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Giant second-harmonic generation efficiency and ideal phase matching with a double
ε-near-zero cross-slit metamaterial
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Efficient second-harmonic generation may be induced based on the anomalous tunneling properties of double
zero-permittivity narrow cross-slit nonlinear channels. Ideal phase matching conditions, large coherence length,
combined with uniform field enhancement entail the ideal conditions to achieve giant second-harmonic conversion
efficiencies for backward and forward signals. It is shown that these conditions are particularly well suited to
enhance nonlinear effects over a wide range of frequencies, leading to efficient electromagnetic wave mixers and
parametric amplifiers.
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I. INTRODUCTION

Since the first pioneering experiments on second-harmonic
generation (SHG) [1], the quest for high conversion efficien-
cies in nonlinear second-order optical processes has been
one of the most active research areas in optical physics [2].
In general, two conditions need to be satisfied to obtain
strong nonlinear effects: large nonlinear material response and
phase matched interaction with electromagnetic waves. The
former can be achieved by either employing highly nonlinear
crystals [3] or by increasing the local density of states (LDOS)
with resonant micro-cavities [4], photonic crystals [5–7] and
plasmonic structures [8,9]. Phase matching is as important as a
strong nonlinear material response, since efficient generation
requires that all portions of the nonlinear effect interfere
constructively. Phase matching schemes typically involve the
use of birefringent crystals [10,11], Bragg gratings [12], or
quasiphase matching (QPM) schemes [13]. The recent advent
of metamaterials [14,15] has nonetheless opened new and
exciting venues. In particular, SHG has been demonstrated
with magnetic metamaterials [16], periodically nanostruc-
tured metal films [17], metacrystals [18], noncentrosymmetric
shaped metallic nanoapertures [19], electrically controlled
plasmonic gratings [20], and negative-index metamateri-
als [21]. In these cases, strong resonant fields and associated
large LDOS have been shown to significantly boost SHG
processes. In addition, phase matching can be more easily
achieved in negative-index metamaterials [22–24], even if
limited to the reflected (not the transmitted) second-harmonic
wave, acting as a “nonlinear mirror.”

Here we discuss a different mechanism to achieve an ideal
phase matching condition (both in forward and backward
operation) for fundamental and generated frequencies, at the
same time also inducing drastically enhanced LDOS and
nonlinear effects, using the unique properties of a metamaterial
composed of arrays of double ε-near-zero (ENZ) crossed
plasmonic channels [25]. Narrow waveguides operated at the
cutoff of their dominant plasmonic mode have been recently
proposed to provide a quasistatic spatial response with constant
phase (ideally infinite phase velocity) and largely enhanced
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fields, crucial features when exciting electrically-large non-
linear samples. SHG processes in zero-index transmission
lines have been demonstrated at microwaves to exploit their
phase-matching advantages [26]. However, this design is
limited to the microwave regime, for which nonlinearities are
inherently stronger, and it therefore does not focus on local
nonlinearity enhancements. The use of near-zero-index fishnet
metamaterials [27] has been also proposed to boost forward
and backward nonlinear generation, a scheme that allows to
compensate for phase mismatch at a single frequency, but
would not work to phase match fundamental and generated
frequencies, as in second-harmonic processes, and again it
does not allow substantial nonlinearity enhancement. Mul-
tiresonant plasma films [28] have been theoretically proposed
in this context, but they are highly mismatched to free
space other than at the polaritonic angle, and their field
enhancement is generally limited. In the following, we discuss
a different concept to produce largely enhanced LDOS at
fundamental and second-harmonic frequencies, at the same
time supporting ideal phase matching conditions, based on
the proper engineering of arrays of narrow, crossed plasmonic
channels supporting a strong double ENZ response for the
fundamental and second-harmonic frequencies. In addition,
the resulting metamaterial is impedance matched to free space
for all incidence angles, and support ideal phase matching
features, extreme coherence lengths, and uniformly, large field
enhancements across the channels, leading to a new paradigm
to realize uniquely large conversion efficiencies.

