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Atomistic modeling of coupled electron-phonon transport in nanowire transistors

Reto Rhyner* and Mathieu Luisier†
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Self-heating effects are investigated in ultrascaled gate-all-around silicon nanowire field-effect transistors
(NWFETs) using a full-band and atomistic quantum transport simulator where electron and phonon transport are
fully coupled. The nonequilibrium Green’s function formalism is used for that purpose, within a nearest-neighbor
sp3d5s∗ tight-binding basis for electrons and a modified valence-force-field model for phonons. Electron-phonon
and phonon-electron interactions are taken into account through specific scattering self-energies treated in the
self-consistent Born approximation. The electron and phonon systems are driven out of equilibrium; energy is
exchanged between them while the total energy current remains conserved. This gives rise to local variations
of the lattice temperature and the formation of hot spots. The resulting self-heating effects strongly increase
the electron-phonon scattering strength and lead to a significant reduction of the ON-current in the considered
ultrascaled Si NWFET with a diameter of 3 nm and a length of 45 nm. At the same time, the lattice temperature
exhibits a maximum close to the drain contact of the transistor.
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I. INTRODUCTION

The continued miniaturization of the transistor dimensions
according to Moore’s scaling law [1] has led to an impressive
evolution of the electronic device functionalities. By reducing
the size of the transistors a significant improvement of their
electrical performance is obtained. On the negative side, since
their supply voltage has stopped scaling as fast as their
dimensions, heat dissipation has kept increasing from one
generation to the other [2]. Consequently, the power density
of integrated circuits (ICs) is dangerously approaching the
150 W/cm2 limit up to which air can be used to cool the
device temperature [3]. The recent replacement of the two-
dimensional planar Si metal-oxide-semiconductor field-effect
transistors (MOSFETs) by three-dimensional FinFETs [4] has
momentarily stabilized the increase in heat dissipation and IC
power consumption. FinFETs indeed show a decrease of their
passive power component as compared to two-dimensional
(2D) MOSFETs due to the better electrostatic control provided
by their triple gate configuration.

In the future FinFETs might evolve towards ultra-
scaled gate-all-around nanowire field-effect transistors (GAA
NWFETs) [5–10]. Because of the superior electrostatic control
of a surrounding gate the electrical performance of GAA
NWFETs outperforms that of FinFETs. While the static and
dynamic aspects of NWFETs have received a lot of attention,
their electrothermal properties have not been thoroughly
investigated so far, although they might be the limiting factor
in such devices [11]! Nanowires exhibit a reduced thermal
conductivity as compared to bulk structures [12–14], which
represents a fertile ground for the formation of localized hot
spots and self-heating effects.

The narrow dimensions of ultrascaled NWFETs make it
difficult to measure an internal temperature distribution or
a power dissipation profile [15]. Hence, it is challenging to
experimentally investigate the influence of self-heating and
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hot spots on the characteristics of future nanotransistors. As
a technology enabler physics-based device simulations can
be used to support the experimental work and compute the
electrothermal properties of a given structure. However, the
selected simulation approach must go beyond the compu-
tationally efficient classical drift-diffusion (DD) [16] model
or the semiclassical Boltzmann transport equation (BTE)
[11,17]. It must correctly cover all the quantum mechanical
phenomena present at the nanoscale, especially tunneling,
energy quantization, and geometrical confinement. To account
for these effects and treat thermal transport at the phonon
level a full-band and atomistic device simulator capable of
handling both electrons and phonons is needed. There have
been some attempts to combine electron and phonon transport
in an atomistic basis, but they have been restricted to molecular
junctions with a small number of atoms [18,19].

A fully coupled electron and phonon transport approach
based on the nonequilibrium Green’s function formalism
(NEGF) is therefore proposed here. It can deal with three-
dimensional nanowire transistors composed of several thou-
sand atoms [20]. The electron properties are expressed in
a sp3d5s∗ tight-binding basis while the phonon ones are
described in a modified valence-force-field model. The NEGF
formalism provides a natural treatment of the electron-phonon
and phonon-electron interactions through scattering self-
energies solved in the self-consistent Born approximation.
These scattering self-energies drive both the electron and
phonon populations out of equilibrium and allow for the
consideration of coupled electrothermal transport phenomena
such as self-heating or localized hot spots. The resulting
improvement in the simulation accuracy can be compared to
that brought by the extension of the drift-diffusion approach
with an energy-balance and electrothermal model [21].

As an application, self-heating effects are investigated
in a Si GAA NWFET with a diameter of 3 nm, a total
length of 45 nm, and composed of more than 15 000 atoms.
These results are compared to the case where the electrons
are coupled to equilibrium phonons at room temperature.
It is shown that for reasonably high electron currents the
power dissipated by phonon emission leads to a significant
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increase of the phonon population through the entire device.
Furthermore the nonequilibrium phonon distribution causes a
strong enhancement of the electron-phonon coupling strength
and therefore a noticeable reduction of the electron current. To
better quantify the self-heating, an effective lattice temperature
is introduced and calculated in the selected NW structure. Its
spatial distribution demonstrates the formation of hot spots
that are clearly related to the shape of the phonon population.

The paper is organized as follows: In Sec. II, the simulation
approach is introduced, starting from the electron and phonon
NEGF equations, their interactions, and the calculation of
energy currents. Details about the numerical implementation
are given in the Appendix. In Sec. III the fully coupled
electron-phonon transport model is applied to a Si GAA
NWFET where self-heating effects are investigated and an
effective lattice temperature extracted. The paper is concluded
in Sec. IV and an outlook on possible future works is proposed.

II. THEORY

Electron and phonon transport are treated in the framework
of the NEGF formalism under steady-state conditions, i.e., all
the Green’s functions are solved in the energy (frequency)
domain and not as a function of the time. The targeted
structures are Si circular nanowires surrounded by an oxide
layer that does not take part in the transport calculations. The
electrons and phonons can only enter or escape the simulation
domain at both ends of the nanowire and not at its surface. In
particular, thermal losses through the oxide are not included.

