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Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones
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We study dispersions of Fermi arcs in the Weyl semimetal phase by constructing an effective model. We
calculate how the surface Fermi-arc dispersions for the top and bottom surfaces merge into the bulk Dirac cones
in the Weyl semimetal at both ends of the arcs, and show that they have opposite velocities. This result is common
to general Weyl semimetals, and is also confirmed by a calculation using a tight-binding model. Furthermore,
by changing a parameter in the system while preserving time-reversal symmetry, we show that two Fermi arcs
evolve into a surface Dirac cone when the system transits from the Weyl semimetal to the topological insulator
phase. We also demonstrate that choices of surface terminations affect the pairing of Weyl nodes, from which the
Fermi arcs are formed.
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I. INTRODUCTION

Topological classification of phases has been one of the
fruitful ways to explore new quantum phases in condensed
materials. A topological insulator (TI) is one of the topolog-
ical phases in condensed materials with time-reversal (TR)
symmetry [1,2]. As a manifestation of topological properties
of three-dimensional TIs, their band structure is gapped in
the bulk, but is gapless in the surface. The surface states are
determined by topological invariants calculated from the bulk
states. The topological invariants are Z2 topological numbers
defined in TR invariant systems, and the resulting gapless
surface states are protected topologically.

On the other hand, more recent works have revealed another
kind of topological phases, not in insulators but in semimetals:
for example, Weyl semimetals (WSMs). In WSMs, the conduc-
tion and valence bands form nondegenerate Dirac cones. They
touch at isolated points in k space, called Weyl nodes. Remark-
ably, the Weyl nodes are stable topologically, because they
are associated with a topological number called a monopole
charge in k space, associated with the Berry curvature in k
space. The topological WSM phases are realized in 3D systems
where TR or inversion (I) symmetry is broken. As candidates
of the WSMs with broken TR symmetry, pyrochlore iridates
[3,4], multilayer structures consisting of TI with ferromagnetic
order and normal insulator (NI) [5], and HgCr2Se4 [6] are
proposed. The multilayer structure of TI and NI with an
external electric field is also suggested as a candidate material
for the WSM where I symmetry is broken [7]. While the
WSMs have not been found experimentally yet, materials with
3D doubly-degenerate Dirac cones were recently discovered,
which are called Dirac semimetals [8–11]. Because of the
degeneracy, the gapless points of the Dirac semimetals are not
protected topologically, unlike those of WSMs.

The number of Weyl nodes in 3D k space is necessarily
even. It is because the Weyl nodes are either a monopole
or an antimonopole in k space [12–14], and the sum of the
monopole charge inside the Brillouin zone should vanish.
Moreover, these Weyl nodes are robust topologically as long
as translational symmetry is preserved.

Another remarkable topological property of WSMs is the
existence of topologically protected surface states [3]. The

surface states form arcs in k space, which are called Fermi arcs,
connecting between the Weyl nodes projected to the surface
Brillouin zone. The appearance of Fermi arcs is explained
in terms of a topological number when the Fermi energy is
exactly on the Weyl nodes. As a result, the Fermi arc connects
two Weyl nodes, one being a monopole and the other an
antimonopole for the Berry curvature. On the other hand,
the dispersion of the Weyl nodes is not well studied when
the Fermi energy is away from the Weyl nodes. It is easily
seen that the sign of the velocity of the Fermi-arc state is
determined from the topological number, i.e., the monopole
charge of the Weyl nodes, Moreover, as we find in this paper,
the Fermi-arc dispersion has a unique form, which is useful
to experimentally establish the WSM phase. In this paper, we
discuss surface state dispersion and bulk bands by constructing
a simple effective model for the WSM phase. The results from
the effective model are confirmed by numerical calculations
using a lattice model, which is the Fu-Kane-Mele model with
an additional staggered on-site potential.

In the present paper, we discuss dispersion of surface states
of the WSM phase, and their evolutions at phase transitions
from the WSM phase to other bulk insulating phases such
as TI phases. In particular, we focus on systems without I
symmetry where WSM and TI phases are realizable. Firstly,
from the effective model, we show surface Fermi arcs and
their dispersions on the top surface and on the bottom surface.
The top- and bottom-surface states have opposite velocities,
and are tangential to bulk Dirac cones. Next, by using a lattice
model realizing TI and WSM phases, we study changes of
the surface states. As a result, we find that a pair of Fermi
arcs evolve into a surface Dirac cone when the system moves
from the WSM to the TI phase. Furthermore, the pairing of
the Weyl nodes to form the Fermi arc depends on the surface
termination. We also discuss how these results are applied to
general WSMs.