II. DOUBLE ε-NEAR-ZERO
CROSS-SLIT METAMATERIAL

Consider a periodic array of cross-slit channels carved in
a perfect electric conductor (PEC) screen, as shown in the
inset of Fig. 1(d), each essentially forming two orthogonal
rectangular waveguides supporting orthogonally polarized
transverse-electric (TE) electromagnetic modes. We can tune
the widths of the two arms such that the cutoff frequencies co-
incide with the fundamental and second-harmonic frequencies
of interest. Following our work on metallic screens perforated
by periodic arrays of rectangular narrow slits [29], we expect
that the proposed array of crossed apertures operates as a
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FIG. 1. (Color online) SH conversion efficiency vs slab thickness
for (a) a slab made by a quadratic nonlinear dielectric (shown in
the inset); (b) a parallel-plate waveguide, where the same nonlinear
material is sandwiched between PEC layers (shown in the inset);
(c) an array of rectangular waveguides, in which narrow rectangular
apertures are loaded with the same nonlinear material (shown in
the inset); (d) an array of cross-slit channels loaded with the same
nonlinear dielectric (shown in the inset). Three different cases are
shown in Fig. 1(d): Z1, Z2 (black line), Z3, Z4 (blue line) and no (red
line) reactive impedances in the TL model of the slab interfaces. All
devices are illuminated at normal incidence.

double ENZ metamaterial at the fundamental and second-
harmonic frequency for the two orthogonal polarizations, each
corresponding to the cutoff frequency of one of the arms, with
the additional property of being impedance matched to free
space for any incidence angle at both frequencies. Due to
its low index, infinite phase velocity is expected inside each
channel at the two frequencies, with uniformly enhanced fields,
boosted by a factor proportional to the area of the periodic unit
cell normalized to the waveguide aperture [29]. Notice how
the axis of the vertical channel is slightly shifted off-center
from the axis of the horizontal channel, to achieve maximum
field enhancement inside both channels, and at the same time
ensuring large modal overlap for enhanced nonlinear response.

The phase mismatch between fundamental and generated
frequencies can be quantified by considering the coherence
length Lcoh = π/�k, where �k = (2ω/c) (n2ω − nω) and nω

and n2ω are the effective refractive indices seen by the elec-
tromagnetic wave at the fundamental and second-harmonic
frequencies, respectively. In our double ENZ medium, both
refractive indices are effectively n2ω = nω = 0 and ideal phase
matching is automatically achieved, with an infinite coherence
length if losses are negligible. Interestingly, the proposed
design can be implemented over a broad frequency range,
from microwaves to the optical regime. For simplicity and to
be able to operate in a regime where conduction losses are
negligible, we focus our design in the low-terahertz frequency
range. Note that very interesting nonlinear applications exist
in this frequency range. At higher frequencies, the PEC walls
considered here can be substituted by plasmonic metals [29],

and similar effects may be obtained with slightly deteriorated
SHG performance due to the higher conductive losses.

In order to highlight the potential of the proposed paradigm
for giant conversion efficiency using double ENZ meta-
materials, Fig. 1 compares four geometries of interest, as
sketched in the four insets: a simple phase-matched slab of
quadratic material [Fig. 1(a)]; a one-dimensional array of
parallel-plate channels filled with the same material [Fig. 1(b)];
a two-dimensional array of rectangular waveguides [Fig. 1(c)];
the cross-slit array described above [Fig. 1(d)], again filled
with the same nonlinear material. First, we investigate the
SHG conversion efficiency of the simplest geometry, i.e.,
a slab with linear permittivity εL = 2.25 and second-order
susceptibility χ (2) = 20 pm/V [2], schematically shown in the
inset of Fig. 1(a). The medium is assumed to be phase matched
at the fundamental fFF = 297.4 GHz and second-harmonic
fSH = 594.8 GHz frequencies with linear refractive indices
n2ω = nω = 1.5 and it is illuminated with low pump intensity
Iin = 258.3 W/cm2 at the fundamental frequency. Due to ideal
phase-matching, the SHG conversion efficiency is given by
the textbook formula [30] η = 2μ0

n2
ωn2ωc

(χ (2)

2 ωl)2Iin, where l is
the slab thickness and c the speed of light. The conversion
efficiency grows as l2, consistent with Fig. 1(a).