A. Electron model

The NEGF equations for electrons are expressed in a
nearest-neighbor tight-binding basis where the lesser (G<),
greater (G>), and retarded (GR) Green’s functions have the
following form in a nanowire structure [22]:∑

l

((E−V(Rm))δlm−Hml−�RB
ml (E) − �RS

ml (E))GR
ln(E) = δmn,

(1)

G≷
nm(E) =

∑
l1l2

GR
nl1

(E)
(
�

≷B

l1l2
(E)+�

≷S

l1l2
(E)

)
GR†

ml2
(E), (2)

�R
nm(E) = 1

2
(�>

nm(E) − �<
nm(E))

+ iP
∫

dE′

2π

�>
nm(E′) − �<

nm(E′)
E − E′ . (3)

In Eq. (3), P denotes the Cauchy principal integral value.
The indices n,m,l,l1, and l2 run over all atomic positions.
The matrices E (diagonal, injection energy), V(Rn) (diagonal,
self-consistent electrostatic potential at position Rn), Hmn

(tight-binding matrix elements, on-site energy if m = n,
nearest-neighbor coupling between atom m and n otherwise),
�B

mn(E) (electron boundary self-energy, different from 0 only
if atoms m and n are directly connected to the semi-infinite
leads, computed as in Ref. [23]), �S

mn(E) (electron-phonon
scattering self-energy between atoms m and n modeling the
coupling to the phonon system), and Gnl(E) (electron Green’s
functions between atoms n and l) are of size Norb × Norb, where

Norb is the number of orbitals of the tight-binding model. In
this work a sp3d5s∗ basis without spin-orbit coupling is used to
describe the Si properties [24], i.e., Norb = 10. The definition
and the interpretation of the tight-binding Hamiltonian blocks
Hmn can be found in Ref. [25]. In this approach, each atom
is treated individually so that the size of the linear system
of equations in Eqs. (1) and (2) is equal to NA × Norb, NA

being the total number of atoms in the Si channel. Hard wall
boundary conditions are applied at the nanowire surface [26].

B. Phonon (thermal) model

For the phonons the NEGF equations look as follows [27]:

∑
l

(
Mmω2δlm − �ml−�RB

ml (ω) − �RS
ml (ω)

)
DR

ln(ω) = δmn,

(4)
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nm(ω) = 1
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(�>
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+ iP
∫

dω′

2π

�>
nm(ω′) − �<

nm(ω′)
ω − ω′ . (6)

Similar to the electron case the indices n,m,l,l1, and l2 run over
all the atomic positions. The matrices ω2 (diagonal, ω is the
phonon frequency), �mn (dynamical matrix block correspond-
ing to the second derivative of the harmonic potential with
respect to m and n), �B

mn(ω) (phonon boundary self-energy
between atom m and n, only different from 0 when m and n are
directly connected to the semi-infinite leads, computed with
the same “shift-and-invert” scheme as the electron boundary
self-energy [23], except that the structure of the involved
matrices changes due to the presence of beyond nearest-
neighbor connections), �S

mn(ω) (phonon-electron scattering
self-energy between atoms m and n describing the coupling
to the electron system), and Dnl(ω) (phonon Green’s functions
between atoms n and l) are of size 3 × 3 where 3 is the number
of degrees of freedom per atom, i.e., the number of directions
along which atoms can oscillate (x, y, and z). The entries of
the dynamical matrix �mn are approximated as

�ij
mn = d2V harm

dRi
mdR

j
n

, (7)

the second derivative of the valence-force-field (VFF) har-
monic potential energy V harm with respect to the i th and j th

components (x, y, and z) of the atom positions Rm and Rn.
For an accurate reproduction of the phonon band structure of
group IV semiconductors, the VFF potential energy V harm must
include at least four bond interactions. More information about
the construction of the dynamical matrix and the harmonic
force constants of Si can be found in Refs. [28,29]. Here
again, the NA atoms composing the simulated structures have
an individual treatment. The size of the system to be solved
in Eqs. (4) and (5) is therefore 3 × NA. The Si atoms at the
nanowire surface can freely oscillate.
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C. Electrothermal coupling

To derive the coupling between the electron and phonon
population it is convenient to start from the total Hamiltonian
operator in the second quantization,

Ĥ (t) =
∑
nm

∑
σ1σ2

Hσ1σ2
mn ĉ†mσ1

(t)ĉnσ2 (t)

+ 1

2

∑
n

∑
i

Mn
ˆ̇ui
n(t) ˆ̇ui

n(t)

+ 1

2

∑
nm

∑
ij

�ij
mnû

i
m(t)ûj

n(t)

+
∑
nm

∑
σ1σ2

∑
i

∇iH
σ1σ2
mn ĉ†mσ1

(t)ĉnσ2 (t)
(
ûi

n(t)−ûi
m(t)

)
.

(8)

In Eq. (8) the indices i, j , and σ refer to the real space
directions (x, y, and z) and the atomic orbitals (s, p, d,
and s∗), respectively. The operator ĉ

†
mσ1 (t) (ĉmσ1 (t)) creates

(annihilates) an electron with orbital σ1 at position Rm and
at time t , while ûi

m(t) is the phonon quantized displacement
operator along the direction i at time t and at Rm with
respect to the equilibrium atom position. The first term on
the right-hand side of Eq. (8) is directly included in the
tight-binding block Hnm in Eq. (1). The second (phonon-
kinetic) and third (phonon-harmonic) terms appear in the
dynamical matrix block �nm in Eq. (4). The last term in
Eq. (8) connects the electron and phonon populations and is
treated as a perturbation that is cast into the electron-phonon
(�) and phonon-electron (�) scattering self-energies. The
presence of lattice vibrations where atoms oscillate around
their equilibrium position R0

m → Rm(t) = R0
m + um(t) with

the displacement vector um(t) induces the electron-phonon
interactions [30,31]. To account for the atom oscillations the
tight-binding Hamiltonian matrix Hnm is expanded in a Taylor
series around the equilibrium bond vector (R0

n − R0
m) to the

lowest order in the oscillations un(t) − um(t):

Hmn ≈ H0
mn +

∑
i

δHmn

δ(R0
n,i − R0

m,i)

(
ui

n(t) − ui
m(t)

)

≈ H0
mn +

∑
i

∇iHmn

(
ui

n(t) − ui
m(t)

)
. (9)

The transformation of the second term on the right-hand-side
in Eq. (9) into the second quantization leads to the last operator
in Eq. (8), representing the electron-phonon coupling. It still
remains to determine an expression for the electron-phonon
and phonon-electron scattering self-energies in Eqs. (1), (2),
(4), and (5), respectively. To do that an equation of motion
is derived for the time-dependent electron Green’s function
Gσ1σ2

nm (t,t ′), which is proportional to the expectation value
〈ĉnσ1 (t)ĉ†mσ2 (t ′)〉, and for the time-dependent phonon Green’s
function D

ij
nm(t,t ′), which is proportional to 〈ûi

n(t)ûj
m(t ′)〉.

