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Confining Dirac electrons on a topological insulator surface using potentials and a magnetic field
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We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing
at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically
study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem
of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states
which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential
barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by
changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these
states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional
system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states
which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we
show that a long barrier and an impurity potential can produce bound states which are localized at the impurity,
and an “L”-shaped potential can have both bound states at the corner of the L and extended states which travel
along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.
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I. INTRODUCTION

Topological insulators (TIs) are materials which have
gapped states in the bulk and gapless states on the bound-
aries which are protected by time-reversal symmetry [1,2].
These materials have been studied both theoretically [3–7]
and experimentally [8–11] for a number of years. Three-
dimensional TIs such as Bi2Se3, Bi2Te3, and Sb2Te3 have
surfaces on which there is a single species of gapless states
which is governed by the Dirac equation [9–11]. A number
of interesting properties of the surface states of a TI have
been studied [1,2,11–23]. Junctions of different surfaces of
TIs, sometimes separated by a geometrical step or a magnetic
domain wall [24–32], junctions of surfaces of a TI with normal
metals or magnetic materials [33] or superconductors [34], and
polyhedral surfaces [35] have been investigated. The effects
of finite sizes [36–41] and different orientations [30,42–45],
and transport around different surfaces of a TI in the presence
of a magnetic field [46] have been studied. The effect of a
periodically varying one-dimensional potential and a magnetic
field on the spectrum of electrons on the surface of Bi2Te3 has
been studied in Ref. [47].

It is known analytically that an infinitely long δ-function
potential barrier running along the x axis applied to the
x-y surface of a TI gives rise to states which propagate
as plane waves along the barrier and decay exponentially
away from it [25]. However, there is no energy gap between
these localized states produced by the potential barrier and
the gapless surface states which exist far from the potential.
As a result, even a weak disorder can scatter the localized
states into the surface states; the localized states are therefore
not robust against disorder. On the other hand, a potential
localized in a two-dimensional region does not produce any
localized states at all for Dirac electrons. If we now apply a
Zeeman field perpendicular to the surface, the surface states
get gapped out. It is then possible that localized potentials
will also produce localized states, and that the states produced
by various potentials (either extended or localized) will lie in

the gap of the surface states; energy conservation will then
not allow impurity-induced scattering between the localized
and surface states. The localized states will therefore be stable
against weak disorder for energetic reasons.

The purpose of this paper is to show how Dirac electrons
can be confined within various geometrical regions using
potentials barriers of different shapes and a perpendicular
magnetic field. In particular, we will show that Dirac electrons
can be confined to one or zero dimensions, resembling systems
of quantum wires and dots. The one-dimensional system can
even have bends through which the electrons can propagate.
(This may be useful for various practical applications; by
combining a series of localized potentials, we can construct a
wave guide or a network of wave guides for Dirac electrons.)
We will use a lattice model to carry out our calculations since
such a model allows us to numerically study the effects of
potentials of any magnitude and shape.

We should point out here that although the energy gap
produced by a magnetic field protects the localized states
from scattering to the surface states, there is no protection
against scattering between two localized states lying at the
same energy, say, at momenta +k and −k. As we will see
below, this is because the spins of the states at ±k do not
point opposite to each other when a magnetic field is present,
and a nonmagnetic impurity can therefore cause a transition
between the two states. In this sense, our localized states do
not enjoy topological protection, in contrast to states bound
to a dislocation line in a three-dimensional TI which are
topologically protected [48].

The plan of our paper is as follows. In Sec. II, we review
the Dirac Hamiltonian in the continuum and its symmetries in
the presence of a potential and a magnetic field. In Sec. III we
discretize the Hamiltonian using a square lattice and we discuss
the fermion doubling problem that arises for Dirac electrons. In
Sec. IV, we numerically study the spectrum of electrons in the
presence of an infinitely long potential barrier which is taken
to have a Gaussian profile in the transverse direction. Since
this system has translation invariance along one direction, the
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momentum along that direction is a good quantum number
and can be used to reduce it to a one-dimensional problem.
In the absence of a magnetic field, the dispersion of the states
propagating along the barrier (henceforth called edge states) is
qualitatively found to be of the form E = v|kx |, where kx is the
momentum along the barrier, if |kx | is much smaller than the
inverse lattice spacing. The expectation value of the spin, 〈�σ 〉,
of the edge states lies in the y direction. The velocity v of the
edge states is smaller than that of the surface states and it can
be varied by changing the strength of the potential barrier. The
velocity v is found to be very small for a particular value of the
potential barrier, giving rise to an almost flat band near E = 0.
The wave function of the edge states decays exponentially
away from the potential barrier; the decay length is found to
be inversely proportional to |kx |. Hence the edge states will
cease to exist when the decay length becomes comparable
to the size of the system. When a Zeeman field is applied
in the z direction, the surface states become gapped but the
edge states do not. Further, the edge state now exists even for
kx = 0, and their dispersion can be controlled by the potential
barrier. The edge states then define a tunable one-dimensional
system which is separated from the surface states by a gap. In
Sec. V, we study the effects of a variety of potentials with two-
dimensional profiles. We first consider a potential localized in
some region. In the absence of a Zeeman field there are no
localized states, but when a Zeeman field is turned on, we
find that there exponentially localized states can appear if the
potential is strong enough. Next, we study a combination of
a long potential barrier, a localized potential, and a magnetic
field; we find that states can appear which are bound to the
localized potential. Finally, we study what happens if there is
an “L”-shaped potential consisting of two infinitely long arms
meeting at a corner and a magnetic field. We find that there
can be both states bound to the corner of the L as well as
scattering states which propagate along the arms. In Sec. VI,
we summarize our main results and describe some ways of
experimentally testing these results.