II. WEYL SEMIMETAL PHASE CHARACTERIZED
BY THE BERRY CURVATURE

To characterize WSMs, the Berry curvature in k space is im-
portant. As we explain below, the Weyl nodes are topological
objects, corresponding to monopoles or antimonopoles for the
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Berry curvature. This gives a strong restriction on behaviors
of Weyl nodes. The Berry curvature in k-space is introduced
as follows [12–14]. Let ψα(k) be the Bloch wave function and
we write ψα(k) = uα(k)eik·r , and uα(k) is called a periodic
part of the Bloch wave function. For the αth band, the Berry
connection (gauge field) Aα(k) and the corresponding Berry
curvature (field strength) Bα(k) are defined as

Aα(k) = i〈uα(k)|∇k|uα(k)〉, (1)

Bα(k) = ∇k × Aα(k), (2)

and the corresponding monopole density is defined as

ρα(k) = 1

2π
∇k · Bα(k). (3)

The properties of the monopole density are well studied
[12–14]. Therefore we briefly outline its properties here. When
the αth band is not degenerate with other bands at some k, the
monopole density ρα(k) vanishes identically, because uα(k)
is analytic in the neighborhood of k. Only at the k-points
where the αth band touches with another band, the monopole
density can be nonzero, having a δ-function singularity. It
is shown from an argument on a gauge degree of freedom
that the coefficient of δ-function is always an integer, and the
monopole density has the form ρ(k) = ∑

l qlδ(k − kl), where
ql is an integer. We call the integer ql a monopole charge. In
the simplest case of ql = ±1, it is called a monopole (ql = 1)
and an antimonopole (ql = −1). The Weyl nodes are either a
monopole or an antimonopole, as one can see easily from an
example Hamiltonian H = k · σ , where σ = (σx,σy,σz) are
the Pauli matrices. Because the monopole charge is quantized,
the monopole charge cannot change under a continuous
change of the Hamiltonian. They can only change at pair
creation or pair annhilation of a monopole-antimonopole
pair.

TR and I symmetries respectively give a restriction to
these Berry curvature and monople density. The TR symmetry
leads to

Bα(k) = −BαR
(−k), ρα(k) = ραR

(−k), (4)

where αR is the band index obtained by time-reversal from
αth band. Hence in TR-symmetric systems, monopoles are
distributed symmetrically with respect to the origin k = 0. On
the other hand, the I symmetry leads to

Bα(k) = BαI
(−k), ρα(k) = −ραI

(−k), (5)

where αI is the band index obtained by inversion from
αth band. Hence in I-symmetric systems, monopoles are
distributed antisymmetrically with respect to the origin k = 0.
Furthermore, in systems with both TR and I symmetries,
all states are doubly degenerate by Kramers theorem, and
therefore a Dirac cone without degeneracy is impossible.
Therefore the WSM requires either breaking of TR symmetry
or that of I symmetry, as has been proposed [5,15]. Such
systems with broken TR or I symmetries can be realized as
multilayers of TIs and NIs [5,7,15].

III. EFFECTIVE MODEL FOR THE NI-SW-TI
PHASE TRANSITION

To describe a WSM and its evolution under a change
of Hamiltonian parameters, we construct a minimal model
including only a single valence band and a single conduction
band. Therefore we consider a minimal model described
by a 2×2 matrix H (k,m), where m is introduced as a
control parameter for NI-WSM-TI phase transition. The 2×2
Hamiltonian H (k,m) is expanded as

H (k,m) = a0(k,m) +
3∑

i=1

ai(k,m)σi, (6)

where σi (i = 1,2,3) are the Pauli matrices representing
conduction and valence bands. The gap between the two
eigenvalues closes when the three conditions

ai(k,m) = 0 (i = 1,2,3) (7)

are satisfied. If Eq. (7) has solutions for k at a given value of
m, the bands generally form a Dirac cone without degeneracy
at these k points, if ∂(a1,a2,a3)

∂(kx ,ky ,kz) �= 0. Therefore it is generally
a WSM and the respective Weyl nodes are monopoles or
antimonopoles, depending on the monopole charge equal to
sgn ∂(a1,a2,a3)

∂(kx ,ky ,kz) = ±1.
Let us then change the parameter m. In order to open a gap

in the system, all the monopoles and antimonopoles should
disappear via monopole-antimonopole pair annihilation. Con-
versely, if we begin with a system with a bulk gap at some
parameter m, and if a change of m induces appearance of
Weyl nodes, then it should involve monopole-antimonopole
pair creation. One of the purposes of the present paper is to
create a simple effective model describing the WSM phase
close to monopole-antimonopole pair creation or annihilation,
i.e., near the phase transition between the WSM phase and a
bulk insulating phase. Let m = m0 be the value of m where
this monopole-antimonopole pair creation occurs. A part of
the formalism here follows the previous paper by one of the
authors [16].