Next, we investigate the parallel-plate array geometry,
composed of the same nonlinear material sandwiched between
metallic layers, as shown in the inset of Fig. 1(b). In this
geometry, originally analyzed for third-order nonlinear effects
in Ref. [31], Fabry-Pérot (FP) transmission resonances are
expected for β = Nπ/l, with N being an integer, able to
boost the field in the nonlinear material and therefore enhance
its nonlinear response. We simulate its response using com-
mercial software based on the finite integration method [32].
For this example, we assume dimensions a = 440 μm, t =
44 μm, and thickness l = 336 μm. A dielectric material with
permittivity εL = 2.25 is loaded inside the channels. The
calculated transmission is plotted in Fig. 2. Two Fabry-Pérot
(FP) transmission resonances are obtained at 297 and 594 GHz.
Hence the first FP resonance is the fundamental frequency
(FF) mode and the second is the second-harmonic (SH) mode
when second-order nonlinearities are introduced inside the
waveguide’s channel.

FIG. 2. Transmission vs frequency of the parallel-plate waveg-
uide shown in the inset of Fig. 1(b).
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The calculated conversion efficiency versus thickness,
calculated for a = 440 μm, t = 44 μm, and shown in Fig. 1(b),
shows negligible conversion except at the FP resonant peaks,
at which the expected enhancement is around a/t � 10. We

note here that, due to the ideality of the metal, FP resonances
align at the fundamental and second-harmonic frequency. The
total (forward plus backward) SHG conversion efficiency can
be calculated in terms of overlap integrals [21]:

η = ω2
FF

2ε0εLc3
0

(∣∣∣∣
∫ l

0
χ (2)(E(+)

ω )2E
(−)
2ω dz

∣∣∣∣
2

+
∣∣∣∣
∫ l

0
χ (2)(E(+)

ω )2E
(+)
2ω dz

∣∣∣∣
2)

Iin, (1)

where ωFF = 2πfFF, E(+)
ω is the right-to-left (forward) field

distribution inside each waveguide at the fundamental fre-
quency and E

(+)
2ω , E

(−)
2ω are the right-to-left (forward) and left-

to-right (backward) field distributions at the second-harmonic
frequency. In our calculations, we used full-wave simula-
tions [32] to evaluate the reactive fields at the entrance and
exit of the slits, in order to properly model the interfaces with
lumped elements, and then implemented a transmission-line
analytical model to efficiently evaluate the effect of varying
the slab thickness. For sample thicknesses, we validated the
accuracy of our model with full-wave simulations.

Equation (1) implies that large efficiencies may be achieved
if the fields are enhanced at both fundamental and generated
frequencies, as it occurs at the FP resonances. Indeed, at
the two FP peaks, four orders of magnitude enhancement
are observed compared to the bulk quadratic material of
Fig. 1(a). We note that the first SHG conversion peak,
found for l = 336 μm has a half-power bandwidth (HPBW)
of 10.4 μm. Similar SHG conversion efficiencies follow for
longer slits, when other FP resonances overlap at fundamental
and second-harmonic frequencies. The SHG peak values grow
approximately as the square of the channel’s length.