II. SURFACE HAMILTONIAN

The surface states of a three-dimensional TI are governed
by the massless Dirac equation. The form of the Dirac equation
depends on the orientation of the surface [30,42–45]; the
simplest form appears when the surface is given by the x-y
plane. We will also be interested in the effects of a scalar
potential V (x,y) and a uniform magnetic field �B which only
has a Zeeman coupling to the electrons. Including these terms,
the two-component wave function ψ(x,y)e−iEt of an energy
eigenstate satisfies the equation

[
−ivF (σx∂y − σy∂x) + V − gμ

2
�σ · �B

]
ψ = Eψ, (1)

where vF , μ, and g denote the Fermi velocity, the Bohr
magneton, and the gyromagnetic ratio, respectively. (We will
set � = 1 in this paper.)

Spin-momentum locking. If both V and �B are absent,
the solutions of Eq. (1) have momenta �k = (kx,ky) and

energies E± = ±vF

√
k2
x + k2

y . The wave functions are given

by ψ ei(kxx+kyy−Et), where

ψ+ = 1√
2

(
1

ky−ikx

E

)
for E+,

(2)

ψ− = 1√
2

(
1

− ky−ikx

E

)
for E−.

Upon calculating the expectation values 〈σx〉, 〈σy〉, and 〈σ z〉,
we find that the direction of spin is perpendicular to both ẑ

and k̂ = �k/|�k|, namely, 〈�σ 〉 = k̂ × ẑ and −k̂ × ẑ for E+ and
E−, respectively. This property of the surface states is called
spin-momentum locking.

If we now turn on a magnetic field perpendicular to
the surface, �B = Bzẑ, the states with momentum (kx,ky)

will have energies E± = ±
√

v2
F (k2

x + k2
y) + (gμBz/2)2; hence

there will be a gap of |gμBz| at �k = 0. Further, these states
have a nonzero value of 〈σ z〉.

Effect of a potential. Let us now turn on a potential V (x,y)
but no magnetic field �B. Then Eq. (1) takes the form

[vF (−iσ x∂y + iσ y∂x) + V (x,y)]ψ = Eψ. (3)

Equation (3) has the following symmetries.
(i) Time-reversal symmetry T : Eq. (3) remains invariant

if we complex conjugate all numbers, and transform and
ψ(x,y) → σyψ∗(x,y). Since σy∗ = −σy , we have T 2 = −I ;
this implies that every energy level must have a twofold
degeneracy.

(ii) Parity symmetry P: if the potential is invariant under
reflection in y, i.e., V (x, − y) = V (x,y), we have a symmetry
P under which ψ(x,y) → ψ∗(x, − y).

(iii) π -rotation symmetry R: if the potential is invariant
under a π rotation about the ẑ axis, i.e., V (−x, − y) =
V (x,y), we have a symmetry R under which ψ(x,y) →
σ zψ(−x, − y).

If a magnetic field is applied in the z direction, time-reversal
symmetry (TRS) is broken but P and R hold if V has
both parity and rotational symmetries. There is an additional
symmetry which survives if a magnetic field is applied in
the z direction. Equation (1) remains invariant if we complex
conjugate it, transform ψ → σxψ , and flip V → −V and
E → −E. This implies that if we find a localized state with an
energy E for a given potential, then if the potential is flipped,
there will be a localized state with energy −E for the same
value of the magnetic field. Hence both attractive and repulsive
potentials can produce localized states for a Dirac electron.

In Ref. [25], the effect of a δ-function potential barrier,
V (y) = V0δ(y), was studied analytically. It was shown that
this can give rise to states which propagate as plane waves in
the x direction and decay exponentially as one moves away
from y = 0; these states are degenerate in energy with the
surface states which exist far from the potential. The effect
of a magnetic field was not studied in that work. In this
paper, we want to consider the effect of more complicated and
realistic potentials as well as a magnetic field applied in the z

direction (which, we will show, stabilizes the localized states
by gapping out the surface states). Such potentials cannot be
studied analytically. We will therefore discretize the continuum
Hamiltonian using a lattice, and do numerical calculations with
the lattice model as discussed in the following sections.
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III. LATTICE MODEL AND FERMION DOUBLING

For a general form of the potential V (x,y), for example in
the presence of impurities, it is not possible to find the energy
spectrum and wave functions analytically and one has to resort
to a numerical solution. For this purpose, we assume the x-y
plane to be a lattice of discrete points {nx,ny} and Eq. (1)
becomes

−1

2

(
βnx+1,ny

− βnx−1,ny

) − i

2

(
βnx,ny+1 − βnx,ny−1

)
+ (

Vnx,ny
+ B

)
αnx,ny

= Eαnx,ny
, (4)

1

2

(
αnx+1,ny

− αnx−1,ny

) − i

2

(
αnx,ny+1 − αnx,ny−1

)
+ (

Vnx,ny
− B

)
βnx,ny

= Eβnx,ny
, (5)

where αnx,ny
and βnx,ny

respectively denote the wave functions
of spin-↑ and spin-↓ electrons at the site {nx,ny}; we have
assumed a magnetic field �B = Bzẑ with B = −gμBz/2. In
our numerical calculations, we will work in units in which the
velocity vF and lattice spacing a are both equal to unity; at
the end of Sec. V we will restore all the physical units for a
topological insulator like Bi2Se3.