The Hamiltonian operator Ĥ (t) in Eq. (8) is used for that
purpose. As a next step the Wick’s decomposition technique
[32] is applied to truncate the arising infinite hierarchy of the
equations of motion, the expectation value of two operators
depending on three operators whose expectation value depends

on four operators, and so forth. Langreth’s theorem [33]
is recalled to replace the general Green’s functions with
arguments on a complex time contour by real-time retarded,
lesser, and greater Green’s functions. Finally, after Fourier
transforming the time difference t − t ′, the steady-state form
of the electron-phonon and phonon-electron scattering self-
energy is obtained. For a detailed description of the derivation,
see Appendix A. The greater or lesser components are defined
as

�≷σ1σ2
nm (E) = i

∑
l1l2

∑
ij

∑
σ3σ4

∫ ∞

−∞

d(�ω)

2π
∇iH

σ1σ3
nl1

×G
≷σ3σ4

l1l2
(E − �ω)∇jH

σ4σ2
l2m

(
D

≷ij

l1m
(ω)

−D
≷ij

l1l2
(ω) − D≷ij

nm (ω) + D
≷ij

nl2
(ω)

)
, (10)
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∑
l3l4

∑
σ1σ2σ3σ4
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(E)
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G≷σ1σ2
nm (�ω + E)∇jH
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G
≶σ4σ3

l4l3
(E)

−∇iH
σ1σ3
nl3

G
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l3l4
(�ω + E)∇jH

σ4σ2
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mn (E)

+∇iH
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nl3

G
≷σ3σ2

l3m
(�ω+E)∇jH

σ2σ4
ml4

G
≶σ4σ1

l4n
(E)

)
.

(11)

Because spin-orbit coupling is not considered in the present
calculations spin degeneracy is modeled via a factor two
labeled 2spin. The lesser self-energies �< and �< are related
to in-scattering processes, the greater ones �> and �> to
out-scattering [34]. More precisely, the lesser electron-phonon
self-energy �<(E) describes for positive phonon energies
(�ω > 0) the in-scattering of an electron from an occupied
state G<(E − �ω) at energy E − �ω into an empty state at E.
This happens through the absorption of an available phonon
with energy �ω whose occupancy is given by D<(ω). In the
case �ω < 0 since D

<ij
nm (−ω) = D

>ji
mn (ω) it follows that an

electron in the occupied state G<(E + |�ω|) at E + |�ω| is
transferred to E by a phonon emission. The probability of
such transition depends on the availability of an empty phonon
state at frequency ω, which is given by D>(ω). For the greater
electron-phonon self-energy �>(E) the situation is reversed,
a positive (negative) phonon frequency ω corresponding to
the out-scattering of an electron with energy E into a state
with energy E − �ω (E + |�ω|) through phonon emission
(absorption).

The phonon in- and out-scattering processes described by
�<(ω) and �>(ω) behave slightly differently. An electron
transition from an occupied state at energy E, G<(E), to an
empty state at E + �ω, G>(E + �ω), requires the absorption
of a phonon with energy �ω and contributes to a decrease
of the phonon population at this frequency (out-scattering).
In-scattering involves an electron transition from E + �ω to
E through phonon emission, locally increasing the phonon
count.

The scattering self-energies �(E) and �(ω) couple the
electron and phonon baths because �(E) depends on D(ω)
and �(ω) on G(E). It clearly appears that the absorption
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or emission of a phonon does not only affect the electron
population, but also the phonon one, which is not the case if
the � self-energies are ignored, as in most electron-phonon
scattering treatments, e.g., Refs. [35–38]. It is also important
to realize that the energy that is lost by the electrons does
not vanish, but is captured by the phonons so that energy
conservation is ensured. A careful verification of this property
is critical for the accuracy of the results.

Equations (1)–(6), (10), and (11) must be solved iteratively
until convergence between the Green’s functions and the
scattering self-energies is reached. This process is called
self-consistent Born approximation. There is a second self-
consistent loop between the Schrödinger and Poisson equa-
tions. Once convergence is achieved, the charge and current
densities as well as the distribution of the phonon population
are calculated as in Refs. [22,27]. Furthermore, the electron
and phonon energy currents flowing between the s th and s th + 1
slab (unit cell) of the simulated structures can be computed as

Iel,s→s+1 = 2spin

�

∑
n∈s

∑
m∈s+1

∑
σ1σ2

∫ ∞

−∞

dE

2π
E

(
Hσ1σ2

nm G<σ2σ1
mn (E)

−G<σ1σ2
nm (E)Hσ2σ1

mn

)
, (12)

and

Iph,s→s+1 = �

∑
n∈s

∑
m∈s+1

∑
ij

∫ ∞

0

dω

2π
ω

(
�ij

nmD<ji
mn (ω)

−D<ij
nm (ω)�ji

mn

)
. (13)

In Eqs. (12) and (13), the atom position Rn is located in
the s th slab and Rm in the s th + 1 one. A slab contains an
ensemble of N consecutive atomic layers along the direction
of the current flow. For example, N = 4 for transport along the
〈100〉 crystal axis or N = 6 for 〈111〉. The total energy current
must be conserved and constant through the entire device so
that Iel,s→s+1 + Iph,s→s+1 remains the same for all possible s.

D. Simplifications and implementation

As already mentioned in Refs. [22,27] the electron-phonon
(�) and the phonon-electron (�) self-energies in Eqs. (10)
and (11) are exact, but difficult to implement from a numerical
point of view. To investigate fully coupled electron-phonon
transport in realistic nanowire structures some simplifications
must be applied to the calculation of � and �.

According to the arguments in Ref. [22] the electron-
phonon scattering self-energies �nm(E) are limited to on-site
interactions only, i.e., n = m, but they remain blocks of size
Norb × Norb,

�≷σ1σ2
nn (E) = i

∑
l∈NN(n)

∑
ij

∑
σ3σ4

∫ ∞

−∞

d(�ω)

2π
∇iH

σ1σ3
nl

×G
≷σ3σ4

ll (E − �ω)∇jH
σ4σ2
ln

(
D

≷ij

ln (ω)

−D
≷ij

ll (ω) − D≷ij
nn (ω) + D

≷ij

nl (ω)
)
. (14)

Reducing Eq. (14) to its simplest expression means omit-
ting the nondiagonal phonon Green’s function Dnl(ω) and
Dln(ω). However, ignoring Dnl(ω) and Dln(ω) leads to an

underestimation of the electron-phonon coupling strength that
should be avoided.