One of the drawbacks of this resonant design is that it
requires the careful overlap of two different FP resonances
in the same structure, which may not be easy in the realistic
scenarios in which the metal has dispersion, as we have only
one parameter to effectively control the resonances, i.e., the
slab thickness. In addition, the channel length is not exploited
at its best, since the FP modes in the slits are characterized
by standing wave distributions with different phases. In order
to overcome these issues, we consider rectangular channels,

FIG. 3. (Color online) Transmission vs frequency of an array of
rectangular waveguides shown in the inset of Fig. 1(c).

which we have shown in the past to support an anomalous
tunneling effect at the cutoff frequency of their dominant
mode, due to ENZ tunneling with infinite phase velocity [29].
In this regime, uniformly enhanced field distributions are
expected all along the channel, able to use more efficiently
the slab thickness. This geometry is shown in Fig. 1(c), which
is consistent with the silver grating proposed in Ref. [29]
to boost third-order nonlinearities. The dimensions of the
structure are tuned so that ENZ tunneling is supported at the
fundamental frequency, while the second-harmonic coincides
with the second FP resonance. These are quite easy to control
and align, even in the case of realistic metal dispersion,
since the width b of the channels controls the cutoff (ENZ
operation), while the thickness l controls the FP resonances.
The grating shown in the inset of Fig. 1(c) was simulated
using [32] and its transmission is plotted in Fig. 3. It has
dimensions: a = 440 μm, b = 440 μm, t = 44 μm, and w =
334 μm, and thickness l = 335 μm. Again, dielectric material
with permittivity εL = 2.25 is loaded inside the channels of
the grating. Now, an epsilon-near-zero (ENZ) resonance is
obtained at 311 GHz followed by two sharp FP resonances.
The second FP resonance is obtained at 622 GHz, exactly at
double frequency value compared to the ENZ resonance. As a
result, the ENZ resonance is the FF mode and the second FP
resonance is the SH mode when second-order nonlinearities
are introduced inside the waveguide’s channel. The fields
at these two resonances are used to compute Eq. (1) and

FIG. 4. (Color online) Transmission of horizontally and verti-
cally polarized modes impinging on the cross-slit grating shown in
the inset of Fig. 1(d). The ENZ transmission corresponds to the first
transmission peak, followed by FP resonances.
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FIG. 5. (Color online) 3D normalized electric field distributions
for (a) horizontal and (b) vertical polarized radiation in the cross-slit
waveguide shown in the inset of Fig. 1(d). The cross-slit channels are
shown with light yellow shaded regions.

Fig. 1(c) shows the calculated efficiency. The enhancement
in SHG conversion efficiency is six orders of magnitude larger
compared to the bulk quadratic material and two orders of
magnitude larger than the slit geometry with same thickness.
The HPBW = 8.1 μm is still quite narrow.

Finally, we analyze the proposed cross-slit array shown
in the inset of Fig. 1(d). The optimized geometry has a =
440 μm, b = 440 μm, t = 44 μm, w = 334 μm, d = 53 μm,
h = 165 μm, and l = 380 μm. This structure can sustain two
distinct and independently controllable cutoff frequencies for
orthogonally polarized TE modes, being able to fully exploit
the ENZ anomalous tunneling features at both fundamental
and second-harmonic frequencies. This is seen in more detail
in Fig. 4, in which we show the transmission spectra for the
two polarizations [32]. The three-dimensional (3D) electric
field distributions of the horizontal and vertical polarized
ENZ modes supported by the cross-slit grating are shown
in Fig. 5. The results are obtained using numerical simula-
tions [32]. The fields have uniform phase and they are enhanced
across the channel of the waveguide at both ENZ modes. These
are ideal conditions to obtain giant SHG conversion efficiency.
The cross-slits support quasi-TE modes with a dominant
electric field component similar to the single rectangular
aperture. The cutoff frequency for vertical polarization is
f V

ENZ = 326 GHz, slightly larger compared to the one obtained

in Fig. 1(c) for the same transverse width, due to the detuning
introduced by mode coupling in the cross-slit channels. The
additional slit, rotated by ninety degrees, supports a similar
response for horizontal polarization. Its cutoff frequency is
controlled by d, and it is tuned here at the second-harmonic
frequency f H

ENZ = 652 GHz.