Fermion doubling. Equations (4) and (5) suffer from the
problem of “fermion doubling.” To see this in the simplest
possible way, consider the case when both the potential and the
magnetic field are absent, i.e., V = 0 and B = 0. Translational
symmetry along both x and y directions allows the solution(

αnx,ny

βnx,ny

)
=

(
α

β

)
ei(kxnx+kyny ). (6)

This gives

[sin(ky) − i sin(kx)]β = Eα,
(7)

[sin(ky) + i sin(kx)]α = Eβ,

which leads to the dispersion relation

E = ±
√

sin2(kx) + sin2(ky). (8)

Clearly this vanishes at four points in the Brillouin zone lying
at (0,0), (0,π ), (π,0), and (π,π ), giving rise to four Dirac
cones, in contrast to the continuum theory which only has one
Dirac cone at (0,0).

For the sake of completeness, we will briefly discuss one
of the common ways of avoiding fermion doubling which
is to add a Wilson term to the Hamiltonian. This term is
proportional to σ z; it corresponds to adding (w/2)(αnx+1,ny

+
αnx−1,ny

+ αnx,ny+1 + αnx,ny−1 − 4αnx,ny
) to the left-hand side

of Eq. (4) and −(w/2)(βnx+1,ny
+ βnx−1,ny

+ βnx,ny+1 +
βnx,ny−1 − 4βnx,ny

) to the left-hand side of Eq. (5), where w is
a real parameter. The dispersion relation now becomes

E = ±[sin2(kx) + sin2(ky) + w2(2 − cos(kx) − cos(ky))2]1/2.

(9)

This reduces to Eq. (8) in the low momentum limit, but it does
not vanish near the boundaries of the Brillouin zone where
kx or ky approaches ±π . We thus recover a system with only
one Dirac cone lying at (0,0).

Since the Wilson term is proportional to σ z, it looks
like a magnetic field in the z direction; hence it breaks
some symmetries such as TRS and gives rise to various
spurious effects. We will therefore not use such a term in
our numerical calculations. Rather, we will demonstrate that
we can effectively avoid the fermion doubling problem by
using potentials which are sufficiently smooth so that their
Fourier components rapidly approach zero as we move away
from (0,0), and they have very small components near (0,π ),
(π,0), and (π,π ). Hence the localized states produced by such
potentials receive very little contributions from the doubled
fermions. Our numerical results presented below will show
that choosing smooth potentials enables us to avoid the fermion
doubling problem without adding a Wilson term.

Bound states and inverse participation ratio. In our numer-
ical studies, we will be specially interested in states which
are localized in certain regions of space. We will refer to all
such states as bound states for simplicity. Bound states can
be identified most easily by inverse participation ratios (IPR)
of all the energy eigenstates. Let ψi;nx,ny

be the value of the
wave function at the lattice site (nx,ny) with the ith energy
eigenvalue Ei . The normalization condition implies that∑

nx,ny

|ψi;nx,ny
|2 = 1. (10)

We now define

(IPR)i =
∑
nx,ny

|ψi;nx,ny
|4. (11)

The more localized the wave function of a particular state is,
the higher will its IPR be. This can be understood from the
following example. If a normalized wave function has the form

ψnx,ny
∼ e−(n2

x+n2
y )/ξ 2

ξ
, (12)

its IPR will be proportional to 1/ξ 2. Hence the state with the
smallest width ξ will have the largest IPR.

IV. NUMERICAL RESULTS IN ONE DIMENSION

We first study the energy spectrum in the presence of a
potential V which is only a function of ny on a lattice. The
spectrum can be found assuming the wave function to have
a momentum kx along the x direction; this reduces it to a
one-dimensional problem involving ψ = (αny

,βny
)T ei(kxx−Et).

The eigenvalue problem is given by

− i sin(kx)βny
− i

2

(
βny+1 − βny−1

) + Vny
αny

= Eαny
,

(13)

i sin(kx)αny
− i

2

(
αny+1 − αny−1

) + Vny
βny

= Eβny
.

We take the potential to be a barrier which is a Gaussian with
an integrated weight of

Vny
= Vb

σ
√

2π
e−(ny−n0)2/(2σ 2), (14)

with maximum value Vb/(σ
√

2π ) and width σ (see Fig. 1).
In our calculations, we will set the width σ = 2 and vary Vb.
We will take the Gaussian to be centered at ny = n0 = 151
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FIG. 1. (Color online) Surface plot of a potential barrier which is
a Gaussian in one direction with width 2 and Vb = π/2, as described
in Eq. (14).

for a system with 301 sites in the y direction. For σ = 2, the
Fourier transform Ṽky

= ∑
ny

e−ikny Vny
decreases rapidly as

we go away from ky = 0 and is very small at ky = π . Using
the Poisson resummation formula, we obtain

∣∣∣∣ Ṽky

Ṽky=0

∣∣∣∣ =
∑∞

n=−∞ e−2π2σ 2[n−ky/(2π)]2

∑∞
n=−∞ e−2π2σ 2n2 . (15)