Standard recursive Green’s function (RGF) algorithms [39]
are fully capable of producing Dnl(ω) and Dln(ω) where Rl

and Rn are nearest-neighbor positions, but the inclusion of
these terms complicates the situation. The additional difficulty
comes from the fact that to ensure energy conservation, beside
the diagonal phonon-electron self-energies,

�≷ij
nn (ω) = −i

∑
l

∑
σ1σ2σ3σ4

∫ ∞

−∞

dE

2π

(∇iH
σ3σ1
ln

×G≷σ1σ2
nn (�ω + E)∇jH

σ2σ4
nl G

≶σ4σ3

ll (E)

+∇iH
σ1σ3
nl G

≷σ3σ4

ll (�ω + E)∇jH
σ4σ2
ln G≶σ2σ1

nn (E)
)
,

(15)

also the nondiagonal phonon-electron self-energies �nl(ω)
must be taken into account,

�
≷ij

nl (ω) = i
∑

σ1σ2σ3σ4

∫ ∞

−∞

dE

2π

(∇iH
σ3σ1
ln

×G≷σ1σ2
nn (�ω + E)∇jH

σ2σ4
nl G

≶σ4σ3

ll (E)

+∇iH
σ1σ3
nl G

≷σ3σ4

ll (�ω + E)∇jH
σ4σ2
ln G≶σ2σ1

nn (E)
)
.

(16)

In Eq. (16), it is sufficient to consider the case where l is
a nearest neighbor of n. To calculate Dnl(ω) as needed in
Eq. (14), the RGF algorithm used to solve Eqs. (4) and (5) must
be extended to produce not only diagonal, but also nondiagonal
entries, as described in Ref. [40]. A closer look at the parallel
implementation of the NEGF equations is given in Appendix
B. Note finally that in Eqs. (3) and (6), the principal integral
term has been neglected in all the calculations reported in this
paper. It contributes only to an energy renormalization, but not
to relaxation or phase breaking and previous studies have also
shown that this simplification does not significantly affect the
device current [41,42].

III. RESULTS

A. Structure definition

As a simulation example, the Si GAA NWFET schematized
in Fig. 1 is considered. The diameter of the NW measures
3 nm and it is surrounded by an oxide layer with a thickness
tox = 3 nm of HfO2 characterized by a relative dielectric
constant εr = 20 for an equivalent oxide thickness EOT =
0.58 nm. The gate length Lg is set to 15 nm while the n-doped
(donor concentration, ND = 1 × 1020 cm−3) source and drain
extensions measure 15 nm. The drain current flows along
the x direction of the NWFETs, which is aligned with the
〈100〉 crystal axis; y and z are directions of confinement.
All the simulations are performed at room temperature (T0)
with a supply voltage VDD = 0.6 V. Room temperature means
that the electrons (phonons) flowing into the NWFETs from
the contacts obey an equilibrium Fermi-Dirac (Bose-Einstein)
distribution function characterized by a temperature T0 =
300 K. In contrast the outflowing electrons and phonons are
rearranged due to scattering and the electrostatic potential
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FIG. 1. (Color online) Schematic view of the n-type Si GAA
NWFET simulated in this work. The gate length Lg measures 15 nm
while the source and drain extensions have a length of 15 nm and
a donor doping concentration fixed to ND = 1 × 1020 cm−3. The Si
channel has a diameter of 3 nm and is surrounded by HfO2 dielectric
layers (εR = 20) of thickness tox = 3 nm. The transport direction
x is aligned with the 〈100〉 crystal axis; y and z are directions of
confinement. The total number of Si atoms in this structure is 16 019.

and therefore have a different distribution function and
temperature.

The lowest conduction sub-bands (CB) and the first phonon
branches of the free standing silicon nanowire are presented
in Figs. 2(a) and 2(b), respectively. Due to geometrical
confinement along the y and z directions the sixfold degenerate
CB minimum of bulk Si is splitted into a group of four
sub-bands at 
 (�4) and two single bands at kx = ±2.08 nm−1

(�2). The transport effective mass is equal to m∗ = 0.29 m0 for
the �4 group and m∗ = 0.92 m0 for the �2 bands. Quantum
confinement does not only increase the band gap value from
1.12 to 1.62 eV, but also the transport effective mass from 0.2 to
0.29 m0. For the phonons in Fig. 2(b) the group velocity of the
purely longitudinal (LA) and transverse (TA) acoustic modes
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FIG. 2. (Color online) (a) Electron band structure for the same Si
nanowire as in Fig. 1. The local minima are indicated with �4 and
�2 where the subscripts define the degeneracy of the corresponding
energy point. (b) Phonon band structure for the same Si nanowire
as in (a). The purely longitudinal (LA) and transverse acoustic (TA)
branches are indicated in the plot.
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FIG. 3. (Color online) (a) Energy- and position-resolved electron
current in the Si GAA NWFET of Fig. 1 at Vgs = 0.6 V and Vds =
0.6 V. Red indicates high current concentrations and green no current.
The dashed blue line refers to the position of the conduction band
edge. (b) Energy- and position-resolved phonon energy current at the
same bias conditions as in (a). Red indicates positive currents and
blue negative ones. The black dashed line refers to the location with
the highest phonon generation rate.

is reduced to 4600 m/s and 6300 m/s as compared to the bulk
values of 5421 m/s and 8905 m/s, respectively. The influence
of these modified electrothermal properties is investigated in
the next subsections. In particular, the lower group velocities
of the acoustic phonon branches make it difficult to evacuate
the dissipated heat from nanowires and cause a strong increase
in the lattice temperature.

B. Electrothermal Effects

To illustrate the electrothermal effects occurring in an
ultrascaled Si nanowire transistor, a specific bias point has
been selected with a gate-to-source voltage Vgs = 0.6 V and
a drain-to-source voltage Vds = 0.6 V. The standard scatter-
ing approach where the electrons interact with equilibrium
phonons characterized by a Bose-Einstein distribution and a
constant temperature T0 = 300 K, as in Ref. [22] is compared
to the fully coupled electron and phonon transport model
introduced in Sec. II. The electrical currents are labeled
Id,scatt in the standard case and Id,self in the fully coupled
one. At Vgs = 0.6 V and Vds = 0.6 V, Id,scatt = 9.32 μA and
Id,self = 6.06 μA. As explained later, the current reduction
comes from self-heating effects.

