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Dynamics and stability of dark solitons in exciton-polariton condensates
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We present a comprehensive analytical theory of localized nonlinear excitations—dark solitons—supported
by an incoherently pumped, spatially homogeneous exciton-polariton condensate. We show that, in contrast to
dark solitons in conservative systems, these nonlinear excitations “relax” by blending with the background at a
finite time, which critically depends on the parameters of the condensate. Our analytical results for trajectory and
lifetime are in excellent agreement with direct numerical simulations of the open-dissipative mean-field model.
In addition, we show that transverse instability of quasi-one-dimensional dark stripes in a two-dimensional
open-dissipative condensate demonstrates features that are entirely absent in conservative systems, as creation
of vortex-antivortex pairs competes with the soliton relaxation process.
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I. INTRODUCTION

Bose-Einstein condensates of (exciton-)polaritons created
in semiconductor microcavities in a strong light-matter inter-
action regime are in the focus of exciting new research area,
where quantum and nonequilibrium properties can be studied
within the same physical system [1,2]. The nonequilibrium,
open-dissipative behavior is intrinsic to this system since
polaritons are subject to rapid radiative decay, and their pop-
ulation is maintained due to an optical pumping. On the other
hand, the ability of these bosoinc quasiparticles to condense
into a macroscopically occupied quantum coherent state has
prompted vigorous investigations of analogies between the po-
lariton condensate and intrinsically equilibrium, conservative
condensates of atomic gases, which exist under conditions of
careful isolation from the environment [3–5]. Many features of
atomic BEC have been successfully demonstrated in polariton
condensates, such as long-range coherence [6,7], superfluid
flow [8,9], and quantized vortices [10–12].

Nonlinearity of the polariton condensate is inherited from
strongly and repulsively interacting excitons. This results in
the nonlinear behavior akin to that of matter waves (atomic
condensates) with a positive scattering length or optical waves
in a nonlinear defocusing media. Consequently, the most basic
form of a nonlinear collective excitation in this system is a dark
soliton characterized by a density dip and an associated phase
gradient (see Fig. 1). So far, dark solitons and their dynamics
have been observed [13–16] and analyzed [17,18] mostly in
the polariton condensates coherently and resonantly driven by
a pumping laser. Formation and behavior of dark solitons in an
incoherently pumped polariton condesate with a spontaneously
established coherence, has not been explored in experiments
so far, although experimentally feasible schemes for their
generation upon scattering of the condensate on a defect [19]
or a potential step [20] have been proposed. In addition,
several numerical studies [20–22] suggest that analogies
between dark solitons in polariton condensates and those in
matter or optical waves [23–25] cannot be taken too far. The
open-dissipative nature of polariton condensates lends unique,
and so far little explored, features to localized nonlinear
excitations.

The purpose of this paper is twofold. First, we analyze, both
analytically and numerically, dynamics of one-dimensional
dark solitons in a nonresonantly excited, spatially homo-
geneous polariton condensate. By taking into account the
coupling between a condensate and an incoherent reservoir
of “hot” polaritons, we obtain a number of analytical results
that elucidate the influence of open-dissipative nature of the
system on the behavior of localized nonlinear excitations. In
particular, we show that dark solitonlike structures have a finite
lifetime, and do not remain spatially localized. Secondly, we
perform a numerical study of the stability of the quasi-one-
dimensional dark soliton stripes to transverse perturbations in
a two dimensional system. We show that the hallmark of dark
solitons in two- (or three-) dimensional optical and matter
waves, the so-called snake instability leading to formation
of vortex pairs [26,27], can be completely inhibited in two-
dimensional open-dissipative condensates.

The paper is organized as follows. In Sec. II, we consider
the mean-field model of a polariton condensate subject to
incoherent off-resonant optical excitation, discuss the ho-
mogeneous steady state and introduce appropriate scalings.
In Sec. III, we revisit the modulational stability analysis of
the homogeneous state by means of Bogoliubov-de Gennes
approach, and derive a simple analytical expression for the
boundary of a modulationally unstable region in the parameter
space. Next, in Sec. IV, we construct general asymptotic theory
for the dynamics of dark solitonic excitations supported by
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FIG. 1. Schematics of the condensate density, |�|2, and phase of
the condensate order parameter (macroscopic wave function), arg(�),
corresponding to a stationary one-dimensional dark soliton (solid) and
a moving “gray” soliton (dotted line).
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a homogeneous condensate. By comparison with numerical
simulations, we demonstrate validity of the analytical theory in
the regimes of weak and strong pumping. Section V focuses on
transverse instability of quasi-one-dimensional dark solitons in
a two-dimensional condensate and on the effect of competing
time scales between the processes of soliton relaxation and
instability development. Finally, we conclude with a brief
summary of our results.

II. THE MODEL

Within a mean-field description, the macroscopic wave
function, �(�r,t), of an incoherently, far off-resonantly
pumped polariton condensate is governed by a generalized
open-dissipative Gross-Pitaevskii (GP) equation coupled to
a rate equation for a density, nR(�r,t), of an uncondensed
reservoir of high-energy near-excitonic polaritons [2,28]:

i�
∂�

∂t
=

[
− �

2

2M
� + U (�r,t) + i�

2
(RnR − γC)

]
�, (1)

∂nR

∂t
= −(γR + R|�|2)nR + P (�r,t), (2)

where U (�r,t) = gC |�|2 + gRnR is an effective potential,
combining blueshifts due to polariton condensate interactions
and polariton-reservoir interactions. Here, gC is the strength
of nonlinear interaction of polaritons, gR is the condensate
coupling to the reservoir, R stands for the stimulated scattering
rate, and γC is the rate of loss of condensate polaritons. High-
energy, excitonlike polaritons are injected into the reservoir by
laser pump P(�r,t) and relax at the reservoir loss rate γR .