Suppose we change the value of m through the phase
transition between the WSM phase and a phase with a bulk
gap. It is accompanied by a pair creation or annihilation, and
let m0 denote the value of m where the phase transition occurs.
Then on one side of m, e.g., m < m0, the system is a WSM
with an monopole and antimonopole, while on the other side
of m, e.g., m > m0, the system is an insulator in the bulk,
which can be a NI or a TI. At m = m0, the gap closes at some
point where the pair creation occurs, and let k = k0 denote
the point; namely, it satisfies a(k0,m0) = 0. We expand the
coefficients of Eq. (6) to the linear order around k0 and m0:

a(k,m) = M	k + 	mN, (8)

where 	kj = kj − k0j , 	m = m − m0, and Mij = ∂ai

∂kj
|0 and

Ni = ∂ai

∂m
|0 are the values of derivatives at m = m0 and

k = k0. It gives a generic Hamiltonian describing a pair
creation of monopoles at m = m0, shown in Ref. [16]. From
this Hamiltonian we can calculate the motion of the Weyl
nodes close to the pair creation (i.e., the phase transition
between the WSM and the bulk insulating phase), and band
dispersions [16].
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It is also noted in Ref. [16] that pair creations occur in pairs
at k = k0 and k = −k0 simultaneously, imposed by Eq. (4).
Thus there are at least two monopoles and two antimonopoles
in the WSM with TR symmetry (but without I symmetry). If
one varies m further and the system becomes a bulk insulating
phase again, there should be pair annihilations to make all the
monopoles and antimonopoles disappear. If pair annihilations
occur by exchanging partners from the pair creations, some of
the four Z2 topological numbers of 3D TIs should be different
between the initial bulk-insulating phase and the final bulk-
insulating phase.

Our goal here is to calculate an evolution of surface
states through this change of the WSM phase. To this goal,
the generic Hamiltonian described above is not convenient
because it contains many parameters. Therefore, instead of
using the above generic Hamiltonian, we use a simplified
Hamiltonian. This is obtained from the above Hamiltonian
after some gauge transformation, scale transformation, and a
few simplifying assumptions. The details of this derivation is
in Appendix. The resulting effective model is described by a
Hamiltonian

H = γ
(
k2
x − m

)
σx + v(kyσy + kzσz), (9)

where v and γ are nonzero constants, and we choose them
to be positive for simplicity. In deriving this model, among
Weyl nodes in the WSM, we focused on one monopole and
one antimonopole, which are assumed to be close to each
other. We then shifted the origin of the wave vector to simplify
the Hamiltonian and retained terms that are of the lowest
order in k. Therefore this Hamiltonian generally applies to
any WSMs, i.e., those with I symmetry breaking or those
with TR symmetry breaking, as long as a monopole and an
antimonopole are close to each other. We note that the origin
of the wave vector in this Hamiltonian does not correspond to
k = 0 in the original Bloch wave vector due to the shifting.
Therefore symmetry properties of the Hamiltonian H , such as
I or TR symmetries, cannot be discussed in Eq. (9). Its bulk
dispersion is given by

E = ±
√

γ 2
(
k2
x − m

)2 + v2k2
y + v2k2

z . (10)

The Fermi energy is assumed to be at E = 0. When m < 0
it describes a phase with a bulk gap 2γ |m|, either the TI
or the NI phase. On the other hand, when m > 0, the bulk
gap closes at two points W±: k = (±√

m,0,0). Around these
points, the dispersions are linear in three directions, and
therefore they describe the WSM phase. These two Weyl
nodes W+ and W− are a monopole and an antimonopole
for the lower band, respectively. At m = 0, there occurs a
monopole-antimonopole pair creation. Hence this effective
Hamiltonian describes one pair creation/annihilation of a
monopole and an antimonopole when the phase transition
occurs.

Let us consider a surface of the WSM phase with m =
m0(> 0). Following the standard technique, we describe the
surface by a space-dependent value of m. Namely, we regard
m to change its sign at the surface. We set m to have a negative
value in the vacuum side, and m converges to m0 (>0) in the
WSM side. The surface is assumed to be along the xy plane

for simplicity. Therefore we set

m(z) = m0 : z → −∞,

m(z) < 0 : z → +∞,
(11)

for the surface normal to be +ẑ, which we call a top surface,
and

m(z) < 0 : z → −∞,

m(z) = m0 : z → +∞,
(12)

for the surface normal to be −ẑ, which we call a bottom surface.
They correspond to the top and bottom surfaces of a slab with
sufficiently large thickness.

Here we calculate band dispersions for the top surface and
for the bottom surface. By unitary transformation with U =

1√
2
(1 − iσx), the Hamiltonian is transformed to

H ′ ≡ U−1HU = γ
(
k2
x − m

)
σx − iv

∂

∂z
kzσy − vkyσz

=
(

−vky γ
(
k2
x − m

) − v ∂
∂z

γ
(
k2
x − m

) + v ∂
∂z

vky

)
. (13)

Because we focus on the surface within the xy plane, we
have replaced kz with −i ∂

∂z
, while kx and ky are the Bloch

wave numbers. It is now straightforward to write down the
eigenstates bound to the surfaces. The bound state on the top
surface is given by

ψT =
(

1
0

)
e−(γ /v)

∫ z(k2
x−m(z))dz, E = −vky (14)

and the bound state on the bottom surface is given by

ψB =
(

0
1

)
e(γ /v)

∫ z(k2
x−m(z))dz, E = vky. (15)

