the leads is equal to zero). The same peaks should
also be observed in the G(ω) plot of Fig. 4(a) where Vgate = 0
and the chemical potential (or equivalently the energy ω of the
incident particle) is varied from the bottom of the leads band
to the top. However peaks A and C are absent because they
correspond to the bottom and top energies of the leads bands
and the particle velocity is zero for these energies. We note
that changing the number of cells Nc can increase the number
of peaks one sees, but has no effect on the central peak.

If the left contact is a site B or C (let us assume it is a site
B) and the right contact is a site A, as in the case of Fig. 4(b),
the conductance profile is the same as that of a tight-binding

ring but with the ω = 0 peak absent. This absence reflects the
fact that the hopping term from the left lead to a B site of
the AB2 ring, in the basis of antibonding BC−, bonding BC+,
and A states, becomes a hopping between the left lead and
a bonding state bonding BC+ and a hopping to a localized
state BC−, both with a smaller hopping constant tL/

√
2. Since

this localized state is decoupled from all other states of the
ring, it only leads to a reflected wave back into the left lead.
For ω = 0, this reflected wave interferes destructively with the
incident wave and one can say the localized state BC− acts as a
conductance absorber for frequencies close to ω = 0 (in close
analogy with λ/4 sound absorbers). The absence of the ω = 0
peak can also be explained in the following way. The hopping
to the BC− “site” is a “dangling bond.” If one considers a linear
chain with a dangling site as shown in Fig. 3(c) (with hopping
constant ta to the dangling site), then the equation for the
wave function amplitude ψa at the dangling site of a particle
with energy ω = −2t cos(k) is ωψa = −taψj . Substituting ψa

2 1 0 1 2
ω or Vgate

G

a

2 1 0 1 2
ω or Vgate

b

2 1 0 1 2
ω or Vgate

c

A B C A B C A B C

ω
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ω
Vgate

ω
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FIG. 4. (Color online) Normalized conductance through the AB2 ring as a function of the energy of the incident electron (or chemical
potential of the leads) and as a function of Vgate for several positions of the leads. The positions of the leads are shown on the top figures. We
show beside the AB2 circuits figures of equivalent systems which have exactly the same conductance profiles. Parameters: tL = tR = 0.3t .
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in the equation for the wave function amplitude at site j ,
ψj , one has ωψj = −tψj−1 − tψj+1 + (t2

a /ω)ψj ; therefore
the dangling site effectively modifies the on-site energy of site
j to εj (ω) = (t2

a /ω). When ω = 0, the on-site energy becomes
infinite and one has zero conductance at ω = 0. The peaks
A and C in Fig. 4(b) have a reduced amplitude compared to
those in Fig. 4(a) due to the difference in paths in the upper
and lower arms of the ring.

If both the left and right contacts are sites B (or C) as shown
in Fig. 4(c), an analogous reasoning applies and the system is
equivalent to a linear ring connected to leads but with two
dangling sites, one at the end of each lead. Again, localized
states act as a filter of the ω = 0 peak.

In the case of Fig. 4(a), the remaining “ring” of sites A
and bonding BC sites can be mapped onto a linear chain since
the leads are coupled to opposite A sites. In this case, the
leads define an axis of symmetry of the diamond ring and the
antibonding combinations of an A (or bonding BC) site with
the one obtained by reflection in this axis of symmetry are
decoupled from the contact sites, or equivalently, the tight-
binding hoppings from the contact sites generate a bonding
combination of the nearest neighbor bonding BC “sites”
and this bonding combination couples only to the bonding
combination of A sites. So, for the purpose of calculating the
conductance across the AB2 ring, it is enough to consider the
linear sequence of these bonding states (see the top diagram
in Fig. 5 where the cluster of larger, red sites replaces the AB2

ring). In Fig. 5(b), one has the conductance for the particular
case of 2t1/

√
2 = 2t0 = tL = tR = 1 in units of t ; that is, we

1 0 1
ω

0.0

0.2
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0.6

0.8
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2 0 2
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c

FIG. 5. (Color online) The conductance through the AB2 ring (or
a linear ring) in the absence of flux and with opposite contacts at
sites A is the same as for a linear chain (shown in the top figure,
where the larger, red sites replace the AB2 ring). In (b), one has the
conductance for the particular case of 2t1/