We recall that under continuous-wave (cw) and spatially
uniform pumping, P (�r,t) = P0 = const, the steady-state so-
lution is sought in the form [2,28]

�(�r,t) = �0 =
√

n0
Ce−i(E0/�)t , nR(�r,t) = n0

R, (3)

where quantities n0
C and n0

R are constant. For a weak pump P0,
the condensate is absent n0

C = 0, while the reservoir density
is proportional to the pump intensity n0

R = P0/γR . Exact
balance of loss and gain is achieved at the threshold value
Pth = γRγC/R. Above this threshold, when P0 > Pth, the
solution (3) with n0

C = 0 becomes unstable and the condensate
appears. The steady homogeneous condensate and reservoir
densities are expressed as follows:

n0
C = (P0 − Pth)/γC, n0

R = nth
R = γC/R (4)

and the condensate energy is

E0 = gCn0
C + gRnth

R. (5)

The model in (1) and (2) can be rewritten in a dimensionless
form by using the scaling unit of healing length rh = �/(Mcs)
and time τ0 = rh/cs , where cs = (gCn∗

C/M)1/2 is a local sound
velocity in the condensate, and n∗

C is a characteristic value
of the condensate density. The dimensionless equations for
the normalized condensate wave function �̄ = �(n∗

C)−1/2 and
reservoir density n̄R = nR/n∗

C take the form

i
∂�̄

∂t
=

[
− 1

2
� + Ū + i

2
(R̄n̄R − γ̄C)

]
�̄, (6)

∂n̄R

∂t
= −(γ̄R + R̄|�̄|2)n̄R + P̄ , (7)

where Ū = U/(gCn∗
C), P̄ = �P/(gCn∗2

C ), and we omitted the
bars over the dimensionless time variable. The corresponding
dimensionless parameters are

ḡR = gR

gC

, γ̄C = �γC

gCn∗
C

= γC

γR

γ̄R, R̄ = �R

gC

. (8)

For a cw background, it is convenient to choose n∗
C ≡ n0

C .
Thus the homogeneous steady state (3)–(5) can be rewritten as

�̄0 = exp(−iω̄0t), ω̄0 = 1 + ḡRn̄th
R, n̄th

R = γ̄C/R̄. (9)

Our aim for the rest of this work is to construct a theory for
propagation and stability of nonlinear waves—finite amplitude
collective excitations (such as dark solitons, quantum vortices,
etc.) of a homogeneous condensate under incoherent uniform
pumping. To this end, we consider perturbations of the
condensate wave function and the reservoir density in the
following general form:

�̄ = �̄0(t)ψ(�r,t), n̄R = n̄th
R + mR(�r,t). (10)

The perturbations ψ(�r,t) and mR(�r,t) are governed by the
dynamical equations:

i
∂ψ

∂t
=

[
− 1

2
� − (1 − |ψ |2) + ḡRmR + i

2
R̄mR

]
ψ,

(11)

∂mR

∂t
= γ̄C(1 − |ψ |2) − γ̄RmR − R̄|ψ |2mR, (12)

where γ̄R = R̄/(P0/Pth − 1).

III. STABILITY OF A HOMOGENEOUS CONDENSATE

Before analyzing dynamics of collective excitations, it is
essential to establish that the homogeneous background itself
is stable with respect to weak perturbations [2,28,29]. Here, we
revisit known results on spectra of elementary excitations for
the open-dissipative model and derive a new analytical crite-
rion for modulational stability of a homogeneous background.

The system of equations (11) and (12) has a solution |ψ |2 =
1, mR =0, corresponding to a homogeneous distribution of the
condensate density nC and the polariton reservoir density nR .
The linear stability of this stationary state can be analyzed by
means of the Bogoliubov-de Gennes approach [3,4], by intro-
ducing small perturbations of the homogeneous background
of the form [28]

ψ = 1 + ε
∑

�k
[a�ke

(−iωt+i�k�r) + b�ke
(iω∗t−i�k�r)], (13)

mR = ε
∑

�k
[c�ke

(−iωt+i�k�r) + c∗
�ke

(iω∗t−i�k�r)], (14)

where ε � 1 is a small parameter. Substituting (13), (14)
into (11), (12) and keeping terms linear in ε, we obtain the
eigenvalue problem for elementary excitations [28]. Solution
of the eigenvalue problem yields the dispersion relation, which
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is a cubic equation with respect to ω(k):

ω3 + i(γ̄R + R̄)ω2 − (
ω2

B + R̄γ̄C

)
ω = f (k), (15)

where f (k) = i(γ̄R + R̄)ω2
B − iḡRγ̄Ck2, and ω2

B(k) = k2 +
k4/4 is the standard Bogoliubov dispersion relation for an
equilibrium (atomic) condensate [3,4,29].

In general, the three dispersion branches defined by Eq. (15)
are complex: ωj (k) = 
j + i�j , (j = 1,2,3), and in order
for a cw background to be stable, the condition �j (k) � 0
should be satisfied for all j and k. This condition is always
fulfilled for k = 0 and k → ∞. Indeed, at k = 0, one of
the roots of Eq. (15) is zero, and the other two roots have
negative imaginary parts. The former is associated with a
Goldstone mode that can be understood as a slow rotation
of the condensate phase [2,28]. In the opposite limit, k → ∞,
one can show that all three dispersion branches have negative
imaginary parts: ω1(k) ≈ −i(γ̄R + R̄), ω2,3(k) ≈ ±ωB(k) −
iγ̄CR̄k2/2ω2

B(k). Thus all perturbations decay in time.
If the imaginary part of the eigenfrequency becomes posi-

tive, �j (k) > 0 in some range k ∈ [kj

1 ,k
j

2 ], the homogeneous
condensate is modulationally (dynamically) unstable, since
its density modulations grow in time exponentially. The
boundaries of the instability domain can be found from Eq. (15)
by noting that for �j to change sign, two equalities should be
satisfied simultaneously:



(

2 − ω2

B − R̄γ̄C

) = 0, (16)

(γ̄R + R̄)
2 − (γ̄R + R̄)ω2
B + ḡRγ̄Ck2 = 0. (17)

Since all the parameters of our physical system are positive and
real, this is possible only if 
 = 0, i.e., for a purely imaginary
dispersion branch ω1(k), as shown in Fig. 2. Furthermore,
k1

1 ≡ 0, and the other boundary

k1
2 = 2

√
ḡRγ̄C

γ̄R + R̄
− 1 (18)

exists only if ḡRγ̄C > (γ̄ R + R̄). If this condition is satisfied,
the perturbation with wave number k from the interval [k1

1,k
1
2]

grows, and a homogeneous condensate is modulationally
unstable. In our original variables, the stability criterion for
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FIG. 2. (Color online) Example of (a) real and (b) imaginary
parts of dispersion spectrum for excitations of a cw condensate with
k > 0. A purely imaginary dispersion branch ω1(k) = i�1(k) crosses
into the positive half-plane at the critical points k1

1 and k1
2 . Parameters

are γR/γC = 0.5, gR/gC = 2, P0/Pth = 2.5.

the cw background takes the form

P0

Pth
>

gR

gC

γC

γR

. (19)

Within the framework of our open-dissipative model, the
inequality (19) means that a homogeneous steady state of
a polariton condensate is stable for all values of the pump
intensity P0 > Pth only under the condition that

γCgR

γRgC

< 1. (20)

If this relation is violated, there is a range Pth < P0 <

(gRγC/gCγR)Pth, where a homogeneous background is modu-
lationally unstable. As will be shown in Sec. IV B, this regime
corresponds to effectively attractive nonlinearity in the open-
dissipative model with weak pumping. Consequently, growth
of the spatial density modulations may lead to formation
of steady states with modulated density, as discussed in
Ref. [28].

In what follows, we restrict our consideration to the
dynamics of nonlinear waves propagating on a modula-
tionally stable condensate background. Therefore we make
sure that the parameters of the system always satisfy the
condition (20).

IV. DYNAMICS OF ONE-DIMENSIONAL DARK SOLITONS

The simplest nonlinear excitation supported by a spatially
homogeneous modulationally stable condensate with repulsive
interparticle interactions is a one-dimensional (1D) dark
soliton—a localized dip in the condensate density with an as-
sociated phase gradient (Fig. 1). Such structures may exist in a
condensate with a reduced dimensionality, e.g., that contained
in a microwire. Soliton “stripes” in a two-dimensional (2D)
condensate, spatially uniform along one of the dimensions, can
also be treated as quasi-one-dimensional structures. Strictly
speaking, as we show below, the main features of a soliton,
e.g., propagation through the supporting media without any
change in shape or velocity are absent in open-dissipative
condensates. The solitonic nature of the nonlinear excitations,
such as their spatial localization, may be maintained over a
period of time determined by the system parameters, however,
the intrinsic dissipation causes the dark states to delocalize and
blend with the background. Remarkably, within the framework
of our model, we can derive simple analytical expressions for
the velocity and lifetime of the dark solitonic excitations in
polariton condensates.

A. General Asymptotic Description

If the perturbation mR(�r,t) of the reservoir density is set
to zero, Eq. (11) becomes a nonlinear Schrödinger (NLS)
equation with a repulsive (“defocusing”) nonlinearity:

i
∂ψ

∂t
+ 1

2
�ψ + (1 − |ψ |2)ψ = 0. (21)

It is well known that this equation has a single-parameter
family of solutions in the form of one-dimensional dark
solitons moving (for definiteness, along the x axis) at constant
velocity vs (0� |vs | < 1) [5,23,25,30]. In the moving reference
frame, ξ = (x − vst), a dark soliton is described by a wave
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function of the form

ψs(ξ,vs) =
√

1 − v2
s tanh

(√
1 − v2

s ξ
) + ivs, (22)

which satisfies the stationary equation

−ivs

∂ψs

∂ξ
+ 1

2

∂2ψs

∂ξ 2
+ (1 − |ψs |2)ψs = 0 (23)

and the boundary conditions at infinity ψs(ξ → ∞) → 1. A
stationary soliton (vs = 0) is often referred to as a “black”
soliton, where the BEC density drops to zero, and the phase
of the wave function ψs(ξ ) has a π phase jump across the
soliton profile (see Fig. 1). In a moving (“gray”) soliton, the
minimum value of density nmin

C = |ψs(ξ = 0)|2 increases in
proportion to the square of the soliton velocity nmin

C = v2
s , while

the phase changes smoothly. When vs → 1, the minimum
density attains the background value, i.e., nmin

C → 1 in our
dimensionless units. Simultaneously, the soliton width tends
to infinity: �s = (1 − v2

s )−1/2 → ∞.
Next, we consider the limit mR(�r,t) � 1, which, as will be

shown below, is quite realistic. The right-hand-side terms of
Eq. (11) proportional to mR ,

R(mR,ψ) =
(

ḡR + i

2
R̄

)
mRψ, (24)

can be treated as small perturbations. Consequently, we can
construct the asymptotic perturbation theory for the dark
solitons [31] by assuming that a polariton condensate with
a weak coupling to the reservoir supports solitonic structures
similar to (22), but with a slowly varying in time velocity vs =
vs(μt). Here we introduced a small parameter μ � 1, which
will be defined differently for each of the cases considered
below. Such solutions can be sought in the form of asymptotic
expansion in μ:

ψ(�r,t) = ψs(ξ,vs(μt)) +
∞∑

j=1

μjψj (ξ,μt), (25)

mR(�r,t) = μm0
R(ξ,μt) +

∞∑
j=1

μ(j+1)mRj (ξ,μt). (26)

Basic understanding of perturbation-induced dynamics for
a dark soliton can be deduced from analysis of evolution
equations for the soliton parameters. This approach is more
simple than the direct perturbation method developed in
Refs. [32–38] for optical dark solitons in several important
physical settings connected with linear damping, two-photon
absorption, gain with saturation and the effects of the Raman
self-induced scattering.