They are respectively allocated as top- and bottom-surface
states, because otherwise the wave function diverges at some
region and is not normalizable. We also note that both of these
surface states exist only when

−√
m0 < kx <

√
m0. (16)

At E = 0, the surface states are degenerate, and are located at
ky = 0, − √

m0 < kx <
√

m0, which is a line connecting the
2D projection of the Weyl points W±: k = (±√

m0,0,0). Thus
these surface states are Fermi arcs. We note that the top-surface
Fermi-arc states have a velocity v = ∂E

∂k = (0, − v) and those
of the bottom-surface have a velocity v = ∂E

∂k = (0,v). Their
signs are consistent with the fact that W± are a monopole
and an antimonopole, respectively. The velocity signs follow
from the fact that on the slice of the 3D BZ at kx = const., the
lower band has a Chern number 0 for

√
m0 < |kx | and −1 for

−√
m0 < kx <

√
m0 due to the antimonopole at W1−.

We show how these surface states disperse if the Fermi
energy is away from the Weyl point. To see how the bulk bands
and surface bands are related, we project the bulk dispersion,
Eq. (10), onto the surface. The resulting bulk bands are in
regions

E >

√
γ 2

(
k2
x − m0

)2 + v2k2
y, (17)

E < −
√

γ 2
(
k2
x − m0

)2 + v2k2
y, (18)
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which describe the conduction and the valence bands, respec-
tively. These two bands touch each other at the projections
of the two Weyl nodes W±: kx = ±√

m0, ky = 0. Around
these Weyl nodes the dispersion is linear. This projected bulk
band structure is shown in Fig. 1(a), forming two Dirac cones
around the Weyl nodes W±. The surface states are tangential
to these cones, as shown in Fig. 1(b). A similar surface-state
dispersion was proposed in Ref. [3] without calculations,
and our calculation on the effective model confirms this
dispersion of surface states. We also note that similar results
have been independently obtained in Ref. [17] for a toy
model. Our results are based on generic considerations (see
Appendix) from an effective model (9), and are applicable to
general WSM.

To see the relationship between the projection of the bulk
bands and the surface states, we show the Fermi surface
at a constant energy E. The bulk-band projection changes
its topology at E = ±γm0. When −γm0 < E < γm0, the
bulk-band projection forms two distinct pockets as shown in
Fig. 1(c), and the Fermi arcs are bridged between these two
pockets. When |E| > γm0, it forms one pocket with a dumb-
bell-like structure [Fig. 1(d)]. In either case, it is remarkable
that the Fermi arc merges to the bulk-band projection at the
two ends, and at both ends they are tangential to the bulk-band
projection.

We note that the obtained dispersions of surface and
bulk states are generic as long as the monopole and the
antimonopole are close to each other. It is because the
Hamiltonian is derived from generic considerations by ex-
panding the Hamiltonian in terms of the wave vector close
to the monopole-antimonopole pair creation point, with scale
transformation. Hence we expect that this dispersion holds for
general WSMs with a pair of Weyl nodes that are close to each
other.
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FIG. 1. (Color online) Bulk and surface states of the model for
the WSM. The parameters are set as v = γ = m0 = 1. (a) shows the
bulk states, and (b) shows the surface Fermi arcs and the bulk states.
(c) and (d) The Fermi surface for the Fermi energy at (c) E = 0.5 and
at (d) E = 1.5.

IV. NUMERICAL CALCULATION OF SURFACE STATES
OF WEYL SEMIMETALS IN A LATTICE MODEL

A. Model

In this section, we numerically calculate surface states in
a WSM phase and compare the results to the discussions in
Sec. III. For this purpose, we begin with the Fu-Kane-Mele
(FKM) tight-binding model [18], which is known to show
various 3D TI phases. It does not show the WSM phase as it
is, because it does not break I symmetry. By adding a staggered
on-site potential to the model to break I symmetry, it does show
the WSM phase as shown in Ref. [16]. It was later used also
in Ref. [19] to calculate surface Fermi arcs in some parameter
range.

Hence we use the FKM model with a staggered on-site
potential added. Our model is a 3D tight-binding model on a
diamond lattice, described by the following Hamiltonian:

H =
∑
〈i,j〉

tij c
†
i cj + i

8λso

a2

∑
〈〈i,j〉〉

c
†
i s · (

d1
ij × d2

ij

)
cj

+ λv

∑
i

ξic
†
i ci , (19)

where s are Pauli matrices and a is the lattice constant for the
cubic unit cell. The first term is the nearest-neighbor hopping
with hopping amplitude tij . The second term represents the
spin-orbit interaction for next-nearest-neighbor hopping with
a spin-orbit coupling parameter λso. d1

ij and d2
ij are the nearest-

neighbor vectors connecting second-neighbor sites i and j .
The third term represents the staggered on-site energy ±λv ,
where λv is a constant and ξi = ±1 depends on the sublattices,
i.e., ξ = +1 for the A sublattice and ξ = −1 for B sublattice
for the diamond lattice.