√
2 = 2t0 = tL = tR = 1

in units of t and one sees that the central cluster (corresponding
to the AB2 ring) becomes transparent to an incoming particle for
energies around zero; i.e., the bond with hopping constant t1 acts as a
monoatomic antireflection coating between the regions with hoppings
t and t0. Deviations of the hopping constants from the previous values
introduce oscillations in the conductance for energies around zero, as
shown in (a) and (c) (where t1/

√
2 = t0 = 0.4 and t1/

√
2 = t0 = 0.7,

respectively, and Nsites = 66).

have three regions with different hopping constants t , t0, and
t , separated by single hoppings of constant t1. The central
cluster (and therefore also the AB2 ring) becomes transparent
to the incoming particle for energies around zero. Deviations
of the hopping constants from the previous values introduce
oscillations in the conductance for energies around zero, as
shown in Figs. 5(a) and 5(c), where the dome of minima of the
conductance oscillations is below 1.

This result can be explained with an analogy with a
quarter wavelength antireflection coating [34]; that is, the bond
with hopping constant t1 acts as a monoatomic antireflection
coating between the regions with hopping constant t and
t0. An antireflection coating generates an additional reflected
wave which is out of phase with the first reflected wave and
therefore partially cancels the reflection. If the refraction index
of the coating is the geometric mean of the refraction indices
of the materials to the left and right of the coating, nc =√

nleftnright, the transmittance becomes 1 when the wavelength
of the incident wave, λ, is such that the thickness of the coating
is an odd multiple of the λ/4. This can be translated into our
problem in the following way. The relation nc = √

nleftnright

can be written as nc/nright = √
nleft/nright which is equivalent

to a relation between velocities vright/vc = √
vright/vleft. The

ratio between velocities in our system for energies close
to zero is approximately the ratio of hopping constants
and the previous relation becomes t1/t0 = √

t/t0. So perfect
transmission occurs when 2t1/

√
2 = 2t0 = t [as in the case of

Fig. 5(b)] and when λ/4 is equal to one interatomic distance
(which we have assumed to be 1), that is, for k = π/2 or
equivalently, energy ω = −2t cos(k) equal to zero.

When magnetic flux is present, a gap opens between the flat
band and the itinerant bands of the AB2 ring. The conductance
peaks corresponding to energies of itinerant states follow
the behavior of the conductance peaks of a linear ring and
we do not address them here (see [33]). The behavior of the
conductance for energies close to ω = 0 (which is determined
only by the localized states of the AB2 ring when flux is finite
and the coupling between the leads and the cluster is small) is
rather unusual. A zero frequency dipped conductance peak is
observed despite the fact that the energies of the itinerant states
of the ring are far from this zero frequency peak. This is shown
in Fig. 6(a) for the case of an AB2 ring with 16 unit cells and for
φ = π/2. This dipped peak only occurs if the contact sites are
sites B or C (otherwise the peak is absent) and shows distinct
behavior as a function of the positions of the contact sites
and as a function of the magnetic flux. As shown in the inset
of Fig. 6(a), the peak maximum decays quasiexponentially
as a function of the contact sites’ distance, except for the
first two distances, where the conductance peak maximum
remains the same. Such behavior is also visible in Fig. 7 where
the logarithm of the conductance for small frequencies of an
incident particle is plotted for several inequivalent positions of
the leads. The dependence with flux of the maximum of the
conductance peak shows rather peculiar behavior depending
on the position of the contacts. In Fig. 6(b), we show the
maximum of the ω = 0 conductance peak as a function of the
flux threading each plaquette, φ, for several choices of contacts
positions. When the contacts are the sites B1 and C1 [see the
labeling of the sites in the inset of Fig. 6(a)], the maximum
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FIG. 6. (Color online) (a) Conductance as a function of the frequency of the incident particle for an AB2 ring of 16 plaquettes, φ = π/2,
and several positions of the lead contacts. For this flux value, only localized states contribute significantly to the ω = 0 conductance peak.
(b) Maximum of the conductance as a function of the flux for 16 plaquettes. For lead contacts at B1-C2 and φ = π , the peak value of the
conductance is 0.25, since in this case the AB2 is mapped onto the cluster of Fig. 8(a) with equal values of the hopping constants. For leads at
B1-C1 it is zero for φ = π , since the left and right leads couple to orthogonal states which do not overlap. The oscillations at low flux reflect
dependence of the inner magnetic flux φi and disappear as the gap between the itinerant bands and the localized states grows with increasing
flux.