The energy- and position-resolved electron and phonon
currents are reported in Fig. 3 for the considered bias point with
self-heating. In subplot Fig. 3(a), red indicates high current
concentrations, green no current. It can be observed that
electrons lose energy while flowing from the source (left) to the
drain (right) contact. This happens through phonon emission.
As a consequence, phonons are created, as shown in subplot
(b) where red indicates a positive phonon energy current and
blue a negative one. The current magnitude is higher around
the bulk optical phonon frequency and around the frequency
that corresponds to the transverse acoustic plateau in bulk Si.
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energy current. (c) Same as in (a), but for the total energy current
(electron+phonon).

In nanowires, the emitted phonon has the same probability to
propagate towards the source or drain extension. Hence, the
current flow vanishes at the location with the highest phonon
generation rate. There, the formation of a hot spot is expected.

By looking at the electron and phonon energy currents,
as in Fig. 4, it is confirmed that (i) electrons lose energy
between source and drain and (ii) close to the end of the
nanowire, there is a position with no phonon current. The
fundamental difference between the standard scattering theory
of Ref. [22] and the coupled electron-phonon model presented
here becomes also visible in Fig. 4. The power dissipated
by electrons can only be captured by the phonons if the
latter are driven out of equilibrium. In this case, the total
(electron+phonon) energy current is conserved all along the
transport axis of the nanowire, as demonstrated in Fig. 4(c).
With equilibrium phonons, the energy lost by the electrons
simply vanishes and energy conservation is broken. The total
energy current is larger on the source than on the drain side. It
is worthwhile noting that the phonon energy current is positive
close to the end of the device, but negative in the rest of the
simulation domain.

Another important difference between equilibrium (pheq)
and nonequilibrium (phneq) phonons is shown in Fig. 5 where
the spatially resolved low frequency (�ω < 30 meV, labeled
“acoustic”) and high frequency (�ω > 30 meV, “optical”)
phonon populations are reported as well as the ratio between
phneq and pheq. It can be seen that the acoustic phonon
generation remains almost constant throughout the entire
nanowire structure while the emission of optical phonons is
larger close to the drain side. At the location of the highest
generation rate, the optical phonon population increases by
a factor of 10 as compared to the standard electron-phonon
scattering theory. Close to the source, there is a growth by
a factor 5 of the number of optical phonons. Since electrons
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FIG. 5. (Color online) (a) Low frequency (or acoustic) and
(b) high frequency (or optical) phonon population in the same Si
GAA NWFET as before. The blue solid lines refer to the standard
scattering case, the green dashed lines to the self-heating case.
(c) Growth factor for the optical (green dashed line) and acoustic
(blue solid line) phonon populations between self-heating and the
standard scattering theory.

interact more strongly with such phonons, as explained in
Ref. [22], a higher optical phonon population causes more
scattering events and therefore a reduction of the drain current
from Id,scatt = 9.32 μA down to 6.06 μA.

The energy- and position-resolved effective electron
generation rate Gel−eff(E,Rn), as depicted in Fig. 6,
gives a different perspective on the involved physics. It is
defined as Gel−eff(E,Rn) = 1

�
Tr[G>

nn(E) · �<
nn(E) − �>

nn(E) ·
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FIG. 6. (Color online) (a) Conduction band edge (solid blue line)
of the Si GAA NWFET at Vgs = 0.6 V and Vds = 0.6 V. The
source and drain regions as well as the energy location with the
highest spectral electron current [see Fig. 3(a), dashed black line]
are indicated. (b) Energy-resolved effective electron scattering rate in
the source region (Gsource

el−eff (E) ∼ ∑
n∈source

1
�

Tr[G>
nn(E) · �<

nn(E) −
�>

nn(E) · G<
nn(E)]). The dashed black line corresponds to the highest

spectral electron current as in (a). (c) Same as in (b), but in the drain
region.
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G<
nn(E)]. A positive (negative) value indicates that in- (out-)

scattering occurs at energy E and atom position Rn. In
other words, with Gel−eff(E,Rn) < 0, electrons with energy
E are annihilated at position Rn, with Gel−eff(E,Rn) > 0
electrons with energy E are created at Rn. In subplot
Fig. 6(b), Gel−eff(E,Rn) is shown in the source region
(0 nm � x � 15 nm). At energies 1.354 eV
� Eout � 1.424 eV corresponding to the maximum of
the electron flow, as shown in Fig. 3, electrons are annihilated
through phonon emission and optical phonon absorption.
Hence, in-scattering happens for 1.27 eV � Ein,1 � 1.353 eV
(phonon emission) and for 1.437 eV � Ein,2 � 1.595 eV
(optical phonon absorption).

The momentum of the scattered electrons might change
its direction so that the resulting back-scattering effect even-
tually reduces the current magnitude [43]. As indicated in
Fig. 6(a) back-scattering has a higher probability to occur
in combination with phonon absorption (50%). In the case
of phonon emission the potential distribution prevents the
back-scattered electrons from reaching the source contact and
reducing the current magnitude. Unless they absorb a phonon,
their only way out of the device is towards the drain side.
As mentioned earlier, in the nonequilibrium case, the optical
phonon population grows, thus increasing the in-scattering
probability in the energy range 1.437 eV � Ein,2 � 1.595 eV.
This causes the current reduction between Id,scatt and Id,self . In
Fig. 6(c), the out-scattering of high energy electrons through
phonon emission in the drain region (30 nm � x � 45 nm)
can be clearly identified. However, because the electrons have
passed the critical length of the transistor [43], no further
current reduction is induced by these scattering events.

C. Effective lattice temperature

To further quantify self-heating an effective lattice
temperature (Teff) is introduced. Because the considered
NWFET structure is ultrascaled and in a nonequilibrium
state the concept of temperature is questionable especially
its direct relation to the thermodynamical quantity. Based on
existing calculations of temperatures in molecular junctions
[44,45] two approaches are proposed here to evaluate Teff .
They are compared to each other to validate the effective
temperature concept. Both methods are intuitive measures of
an atomistic temperature and coincide with the temperature
in the thermodynamical limit.

(1) Population approach (T pop
eff ). In the first approach

the temperature of a Bose-Einstein distribution function is
adjusted to reproduce the same total phonon population
[N tot

ph (Rn)] as obtained with the NEGF calculations,

N tot
ph (Rn) =

∫ ∞

0

d(�ω)

2π
NBose(�ω,Teff)LDOS(ω,Rn)

2�ω

�2

=
∫ ∞

0

d(�ω)

2π
iTr[D<

nn(ω)]
2�ω

�2
, (17)

with the Bose-Einstein distribution function
NBose(�ω,Teff) = 1

e�ω/kB Teff −1
and the local density of

states LDOS(ω,Rn) = Tr[Ann(ω)] where Ann(ω) =
i[DR

nn(ω) − DA
nn(ω)] = i[D>

nn(ω) − D<
nn(ω)] is the spectral

function. The variable Rn defines the lattice site at which the
effective temperature Teff is extracted.