The model without the third term is the FKM model, and
is TR and I symmetric [18]. Provided the nearest-neighbor
hoppings tij are identical, the FKM model has gapless band
structure with the bulk gap closed at the three X points,
showing that it is a Dirac semimetal. There are four directions
of the nearest-neighbor bonds, and when the hopping integrals
for four nearest-neighbor bonds tα (α = 1,2,3,4) become
different, the model shows various phases of either strong
topological insulator (STI) or weak topological insulator
(WTI) phases. The hopping integrals along the bond in the
111, 11̄1̄, 1̄11̄, and 1̄1̄1 directions are denoted as t1, t2, t3, and
t4, respectively.

To realize the WSM phase with TR symmetry, the system
needs to be I-asymmetric. In Ref. [16], it is shown that with the
λv term breaking the I-symmetry, this model shows the WSM
phase. The Hamiltonian matrix is

H(k) =
(

λv1 + ∑3
i=1 Fisi f 1

f ∗1 −λv1 − ∑3
i=1 Fisi

)
, (20)

where

f = t1 + t2e
ik·a2 + t3e

ik·a3 + t4e
ik·a1 , (21)

Fx = −4λso sin
a

2
kx

(
cos

a

2
ky − cos

a

2
kz

)
, (22)
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and Fy and Fz are given by cyclic permutation of the subscripts
x, y, and z in Fx . The primitive vectors of the fcc lattice are
defined as a1 = a

2 (1,1,0), a2 = a
2 (0,1,1), a3 = a

2 (1,0,1). The
energy eigenvalues are

E(k) = ±
√

(λv ± |F|)2 + |f |2, (23)

where F = (Fx,Fy,Fz). Therefore the spectrum is gapless
when

Ref = Imf = 0, λv = ±|F|. (24)

In some parameter region, the three equations (24) for three
parameters kx,ky , and kz have solutions, showing the locations
of the Weyl nodes. The bulk gap is then closed and the WSM
phase appears there.

B. Numerical calculation of surface states

In Ref. [16], phase diagrams of this model are studied and
this model is shown to exhibit the STI, WTI, and WSM phases
by changing parameters. As an example, we assume t1 = t +
δt1, t2 = t + δt2, t3 = t4 = t , and δt− = δt1 − δt2 is fixed to
be positive while δt+ = δt1 + δt2 is varied. For the case with
I symmetry, i.e., λv = 0, a band inversion at Xx = 2π

a
(1,0,0)

occurs at δt+ = 0, accompanied by a phase transition between
the STI phase with the Z2 topological number 1;(111) (δt+ >

0) and the WTI phase with the Z2 topological number 0;(11̄1̄)
(δt+ < 0) [18]. As a result, when the system is in the STI
phase, a surface Dirac cone arises at the point Xx = 2π

a
(1,0,0)

projected onto the surface Brillouin zone, while in the WTI
phases there is no surface Dirac cone at this point.

If one introduces an on-site staggered potential λv , the I
symmetry is broken while the TR symmetry is preserved.
Then the WSM phase intervenes between the STI and the
WTI phases, as shown in Fig. 2(a). In the WSM phase,
there are four Weyl nodes around the Xx point, as found
in Ref. [16]. These four Weyl nodes move as the parameter
δt+ = δt1 + δt2 changes. Among these four Weyl nodes, two
are monopoles and the other two are antimonopoles, which
distribute symmetrically with respect to the Xx point. On
the surface, two Fermi arcs will arise, connecting monopole-
antimonopole pairs. For calculations, we fix δt− = δt1 − δt2 =
0.1t and λso = 0.1t .

To see surface states, we numerically diagonalize Eq. (19)
in a slab geometry with (111) surfaces. To show the surface
states, we take the z axis to be the surface normal along [111],
the x axis along the surface in the a3-a1 direction and the y

axis to be perpendicular to the x and z axes. The top surface
of the slab is composed of lattice sites in the sublattice A
and the bottom surface is composed of lattice sites in the
sublattice B. Because the point Xx is projected to the point
M2 = 2π

b
(0,1/

√
3) in the hexagonal surface Brillouin zone,

the Dirac cones and the Fermi arcs appear around the point
M2. Here, b = a/

√
2 is the length of the primitive vectors of

the slab.
Figures 2(b)–2(d) shows Fermi surfaces of a slab at E = 0

for various values of δt+, with δt− = 0.1t and λso = 0.1t . For
(b) δt+ = 0 and (c) δt+ = 0.03, the system is in the WSM
phase, and Fermi arcs appear around point M2, corresponding
to point Xx . The ends of arcs are the Weyl nodes projected
into the surface Brillouin zone. Among the four Weyl points,

ky

ky

ky
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FIG. 2. (Color online) (a) Phase diagram in the δt+-λv plane, with
δt− = 0.1t and λso = 0.1t , where δt± = δt1 ± δt2. The axes are in the
unit of t . When λv = 0, the system is I-symmetric, and no WSM phase
appears. (b)–(d) Surface Fermi surface at E = 0 around the point M2

near the Fermi level with λv = 0.2t and the following values for δt+:
(b) δt+ = 0 (WSM), (c) δt+ = 0.03t (WSM), and (d) δt+ = 0.05t