starts at one, oscillates for small φ and goes smoothly to zero
as φ approaches π . The oscillations near φ = 0 reflect the
contribution to the conductance of the itinerant states which
oscillates as a consequence of the Aharonov-Bohm effect due
to the varying flux threading the inner region of the AB2

ring (an uniform field was applied to the AB2 cluster). These
oscillations disappear as φ grows due to the larger gap between
the itinerant bands and the ω = 0 energy. Note that localized
states do not “feel” this inner flux, that is, their energy is
independent of this field and therefore do not contribute to an
Aharonov-Bohm effect. When the contacts are the sites B1 and
C2, contrasting behavior occurs and the maximum approaches
zero when φ is small and tends to 0.25 when φ goes to π . For
larger distance between contacts, the graphs of the maximum
of the ω = 0 conductance peak exhibit domelike profiles [see
right plot on Fig. 6(b)], with the peak maximum growing from
near zero when φ is small, reaching a maximum value, and
decreasing to zero when φ approaches π .

These results can explained recalling our previous dis-
cussion of the extension of localized states when the flux

− 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3
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B1−C6
B1−C7

B1−C8
B1−C9

FIG. 7. (Color online) Logarithm of the conductance for 16 cells
and φ = π/2 around ω = 0, for all the inequivalent lead positions
such that one of the leads is on a B site and the other on a C site.

is finite. Since this extension ranges from two unit cells to
the full ring, and ignoring the itinerant states of the ring
which are energetically far from the ω = 0 energy region,
the conductance is only finite if one has localized states that
extend from the left contact to the right contact in the AB2

ring. More precisely, we can divide the localized states in the
following way: states I that extend from the left contact to the
right contact, that is, that have finite wave function amplitudes
at the sites L and R of the AB2 ring; states II that have finite
wave function amplitudes at the site L but not at the site R of the
AB2 ring; states III that have finite wave function amplitudes
at the site R but not at the site L of the AB2 ring; states IV that
have zero wave function amplitudes at both the sites L and R of
the AB2 ring. Note that the choice of basis for the subspace of
localized states influences the number of states in each of these
groups, but the explanation for the conductance results remains
the same. The larger the extension of the localized states, the
smaller the wave function amplitude at the contact sites, and
consequently the smaller the effective hopping between the
extremities of the leads and the localized state. So, our system
is equivalent to that displayed in the top diagram of Fig. 8(a).
The hopping constants between the leads (smaller, red spheres)
and the localized states (larger, black spheres) are in general
different but all these hopping can be simplified and the system
can be reduced to that shown in the bottom diagram of Fig. 8(a).
In fact, several dangling sites (states II) contribute to the on-site
energy of the site at the end of the left lead and t1 is the hopping
constant that generates an on-site energy equal to the sum of
the on-site energies generated by the dangling sites at the left
lead. The same goes for t4. The effect of the localized states
of the type I can also be reproduced with a single site but
with different hopping constants to the left lead and to the
right lead. In Fig. 8(b), we show the conductance through
this simplified system. If t2 = t3 = t , without the dangling
sites, we would have perfect transmittance for any energy of
the incident electron. The effect of the dangling sites is the
creation of the dip at ω = 0 as one can see in Fig. 8(b) (red
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A. A. LOPES, B. A. Z. ANTÓNIO, AND R. G. DIAS PHYSICAL REVIEW B 89, 235418 (2014)

(a)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ω

G

t1 t4 .1

t2 t3 .1

t1 t4 .1

t2 t3 1

(b)

FIG. 8. (Color online) (a) The coupling of the leads to the localized states of the AB2 ring in the presence of flux is described by the
top diagram where one has dangling sites connected to the left (right) lead representing the localized states which have finite wave function
amplitude at site L (R), but zero amplitude at site R (L). The system on top is equivalent to the bottom system consisting of only one L, R and
LR localized states. (b) Whenever all hopping constants in the bottom system are equal, the maximum of the conductance is 0.25 regardless of
their value. Due to the dangling sites, the conductance always goes to zero at zero frequency.

solid curve). If t2 and t3 are rather smaller than t and no
dangling site is present (t1 = t4 = 0), a peak appears at ω = 0
of width proportional to t2 (assuming t2 = t3). The effect of the
dangling sites in this case is again the introduction of the dip at
the center of this peak. If the width of the dip becomes larger
than that of the peak, the dipped peak maximum becomes
small.