For σ = 2, we find that Eq. (15) is very well approximated
by the Gaussian e−2k2

y for ky lying in the range [−π,π ]. At
ky = π , |Ṽπ/Ṽ0| � 3 × 10−9 which is extremely small. Hence
a Gaussian potential with width 2 is sufficiently smooth so that
states near ky = π make very little contribution to the bound
states. Indeed, as mentioned below, we find numerically that
the wave functions of the energy eigenstates are quite smooth,
with period 2 oscillations (corresponding to components of ky

close to π ) being rather small.
Bound states. We first consider the case when no magnetic

field is applied. As Vb is increased from zero, we find that
a set of bound states appears which are separated from the
plane wave surface states which have the gapless spectrum
E = ±

√
k2
x + k2

y . The new states are plane waves along the x

direction and decay exponentially as one moves away from the
center of the barrier. The energy E of these states is a function
of |kx |; this is a consequence of both the symmetries P and R
mentioned earlier. The ratio dE/d|kx | close to kx = 0 varies
with the potential strength Vb; it has a value of −vF = −1
close to Vb = 0 and increases as Vb is increased, becoming
almost zero around Vb = π/2. This is illustrated in the top
panels of Fig. 2, with Vb = π/4 and π/2 in Figs. 2(a) and 2(b),
respectively. (E/|kx | becomes positive when Vb is increased
beyond π/2.)

We thus see that an almost flat band can be produced by
tuning the barrier strength Vb. For such a band, states with
different momenta can be superposed suitably to give any
wave function that one chooses, and all such states will have
almost the same energy. Further, such states will move only
slowly in time since the group velocity dE/dkx is close to
zero.

The states bound to the potential barrier are degenerate with
the surface states. In the presence of scattering (induced by,
say, impurities which may be present close to the barrier),
an electron occupying a bound state can scatter into a surface
state. The bound states can be made immune to such scattering
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FIG. 2. (Color online) Energy dispersion of barrier states for (a)
Vb = π/4 and B = 0, (b) Vb = π/2 and B = 0, (c) Vb = π/4 and
B = π/20, and (d) Vb = π/2 and B = π/20, for kx lying in the range
[−π/5,π/5].

by introducing a magnetic field. Figures 2(c) and 2(d) show
the bound states when a magnetic field given by B = π/20
is introduced. This opens a gap of 2B in the spectrum of
the surface states, and the bound states which lie within this
gap will be robust against scattering from weak impurities by
energy conservation.

We note that Figs. 2 show some additional sets of states near
above the top of the band of surface states. The wave functions
of these states oscillate rapidly on the scale of a lattice spacing
(they have momentum components close to π ); hence they
are lattice artifacts and have no counterparts in the continuum
limit of the model.

The states produced by the potential barrier have probabili-
ties which decay exponentially as we go away from the center
of the Gaussian. The probabilities of spin-↑ and ↓ are given
by |αny

|2 and |βny
|2, respectively. For B = 0, these are shown

in Figs. 3(a), 3(c), and 3(e) for states with kx = −π/10, 0, and
π/10, respectively. We see that, for kx = 0, the probability is
spread over the entire range of ny . (The probability looks like
a band because it oscillates between 0 and 0.007 with period
2 in ny .) Hence this state is not localized; this will be studied
further below using the decay length.

Note that all the bound states shown in Figs. 3, namely,
3(a), 3(b), 3(d), 3(e), and 3(f), have probability profiles which
are quite smooth and do not show any oscillations with period
2 in ny . This may seem surprising since we have not added a
Wilson term to gap out the low-energy fermions which exist
near the momentum ky = π , and we would have expected
these fermions to lead to period 2 oscillations. However,
since the potential is quite smooth and has only a small
Fourier component near ky = π as discussed after Eq. (15), the
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FIG. 3. (Color online) Probabilities of barrier states for Vb =
π/2 and (a) B = 0, kx = −π/10, (b) B = π/20, kx = −π/10, (c)
B = 0, kx = 0, (d) B = π/20, kx = 0, (e) B = 0, kx = π/10, and (f)
B = π/20, kx = π/10. The probabilities of spin-↑ and ↓ are shown
in blue (dashed line) and red (solid line), respectively.

low-energy doubled fermions contribute very little to the
bound states formed by the potential. This demonstrates that
choosing a smooth potential profile can enable us to essentially
bypass the fermion doubling problem.

For B = π/20, Figs. 3(b), 3(d), and 3(f) show the probabil-
ities for kx = −π/10, 0, and π/10, respectively. In this case,
the kx = 0 state is also localized. In Figs. 3(b), 3(d), and 3(f),
the spin-↓ probabilities are larger than the spin-↑ probabilities
because of the presence of a magnetic field B > 0. In all the
plots in Figs. 3 we observe that the probabilities of spin-↑ and ↓
get reflected about the center of the Gaussian when we change
kx → −kx ; this is a consequence of both the symmetries P
and R.