(2) Probe approach (T probe
eff ). The second method is inspired

by the fact that, experimentally, a temperature probe contacts
the structure until thermal equilibrium is reached, i.e., until
no net energy exchange occurs between the probe and the
structure. The temperature probe is modeled by artificial
phonon scattering self-energies �<>

nn (ω) chosen in such a way
that no net energy current flows at the lattice site Rn, i.e., in-
and out-scattering compensate each other,∫ ∞

0

d(�ω)

2π
�ωTr[�>

nn(ω) · D<
nn(ω)]

=
∫ ∞

0

d(�ω)

2π
�ωTr[D>

nn(ω) · �<
nn(ω)]. (18)

These calculations are done in a postprocessing step. First
the phonon Green’s functions are computed without the �

self-energies, as highlighted in the previous section. They are
then used to solve Eq. (18). For that purpose, the �<>

nn are
assumed to have the following form (similar to Ref. [44] and
Büttiker probes [46]):

�>
nn(ω) = −i (NBose(�ω,Teff) + 1) Ann(ω)vcoup, (19)

�<
nn(�ω) = −iNBose(�ω,Teff)Ann(ω)vcoup. (20)

The strength of the vcoup coupling between the probe and the
atomic system is not relevant since it cancels out in Eq. (18).
Again, the temperature of the Bose-Einstein distribution in
Eqs. (19) and (20) is adjusted to fulfill Eq. (18).

The value of the effective temperature T
pop

eff and T
probe

eff
averaged over a nanowire slab is reported in Fig. 7. For
the coupled electrothermal transport model the structure is
divided into 83 slabs and each slab contains 193 atoms.
Beside Vgs = 0.6 V the cases Vgs = 0.4 V and Vgs =
0.0 V are also presented. The good agreement between the
two computational approaches supports the definition of the
effective lattice temperature. Two important facts should be
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eff ) and
the probe approach (green dashed lines, T
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eff ). Three gate biases

Vgs = 0.0 V, Vgs = 0.4 V, and Vgs = 0.6 V are considered.
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(Id,self , green dashed-dotted line) currents are plotted. The influence
of self-heating is indicated by the double arrow. Note that ballistic
simulations do not converge at high gate voltages.

emphasized. At low Vgs , when the electrical current is too small
to generate phonons at a high rate, the temperature remains
constant and equal to 300 K in the entire nanowire structure. At
Vgs = 0.4 V and Vgs = 0.6 V, the effective lattice temperature
considerably increases and exhibits a peak close to the drain
side, in accordance with the results from Figs. 3(a), 3(b), and 5.
The peak location corresponds to the point where the phonon
energy current changes its sign and where the optical and
acoustic phonon populations reach a maximum. The values
of Teff at Vgs = 0.4 V and Vgs = 0.6 V indicate self-heating
effects. In the standard electron-phonon scattering theory, Teff

would not increase with Vgs , but always stay equal to 300 K.

D. Device characteristics

Finally, the intrinsic transfer characteristics of the investi-
gated Si GAA nanowire transistor are plotted in Fig. 8. Three
different currents can be identified: (i) in the ballistic limit of
transport (Id,bal), (ii) computed with the standard scattering
method (Id,scatt), and (iii) with self-heating (Id,self ). Despite
the short gate length of 15 nm Fig. 8 shows that the transistor
does not operate close to its ballistic limit, neither with an
equilibrium nor with a nonequilibrium phonon distribution.
Turning on electron-phonon scattering reduces the current
magnitude by about 45% at Vgs = 0.4 V as compared to the
ballistic case. Driving the phonons out-of-equilibrium further
decreases the current by another 30% at Vgs = 0.6 V, as
indicated by the double arrow in Fig. 8. Hence, the total current
reduction is roughly 50% in the presence of self-heating.

Two other physical quantities can be extracted from the
coupled electrothermal transport simulations: the electrical
power dissipated as heat and the maximum effective lattice
temperature in the nanowire. The first one is defined as the
difference between the electrical energy current at source and
drain. The second corresponds to the lattice temperature at
the location with the highest phonon generation rate. Both
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FIG. 9. (Color online) Evolution of the dissipated power (a) and
the maximum effective temperature (b) as a function of Vgs for the Si
GAA NWFET of Fig. 1.

quantities are shown in Fig. 9 as a function of Vgs . The
threshold voltage at which the dissipated power and the
maximum temperature start to rapidly increase, Vgs = 0.3 V,
is directly related to the point in Fig. 8 where self-heating
starts to affect the current magnitude. After this turn-on, the
dissipated power almost linearly increases up to Vgs = 0.6 V
where it reaches a value larger than 1 μW. This, combined with
an effective lattice temperature close to 500 K, suggests that
thermal management will be a critical issue in future integrated
circuits made of GAA NWFETs.

IV. CONCLUSION AND OUTLOOK

Fully coupled electron-phonon transport has been treated
in a full-band and atomistic device simulator based on the
nonequilibrium Green’s function formalism formulated in a
nearest-neighbor tight-binding basis for electrons and in a
modified valence-force-field basis for phonons. In this
approach it has been possible to drive not only the electrons but
also the phonons out-of-equilibrium to investigate self-heating
effects in a Si gate all-around nanowire transistor with a
diameter of 3 nm, a total length of 45 nm, and composed
of more than 15 000 atoms. The simulation results have been
compared to the case where electrons interact with equilibrium
phonons characterized by a constant temperature of 300 K. It
has been found that self-heating significantly increases the
lattice temperature that can be mapped to the nonequilibrium
phonon population. In addition, the higher phonon population
has caused a strong enhancement of the electron-phonon cou-
pling strength and a strong reduction of the electron current. It
is therefore essential to take thermal management into account
to design future electronic circuits relying on GAA NWFETs.