One can now explain the behavior displayed in Fig. 6(b).
One should recall that the nonorthogonal localized states
are of the form (|Bj 〉 − ei

φ

2 |Cj 〉) + (ei
φ

2 |Bj+1〉 − |Cj+1〉). The
overlap between consecutive localized states is equal to
cos(φ/2)/2, so it is zero whenever φ = π , and 1/2 when φ = 0
[the latter value implies that shorter and orthogonal localized
states can be found of the form BC−

j = 1/
√

2(|Bj 〉 − |Cj 〉)].
We consider only the mean evolution of the conductance,
that is, the dependence of the conductance remaining if the
oscillations due to the Aharonov-Bohm effect are removed.
This behavior consists of the following: if the contacts are
the sites B1 and C1, the maximum of the conductance
is 1 for zero flux and with increasing magnetic flux, the
conductance decreases and becomes zero for flux equal to π .
Note that for φ = π , the localized states, |ψj 〉 = 1/2(|Bj 〉 −
i|Cj 〉) + (i|Bj+1〉 − |Cj+1〉), are orthogonal and both leads
couple to only two of these states, |ψ1〉 and |ψNc

〉. That is,
we have only two states of type I and all other localized
states are of type IV. The transport through the cluster
is given by the transfer terms to these localized states of
the form 〈ψ1|H |0〉 which collected (omitting the hopping
terms in the leads) give rise to (−tL/2)|0〉[〈ψ1| + i〈ψNc

|] +
(−tR/2)|N + 1〉[−i〈ψ1| − 〈ψNc

|] + H.c. But [〈ψ1| + i〈ψNc
|]

and [−i〈ψ1| − 〈ψNc
|] are orthogonal bras; therefore the left

and right leads are effectively decoupled and the transmit-
tance is zero. A similar reasoning can be followed when φ

approaches zero. In this case the leads couple to only one
localized state, BC−

1 = 1/
√

2(|B1〉 − |C1〉); that is, we have

one state of type I and no dangling sites, so the transmittance
approaches 1.

If the contacts are the sites B1 and C2, the maximum of
the conductance is zero for zero flux and, with increasing
magnetic flux, the conductance increases and becomes 1/4
for flux equal to π . The fact that the conductance maximum
approaches zero as φ goes to zero is common to all other
contact possibilities with the exception of the previous one
and reflects a similar argument; that is, the left lead couples to
only one localized state, BC−

1 = 1/
√

2(|B1〉 − |C1〉), and the
right lead couples only to one other localized state which is
orthogonal to the former, and consequently the transmittance
is zero. The fact the conductance goes to 1/4 when the
flux goes to π can also be justified as before, collecting the
transfer integrals, and one has (−tL/2)|0〉[〈ψ1| + i〈ψNc

|] +
(−tR/2)|N + 1〉[−〈ψ1| − i〈ψ2|] + H.c., and this corresponds
to the bottom diagram displayed in Fig. 8(a) with t1 = itL/2,
t4 = −itL/2, t2 = tL/2, and t3 = tR/2. Since we considered
tL = tR , all these hopping constants are equal in absolute value
and therefore the conductance is equal to 1/4 in agreement
with what is shown in Fig. 8(b). Note that the phase terms are
irrelevant at the dangling sites.

If one of the contacts is the site B1 and the other is a Cj

site with j 
= Nc,1,2, the maximum of the conductance goes to
zero as the flux goes to zero and with increasing magnetic flux,
the conductance increases, reaches a maximum (this maximum
becomes smaller as the distance between contacts increases)
and goes again to zero when the flux approaches π , reflecting
the fact that the orthogonal localized states are all two unit
cells long.

IV. CONCLUSIONS

We have shown that localized states in itinerant geomet-
rically frustrated electronic systems generate rather striking
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behavior in the two-terminal electronic conductance. In the
absence of magnetic flux, the localized states act as a filter
of the zero frequency conductance peak (we suggested an
analogy with λ/4 sound absorbers), if there is a finite
hopping probability between the leads contact sites and the
localized states. In contrast, when magnetic flux is present,
some localized states contribute to the appearance of a zero
frequency conductance peak while other localized states act as
a conductance absorber, and as a consequence, the conductance
exhibits a zero frequency peak with a dip.