(STI). The axes are in the unit of 2π/b. (b) and (c) show Fermi arcs
in the WSM phase, and (d) shows a surface Dirac cone in the STI
phase. We note that the end points of the surface Fermi arcs in the
WSM phase are the gapless points of the bulk bands.

let W1+ and W2+ denote the monopoles, and let W1− and W2−
denote the antimonopoles, which are shown in Figs. 2(b) and
2(c). As δt+ is changed, the Weyl nodes move around this
M2 points, and concomitantly the Fermi arcs grow as seen in
Figs. 2(b) and 2(c). As δt+ is increased further, the system
eventually enters the STI phase. At the WSM-STI phase
transition, the Weyl nodes annihilate pairwise for (W1−,W2+)
and (W1+,W2−), and there is no Weyl node in the STI phase,
with a nonzero bulk gap. Correspondingly, as we see in
Fig. 2(d), the two Fermi arcs in the WSM phase are merged
into a surface Dirac cone in the STI phase.

We discuss a relationship between the present work and the
paper by Ojanen [19]. In the present work we fix the spin-orbit
coupling λso to be a constant and change the anisotropy of the
nearest-neighbor hoppings. It enables us the phase transitions
from the WSM phase to either the STI or the WTI phases.
On the other hand, in Ojanen’s paper [19], the spin-orbit
parameter λso is changed across zero, to see the NI-WSM phase
transitions. In approaching the WSM-NI phase transition, the
Fermi arcs are gradually shortened and eventually vanish.

So far, we have discussed the surface states on E = 0, where
the states on the top surface and those on the bottom surface are
degenerate. The top-surface states and bottom-surface states
are expected to have different dispersions, as Fig. 1(b) shows.
Figure 3 shows the results for the dispersion of the Fermi arcs
on the top- and bottom-surface states in the present model.
We note that the top- and bottom-surface states between a
pair of Weyl nodes have opposite velocities, and the signs
of the velocities are consistent with the monopole charges of
Wi± (i = 1,2). To see this, let us focus on the surface Fermi

235315-5



RYO OKUGAWA AND SHUICHI MURAKAMI PHYSICAL REVIEW B 89, 235315 (2014)

(a)

W1-

W1+

W2+

W2-

(b)

FIG. 3. (Color online) Side views of the Fermi arcs around point
M2 = 2π

b
(0,1/

√
3) with λv = 0.2t , δt+ = 0 (WSM phase) for (a) the

top surface and (b) the bottom surface. The kx and ky axes are in the
unit of 2π/b. The red (blue) points are the gapless points, which have
positive (negative) monopole charges for the Berry curvature.

arc between W1+ and W1− as an example, and ignore the
other Fermi arc. Let us take a 2D slice of the 3D Brillouin
zone, which includes the surface normal ([111] direction). If
the slice does not intersect the line between W1±, the Chern
number is zero within this 2D slice, while it is one when the
slice intersects the line between W1± because of the presence
of the monopole at W1+. This means that within this slice
there should be a clockwise topological edge mode, which
appears as a surface mode with negative velocity vx < 0 on
the top surface and that with positive velocity vx > 0 on the
bottom surface. As is consistent with the result of the effective
model [Fig. 1(b)], each of these surface Fermi arcs is bridged
between two Dirac cones around the Weyl nodes. As δt+ is
increased and the system undergoes the phase transition from
the WSM phase into the STI phase, the two Fermi arcs merge
into a single Dirac cone on the top surface, and the same
occurs on the bottom surface. As a result there arises a top-
surface Dirac cone and a bottom-surface Dirac cone, which
are nondegenerate as shown schematically in Fig. 4(a). This
splitting of the Dirac cones are natural, because of the breaking
of the I-asymmetry due to the staggered on-site energy λv . In
the present case, the topmost layer in the top (bottom) surface
is A sublattice (B sublattice), and therefore the top-surface
(bottom-surface) states have a larger (smaller) energy due to
the staggered on-site energy λv .

(a) (b)

FIG. 4. (Color online) Schematic drawing of the surface energy
bands around a TRIM. The red (green) cone is the top (bottom) surface
states. (a) In the STI phase, the two Dirac cones on the top and bottom
surfaces are split in energy when the I symmetry is broken. (b) In the
WSM phase, there are a pair of Fermi arcs on each surface. These
Fermi arcs will evolve into a Dirac cone shown in (a) in the STI phase.

The surface states in the whole BZ for δt+ = 0 (WSM) and
δt+ = 0.05t (STI) when λv = 0.2t are shown in Figs. 5(a1)
and 5(b1). In addition to the surface states around M2, there
are Dirac cones around M1 and M3. Nevertheless, they are
intact at the WTI-WSM-STI phase transition, because this
phase transition is related with a band inversion at Xx , which
is projected onto M2 point.