III. GIANT SHG GENERATION EFFICIENCY

We assume now that the quadratic material filling the
cross-slit waveguide has an anisotropic nonlinear tensor
χ (2)

yyx = 20 pm/V . Note that nonlinear crystals with such
anisotropic nonlinear tensor are quite common, and widely
used in nonlinear processes [2,33]. In order to compute
the SHG conversion efficiency, we again use Eq. (1), using
our analytical TL model. Inductive loads with impedances
Z1 = j116.7 	, Z2 = j58.5 	 are considered to properly
take into account the reactive fields at the two interfaces for
vertical and horizontal polarizations, respectively, as extracted
from full-wave simulations. The proposed geometry is able to
convert the large enhancement at the fundamental frequency in
the longer arm of the cross-slit into second-harmonic nonlinear
horizontal polarization, coupling into the ENZ mode in the
shorter arm of each aperture. In this way, we achieve both ideal
phase matching, due to the double ENZ condition, and large
enhancement of the quadratic nonlinearity, due to the uniform
distribution at both FF and SH fields along the channels. This
leads to very large SHG conversion efficiencies, shown by
the black line in Fig. 1(d), which also are characterized by a
much broader HPBW = 65.5 μm, compared to the previous
examples. This result introduces a remarkable paradigm for
large generation efficiency, which may be achieved without
requiring increased Q factors and sharper resonances, but are
instead based on ideal phase matching at the double ENZ
tunneling condition. The SHG peak is found for channels
with length l = 380 μm, where both fundamental and second-
harmonic modes exhibit the ENZ response.

In order to further highlight the different physics arising in
this double ENZ metamaterial slab, we show that for different
inductive load values (Z3 = j114.8 	, Z4 = j57.9 	), which
may be achieved by coating the entrance and exit interfaces,

FIG. 6. (Color online) (a) Magnitude (dB) and (b) phase (degrees) of the quantity E2
ωE2ω, where Eω and E2ω are the field enhancement

inside the channels of all the structures under study. In this case, the waveguide channels are assumed to have equal length l = 336 μm. Large
and homogeneous magnitude combined with constant phase along the channel of the cross slit double ENZ grating leads to very large values
in the SHG efficiency, which is calculated by Eq. (1).
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will lead to shifted and even larger SHG conversion efficien-
cies, shown with the blue line in Fig. 1(d), and an even broader
HPBW = 99.5 μm. This is due to the fact that the SHG peak
is essentially dominated by the resonant tunneling supported
by the reactive fields at the entrance and exit interfaces.
If we were able to neglect the stored reactive fields at the
channel’s interfaces and assume zero shunt admittance at the
two interfaces, we would obtain a quadratic dispersion for
the SHG conversion efficiency, as the red line in Fig. 1(d),
similar to the bulk phase-matched case in Fig. 1(a). In this case,
the nonresonant SHG conversion efficiency is nine orders of
magnitude larger compared to the performance of Fig. 1(a), yet
supporting an extremely broad response, automatically phase
matched for any length of the slab. These results may also
be extended to higher frequencies, but expecting lower SHG
conversion efficiency and a limited coherence length, due to
the larger conductivity losses in metals.

To provide further insight into this phenomenon, we show
in Figs. 6(a) and 6(b) the magnitude and phase of the quantity
E2

ωE2ω, i.e., the overlap integrand in Eq. (1), for excitation
from one side of the grating. This quantity is computed for
each of the four geometries of Fig. 1, and plotted versus the
length of the structure for same length l = 336μm for fair
comparison. The figure beautifully summarizes the operation
of the proposed metamaterial. While the simple dielectric
slab has no field enhancement, the parallel-plate slits provide
some field enhancement, but characterized by a standing-wave
pattern and a fast phase variation. When integrated over the
channel length, the large field enhancement is actually not
efficiently exploited. The rectangular slits support a stronger
field enhancement and slower phase variation, along the
channel length the integrand has opposite phase contributions.
The cross-slit grating supports larger field enhancement,
uniformly distributed along each channel, and a flat phase
response, ideal to maximize the integrals in Eq. (1), consistent
with the giant enhancements predicted in Fig. 1(d).