We have shown that such different roles of the localized
states are due to the fact that the presence of magnetic flux
implies that any orthogonal basis of the subspace of localized
states is composed of localized states with variable extensions
(ranging from two unit cells to the complete ring, in the case of
the AB2 ring studied in this paper). Such peculiar dipped peak
fixed at the localized states energy, even when magnetic flux
is varied, is a distinct fingerprint of the existence of localized
states in itinerant geometrically frustrated electronic systems.
Furthermore, depending on the distance between contact sites,
different profiles for the maximum of the dipped conductance
peak as a function of the magnetic flux have been obtained,
and this implies that the two-terminal conductance can be used
as a probe of the localized states’ spatial dependence.

While the reported conductance behavior due to the
presence of localized states was studied in the noninteracting
limit, we would like to emphasize that these localized states
persist if interactions are taken into account [29] and therefore
we expect similar conductance behavior to occur.
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APPENDIX: ORTHONORMALIZATION OF LOCALIZED
STATES IN THE AB2 CHAIN

Written in the most compact form, the localized states when
magnetic flux is finite are of the form (|Bj 〉 − ei

φ

2 |Cj 〉) +
(ei

φ

2 |Bj+1〉 − |Cj+1〉) and form a nonorthogonal set of states.
Below, we describe the orthogonalization of these sets of states
and show that the extension of the orthogonalized localized
states ranges from two consecutive plaquettes to the complete
ring [see Fig. 9(e)].

Since the localized states have nodes at the A sites, we can
write these localized states indicating only the one-particle
state amplitudes at the pairs of B and C sites of the AB2 ring;
that is, we can write the localized state as a list with 2Nc entries
(b1,c1 . . . ,bn,cn), where bj and cj are, respectively, the value
of the wave function on sites Bj and Cj . Then our localized

(a) φ = 0 (b) Ferromagnetic (c)
Antiferromagnetic

(d) Two cells periodic flux

........

......

...... ..

...

.........

.........

......... ..

...

Gram

Schmidt

(e) Localized states orthonormalization

FIG. 9. (Color online) (a), (b), and (c): Localized states for AB2

chains without flux and threaded by ferromagnetic or antiferromag-
netic flux, respectively. For simplicity the states are not normalized
and we only draw the cells where the wave function is nonzero.
(d) Localized states for N = 2, where N is the periodicity in the
flux (in terms of number of cells). (e) Our nonorthonormal basis
of localized states, occupying two cells, can be transformed into
an orthonormal basis where they occupy 1,2, . . . ,Nc cells, via the
Gram-Schmidt procedure.

states are

|ψj 〉= 1√
4

(
0, . . . ,0, 1︸︷︷︸

bj

,−e−iφ/2︸ ︷︷ ︸
cj

, e−iφ/2︸ ︷︷ ︸
bj+1

, −1︸︷︷︸
cj+1

,0, . . . ,0

)
.

(A1)

Note that for φ = 0, we have for |ψj 〉 that bj = bj+1 and cj =
cj+1, and for φ = π , 〈ψj |ψj+1〉 = 0. There are many possible
ways of constructing an orthogonal basis for the subspace of
localized states. Our results for the conductance are obviously
independent of this choice. We simply use the Gram-Schmidt
orthogonalization, starting with the basis

|ψ1〉 = 1√
4

(1, − e−iφ/2,e−iφ/2,−1,0, . . . ,0),

|ψ2〉 = 1√
4

(0,1, − e−iφ/2,e−iφ/2,−1,0, . . . ,0),

...

|ψNc
〉 = 1√

4
(e−iφ/2,−1,0, . . . ,0,1, − e−iφ/2). (A2)
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For such a basis we have

〈ψi |ψj 〉 = δi,j + cos φ/2

2
(δi−1,j + δi+1,j ). (A3)

For simplicity, let us define the support of a wave function,
denoted by supp , to be those sites where the wave function is
nonzero. Then we have supp |ψj 〉 = {Bj ,Cj ,Bj+1,Cj+1}.