To derive the evolution equations of the soliton param-
eters, it is possible to use several different but qualita-
tively similar methods. For example, on substituting (25)
into (11), (12), to the first order in μ, we obtain the
following linear inhomogeneous differential equation for
function ψ1(ξ,μt):[

ivs

∂

∂ξ
− 1

2

∂2

∂ξ 2
− 1 + 2|ψs |2

]
ψ1 + ψ2

s ψ∗
1

= i
∂vs

∂t

∂ψs

∂vs

− R
(
m0

R,ψs

)
, (27)

while perturbation m0
R(ξ,μt) of the polariton density in the

reservoir is determined by the wave function ψs(ξ,vs(μt)) of a
dark soliton. It can be proved that spatially localized solutions
of Eq. (27) exist if

Re

[ ∫ +∞

−∞
dξ

(
i
∂vs

∂t

∂ψs

∂vs

− R
(
m0

R,ψs

))∂ψ∗
s

∂ξ

]
= 0, (28)

which is a full analog of the Fredholm alternative [39,40].
Ultimately, Eq. (28) leads to the dynamic equation:

dEs

dt
= vs

∫ +∞

−∞
dξ

(
R

(
m0

R,ψs

)∂ψ∗
s

∂ξ
+ R∗(m0

R,ψs

)∂ψs

∂ξ

)
,

(29)
where

Es = 1

2

∫ +∞

−∞
dξ

[∣∣∣∣∂ψs

∂ξ

∣∣∣∣
2

+ (1 − |ψs |2)2

]
= 4

3

(
1 − v2

s

)3/2

(30)
is the energy of the dark soliton. Equations (29) and (30)
fully describe the dynamics (trajectory and velocity) of a
1D dark soliton propagating on a background of a spatially
homogeneous polariton condensate.

In essence, Eqs. (29) and (30) are in agreement with the
results of Refs. [41,42], and can alternatively be derived using
the so-called adiabatic approximation of the perturbation the-
ory for dark solitons. We stress that our theory so far assumes
a perturbative regime of reservoir excitations mR(�r,t)�1. We
will now show that this condition is fulfilled in a broad range
of regimes.

B. Weak pumping

First of all, we will consider the regime of a weakly above
threshold pump intensity:

P0/Pth − 1 � 1. (31)

The characteristic scale of the perturbation m0
R(ξ,μt) coincides

with the dark soliton width �s . Under the condition (31), γ̄R 

1, and, thereby, for all velocities vs , γ̄R 
 1/�s . According
to Eq. (12) and the asymptotic series (25), the perturbation
m0

R(ξ,μt) of the polariton density in the reservoir is coupled
to |ψs(ξ,vs(μt))|2:

m0
R = γ̄C

γ̄R

(1 − |ψs |2), (32)

and is a small value, provided that γ̄C/γ̄R ≡ γC/γR �1. Hence
the role of the small parameter in our problem is now played
by the ratio μ ∼ γC/γR �1. Substituting (32) into the right-
hand side of equality (29), taking into account that ψs(ξ,vs) is
determined by (22), and integrating, we obtain the expression
for the dark soliton acceleration,

dvs

dt
= 1

2τ1

(
1 − v2

s

)
vs, (33)

and velocity,

v2
s (t) = v2

s 0 exp(t/τ1)

1 − v2
s 0 + v2

s 0 exp(t/τ1)
. (34)

The velocity of the dark soliton vs determines its “darkness”
(contrast) through the simple relation nmin

C (t) = v2
s (t). The
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Eq. (34) shows that nmin
C grows in time approaching the unit

background, and as a result the dark soliton disappears at the
time:

τ1 = 3

2

γ̄R

R̄γ̄C

= 3

2

1

γCτ0

Pth

P0 − Pth
, (35)

where τ0 is the characteristic time scale for our system
introduced in Sec. II. We point out that this case is similar
to the NLS model for a defocusing nonlinear medium with the
saturated gain analyzed in Ref. [42].

As seen from Eqs. (33)–(35), the soliton relaxation time
in the weak pumping regime is not affected by the nonlinear
interaction with the reservoir. By substituting expression (32)
for mR = m0

R into Eq. (11), we can rewrite it in the
form

i
∂ψ

∂t
+ 1

2
�ψ + α(1 − |ψ |2)ψ = i

2
R̄mRψ, (36)

where α = 1 − ḡRγ̄C/γ̄R = 1 − (gRγC)/(gCγR). According
to (36), the interaction with the reservoir, characterized by ḡR ,
modifies the effective local self-induced potential exhibited by
the condensate, and therefore only slightly changes the width
and darkness of the solitonic state. Its acceleration, on the
other hand, is determined by the stimulated scattering term
proportional to R̄. We point out that at (gRγC)/(gCγR) > 1
[cf. Eq. (20)] the sign of α is changed to the opposite, i.e., the
character of nonlinearity is effectively switched from repulsive
to attractive. As established in Sec. III, in this regime, the
condensate can become modulationally unstable at some pump
intensities.