C. WSM-TI phase transition and evolution of the Fermi-arc
surface states

Based on the calculation results on the model (19), here we
discuss general features of the evolution of the Fermi-arc sur-
face states in the WSM phase when some parameter is changed.
In the WSM phase there are an even number of Weyl nodes.
In the I-asymmetric phases with TR symmetry, the minimal
number is four, i.e., two monopoles and two antimonopoles,
as follows from Eq. (4). In this case of two monopoles and
antimonopoles, symmetrically distributed around a TRIM k ,
the Fermi arcs are formed between monopole-antimonopole
pairs, as exemplified in Fig. 2. Suppose then we change
some parameter in the system. Due to topological nature

(a2)(a1)

kx

ky

M1

M2

M3

Γ

(b1) (b2)

FIG. 5. (Color online) The surface Fermi surfaces at E = 0 in
the whole BZ when λv = 0.2t . The values of δt+ is δt+ = 0 (WSM)
for (a1) and (a2), and δt+ = 0.05t (STI) for (b1) and (b2). In (a1) and
(b1), the surfaces are terminated without dangling bonds, and in (a2)
and (b2) with dangling bonds. The insets show the magnified images
of the surface Fermi surface around the M2 point.
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of Weyl nodes, the monopoles and antimonopoles move in
the 2D surface BZ. Eventually, they may undergo some pair
annihilations, which occur symmetrically with respect to the
TRIM k; the bulk bands become gapped. If a pair annihilation
occurs for a pair connected by a Fermi arc, the Fermi arc
eventually vanishes and the surface becomes gapped. On the
other hand, if the pair annihilation occurs between a monopole
and an antimonopole, which are not connected to each other
by the Fermi arc, the pair annihilations will make all the Fermi
arcs into a single loop encircling the TRIM k . This loop
constitutes a Dirac cone around the TRIM.

From the viewpoint of the change of the Z2 topological
number and associated surface states, the evolution of the
surface states accompanying the WTI-STI topological phase
transition occurs in the following way. When the I-symmetry is
broken, there should generally arise a WSM phase between the
WTI-STI phase transition. In the WTI-WSM phase transition,
two pairs of Weyl nodes are created close to a TRIM k [14].
As the system enters the WSM phase, a Fermi arc is formed
between the two Weyl nodes within each pair. Thus there
are two Fermi arcs, which are symmetric with respect to the
TRIM. As a control parameter is changed, the Fermi arcs grow
as the Weyl nodes travel around the TRIM. Eventually, at the
WSM-STI phase transition, the four Weyl nodes annihilate
pairwise, causing a fusion of two Fermi arcs into a single
Dirac cone encircling the TRIM, as shown by Fig. 4.

In Ref. [20], it is argued that when I symmetry is preserved,
a Z2 topological index defined for each surface TRIM indicates
whether the focused surface TRIM is inside or outside the
surface Fermi surface. It is also concluded that this index
depends on the surface termination. Within this argument in
Ref. [20], the surface should include the inversion center, and
therefore there are two possible surface terminations for a fixed
surface orientation. If we change one surface termination into
the other, surface TRIM which were inside the Fermi surface
will become outside the Fermi surface, and vice versa. We
now try to apply this scenario to our model. However, the
I symmetry is broken in our model, and the discussion in
Ref. [20] is not directly applied, Nevertheless, we can expect
the similar physics from continuity argument, by switching
on the I-symmetry breaking. For example, in Figs. 5(a1) and
5(b1), we show the Fermi surface on the (111) surface with
the surface terminated with the atoms, each of which has three
bonds along 11̄1̄, 1̄11̄, and 1̄1̄1. In this surface termination, the
top surface is terminated by atoms in the A sublattice, and the
bottom surface by atoms in the B sublattice. By adding bonds
(i.e., “dangling bonds”) along 111 directions to the topmost
atoms, we can switch from one surface termination to the other,
namely, the top and the bottom surfaces terminated by B and A
sublattices, respectively. The results are plotted in Figs. 5(a2)
and 5(b2), whose parameters are identical with (a1) and (b1),
respectively. We can see that the physics discussed in Ref. [20]
carries over to the present model as well. For example, the M1

and M3 points are inside the Fermi surfaces when the dangling
bonds are absent [Figs. 5(a1) and 5(b1)], but when the dangling
bonds are added, the Fermi surfaces around the M1 and M3

points disappear [Figs. 5(a2) and 5(b2)]. On the other hand,
there appears a new Fermi surface around the  point when
the dangling bonds are added. The remarkable phenomenon
occurs around the M2 point. The Fermi surface around the

M2 point in the STI phase in (b1) disappears in the plot (b2)
where the dangling bonds are present. This also affects the
neighboring WSM phase, as can be seen by comparing (a1)
and (a2). Among the Weyl nodes in (a1) the Fermi arcs arise
between W1+-W1− and between W2+-W2−. Meanwhile in
(a2), the Fermi arcs arise between W1+-W2− and between
W2+-W1−. Thus we have shown that the change of surface
termination exchanges the pairs of Weyl nodes, out of which
the Fermi arcs are formed.