Decay length. Since the probabilities in Figs. 3 decay rather
rapidly (within a few lattice spacings), it is difficult to estimate
the decay lengths accurately from these probabilities. The
decay length can be estimated more easily from the IPR as
follows. Since the states decay in only direction, the probability
|ψ2| will be proportional to e−|n|/ξ /ξ (where n denotes the
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FIG. 4. (Color online) Estimates of decay length ξ (shown by
asterisks) from inverse participation ratio of barrier states for Vb =
π/2 and B = 0 for (a) spin-↑ and (b) spin-↓. A least square fit of
the form ξ = c/|kx | (shown by green lines) gives c = 6.00 for spin-↑
and 5.98 for spin-↓.

deviation of ny from the center of the Gaussian), and the
IPR will be proportional to 1/ξ . We therefore simply define
the decay length ξ to be the inverse of the IPR and plot the
resultant values of ξ versus the momentum kx . We find that
ξ is proportional to 1/|kx |, the constant of proportionality
being almost the same for the probabilities of the spin-↑ and ↓
components. This is shown in Fig. 4 for Vb = π/2 and B = 0.
We observe that the decay length diverges as kx → 0, implying
that there is no bound state at kx = 0. Thus the spectrum of
bound states does not contain the point kx = 0. The situation
is quite different when a magnetic field is present; then the
decay length is finite for all values of kx and there is a bound
state even when kx = 0.

Local density of states. It is useful to look at the local
density of states produced by the potential barrier. For the case
Vb = π/2 and B = π/20, where there is an almost flat band
[Fig. 2(d)], the local density of states produced by the bound
states lying in the range −π/5 < kx < π/5 is defined to be

ρ(E,ny) =
∫ π/5

−π/5

dkx

2π
δ
(
E − Ekx

)|ψ(kx ; ny)|2. (16)

This is shown in Fig. 5 where we have smoothened the δ

functions in Eq. (16) by replacing them by Gaussians with
width 0.1. [We have approximated the integral in Eq. (16)
by taking a large number N of equally spaced points in kx
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FIG. 5. (Color online) Local density of states due to bound states
produced by a potential barrier with Vb = π/2 and a magnetic
field B = π/20. The δ functions in energy have been replaced by
Gaussians with width 0.1.
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FIG. 6. (Color online) Spin expectation values of barrier states
for (a) Vb = π/2, B = 0 and (b) Vb = π/2, B = π/20. The 〈σ x〉,
〈σ y〉, and 〈σ z〉 are shown by blue dot-dash, red solid, and black
dashed lines, respectively. For B = 0, 〈σx〉 = 〈σ z〉 = 0 coincide.

from −π/5 to π/5, adding up the contributions from all those
points, and dividing by 5N .] As expected from Fig. 2(d), the
local density of states is peaked at an energy of about −0.2
and at ny = 151, where the barrier is located.

Spin. It is interesting to look at the expectation values
of the different components of the spin as a function of kx .
This is shown in Fig. 6 for Vb = π/2 and (a) B = 0 and
(b) B = π/20. These figures show certain symmetries which
can be understood as follows. The symmetry P under which
ψ(x,y) → ψ∗(x, − y) implies that 〈σy〉 will change sign but
〈σx〉 and 〈σ z〉 will remain the same if we change kx → −kx .
The symmetry R under which ψ(x,y) → σ zψ(−x, − y)
implies that 〈σx〉 and 〈σy〉 will change sign but 〈σ z〉 will
remain the same under kx → −kx . Combining these results,
we see that 〈σx〉 must be equal to zero for each value of kx

for any value of B; this agrees with Fig. 6. Finally, if B = 0,
TRS leads to all three spin expectation values changing sign
under kx → −kx . Combined with the symmetries P or R, this
means that 〈σ z〉 must equal zero for each value of kx .

To summarize this section, applying a combination of a
translation invariant potential barrier and a magnetic field
to Dirac electrons can produce a one-dimensional system
which can be thought of as a one-band quantum wire. The
dispersion of this system is unusual in that the energy is an
even function of kx , unlike chiral systems where the energy
is an odd function such as E = vkx . The dispersion can be
controlled by tuning the barrier strength; in particular, the
dispersion can be made almost flat. The wave functions of
these states decay exponentially away from the barrier; the
decay length increases as |kx | decreases but remains finite at
kx = 0 if a magnetic field is present. The expectation values
of the spin components also vary with kx . We note that all
these results are in qualitative agreement with those obtained
analytically in Ref. [25] for the case of a δ-function potential
barrier.

V. NUMERICAL RESULTS IN TWO DIMENSIONS

In this section, we will present our results for three cases
where the potential V (nx,ny) does not have translational
symmetry along any direction. We will therefore use Eqs. (4)
and (5) to find the spectrum for a two-dimensional system.

Apart from the symmetries T (if B = 0), P [if V (nx, −
ny) = V (nx,ny)], and R [if V (−nx, − ny) = V (nx,ny)],
which the continuum Hamiltonian has, Eqs. (4) and (5) have
two other symmetries which are peculiar to the lattice model.
Equations (4) and (5) remain invariant under a transformation
Ax which takes ψnx,ny

→ (−1)nx σ zψ∗
nx,ny

, and a transforma-
tion Ay which takes ψnx,ny

→ (−1)ny ψ∗
nx,ny

. Combining Ax

and Ay , we find a symmetry under the transformation Axy

which takes ψnx,ny
→ (−1)nx+ny σ zψnx,ny

. This implies that
the eigenstates of the Hamiltonian can be chosen to satisfy
either Axyψ = ψ or Axyψ = −ψ . If Axyψ = ψ , the spin-↑
(spin-↓) component must be zero if nx + ny is odd (even),
and the situation is reversed if Axyψ = −ψ . Thus imposing
the constraint Axyψ = ψ (or = −ψ) would eliminate half the
components of ψnx,ny

. This is equivalent to the Kogut-Susskind
prescription for reducing the fermion doubling problem; the
reduction is by a factor of 2 in this system [49].