To compare our analytical predictions with direct numerical
simulation of the model equations, we show the evolution of
the condensate density distribution nC(x,t) = |ψ(x,t)|2 and
associated perturbations of the polariton reservoir density
mR(x,t) in Fig. 3 (left and middle columns, respectively).
For comparison, the dark soliton trajectory calculated using
Eq. (33) is depicted by the solid line and demonstrates a
remarkable agreement with the results of direct integration
of Eqs. (6) and (7). The right column in Fig. 3 shows the time-
dependence of the minimum value of the condensate density
associated with the dark soliton. The solid line shows the
darkness nmin

C (t) = v2
s (t) calculated analytically using Eq. (34),

and shows an excellent agreement with numerics. As seen in
Figs. 3 (d)–3(f), the soliton lifetime, τ1, reduces dramatically
with growth of the stimulated scattering rate R̄, characterizing
the efficiency of the polariton scattering into the condensed
state. Namely, the threefold increase in R̄, compared to the
parameters in Figs. 3 (a)–3(c), leads to the threefold decrease in
τ1, in agreement with Eq. (35). Likewise, longer lifetime of the
reservoir polaritons leads to shorter lifetime of dark solitons.
As can be seen in Figs. 3(g)–3(i), the relaxation time τ1 has
decreased by 5/3 when γ̄R decreased by 2/5, in full compliance
with (35). At this ratio, γ̄C/γ̄R = 1/3, therefore for correct
description of the dark soliton dynamics in the zero order
the wave function ψ(x,t) should be set taking into account
the coefficient α [see Eq. (36)], which determines the soliton
width �s = (α − v2

s )−1/2 and the density minimum nmin
C =

v2
s /α. Conversely, simultaneous increase in both radiative and

nonradiative decay rates of the reservoir, γ̄R and R̄, causes the
solitonic structures to disappear rather fast. In the particular

FIG. 3. (Color online) Dynamics of a 1D dark soliton with the
initial velocity vs(0) = 0.35 in the case of weak pumping. Shown are
contour plots of nC(x,t) (left column) and mR(x,t) (middle column),
and the dependence nmin

C (t) (right column, circles) computed using
Eqs. (11) and (12). Solid lines are calculated using the analytical
formulas (33) (left and middle columns) and Eq. (34) (right column).
Parameters are ḡR = 2, γ̄C = 3, and (a)–(c) γ̄R = 15, R̄ = 0.5;
(d)–(f) γ̄R = 15, R̄ = 1.5; (g)–(i) γ̄R = 9, R̄ = 0.5; (j)–(l) γ̄R = 9,
R̄ = 1.5.

case shown in Figs. 3(j)–3(l), the dimensionless relaxation
time is very short τ1 = 3, as predicted by Eq. (35). However,
even in this case, our asymptotic description gives quite
satisfactory understanding of the behavior of the dark localized
structures at all stages of evolution. Although neither the
initial density nor the phase structure typical of a dark soliton
in a conservative system survives in the open-dissipative
condensate, the localized nature of the dark solitonic excitation
with the distinct phase gradient across its profile is preserved
during the relaxation process (see Fig. 4).

Finally, we note that, if we assume the polariton relax-
ation time γ −1

C = 10 ps and the dimensionless parameters
in Figs. 3(a)–3(l), the time scaling variable expressed as
τ0 = γ̄C/γC takes the physical value of 30 ps. The corre-
sponding propagation time for the solitonic state shown in
Figs. 3(a)–3(c) reaches t = 1800 ps, which is much longer
than the condensate and reservoir relaxation times.
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FIG. 4. (Color online) Cross-section of a 1D dark soliton (a)–(c)
density and (d)–(f) phase for different stages of relaxation dynamics
shown in Figs. 3(a)–3(c). Solid lines are obtained analytically.

C. Slow solitons

If the velocity of a dark soliton is smaller than all
characteristic relaxation and scattering rates in the system,
i.e.,

vs � γ̄C,γ̄R,R̄, (37)

we can repeat the analysis described above. Under the
condition (37), the perturbation m0

R(ξ,μt) of the reservoir
density depends on |ψs(ξ,vs(μt))|2 as

m0
R = γ̄C(1 − |ψs |2)

γ̄R + R̄|ψs |2 , (38)

and is a small value, provided that γ̄C/(γ̄R + R̄) � 1. There-
fore the small parameter of the problem is μ ∼ γ̄C/(γ̄R +
R̄) = (γCPth)/(γRP0) � 1. Substituting (38) into the right-
hand side of Eq. (29), taking into account the expression
for ψs(ξ,vs) (22), and integrating, we obtain the following
equation for the acceleration:

dvs

dt
= 1

2τ2
vs (39)

and the soliton velocity

v2
s (t) = v2

s 0e
t/τ2 . (40)

Here the relaxation time is

τ2 = 1

γ̄C

(
γ̄R + R̄√

R̄γ̄R

arctan

√
R̄

γ̄R

− 1

)−1

= 1

γCτ0

[
P0√

Pth(P0−Pth)
arctan

√
P0−Pth

Pth
− 1

]−1

. (41)

When P0/Pth − 1 � 1,

τ2 ≈ 3

2

1

γCτ0

P0

P0 − Pth
. (42)

From Eq. (40) it follows that a stationary black soliton with
vs(0) = 0 is unstable. Any small perturbation of the initial
velocity leads to soliton acceleration, which results in the
exponential growth of the velocity. When the condition vs � 1
is violated, acceleration slows down and soliton behaves
as described in the previous section, losing its energy and
relaxing to the background. Rapid relaxation of quasistationary
dark solitons was numerically demonstrated in Ref. [22] for
moderate pumping intensities.

D. Strong pumping

The above results were obtained in the weak pump approx-
imation. However, we can also use our general asymptotic
approach to analyze the case when the pump is strong:

P0/Pth 
 1. (43)

Taking into account the asymptotic expansion (25) to the first
order in μ, Eq. (12) can be rewritten in the form

−vs

∂m0
R

∂ξ
+ (γ̄R + R̄|ψs |2)m0

R = γ̄C(1 − |ψs |2). (44)

Therefore the perturbation of the polariton density in the
reservoir depends on the wave function nonlocally:

m0
R = ℘e(pη−q tanh η)

∫ +∞

η

e(q tanh η′−pη′)sech2η′dη′, (45)

where

η =
√

1 − v2
s ξ, ℘ =

√
1 − v2

s

vs

γ̄C,

(46)

p = (γ̄R + R̄)

vs

√
1 − v2

s

, q =
√

1−v2
s

vs

R̄.