IV. BALANCED FORWARD AND BACKWARD
SH GENERATION

Next, coupled-mode theory is used [34] to further verify the
enhanced SHG potentials of the proposed waveguide designs.
First, forward and backward SH conversion efficiencies as a
function of input intensity (Iin) are shown in Fig. 7(a) for
a quadratic dielectric slab [similar to the inset in Fig. 1(a)]
with linear refractive index n = 2.5, nonlinear susceptibility
χ (2) = 20pm/V and length l = 336 μm. Low SHG efficiency
is obtained for both forward and backward second-harmonic
waves. The second-harmonic signal is stronger in the forward
direction, leading to unbalanced SHG. As a next step, we
compute the SHG conversion efficiencies for the single-slit
grating shown in the inset of Fig. 1(c), with similar dimensions
and material parameters described before. The results are
shown in Fig. 7(b) and the SHG performance is largely
enhanced compared to Fig. 7(a). Interestingly, in this case,
the SH signals are generated almost in a perfectly balanced
way in forward and backward directions, as expected in
high feedback systems [21]. Finally, we compute the SHG
conversion efficiencies versus the input intensity for the
proposed cross-slit waveguide structure, shown in the inset

FIG. 7. (Color online) Forward (blue solid) and backward (red
dashed) SH conversion efficiencies changing with the input intensity
(Iin) for (a) a nonlinear dielectric slab with parameters n = 2.5, χ (2) =
20 pm/V, and length l = 336 μm; (b) the nonlinear single-slit grating
with same parameters as the one shown before in the inset of Fig. 1(c)
in the paper and length l = 335 μm; and (c) the nonlinear cross-slit
grating with same parameters as the one shown before in the inset
of Fig. 1(d) in the paper and length l = 380 μm. Great enhancement
in forward and backward conversion efficiencies is obtained for both
gratings compared to the bare nonlinear dielectric slab.

of Fig. 1(d). Even higher SHG performance is obtained
in Fig. 7(c), and forward and backward second-harmonic
signals are generated nearly balanced. This further proves
that the proposed cross-slit double ENZ slab provides an
ideal nonlinear configuration towards enhancing forward and
backward second-harmonic generation.

V. CONCLUSIONS

To conclude, we have proposed a novel nonlinear mecha-
nism to achieve phase-matching combined with uniform and
enhanced fields for both fundamental and second-harmonic
signals. This directly leads to strong nonlinear effects and
giant SHG conversion efficiencies. A cross-slit nonlinear dual
ENZ slab has been designed to implement this concept. Huge
SHG conversion efficiencies are predicted for both forward and
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backward second-harmonic signals, even though the structure
has a high degree of symmetry. We envision a plethora of
nonlinear applications opened by this technology, including
all-optical switching, efficient wave mixing and ultrahigh
resolution near-field microscopy. It is straightforward to extend
the demonstrated cross-slit design to higher frequencies, where
PEC materials are substituted by noble metals (Ag, Au). The
SHG performance will be slightly affected in this case, due to
increased conductive losses of metals at optical frequencies,
but still higher values are expected compared to conventional
SHG schemes. Moreover, the proposed giant SHG mechanism
is not expected to be sensitive to the incidence angle, since the
ENZ response is not affected by transverse spatial dispersion.
As a final remark towards the practical implementation of

the proposed structure, we need to stress that the cross-slit
waveguide may be embedded in quadratic nonlinear materials,
which will be used as a substrate without affecting the
predicted SHG operation of the device. We believe that the
present work may lead one step closer to highly efficient
nonlinear devices.
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