Let {|φj 〉}Nc

j=1 denote the orthonormalized basis after the
G-S procedure, defined by the recursive expression,

|φ′
j 〉 = |ψj 〉 −

j−1∑
i=1

〈φi |ψj 〉|φi〉,

|φj 〉 = |φ′
j 〉√

〈φ′
j |φ′

j 〉
. (A4)

We focus on φ 
= π (for in that case, the ba-
sis is already orthonormalized) and begin by making
|φ1〉 = |ψ1〉, which implies supp φ1 = {B1,C1,B2,C2}. Then
|φ′

2〉 = |ψ2〉 − 〈φ1|ψ2〉|φ1〉. In this case, since 〈φ1|ψ2〉 
=
0, supp φ2 = {B1,C1,B2,C2,B3,C3}. We then have |φ′

3〉 =
|ψ3〉 − 〈φ2|ψ3〉|φ2〉 − 〈φ1|ψ3〉|φ1〉. Note that |φ1〉 and
|ψ3〉 have disjoint support, hence 〈φ1|ψ3〉 = 0. Also,
〈φ2|ψ3〉 ∝ 〈ψ2|ψ3〉 
= 0. Since supp |ψ3〉 = {B3,C3,B4,C4}
and supp φ2 = {B1,C1, . . . ,B3,C3}, and since there is no de-
structive interference on sites B3 and C3 (it is a simple exercise
to show this), supp φ3 = {B1,C1, . . . ,B4,C4}. Continuing the
above procedure we finally arrive at

supp |φj 〉 = {B1,C1, . . . ,Bj+1,Cj+1}, (A5)

and therefore the extension of the orthogonalized localized
states (constructed this way) ranges between two consecutive
plaquettes and the full AB2 ring. This is illustrated schemati-
cally in Fig. 9(e).

However, as we have already mentioned, one has two
exceptions:

(i) for φ = 0, the states |αj 〉 =
(0, . . . ,0, 1︸︷︷︸

bj

, −1︸︷︷︸
cj

,0, . . . ,0) already constitute an

orthogonal set of localized states for φ = 0 as stated in
the previous paragraph;

(ii) for φ = π , 〈ψj |ψj+1〉 = 0 are orthogonal and in this case
the range of the localized states in their most compact form is
just two plaquettes.

Using the construction for localized states of [29], it is
easy to extend some of the results presented in this paper to
geometries other than the AB2 geometry. To make this more
concrete let us give some examples. Let us start by considering
an AB2 chain with an arbitrary number of cells. Assume, for
now, that the flux through each cell has the same value, a
situation we call ferromagnetic [shown in Fig. 9(b)]. Then,
localized states occupying only two cells can be found for
an arbitrary value of flux (albeit nonorthogonal, except when
φ = π ) [29], while for zero flux one can find localized states
occupying only one cell as shown in Fig. 9(a). Now consider
a situation where the magnetic flux through each plaquette
is symmetric to the one threading its neighboring cells, a
situation we call antiferromagnetic. Then a similar state to the
situation above can be found as is shown in Fig. 9(c). For this
particular case, using this construction, we can find localized
states that occupy two cells. However, these states form an
orthonormal basis only for φ = π and for the ferromagnetic
flux situation, as can be readily seen calculating the overlap
between neighboring states. Let |ψj 〉 be the state localized
in the j th and (j + 1)th cells. For the ferromagnetic situation
the overlap between neighboring states is 〈ψj+1|ψj 〉 = cos(φ/2)

2
while for the antiferromagnetic situation one has 〈ψj+1|ψj 〉 =
− 1

2 . Note that this flux threading each cell is not necessarily
an external flux, since it may be generated by the spin of an
atom/molecule, embedded into the chain as is the case of some
copper oxide systems, namely CuO4 chains [35,36].

If the flux through each plaquette is distinct, but repeats
every N cells [Fig. 9(d) shows the situation for N = 2], one can
also use the same construction to find localized states. In this
case however, one must consider 2N adjacent cells instead of 2,
as before, and we will find localized states that extend through
2N cells. As before, these are not necessarily orthonormal, but
can be made so by using Gram-Schmidt orthonormalization. In
the extreme case, where there is no periodicity, translational
invariance is obviously broken and our procedure will give
us an extended state instead. A particular case of the N = 2
situation, with φ1 = 2φ2, has been studied in [37].
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