Under the condition (43), γ̄R �1 and γ̄C � 1 and thereby the
value of m0

R(η) determined by (45) is small in a wide range of
values of the soliton velocity vs . Here, ℘ is a small parameter
of the system μ ∼ ℘ � 1.

If p � 1, that is, R̄ � vs

√
1 − v2

s , we can replace pη′ by
p tanh(η′) in (45) and obtain an analytical expression for the
function m0

R(η):

m0
R = ℘

(p − q)
e(pη−q tanh η)[e(p−q) − e[(p−q) tanh η]]. (47)

Substituting (47) into the right-hand side of Eq. (29) and
taking into account the expresson for ψs(ξ,vs) (22), we derive
the following expression for the soliton acceleration:

dvs

dt
= − γ̄C

4

√
1 − v2

s

w2

{
ḡR(γ̄R + R̄)

v2
s

(
e−2w + 2

3
w − 1

)

+ 2ḡRR̄

(
1 − v2

s

)
v2

s w
2

[(w + 1)e−2w + w − 1]

−R̄(e−2w + 2w − 1)

}
, (48)

where

w = γ̄R + R̄v2
s

vs

√
1 − v2

s

. (49)
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Note that w(vs) can be small if R̄vs � √
1−v2

s , and this is
possible even for R̄∼vs . When w(vs)�1, Eq. (48) can be
reduced to

dvs

dt
= 1

2τ3

(
1 − v2

s

)
vs

, (50)

where

τ3 = 3

2

1

γ̄C ḡR

= 3

2

gc

gRγcτ0
(51)

is the soliton relaxation time. By integrating (50), we obtain
the expression for the soliton velocity

v2
s (t) = 1 − (

1 − v2
s 0

)
e−t/τ3 . (52)

In the regime of strong pumping, the dominant contribution
to the perturbation (24) causing relaxation of a dark soliton
is ḡRmRψ . This results in the nonlocal coupling between
|ψs |2 and m0

R , and the explicit dependence of the soliton
lifetime (51) on the strength of the nonlinear interaction
between the condensate and reservoir polaritons, ḡR . In all our
calculations, we took ḡR = gR/gC = 2, as predicted by the
Hartree-Fock theory. However, the strength of the condensate-
reservoir interaction gR has not been conclusively verified
in experiments. Therefore, dynamics of dark solitons created
in an experiment via strong incoherent excitation, would not
only serve as a test for our model, but may potentially lead
to accurate estimation of gR from the characteristic time of
relaxation τ3.

To demonstrate agreement between our analytical theory
and numerical simulations, we show evolution of the polariton
density distribution nC(x,t) = |ψ(x,t)|2 and associated pertur-
bations of the reservoir density mR(x,t), in the left and middle
column panels of Fig. 5, respectively, for various values of the
parameters. In contrast to Fig. 4, nonlocal coupling between the
reservoir density mR(x,t) and the condensate density nC(x,t)
significantly affects the soliton dynamics, as seen in Fig. 6.
The reservoir exerts a “drag” on the dark soliton, whereby the
soliton delocalizes and develops a low density tail [Fig. 6(c)].
Nevertheless, the density minimum propagates in remarkable
agreement with the dark soliton trajectory calculated using
Eq. (48) as depicted by the solid line in left and middle
column panels of Fig. 5. The time dependence of the minimum
density value, nmin

C (t) = v2
s (t), calculated using Eq. (52) is also

in excellent agreement with the numerical solutions of Eqs. (6)
and (7), as shown in Figs. 5 (c), 5(f), 5(i), and 5(l).

In physical terms, stronger pumping leading to larger
densities of the condensate cw background, shortens the time
scale of the soliton relaxation dynamics. In particular, the
dynamics shown in Fig. 5 is very fast, and its time scale is
comparable to the polariton decay times. For γ −1

c = 10 ps, the
corresponding propagation times are t = 18 [Figs. 5(a)–5(c)
and 5(g)–5(i)], 6 [Figs. 5(d)–5(f)], and 36 ps [Figs. 5(j)–5(l)].

V. TRANSVERSE INSTABILITY OF DARK SOLITONS

Quasi-one-dimensional dark soliton stripes in two-
dimensional exciton-polariton systems emerged as an im-
portant topic in connection with the physics of superfluidity
and breakdown of the superfluid flow in a coherently driven
polariton condensates [14,15]. It is well known that dark

FIG. 5. (Color online) Dynamics of a 1D dark soliton with the
initial velocity vs(0) = 0.4 in the case of strong pumping. Shown
are contour plots of nC(x,t) (left column) and mR(x,t) (middle
column), and the dependence nmin

C (t) (right column, circles) obtained
by numerical solution of Eqs. (11) and (12). The solid lines in the left
and middle columns are obtained using Eq. (48). Solid line in the right
column is obtained analytically using the approximate Eq. (52), for
comparison, the dashed line is calculated by numerical integration
of Eq. (48). Parameters are (a)–(c) ḡR = 2, γ̄C = 0.03, γ̄R = 0.05,
R̄=0.04; (d)–(f) γ̄C =0.01, γ̄R =0.05, R̄=0.04; (g)–(i) γ̄C =0.03,
γ̄R =0.07, R̄=0.08; (j)–(l) γ̄C =0.06, γ̄R =0.04, R̄=0.15.

soliton stripes in conservative atomic condensates [24,43–46]
and optical fields [47–51] are always unstable to sufficiently
long-wavelength modulations in the direction transverse to
the soliton line (or plane). Decay into pairs of vortices
with opposite topological charges triggered by the transverse
instability has been observed in experiments with optical and
matter waves [26,27,52,53]. Our aim here is to consider,
by means of numerical modeling, peculiarities of transverse
instability development of dark solitons in an open-dissipative
condensate of polaritons with an incoherent pump. This is
a regime that so far has not been studied in experiments,
and therefore our predictions could be used to guide further
experimental efforts.