However, we will not impose constraints of the form
Axyψ = ±ψ when doing our numerical conditions since this
would lead to wave functions which have large oscillations
with period 2 in nx and ny . The various wave functions
that we have found numerically and have discussed below
are all quite smooth and have only small oscillations with
period 2. Once again, this is because we have chosen all the
potentials to have very small Fourier components near kx or ky

equal to π .
Impurity potential. We first consider the effect of a localized

potential which may arise from a nonmagnetic impurity; by
localized we mean that the potential rapidly goes to zero
outside some region. In particular, we will consider a Gaussian
form

Vimp;nx,ny
= Vi

2πσ 2
e−[(nx−n0)2+(ny−n0)2]/(2σ 2), (17)

where σ = 2 and Vi = 5π . In the absence of a magnetic field,
we find numerically that this potential does not produce a
bound state. However, when we turn on a magnetic field (we
take B = π/20), we find that a localized bound state can
appear as shown in Fig. 7. (The inverse participation ratio
is particularly large for states which are localized in both
directions and is therefore very useful for numerically finding
such states.)

We thus see that while a potential alone does not localize a
Dirac electron (since an electron can Klein tunnel through
a potential), a potential along with a magnetic field can
localize an electron. Qualitatively, this is because a magnetic
field produces a gap; if a localized potential can produce a
state lying in that gap, the wave function of that state will
decay exponentially as one goes far away from the potential
thereby producing a localized state. This suggests that one can
construct a quantum dot hosting one or more states by applying
a localized potential and a magnetic field to a system of Dirac
electrons. (Our results are in agreement with Ref. [50] where
it is shown that a massive Dirac particle can have in-gap bound
states in an isotropic Gaussian potential in two dimensions.)

Potential barrier and impurity. Next we consider when both
a barrier and an impurity are present (both are assumed to
be nonmagnetic). In the absence of a magnetic field, TRS
implies that the states propagating as plane waves along the
barrier will not backscatter from momentum +kx to −kx
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FIG. 7. (Color online) (a) Surface plot of an impurity potential
which is a Gaussian with width 2 in both directions and Vi = 5π ,
as described in Eq. (17). Surface plots of probabilities of (b) spin-↑
and (c) spin-↓ for the bound state, for B = π/20 and a system with
40 × 40 sites. The spin-↓ probability is much larger than the spin-
↑ probability; this is because the magnetic field points in the +ẑ

direction.

in the presence of an impurity. Essentially this is because
those two states have spins pointing in opposite directions [as
shown in Fig. 6(a)], and a nonmagnetic impurity cannot flip
the spin. For a weak impurity, the absence of backscattering
can be shown using first order perturbation theory. For an
elastic (i.e., energy conserving scattering), we only need to
consider scattering between two plane wave states with equal
and opposite momenta ±kx . Let us denote the corresponding
wave functions as ψkx ;nx,ny

and ψ−kx ;nx,ny
. Then the Born

approximation in one dimension [51] shows that the reflection
amplitude produced by an impurity Vimp;nx,ny

is given by

rkx
= − i

dE/dkx

〈
ψ−kx

∣∣Vimp

∣∣ψkx

〉
. (18)

In the absence of a magnetic field, ψ± are related by time-
reversal transformation:

ψ−kx ;nx,ny
= σyψ∗

kx ;nx,ny
. (19)

Hence the matrix element in Eq. (18) is equal to
〈
ψ−kx

∣∣Vimp

∣∣ψkx

〉 =
∑
nx,ny

Vimp;nx,ny
ψT

kx ;nx,ny
σ yψkx ;nx,ny

. (20)

This vanishes for any form of Vimp because the antisymmetry of
σy implies that ψT

kx ;nx,ny
σ yψkx ;nx,ny

= 0. Thus the barrier states
are immune to scattering by weak impurities if no magnetic
field is present. This also implies that an impurity cannot
produce a bound state. This is because bound states in one
dimension occur at the complex values of kx where rkx

has a
pole (when rkx

is analytically continued away from the real
axis); if rkx

= 0 for all kx , its analytical continuation will also
be zero and it will have no pole in the complex plane.

These arguments break down when a magnetic field is
present because ψ±kx

will no longer be related to each other
by Eq. (19), and 〈ψ−kx

|Vimp|ψkx
〉 will not be equal to zero

in general; hence the reflection amplitude in Eq. (18) will no
longer vanish. [To put it differently, the states at momenta
±kx no longer have spins pointing in opposite direction as
shown in Fig. 6(b); hence a non-magnetic impurity can cause a
transition between the two.] In addition, a bound state becomes
possible. This is illustrated in Fig. 8 where the spin-↑ and
↓ probabilities are shown for a bound state which appears
when there is a potential barrier and an impurity with the
forms given in Eqs. (14) and (17) with Vb = π/2 and Vi = π ,
respectively, and a magnetic field B = π/20 is also present.
The spin-↓ probability again turns out to be much larger than
the spin-↑ probability because the magnetic field points in the
+ẑ direction.

Assuming that a magnetic field is present and
〈ψ−kx

|Vimp|ψkx
〉 
= 0, Eq. (18) implies that the reflection

amplitude is larger if the group velocity dE/dkx is smaller.
This means that if the barrier strength is tuned to produce an
almost flat band, even a small impurity potential will lead to a
large backscattering.