As future works, the influence of anharmonic phonon-
phonon scattering on self-heating effects should be inves-
tigated. The optical phonon population might artificially
accumulate in nanowires due to the missing decay of high
frequency particles into low frequency ones. The redistribution
of the phonon population towards more acoustic components
is expected to decrease the electron-phonon coupling strength
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close to the source contact and lead to a slight increase of
the current. Currently phonons can only escape at both ends
of the nanowire and not at its surface, which could induce
an overestimation of the lattice temperature values. The effect
of the poor thermal conductivity of the surrounding oxide is
partially compensated by the strongly reduced oxide thickness
in these ultrascaled nanostructures. Hence, thermal losses at
the gate contacts probably affect the temperature distribution
and will be accounted for in a future study.
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APPENDIX A: SCATTERING SELF-ENERGIES

To calculate the scattering self-energies the starting point is the contour-ordered Green’s function in the interaction picture
because a systematic perturbation theory can be applied to it [33,39]:

Gσ1σ2
nm (τ,τ ′)

[
Dij

nm(τ,τ ′)
] = −i

�

〈
TCe

−i
�

∫
C

dτ ′′Ĥint(τ ′′)ĉnσ1 (τ )
[
ûi

n(τ )
]
ĉ†mσ2

(τ ′)
[
ûj

m(τ ′)
] 〉

,

(A1)

where G [D] is the electron [phonon] Green’s function, TC the contour ordering operator, C describes the Keldysh contour, and
the brackets 〈· · · 〉 indicate the nonequilibrium ensemble average [47]. The Hint(τ ) term is the not-exactly solvable perturbation
Hamiltonian according to the last term in Eq. (8):

Ĥint(τ
′′) =

∑
nm

∑
σ1σ2

∑
i

∇iH
σ1σ2
mn ĉ†mσ1

(τ ′′)ĉnσ2 (τ ′′)
(
ûi

n(τ ′′) − ûi
m(τ ′′)

)
. (A2)

The second quantized electron creation ĉ
†
nσ (τ ′′) and annihilation ĉnσ (τ ′′) operators as well as the quantized lattice displacement

ûi
n(τ ′′) evolve according to the corresponding unperturbed Hamiltonian terms also described in Eq. (8). The noninteracting

electron [phonon] Green’s function can therefore be defined as

G0,σ1σ2
nm (τ,τ ′)

[
D0,ij

nm (τ,τ ′)
] = −i

�

〈
TCĉnσ1 (τ )

[
ûi

n(τ )
]
ĉ†mσ2

(τ ′)
[
ûj

m(τ ′)
]〉
. (A3)

The scattering self-energies result from the expansion of the exponential in Eq. (A1) to the second order. The first-
order term vanishes since the expectation value of an odd number of quantized lattice displacements is zero, 〈ui

n(τ )〉 =
〈ui1

n1
(τ1)ui2

n2
(τ2)ui3

n3
(τ3)〉 = 0. The irreducible scattering self-energy functional can be identified by writing the Dyson equation for

the electron,

Gnm(τ,τ ′) = G0
nm(τ,τ ′) +

∫
C

dτ1

∫
C

dτ2

∑
n1m1

G0
nn1

(τ,τ1)�n1m1 (τ1,τ2)Gm1m(τ2,τ
′), (A4)

and phonon Green’s function,

Dnm(τ,τ ′) = D0
nm(τ,τ ′) +

∫
C

dτ1

∫
C

dτ2

∑
n1m1

D0
nn1

(τ,τ1)�n1m1 (τ1,τ2)Dm1m(τ2,τ
′). (A5)

In the self-consistent Born approximation the noninteracting Green’s functions occurring in the expressions for the scattering
self-energies are replaced by the full Green’s functions as will be shown in the next section.

1. Electron-Phonon Scattering Self-Energy (�)

To evaluate the electron-phonon scattering self-energy � in Eq. (A4) the exponential in Eq. (A1) is expanded up to the second
order,

Gσ1σ2
nm (τ,τ ′) = −i

�

〈
ĉnσ1 (τ )ĉ†mσ2

(τ ′)
〉 + 1

2

(−i

�

)3 ∫
C

dτ1

∫
C

dτ2〈Ĥint(τ1)Ĥint(τ2)ĉnσ1 (τ )ĉ†mσ2
(τ ′)〉. (A6)

Note that for brevity the contour-ordering operator TC is omitted. By comparing Eqs. (A4) and (A6) it appears that the first term
is equal to G0,σ1σ2

nm (τ,τ ′), while the second one contains information about the scattering self-energy. By replacing Ĥint(τ ′′) with
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its value in Eq. (A2), the following expression is obtained:

1

2

(−i

�

)3 ∫
C

dτ1

∫
C

dτ2

∑
n1m1n2m2

∑
σ3σ4σ5σ6

∑
ij

〈∇iH
σ3σ4
m1n1

∇jH
σ5σ6
m2n2

ĉ†m1σ3
(τ1)ĉn1σ4 (τ1)ĉ†m2σ5

(τ2)ĉn2σ6 (τ2)ĉnσ1 (τ )ĉ†mσ2
(τ ′)

〉

× 〈(
ûi

n1
(τ1)ûj

n2
(τ2) − ûi

n1
(τ1)ûj

m2
(τ2) − ûi

m1
(τ1)ûj

n2
(τ2) + ûi

m1
(τ1)ûj

m2
(τ2)

)〉
. (A7)

Since the electron and phonon operators commute with each other, it is not important how they are arranged with respect to each
other. To evaluate the expectation values 〈· · · 〉 Wick’s decomposition technique [32] is used and only the relevant connected
terms are kept

1

2

(−i

�

)3 ∫
C

dτ1

∫
C

dτ2

∑
n1m1n2m2

∑
σ3σ4σ5σ6

∑
ij

(∇iH
σ3σ4
m1n1

∇jH
σ5σ6
m2n2

〈
ĉnσ1 (τ )ĉ†m1σ3

(τ1)
〉〈
ĉn1σ4 (τ1)ĉ†m2σ5

(τ2)
〉〈
ĉn2σ6 (τ2)ĉ†mσ2

(τ ′)
〉

+∇iH
σ3σ4
m1n1

∇jH
σ5σ6
m2n2

〈
ĉnσ1 (τ )ĉ†m2σ5

(τ2)
〉〈
ĉn2σ6 (τ2)ĉ†m1σ3

(τ1)
〉〈
ĉn1σ4 (τ1)ĉ†mσ2

(τ ′)
〉)

× 〈(
ûi

n1
(τ1)ûj

n2
(τ2)

〉 − 〈
ûi

n1
(τ1)ûj

m2
(τ2)

〉 − 〈
ûi

m1
(τ1)ûj

n2
(τ2)

〉 + 〈
ûi

m1
(τ1)ûj

m2
(τ2)

)〉
. (A8)