For comparison with conservative systems, we first demon-
strate the well-known result of the transverse instability
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FIG. 6. (Color online) Cross-section of a 1D dark soliton (a)–(c)
density and (d)–(f) phase for different stages of relaxation dynamics
shown in Figs. 5(a)–5(c). Solid lines are obtained analytically.

development in the framework of Eq. (21) [see Fig. 7]. The
initial dark soliton velocity (width) in these calculations is
slightly modulated by the Gaussian function:

ψ(�r,t =0) = ψs(x,vs(y)),
(53)

vs(y) = vs0 + δvs0e
−y2/σ 2

y .

As seen from the snapshots of the density distribution |ψ |2,
the quasi-1D solitonic structure (53) is destroyed and gives
rise to the first vortex-antivortex pair at t = 27.5. As the
soliton evolves, vortices are generated at the points where
both the condensate density and the curvature of the bending
soliton line reach zero [46]. Then, at t = 50, two more vortex
pairs appear, and the process repeats at the later stages of the
instability development (hence the term “snake” instability).
As a result, the soliton breaks up into several interacting
vortex-antivortex pairs. Increasing the initial velocity slows
down the process of vortex pairs formation. If the initial
velocity of a moving dark (gray) soliton approaches the
velocity of sound in the condensate, the transverse instability
results in the formation of vortex-free structures resembling
two-dimensional Kadomtsev-Petviashvilli solitons [46,50,51].

FIG. 7. (Color online) Snapshots of transverse instability devel-
opment of a dark soliton solution of NLS equation (21) at (a) t = 5,
(b) 27.5, and (c) 50. The initial velocity vs(t = 0) is modulated
along y-axis by the Gaussian function (53). Parameters are vs0 =0.25,
δvs0 =0.025, and σy =1.

FIG. 8. (Color online) Transverse instability development of a
dark soliton with the initial velocity vs0 = 0.25 for weak pumping.
The initial condensate wave function ψ(�r,t) is the same as that in
Fig. 7 and mR(�r,0) = 0. Shown are (a)–(i) condensate density nC ,
and (j)–(l) phase arg(ψ) corresponding to (c), (f), and (i). Parameters
are ḡR = 2, γ̄C = 3, γ̄R = 15, and (a)–(c) R̄ = 0.25; (d)–(f) R̄=0.5;
(g)–(i) R̄ = 1.

Quasi-1D solitons in the open-dissipative polariton conden-
sate behave in a different way. As demonstrated in Sec. IV,
dark solitons are fundamentally nonstationary excitations even
without a transverse modulation, and therefore the theory
of transverse instability developed in Refs. [24,26,27,43–57]
is not strictly applicable. Nevertheless, it is intuitively clear that
transverse instability may occur and dramatically influence
the process of relaxation of solitonic structures described
in Sec. IV. Indeed, the transverse instability of dark soliton
stripes is clearly seen in numerical simulation of the polariton
condensate dynamics in the framework of Eqs. (6) and (7).
The results of numerical simulations for a weak pump
(P0/Pth − 1 � 1) are presented in Fig. 8, where we plot the
condensate density nC(�r,t) [Figs. 8(a)–8(i)] and phase arg(ψ)
[Figs. 8(j)–8(l)] at different moments in time. The reservoir
density mR(x,y) (not shown) trivially follows that of the
condensate polaritons with density peaks corresponding to
density dips in the condensate.
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At t = 0, the wave function ψ(�r,t = 0) was taken in the
form (53), whereas the velocity vs0 and parameters δvs0 and
σy were the same as in the case corresponding to Fig. 7.
The behavior of the polariton condensate was simulated for
three different values of the dimensionless scattering rate R̄ =
0.25, 0.5, 1. According to (35), for R̄ = 0.25, the characteristic
relaxation time τ1 for 1D dark soliton is equal to 30, while for
R̄ = 0.5, it is two times less, and for R̄ = 1 it is four times
less. As seen in Figs. 8(a)–8(c) and 8(j), a vortex pair is formed
from the initial distribution, as a consequence of transverse
instability development, at a remarkably lengthy period of time
(t ≈50), compared to the depicted in Fig. 7 situation, where
t � 27.5. After that, no new vortices form, the condensate
excitations smoothly relax to the homogeneous state, while
the vortex and antivortex approach each other, annihilate, and
turn into a fading vortex-free localized structure. Growth of
the stimulated scattering rate R̄ leads to inhibition of the
transverse instability, whereby no vortex-antivortex pairs form,
and slowly developing instability results in the formation of
vortex-free structures [Figs. 8(d)–8(f) and 8(k)]. Finally, if the
lifetime of the solitonic structure, τ1, becomes comparable to
the characteristic time scale of the linear stage of the transverse
instability, a dark soliton remains quasi-one-dimensional for
all the time of its existence, the transverse instability becomes
insignificant, and a solitonic stripe merges with the background
without breaking up into two-dimensional localized structures.
This regime is illustrated in Figs. 8(g)–8(i) and 8(l), where
τ1 = 7.5. For a condensate with the polariton decay rate
γc = 10 ps, this corresponds to t = 225 ps.