We find numerically that for a given value of the magnetic
field, the strength of the impurity potential which is required to
produce a state bound to it is smaller when a potential barrier
is present compared to the case when a potential barrier is not
present. This is why we set Vi = π in Fig. 8 but Vi = 5π in
Fig. 7. A qualitative reason for this is that a potential barrier
already creates edge states which are localized in one direction
(perpendicular to the barrier); then an impurity potential only
has to localize such a state in the other direction (along the
barrier). Without a potential barrier, the impurity potential by
itself has to localize a bound state in two directions.

L-shaped potential. Finally, we give an example to show
that one can create quasi-one-dimensional systems with bends
which can host either localized or extended states of electrons.
Figure 9 shows an L-shaped potential barrier consisting of
two semi-infinite arms in perpendicular directions; each arm
has the form given in Eq. (14) with σ = 2 and Vb = 5π . In
general, we find two kinds of states, one localized at the corner
of the L and the other running along the arms. An example of
a bound state localized at the corner is shown in Fig. 10.
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FIG. 8. (Color online) (a) Surface plot of a potential which is
a combination of a barrier which is a Gaussian with width 2 and
Vb = π/2 in the transverse direction and an impurity potential which
is a Gaussian with width 2 in both directions and Vi = π . Surface
plots of probabilities of (b) spin-↑ and (c) spin-↓ for the bound state,
for B = π/20 and a system with 40 × 40 sites.
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FIG. 9. (Color online) Surface plot of an L-shaped potential. The
potential has a width of 2 and a maximum value of 5π/(2

√
2π ) along

the spine of the L.
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FIG. 10. (Color online) Surface plots of probabilities of (a) spin-
↑ and (b) spin-↓ for the bound state localized at the corner of an
L-shaped potential, for B = π/20 and a system with 40 × 40 sites.

Figure 11 shows an extended wave function which runs along
the arms of the potential. (The spin probabilities for this state
are in the form of standing waves because of reflections from
the edges of the system where we have used open boundary
conditions. The wave function would have been a plane wave
instead of a standing wave if the system was infinitely large.)
The ratio of the spin-↓ probability to the spin-↑ probability
is much larger for the state in Fig. 10 compared to the state
in Fig. 11. This is because the magnitudes of the momenta
kx and ky (one or both of which must be complex for a state
which is localized in one or both directions) turns out to be
much smaller than the magnetic field B for the localized state;
hence the wave function is dominated by the magnetic field
and therefore has a large component in the direction opposite
to it. For the extended state, however, the magnitudes of the
momenta turn out to much larger than B; hence the wave
function is much less affected by the presence of B. Indeed
we find numerically that extended states are present if there
is only an L-shaped potential but no magnetic field, while a
bound state can appear at the corner only if a magnetic field is
applied.

Physical numbers. We have presented all our numerical
results in dimensionless units for convenience. However, we
must convert these to some physical numbers in order to think
of testing these results experimentally. To do this, let us fix
the lattice spacing to be, say, a = 0.1 μm. We emphasize
that we are using the lattice only as a way of discretizing
the continuum Hamiltonian and studying it numerically; our
lattice is not the lattice of the underlying material which,
for Bi2Se3, has a spacing of about 1 nm for the quintuple
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FIG. 11. (Color online) Surface plots of probabilities of (a) spin-
↑ and (b) spin-↓ for a state which is extended along the arms of an
L-shaped potential, for B = π/20 and a system with 40 × 40 sites.

layers [7]. Our lattice spacing is an arbitrary number which
we choose so that the various physical parameters discussed
below have experimentally realizable values. In the absence of
a potential and a magnetic field, the dispersion of a massless
Dirac electron with momentum kx is given, on a lattice, by
E = (�vF /a) sin(kxa). For the topological insulator Bi2Se3,
the velocity on the x-y surface (perpendicular to the quintuple
layers) is given by [2] �vF = 3.33 eV Å. This means that the
values of energy on the y axis of Fig. 2 are in units of �vF /a =
3.33 × 10−3 eV, and the values of kx on the x axis of Figs. 2, 4,
and 6 are in units of 1/a = 10 μm−1. The decay length on the
y axis of Fig. 4 and the x and y coordinates in various figures
are all in units of 0.1 μm. Next, a potential barrier of the form
given in Eq. (14) with Vb = π/2 and σ = 2 corresponds to
a potential whose maximum value is (Vb/σ

√
2π )(�vF /a) =

1.04 × 10−3 eV and width is 0.2 μm. Finally, the Bohr mag-
neton μ = e�/(2mec) = 5.79 × 10−5 eV/T. Assuming the
gyromagnetic ratio to be g = 2 as for a free electron, a value
of B = −gμBz/2 = π/20 corresponds to a magnetic field
strength |Bz| = (π/20)(�vF /a)/(5.79 × 10−5) = 9.03 T. The
numbers given above should only be considered to be rough
guidelines; we expect our results for the bound states and their
various properties to hold for a range of parameters.

VI. SUMMARY AND DISCUSSION

In this paper, we have used a lattice model to study
how a combination of time-reversal symmetric (nonmagnetic)

potentials and a magnetic field can be used to confine Dirac
electrons in different geometries. Our main results are as
follows.