This change of pairing of Weyl nodes by varying surface
terminations occurs in generic WSMs. The Dirac cones in
TIs depend on surface terminations, as shown in Ref. [20].
Because the WSM phase is next to the TI phase [14,16], the
dependence on the surface termination in general WSMs (with
TR symmetry) follows from that in the TIs, as we discussed in
this paper. When the surface termination is varied, the pairing
of the Weyl nodes will change, and the union of the pairing
of the Weyl nodes before and after the change of surface
termination forms a loop, which turns out to be the surface
Fermi surface in the TI phase around a particular TRIM. In
the present case, the pairing is {(W1+,W1−),(W2+,W2−)} or
{(W1+,W2−),(W2+,W1−)}, depending on the surface termina-
tion, and their union forms a loop around the M2 point. This
also implies that the pairing of the Weyl nodes for the Fermi
arc is not solely determined from bulk band structure, because
it depends on surface terminations.

V. CONCLUSION

In the present paper, we study dispersions of Fermi arcs
in the Weyl semimetal phase. We first construct a simple
effective model, describing the Weyl semimetal with two Weyl
nodes close to each other. We find that the dispersions of
Fermi-arc states for top- and bottom surfaces cross around the
Weyl point, and they have opposite velocities. These Fermi-arc
dispersions are tangential to the bulk Dirac cones around the
Weyl points. These results are confirmed by a calculation using
a tight-binding model with time-reversal symmetry but without
inversion symmetry. In this model calculations, we see that the
Fermi arcs gradually grow by changing a model parameter,
and that two Fermi arcs finally merge together to form a
single Dirac cone when the system transits from the Weyl
semimetal to the topological insulator phase. We also find that
by changing the surface termination, the pairing between the
two monopoles and two antimonopoles to make Fermi arcs is
switched. These results reveal an interesting interplay between
the surface and the bulk electronic states in Weyl semimetals
and topological insulators.
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APPENDIX: EFFECTIVE MODEL CLOSE TO
MONOPOLE-ANTIMONOPOLE PAIR CREATION OR

ANNIHILATION IN k SPACE

From the Hamiltonian (6) with (8), one can derive an effec-
tive model describing the WSM phase close to a monopole-
antimonopole pair creation/annihilation. The argument closely
follows that in Ref. [16]. We note that 	m is a control
parameter for the Hamiltonian, and our goal is to construct
a Hamiltonian where positive and negative 	m represents the
WSM and the bulk insulating phases, respectively. First, we
note that the determinant of the matrix M in (8) is zero, because
otherwise the gapless condition (7) guarantees existence of k
for both the positive and the negative values of 	m, meaning
that both the positive and negative sides of 	m are conducting
in the bulk. Hence we have detM = 0, and, therefore, the
matrix M has a unit eigenvector n1 with zero eigenvalue:
Mn1 = 0. In Ref. [16], an orthonormal basis {n1,n2,n3} is
constructed out of this unit vector n1. While we can, in
principle, proceed here as in Ref. [16], it leaves a number
of free parameters in the model. In fact, we can always set
n1 = t (1,0,0), n2 = t (0,1,0), n3 = t (0,0,1), by a rotation of k
coordinate axes. Then from (8) to the linear order in 	k and
m, we have

a = 	kyu2 + 	kzu3 + 	mN, (A1)

where ui = Mni (i = 2,3). The gap closes when a = 0, but it
cannot happen in general for 	m �= 0 because the three vectors
u2, u3, N are generally linearly independent. It is an artifact of

retaining only the linear terms in 	m and 	k. Thus we have
to include the next order in 	k and 	m. It turns out that the
only relevant term here is the quadratic term in 	kx [16] and
therefore we additionally retain only this term, to obtain

a = 	mN + 	kyu2 + 	kzu3 + (	kx)2u11, (A2)

where γ and v are positive constants. The gap closes when
this vector is zero. The solution can be written down explicitly
for generic cases, but instead we here introduce a simplifying
assumption:

u11 = −N =
⎛
⎝γ

0
0

⎞
⎠ , u2 =

⎛
⎝0

v

0

⎞
⎠ , u3 =

⎛
⎝0

0
v

⎞
⎠ . (A3)

Namely, u11 and N are parallel, and they are orthogonal to u2

and u3. Then we get

a =
⎛
⎝γ [(	p1)2 − m]

v	p2

v	p3

⎞
⎠ . (A4)

It is straightforward to see that the solution for this exists only
when m is positive. This means that positive m represents
the WSM phase while negative m means a bulk insulating
phase. Within the WSM phase, the Weyl nodes are given by
(	kx,	ky,	kz) = (±√

m,0,0). If we have not employed the
simplifying assumptions Eq. (A3), there arise terms in the
expressions of the Weyl nodes, which are linear in m [16].
Nevertheless, these terms are not the main focus of the paper,
and we discard them for simplicity for illustration of surface
state dispersions and evolutions.
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