In the case of strong pumping (P0/Pth 
 1) illustrated in
Fig. 9, structures similar to those depicted in Fig. 8 are formed.
However, for the same initial conditions as in the case of weak
pumping, we clearly observe the consequence of nonlocal
coupling between the condensate nC(�r,t) and reservoir density
mR(�r,t). Indeed, the instability develops much slower than
in the case modeled by the NLS equation (21) and leads to
the formation of several vortex pairs and two-dimensional
vortex-free solitons, which then disappear [Figs. 9(a)–9(c) and
9(j)]. In this regime, the soliton lifetime τ3 is controlled by
the renormalized decay rate γ̄C . For larger decay rates (three
times longer lifetime), the transverse instability development
slows down and a vortex pair is no longer formed but three
two-dimensional vortex-free solitons appear [Figs. 9(d)–9(f)
and 9(k)]. Further growth in the decay rate (and fourfold
increase in τ3) fully inhibits the transverse instability, and the
dark stripe retains its quasi-1D nature before merging with the
background [Figs. 9(g)–9(i) and 9(l)]. In order for a vortex
pair to be formed, parameters of the condensate should be
chosen so that τ3 > τ1, which indicates that, compared to
the weak pumping case, it is more difficult to realize con-
ditions for vortex-pair formation via the transverse instability
development.

In addition, strong pumping leads to much shorter time
scales of the soliton dynamics overall. For γ −1

c = 10 ps,
the physical periods of time for relaxation and instability
development depicted in Fig. 9 are t = 3.75 [Figs. 9(a)–9(c)],
7.5 [Figs. 9(d)–9(f)], and 9 ps [Figs. 9(g)–9(i)], respectively.

From the above numerical analysis, we conclude that vortex
pairs in a polariton condensate may form due to development
of the transverse instability of quasi-1D dark stripes, but

FIG. 9. (Color online) Transverse instability development of a
dark soliton with the initial velocity vs0 = 0.3 for strong pumping.
The initial condensate wave function ψ(�r,t) is the same as that in
Fig. 7, and mR(�r,0) = 0. Shown are (a)–(i) condensate density nC ,
and (j)–(l) phase arg(ψ) corresponding to (c), (f), and (i). Parameters
are ḡR = 2, γ̄R = 0.07, R̄ = 0.08, and (a)–(c) γ̄C = 0.0075; (d)–(f)
γ̄C = 0.015; (g)–(i) γ̄C = 0.03.

only under very specific conditions and for a short period of
time.

VI. CONCLUSIONS

We have shown, within the framework of an open-
dissipative mean-field model, that a homogeneous exciton-
polariton condensate with an incoherent pump can support
spatially localized solitonic excitations with the spatial and
phase structure similar to that of one-dimensional dark solitons
in conservative systems. These nonlinear excitations have a
finite lifetime which is determined by the parameters of the
system, such as polariton decay rates, stimulated scattering
rate, and strength of polariton-polariton interactions. In the
process of evolution, the dark solitonic structures grow in width
and lose contrast eventually blending with the homogeneous
background. The soliton relaxation depends on parameters
of the condensate and proceeds differently in slightly and
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highly above-threshold pumping regimes. The characteristic
soliton lifetimes, given by compact analytical formulas, could
potentially assist experimental verification of our theory.

Finally, the scenario of transverse instability development
in exciton-polariton condensate is shown to be different from
that in atomic condensates governed by Gross-Pitaevskii (or
NLS) mean-field model. For the latter, a nonlinear stage of
transverse instability most frequently ends up with a dark
soliton decaying into vortex-antivortex pairs. By contrast, in
exciton-polariton condensate several rather strict conditions
should be satisfied for vortex-pair formation via instability
development. In the majority of regimes, a soliton breaks up
into vortex-free two-dimensional localized structures, which
disappear rather fast. The fact that the dark stripe in a two-
dimensional condensate may relax by losing its contrast before
the transverse instability takes place, could inhibit potential
experimental observation of dark soliton decay into vortex-
antivortex pairs in an incoherently formed exciton-polariton
condensate. We note that observation of decay of dark stripes
into vortex pairs has been hinted at in Ref. [58].

Previous theoretical studies have already proposed ex-
perimentally relevant schemes for generation of dark soli-
tons in an incoherently and off-resonantly pumped polariton
condensate [19,20]. Here, we complement these studies by
describing characterstic features of temporal evolution of the
dark collective excitations, while fully taking into account the
influence of the incoherent reservoir. Although our analysis is
performed for a homogeneous condensate, it is also applicable
to a realistic quasihomogeneous condensate created by a
broad beam cw excitation with a “top-hat” intensity profile,
and therefore can provide guidance for future experimental
observations.
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[8] A. Amo, J. Lefrèure, S. Pigeon, C. Adrados, C. Ciuti,
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and Y. Yamamoto, Nat. Phys. 7, 129 (2011).

[13] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto,
F. Pisanello, G. Leménager, R. Houdreé, E. Giacobino et al.,
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[19] P.-E. Larré, N. Pavloff, and A. M. Kamchatnov, Phys. Rev. B
86, 165304 (2012).

[20] F. Pinsker and H. Flayac, Phys. Rev. Lett. 112, 140405 (2014).
[21] J. Cuevas, A. S. Rodrigues, R. Carretero-Gonzalez, P. G.

Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. B 83, 245140
(2011).

[22] Y. Xue and M. Matuszewski, Phys. Rev. Lett. 112, 216401
(2014).

[23] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[24] N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S.

Adams, J. Opt. B: Quantum Semiclass. Opt. 6, S380 (2004).
[25] D. J. Frantzeskakis, J. Phys. A: Math. Theor. 43, 213001 (2010).
[26] V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar,

Opt. Lett. 21, 1129 (1996).
[27] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A.

Collins, C. W. Clark, and E. A. Cornell, Phys. Rev. Lett. 86,
2926 (2001).

[28] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
[29] T. Byrnes, T. Horikiri, N. Ishida, M. Fraser, and Y. Yamamoto,

Phys. Rev. B 85, 075130 (2012).
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