The contraction of the quantized lattice displacements is straight forward, whereas for the electron operators only two connected
pairings remain. They can be merged together by interchanging the indices and introducing a factor two. Recalling the definition
of the unperturbed Green’s function in Eq. (A3) yields

i�

∫
C

dτ1

∫
C

dτ2

∑
n1m1n2m2

∑
σ3σ4σ5σ6

∑
ij

G0,σ1σ3
nm1

(τ,τ1)∇iH
σ3σ4
m1n1

G0,σ4σ5
n1m2

(τ1,τ2)∇jH
σ5σ6
m2n2

G0,σ6σ2
n2m

(τ2,τ
′)

× (
D0,ij

n1n2
(τ1,τ2) − D0,ij

n1m2
(τ1,τ2) − D0,ij

m1n2
(τ1,τ2) + D0,ij

m1m2
(τ1,τ2)

)
. (A9)

By comparing Eqs. (A4) and (A9) the electron-phonon scattering self-energy can be identified as

�σ1σ2
nm (τ1,τ2) = i�

∑
n1m1

∑
σ3σ4

∑
ij

∇iH
σ1σ3
nn1

Gσ3σ4
n1m1

(τ1,τ2)∇jH
σ4σ2
m1m

× (
Dij

n1m
(τ1,τ2) − Dij

n1m1
(τ1,τ2) − Dij

nm(τ1,τ2) + Dij
nm1

(τ1,τ2)
)
. (A10)

The noninteracting Green’s functions can be replaced by the full Green’s functions due to the implicit inclusion of higher order
perturbation terms in Eq. (A4). To replace the complex-time contour arguments by real-time arguments Langreth’s theorem [33]
C(τ1,τ2) = A(τ1,τ2)B(τ1,τ2) → C≷(t1,t2) = A≷(t1,t2)B≷(t1,t2) is used. The consideration of steady-state situations allows for
the Fourier transformation of the time difference t1 − t2. The electron-phonon scattering self-energy finally takes the following
form:

�≷σ1σ2
nm (E) = i

∑
n1m1

∑
ij

∑
σ3σ4

∫
d(�ω)

2π
∇iH

σ1σ3
nn1

G≷σ3σ4
n1m1

(E − �ω)∇jH
σ4σ2
m1m

(
D≷ij

n1m
(ω) − D≷ij

n1m1
(ω) − D≷ij

nm (ω) + D≷ij
nm1

(ω)
)
. (A11)

2. Phonon-Electron Scattering Self-Energy (�)

For the calculation of the phonon-electron self-energy � in Eq. (A5) the same approach as in the last section can be followed.
However, a different solution based on the energy conservation condition is proposed here. The energy lost (gained) by the
electrons [+(−)Qe] must be absorbed (emitted) by the phonons [−(+)Qph] or in other words Qe and Qph must compensate each
other Qe + Qph = 0 with

Qe = 1

�

∑
nm

∫
dE

2π
ETr(�>

nm(E) · G<
mn(E) − G>

nm(E) · �<
mn(E)), (A12)
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and

Qph = 1

�

∑
nm

∫
d(�ω)

2π
�ωTr(�>

nm(ω) · D<
mn(ω) − D>

nm(ω) · �<
mn(ω)). (A13)

Each element composing the out-scattering rate ETr(�>
nm(E) · G<

mn(E)) in Eq. (A12) has a corresponding element in the
in-scattering rate �ωTr(D>

nm(ω) · �<
mn(ω)) in Eq. (A13) so that they cancel each other:

1

�

∑
nm

∑
σ1σ2

∫
dE

2π
E

⎛
⎝i

∑
n1m1

∑
ij
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d(�ω)

2π
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(
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(ω)

−D>ij
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(ω) − D>ij
nm (ω) + D>ij

nm1
(ω)

)⎞⎠ G<σ2σ1
mn (E)

= 1

�

∑
n2m2

∑
i1j1

∫
d(�ω′)

2π
�ω′(D>i1j1

n2m2
(ω′)�<j1i1

m2n2
(ω′)

)
. (A14)

The same relationship can be established between the in-scattering rate in Eq. (A12) and the out-scattering rate in Eq. (A13),
leading to the following expression for the phonon-electron scattering self-energies:

�≷ij
nm (ω) = 2spin · i

∑
n1m1

∑
σ1σ2σ3σ4

∫
dE

2π
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(�ω + E)∇jH
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m1m
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mn (E)
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mm1
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(E)
)
. (A15)

APPENDIX B: NUMERICAL IMPLEMENTATION

The computational burden is too large to simulate the
device described in Sec. III on a single processor or on
small clusters. The results presented in this work are obtained
by using NCPU = 4500 cores. The NCPU are distributed
according to the number of electron energy (Nel

E ∼ 1000)
and phonon frequency (Nph

ω ∼ 120) points that are retained
in Eqs. (1)–(6), respectively. This means that around 90%
of the cores solve the electron system and 10% the phonon
one. First the ballistic solution is calculated by setting
the scattering self-energies to zero. Then, at the beginning
of each self-consistent Born iteration, the CPUs dealing
with phonon Green’s functions send their D<>(ω) to the
CPUs dedicated to the electrons. The latter ones solve
Eqs. (14)–(16) to evaluate �<>(E) and �<>(ω) and then send
the phonon-electron self-energies �<>(ω) back to the phonon
CPUs.

The scaling performance of the fully coupled approach
(self-heating) described in this work and of the standard
scattering approach of Ref. [22] is reported in Fig. 10 for a
reduced nanowire system with d = 3 nm, 7141 atoms, Nel

E =
895, and N

ph
ω = 31. It is shown that the simulation time for

one Born iteration in the fully coupled case is about two times
longer than in the standard scattering case where no �<>(ω)
are calculated. Note that in the self-heating simulations more
cores need to be allocated (∼ 120) than in the standard
scattering case to be able to simultaneously solve the electron
and phonon system. As a consequence, the scaling behavior

of the fully coupled simulation approach is not as good as
in the standard case due to the increase of interprocessor
communication.
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~ 2x

FIG. 10. (Color online) Parallel execution time on a CRAY XE6
for the calculation of one self-consistent Born iteration in the standard
scattering (blue solid line with circles), as in Ref. [22], and the self-
heating case (dashed green line with squares), i.e., the solution of
Eqs. (1)–(6) and (14)–(16) for all electron energies (N el

E ) and phonon
(N ph

ω ) frequencies. The test structure is a nanowire with d = 3 nm, a
total length of 20 nm, N el

E = 895, N ph
ω = 31, and a total number of

atoms NA = 7141.
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