(i) For an infinitely long potential barrier and no magnetic
field, the dispersion of the edge states propagating along
the barrier is qualitatively of the form E = v|kx |, where kx

is the momentum along the barrier, if |kx | is much smaller than
the inverse lattice spacing; note that this is quite different from
a chiral dispersion which is given by E = vkx . The expectation
value of the spin, 〈�σ 〉, of the edge states lies in the y direction.
The velocity v of the edge states is smaller than that of the
surface states and it can be varied by changing the strength
of the potential barrier. The velocity v becomes very small
for a particular value of the potential barrier, giving rise to an
almost flat band near E = 0. The wave function of the edge
states decays exponentially away from the potential barrier;
the decay length is inversely proportional to |kx |. Hence the
edge states will cease to exist when the decay length becomes
comparable to the size of the system.

(ii) When a Zeeman field is applied in the z direction,
the surface states become gapped but the edge states do not.
Further, an edge state now exists even for kx = 0. The spin
expectation value develops a component along the z direction.
Since the dispersion of the edge states can be controlled by
the strength of the potential barrier, the edge states define a
tunable one-dimensional system which is separated from the
surface states by a gap.

(iii) Next we study what happens when there is a potential
localized in some region. In the absence of a Zeeman field such
a potential does not produce any localized states. But when a
Zeeman field is turned on, we find that exponentially localized
states can appear if the potential is strong enough. This gives
us a zero-dimensional system.

(iv) We then study a combination of a long potential barrier,
a localized potential, and a magnetic field; we find that states
can appear which are bound to the localized potential. We also
study what happens if there is an L-shaped potential consisting
of two semi-infinitely long arms meeting at a corner and a
magnetic field. We find that there can be both states bound to
the corner of the L as well as scattering states along the arms.
Thus the electrons can propagate through the corner from one
arm to the other.

An interesting feature of our numerical results is that the
use of smooth potentials has enabled us to effectively avoid the
fermion doubling problem even though we have not added a
Wilson term to the Hamiltonian. The basic idea is that a smooth
potential does not excite the extra fermions which therefore
play no role in the formation of localized states.

Our results can be experimentally tested in a number of
ways. To begin with, a potential barrier (straight or bent) can be
produced by placing an appropriately shaped gate close to the
surface of a TI and tuning the gate voltage. Then spin-resolved
ARPES can be used to find the energy dispersion and spins
of the different edge states. However, this method is not easy
to use when a magnetic field is present since the field would
affect the trajectories of the electrons emitted from the surface.
A second method would be to measure the local density of
states using the tunneling conductance from a spin-polarized
STM tip which is placed very close to the barrier. If the local
density of states is found to be higher when a potential barrier
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is present compared to the case of no potential, this would
provide evidence for the edge states. An almost flat band would
give rise to a particularly large density of states at the location
of the barrier. Finally, it would be interesting to measure the
differential conductance of the quasi-one-dimensional system
which is produced by a long potential barrier (either straight
or with bends as in an L-shaped potential), and study how this
varies with the potential barrier or a magnetic field; such a
variation would provide indirect evidence for the edge states.
Note that since the edge states carry a spin (which is different
for opposite edge momenta +kx and −kx), a nonzero charge
conductance along the barrier would also imply a nonzero spin
conductance.

We end by pointing out some directions for future work.
We have only considered the effects of a Zeeman coupling
to a magnetic field in this work. A magnetic field that has
only a Zeeman coupling and no orbital coupling can be
realized in a TI by doping with magnetic impurities [52]
or by depositing a ferromagnetic layer on the surface [53].
However, one should, in general, study the effects of the orbital
coupling of electrons to a magnetic field. In a lattice model,
such a coupling can be introduced through the phase in the
couplings between nearest neighbor sites following the Peierls
prescription.

Our work has shown that in the presence of a magnetic field,
one can use potentials of various shapes to form wave guides
along which Dirac electrons can propagate. An important issue
that we have explored is whether the various kinks in the
potential (such as a localized potential on a barrier, or the
corner of an L-shaped potential) allow electrons to travel along
the entire length of the barrier, or whether they backscatter the
electrons so strongly that states can only exist on a part of the
barrier. For the L-shaped potential, for instance, Fig. 11 shows

a state which exists on both arms of the L; this shows that the
corner of the L does not reflect an electron completely.

If we can fully understand the effects of each of the poten-
tials considered in this paper, we may try to construct a network
of wave guides by laying down a number of appropriately
shaped gates on the surface of a topological insulator and
then applying the required potentials to the gates. For this
purpose it would be useful to study the scattering matrix and
conductance of quasi-one-dimensional systems with L-shaped
bends and “T” junctions. We would like to mention here that
L-shaped geometries haven been theoretically proposed for
probing the edge states of a two-dimensional TI [54], and
gates of different shapes have been experimentally fabricated
in a two-dimensional TI [9]. Thus gates of various shapes are
both experimentally realizable and theoretically interesting in
TI systems.

Finally, it would be interesting to study the effect of
electron-electron interactions. The almost flat band of states
that can be produced by tuning the barrier potential can be a
platform for hosting a variety of strongly correlated electron
states. In this connection we would like to mention some
recent papers where it has been shown that magnetic impurities
or barriers and interactions between electrons can lead to
oscillations in the spin density and can have measurable effects
on transport at the edge of a two-dimensional topological
insulator [55].
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